Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

9 Téléchargements (Pure)


We consider the problem of diffusion on temporal networks, where the dynamics of each edge is modelled by an independent renewal process. Despite the apparent simplicity of the model, the trajectories of a random walker exhibit non-trivial properties. Here, we quantify the walker’s tendency to backtrack at each step (return where he/she comes from), as well as the resulting effect on the mixing rate of the process. As we show through empirical data, non-Poisson dynamics may significantly slow down diffusion due to backtracking, by a mechanism intrinsically different from the standard bus paradox and related temporal mechanisms. We conclude by discussing the implications of our work for the interpretation of results generated by null models of temporal networks.
langue originaleAnglais
Numéro d'article542
Nombre de pages10
Numéro de publication10
Les DOIs
Etat de la publicationPublié - 13 oct. 2017

Empreinte digitale Examiner les sujets de recherche de « Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation