Community detection in networks without observing edges

Till Hoffmann, Leto Peel, Renaud Lambiotte, Nick S. Jones

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

We develop a Bayesian hierarchical model to identify communities of time series. Fitting the model provides an end-to-end community detection algorithm that does not extract information as a sequence of point estimates but propagates uncertainties from the raw data to the community labels. Our approach naturally supports multiscale community detection and the selection of an optimal scale using model comparison. We study the properties of the algorithm using synthetic data and apply it to daily returns of constituents of the S&P100 index and climate data from U.S. cities.
langue originaleAnglais
Numéro d'articleeaav1478
Pages (de - à)eaav1478
journalScience Advances
Volume6
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 24 janv. 2020

Empreinte digitale Examiner les sujets de recherche de « Community detection in networks without observing edges ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation