Benjamin–Feir instabilities on directed networks

Francesca Di Patti, Duccio Fanelli, Filippo Miele, Timoteo Carletti

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

1 Téléchargements (Pure)


The Complex Ginzburg–Landau equation is studied assuming a directed network of coupled oscillators. The asymmetry makes the spectrum of the Laplacian operator complex, and it is ultimately responsible for the onset of a generalized class of topological instability, reminiscent of the Benjamin–Feir type. The analysis is initially carried out for a specific class of networks, characterized by a circulant adjacency matrix. This allows us to delineate analytically the domain in the parameter space for which the generalized instability occurs. We then move forward to considering the family of non linear oscillators coupled via a generic direct, though balanced, graph. The characteristics of the emerging patterns are discussed within a self-consistent theoretical framework.
langue originaleAnglais
Pages (de - à)8-16
journalChaos, Solitons & Fractals
Les DOIs
Etat de la publicationPublié - 1 mars 2017

Empreinte digitale

Examiner les sujets de recherche de « Benjamin–Feir instabilities on directed networks ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation