Carbon-based lanthanum nickelate material La 2−x−y Nd x Pr y NiO 4+δ (x = 0, 0.3, and 0.5; y = 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media

Sabah Amira, Mosbah Ferkhi, Ammar Khaled, Fabrice Mauvy, Jean Claude Grenier, Laurent Houssiau, Jean Jacques Pireaux

Résultats de recherche: Contribution à un journal/une revueArticle

Résumé

The kinetics and mechanism of oxygen reduction reaction (ORR) in alkaline medium are studied on lanthanum nickelate materials La 2−x−y Nd x Pr y NiO 4±δ (x = 0, 0.3 and 0.5; y = 0 and 0.2) using the electrochemical technique of the rotating disk electrode in a 0.5-M solution of NaOH. The oxide powders are synthesized by the citrate–nitrate method. Structural and surface characterizations are performed by X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS), while the morphology is studied by scanning electron microscopy (SEM). Electrochemical studies are carried out by linear voltamperometry, cyclic voltamperometry, and impedance spectroscopy. The doped and undoped electrocatalyst composites (La 2−x−y Nd x Pr y NiO 4±δ /C), made of the rare earth nickel oxides mixed with carbon black (Vulcan XC-72(C)), are deposited as a thin layer on a glassy carbon substrate. At room temperature, the undoped electrocatalyst La 2 NiO 4±δ material shows single-step kinetics unlike the doped materials. The doping by the rare earths Nd or/and Pr significantly enhances the electrical conductivity of the electrode under air and the diffusion of oxygen. On the other hand, the steric hindrance between the atomic oxygen orbital (π-orbital (O 2 )–π-orbital (O 2 )) and the dz 2 –orbital (Ni)–π-orbital (O 2 ) influences the training model of the liaison (dz 2 (Ni)–π (O 2 )). The structure, oxygen adsorption, and oxidation states of the catalyst elements have a large influence on the mechanism and kinetics of the ORR. The LNNO3/C and LNPNO5/C electrocatalysts have better electrocatalytic performances, which allow them to be used as a bifunctional electrocatalyst for the reduction of oxygen in alkaline media.

langue originaleAnglais
Pages (de - à)3809-3822
Nombre de pages14
journalIonics
Volume25
Numéro de publication8
Les DOIs
étatPublié - 1 août 2019

Empreinte digitale

Lanthanum
electrocatalysts
Electrocatalysts
lanthanum
Carbon
Oxygen
carbon
oxygen
orbitals
Rare earths
Kinetics
kinetics
rare earth elements
Soot
Electrodes
Nickel oxide
electrodes
nickel oxides
glassy carbon
Glassy carbon

Citer ceci

@article{a327ad57e9754c1993cfa4bb7ec71f04,
title = "Carbon-based lanthanum nickelate material La 2−x−y Nd x Pr y NiO 4+δ (x = 0, 0.3, and 0.5; y = 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media",
abstract = "The kinetics and mechanism of oxygen reduction reaction (ORR) in alkaline medium are studied on lanthanum nickelate materials La 2−x−y Nd x Pr y NiO 4±δ (x = 0, 0.3 and 0.5; y = 0 and 0.2) using the electrochemical technique of the rotating disk electrode in a 0.5-M solution of NaOH. The oxide powders are synthesized by the citrate–nitrate method. Structural and surface characterizations are performed by X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS), while the morphology is studied by scanning electron microscopy (SEM). Electrochemical studies are carried out by linear voltamperometry, cyclic voltamperometry, and impedance spectroscopy. The doped and undoped electrocatalyst composites (La 2−x−y Nd x Pr y NiO 4±δ /C), made of the rare earth nickel oxides mixed with carbon black (Vulcan XC-72(C)), are deposited as a thin layer on a glassy carbon substrate. At room temperature, the undoped electrocatalyst La 2 NiO 4±δ material shows single-step kinetics unlike the doped materials. The doping by the rare earths Nd or/and Pr significantly enhances the electrical conductivity of the electrode under air and the diffusion of oxygen. On the other hand, the steric hindrance between the atomic oxygen orbital (π-orbital (O 2 )–π-orbital (O 2 )) and the dz 2 –orbital (Ni)–π-orbital (O 2 ) influences the training model of the liaison (dz 2 (Ni)–π (O 2 )). The structure, oxygen adsorption, and oxidation states of the catalyst elements have a large influence on the mechanism and kinetics of the ORR. The LNNO3/C and LNPNO5/C electrocatalysts have better electrocatalytic performances, which allow them to be used as a bifunctional electrocatalyst for the reduction of oxygen in alkaline media.",
keywords = "Electrocatalyst materials, Impedance spectroscopy, MIEC, ORR mechanism, XPS analysis",
author = "Sabah Amira and Mosbah Ferkhi and Ammar Khaled and Fabrice Mauvy and Grenier, {Jean Claude} and Laurent Houssiau and Pireaux, {Jean Jacques}",
year = "2019",
month = "8",
day = "1",
doi = "10.1007/s11581-019-02963-0",
language = "English",
volume = "25",
pages = "3809--3822",
journal = "Ionics",
issn = "0947-7047",
publisher = "Institute for Ionics",
number = "8",

}

Carbon-based lanthanum nickelate material La 2−x−y Nd x Pr y NiO 4+δ (x = 0, 0.3, and 0.5; y = 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media. / Amira, Sabah; Ferkhi, Mosbah; Khaled, Ammar; Mauvy, Fabrice; Grenier, Jean Claude; Houssiau, Laurent; Pireaux, Jean Jacques.

Dans: Ionics, Vol 25, Numéro 8, 01.08.2019, p. 3809-3822.

Résultats de recherche: Contribution à un journal/une revueArticle

TY - JOUR

T1 - Carbon-based lanthanum nickelate material La 2−x−y Nd x Pr y NiO 4+δ (x = 0, 0.3, and 0.5; y = 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media

AU - Amira, Sabah

AU - Ferkhi, Mosbah

AU - Khaled, Ammar

AU - Mauvy, Fabrice

AU - Grenier, Jean Claude

AU - Houssiau, Laurent

AU - Pireaux, Jean Jacques

PY - 2019/8/1

Y1 - 2019/8/1

N2 - The kinetics and mechanism of oxygen reduction reaction (ORR) in alkaline medium are studied on lanthanum nickelate materials La 2−x−y Nd x Pr y NiO 4±δ (x = 0, 0.3 and 0.5; y = 0 and 0.2) using the electrochemical technique of the rotating disk electrode in a 0.5-M solution of NaOH. The oxide powders are synthesized by the citrate–nitrate method. Structural and surface characterizations are performed by X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS), while the morphology is studied by scanning electron microscopy (SEM). Electrochemical studies are carried out by linear voltamperometry, cyclic voltamperometry, and impedance spectroscopy. The doped and undoped electrocatalyst composites (La 2−x−y Nd x Pr y NiO 4±δ /C), made of the rare earth nickel oxides mixed with carbon black (Vulcan XC-72(C)), are deposited as a thin layer on a glassy carbon substrate. At room temperature, the undoped electrocatalyst La 2 NiO 4±δ material shows single-step kinetics unlike the doped materials. The doping by the rare earths Nd or/and Pr significantly enhances the electrical conductivity of the electrode under air and the diffusion of oxygen. On the other hand, the steric hindrance between the atomic oxygen orbital (π-orbital (O 2 )–π-orbital (O 2 )) and the dz 2 –orbital (Ni)–π-orbital (O 2 ) influences the training model of the liaison (dz 2 (Ni)–π (O 2 )). The structure, oxygen adsorption, and oxidation states of the catalyst elements have a large influence on the mechanism and kinetics of the ORR. The LNNO3/C and LNPNO5/C electrocatalysts have better electrocatalytic performances, which allow them to be used as a bifunctional electrocatalyst for the reduction of oxygen in alkaline media.

AB - The kinetics and mechanism of oxygen reduction reaction (ORR) in alkaline medium are studied on lanthanum nickelate materials La 2−x−y Nd x Pr y NiO 4±δ (x = 0, 0.3 and 0.5; y = 0 and 0.2) using the electrochemical technique of the rotating disk electrode in a 0.5-M solution of NaOH. The oxide powders are synthesized by the citrate–nitrate method. Structural and surface characterizations are performed by X-ray diffraction (XRD) and X-ray photoelectron spectrometry (XPS), while the morphology is studied by scanning electron microscopy (SEM). Electrochemical studies are carried out by linear voltamperometry, cyclic voltamperometry, and impedance spectroscopy. The doped and undoped electrocatalyst composites (La 2−x−y Nd x Pr y NiO 4±δ /C), made of the rare earth nickel oxides mixed with carbon black (Vulcan XC-72(C)), are deposited as a thin layer on a glassy carbon substrate. At room temperature, the undoped electrocatalyst La 2 NiO 4±δ material shows single-step kinetics unlike the doped materials. The doping by the rare earths Nd or/and Pr significantly enhances the electrical conductivity of the electrode under air and the diffusion of oxygen. On the other hand, the steric hindrance between the atomic oxygen orbital (π-orbital (O 2 )–π-orbital (O 2 )) and the dz 2 –orbital (Ni)–π-orbital (O 2 ) influences the training model of the liaison (dz 2 (Ni)–π (O 2 )). The structure, oxygen adsorption, and oxidation states of the catalyst elements have a large influence on the mechanism and kinetics of the ORR. The LNNO3/C and LNPNO5/C electrocatalysts have better electrocatalytic performances, which allow them to be used as a bifunctional electrocatalyst for the reduction of oxygen in alkaline media.

KW - Electrocatalyst materials

KW - Impedance spectroscopy

KW - MIEC

KW - ORR mechanism

KW - XPS analysis

UR - http://www.scopus.com/inward/record.url?scp=85064508931&partnerID=8YFLogxK

U2 - 10.1007/s11581-019-02963-0

DO - 10.1007/s11581-019-02963-0

M3 - Article

VL - 25

SP - 3809

EP - 3822

JO - Ionics

JF - Ionics

SN - 0947-7047

IS - 8

ER -