Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

Yerali Carolina Gandica Lopez, A. Charmell, J. Villegas-Febre

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

Résumé

We study the Axelrod’s cultural adaptation model using the concept of cluster-size entropy S c , which gives information on the variability of the cultural cluster size present in the system. Using networks of different
topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S c (q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q c and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square
network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q − B
phase diagram for the Axelrod model in regular networks.
langue originaleAnglais
Pages (de - à)046109
Nombre de pages6
journalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume84
Date de mise en ligne précoce31 mai 2011
Les DOIs
Etat de la publicationPublié - 20 oct. 2011

Empreinte digitale Examiner les sujets de recherche de « Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation