Bio-inspired Murray materials for mass transfer and activity

Xianfeng Zheng, Guofang Shen, Chao Wang, Yu Li, Darren Dunphy, Tawfique Hasan, C. Jeffrey Brinker, Bao Lian Su

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

171 Téléchargements (Pure)


Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

langue originaleAnglais
Numéro d'article14921
Pages (de - à)14921
journalNature Communications
Les DOIs
Etat de la publicationPublié - 6 avr. 2017

Empreinte digitale

Examiner les sujets de recherche de « Bio-inspired Murray materials for mass transfer and activity ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation