Résumé
We investigate the causal structure of two-sheeted space-times using the tools of Lorentzian spectral triples. We show that the noncommutative geometry of these spaces allows for causal relations between the two sheets. The computation is given in detail when the sheet is a 2- or 4-dimensional globally hyperbolic spin manifold. The conclusions are then generalised to a point-dependent distance between the two sheets resulting from the fluctuations of the Dirac operator.
langue originale | Anglais |
---|---|
Pages (de - à) | 42-58 |
Nombre de pages | 17 |
journal | Journal of Geometry and Physics |
Volume | 96 |
Date de mise en ligne précoce | 6 juin 2015 |
Les DOIs | |
Etat de la publication | Publié - 1 oct. 2015 |
Modification externe | Oui |