Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning

Mohammed Benjelloun, Mohammed El Adoui, Mohamed Amine Larhmam, Sidi Ahmed Mahmoudi

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

Résumé

Segmentation of breast tumor is an important step for breast cancer follow-up and treatment. Automating this challenging task can help radiologists to reduce the high workload of breast cancer analysis. In this paper, we propose a deep learning approach to automate the segmentation of breast tumors in DCE-MRI data. We build an architecture based on U-net fully convolutional neural network. The trained model can handle both detection and segmentation on each single breast slice. In this study, we used a dataset of 86 DCE-MRI, acquired before and after chemotherapy, of 43 patients with local breast cancer, a total of 5452 slices. The data have been annotated manually by an experienced radiologist. The model was trained and validated on 85% and 15% of the data and achieved a mean IoU of 76,14%.

langue originaleAnglais
titre2018 4th International Conference on Cloud Computing Technologies and Applications, Cloudtech 2018
EditeurInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronique)9781728116372
Les DOIs
Etat de la publicationPublié - 2 juil. 2018
Modification externeOui
Evénement4th International Conference on Cloud Computing Technologies and Applications, Cloudtech 2018 - Brussels, Belgique
Durée: 26 nov. 201828 nov. 2018

Série de publications

Nom2018 4th International Conference on Cloud Computing Technologies and Applications, Cloudtech 2018

Une conférence

Une conférence4th International Conference on Cloud Computing Technologies and Applications, Cloudtech 2018
Pays/TerritoireBelgique
La villeBrussels
période26/11/1828/11/18

Empreinte digitale

Examiner les sujets de recherche de « Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation