Admissible regions for too short arcs : nodal distances and oppositions

Stephane Valk, Anne Lemaître

    Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceChapitre


    When a non identified object is observed, the first reaction of the scientific community is to try to determine its orbit. Unfortunately, for the observations collected on very short periods of time, the arc of observation is not long enough to give any estimation of the curvature and the determination of the orbit is impossible. However, in many cases, the right ascension, the declination and their instantaneous time derivatives are measurable. The idea of Milani and collaborators (see Milani et al 2004 and Gronchi et al 2004), is to draw an admissible region in the plane (r, dr/dt) compatible with the incomplete set of initial conditions. Each point of this region (called an attributable) corresponds to a virtual planet, compatible with the too short arc (TSA) data. Our purpose here is to refine this admissible region by different ways : we modify one of its boundaries, we plot the nodal distances coming from Opik's theory, we analyse the singularity in inclination, following the characteristics of the attributable, and we introduce the position of the conjonctions and oppositions on the graphics. The analysis of the results is double : either we try to reduce as much as possible the admissible regions to obtain a credible orbit for the observed candidate, or we use a maximum of data to determine whether this candidate is dangerous or not, even without getting a completely determined orbit.
    langue originaleAnglais
    titre Proceedings IAU Symposium 236
    Sous-titreNear Earth Objects, our Celestial Neighbors
    rédacteurs en chefG. B Valsecchi, D Vokrouhlický
    EditeurNear Earth Objects, Our Celestial Neighbors: Opportunity and Risk, International Astronomical Union. Symposium no. 236, held 14-18 August, 2006 in Prague, Czech Republic, S236, #106
    Nombre de pages10
    Etat de la publicationNon publié - 2006

    Empreinte digitale

    Examiner les sujets de recherche de « Admissible regions for too short arcs : nodal distances and oppositions ». Ensemble, ils forment une empreinte digitale unique.

    Contient cette citation