Analytic calculations of anharmonic infrared and Raman vibrational spectra

Yann Cornaton, Magnus Ringholm, Orian Louant, Kenneth Ruud

Résultats de recherche: Contribution à un journal/une revueArticleRevue par des pairs

55 Téléchargements (Pure)

Résumé

Using a recently developed recursive scheme for the calculation of high-order geometric derivatives of frequency-dependent molecular properties [Ringholm et al., J. Comp. Chem., 2014, 35, 622], we present the first analytic calculations of anharmonic infrared (IR) and Raman spectra including anharmonicity both in the vibrational frequencies and in the IR and Raman intensities. In the case of anharmonic corrections to the Raman intensities, this involves the calculation of fifth-order energy derivatives - that is, the third-order geometric derivatives of the frequency-dependent polarizability. The approach is applicable to both Hartree-Fock and Kohn-Sham density functional theory. Using generalized vibrational perturbation theory to second order, we have calculated the anharmonic infrared and Raman spectra of the non- and partially deuterated isotopomers of nitromethane, where the inclusion of anharmonic effects introduces combination and overtone bands that are observed in the experimental spectra. For the major features of the spectra, the inclusion of anharmonicities in the calculation of the vibrational frequencies is more important than anharmonic effects in the calculated infrared and Raman intensities. Using methanimine as a trial system, we demonstrate that the analytic approach avoids errors in the calculated spectra that may arise if numerical differentiation schemes are used.

langue originaleAnglais
Pages (de - à)4201-4215
Nombre de pages15
journalPhysical Chemistry Chemical Physics
Volume18
Numéro de publication5
Date de mise en ligne précoce7 janv. 2016
Les DOIs
Etat de la publicationPublié - 2016

Empreinte digitale

Examiner les sujets de recherche de « Analytic calculations of anharmonic infrared and Raman vibrational spectra ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation