Busy period, congestion analysis and loss probability in fluid queues

Fabrice Guillemin, Marie-Ange Remiche, Bruno Sericola

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceChapitre (revu par des pairs)Revue par des pairs

Résumé

Stochastic fluid flow models and in particular those driven by Markov chains have been intensively studied in the last two decades. This chapter analyzes congestion when the buffer content is described by means of a Markov modulated fluid flow model in the stationary regime. It describes a methodology to compute exactly the loss probability of a finite-capacity system. The approach is based on the computation of hitting probabilities jointly with the peak level reached during a busy period, both in the infinite and finite buffer case. The chapter considers a classical fluid queue with infinite buffering capacity. This allows us to describe the buffer fluctuations and introduce the notation and the variables necessary to study the fluid queue when the buffer is finite.

langue originaleAnglais
titreAdvanced Trends in Queuing Theory 1
rédacteurs en chefVladimir Anisimov, Nikolaos Limnios
EditeurISTE Editions
Chapitre2
Pages21-61
Nombre de pages41
ISBN (Electronique)9781119755432
ISBN (imprimé)9781789450019
Les DOIs
Etat de la publicationPublié - 2021

Empreinte digitale

Examiner les sujets de recherche de « Busy period, congestion analysis and loss probability in fluid queues ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation