Résumé
Interpreting nonlinear dimensionality reduction models using external features (or external variables) is crucial in many fields, such as psychology and ecology. Multidimensional scaling (MDS) is one of the most frequently used dimensionality reduction techniques in these fields. However, the rotation invariance of the MDS objective function may make interpretation of the resulting embedding difficult. This paper analyzes how the rotation of MDS embeddings affects sparse regression models used to interpret them and proposes a method, called the Best Interpretable Rotation (BIR) method, which selects the best MDS rotation for interpreting embeddings using external information.
langue originale | Anglais |
---|---|
Pages (de - à) | 83-96 |
Nombre de pages | 14 |
journal | Neurocomputing |
Volume | 342 |
Les DOIs | |
Etat de la publication | Publié - 4 févr. 2019 |
Empreinte digitale
Examiner les sujets de recherche de « BIR: A Method for Selecting the Best Interpretable Multidimensional Scaling Rotation using External Variables ». Ensemble, ils forment une empreinte digitale unique.Thèses de l'étudiant
-
Interpretability and Explainability in Machine Learning and their Application to Nonlinear Dimensionality Reduction
Bibal, A. (Auteur), FRENAY, B. (Promoteur), VANHOOF, W. (Président), Cleve, A. (Jury), Dumas, B. (Jury), Lee, J. A. (Jury) & Galarraga, L. (Jury), 16 nov. 2020Student thesis: Doc types › Docteur en Sciences
Fichier