Résumé
Abstract: A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior. Graphical abstract: [Figure not available: see fulltext.].
langue originale | Anglais |
---|---|
Numéro d'article | 135 |
journal | European Physical Journal. B, Condensed matter physics |
Volume | 93 |
Numéro de publication | 7 |
Les DOIs | |
Etat de la publication | Publié - 1 juil. 2020 |
Empreinte digitale
Examiner les sujets de recherche de « A universal route to pattern formation in multicellular systems ». Ensemble, ils forment une empreinte digitale unique.Presse/médias
-
EurekAlert : Updating Turing's model of pattern formation
7/08/20
1 Contribution média
Presse/Médias: Autre
-
Phys.org - Updating Turing's model of pattern formation
7/08/20
1 Contribution média
Presse/Médias: Autre
-
EPJ B Highlight - Updating Turing’s model of pattern formation
3/08/20
1 élément de Couverture média
Presse/Médias: Autre