Approximate invariant subspaces and quasi-Newton optimization methods

Serge Gratton, P.L. Toint

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

107 Téléchargements (Pure)

Résumé

New approximate secant equations are shown to result from the knowledge of (problem dependent) invariant subspace information, which in turn suggests improvements in quasi-Newton methods for unconstrained minimization. A new limited-memory Broyden-Fletcher-Goldfarb-Shanno using approximate secant equations is then derived and its encouraging behaviour illustrated on a small collection of multilevel optimization examples. The smoothing properties of this algorithm are considered next, and automatic generation of approximate eigenvalue information demonstrated. The use of this information for improving algorithmic performance is finally investigated on the same multilevel examples. © 2010 Taylor & Francis.
langue originaleAnglais
Pages (de - à)507-529
Nombre de pages23
journalOptimization Methods and Software
Volume25
Numéro de publication4
Les DOIs
Etat de la publicationPublié - 1 août 2010

Empreinte digitale

Examiner les sujets de recherche de « Approximate invariant subspaces and quasi-Newton optimization methods ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation