A Novel Probabilistic Encoding for EAs Applied to Biclustering of Microarray Data

Michaël Marcozzi, Federico DIVINA, Jesús S. AGUILAR-RUIZ, Wim Vanhoof (Promoteur)

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

72 Téléchargements (Pure)

Résumé

In this paper we propose a novel representation scheme, called probabilistic encoding. In this representation, each gene of an individual represents the probability that a certain trait of a given problem has to belong to the solution. This allows to deal with uncertainty that can be present in an optimization problem, and grant more exploration capability to an evolutionary algorithm. With this encoding, the search is not restricted to points of the search space. Instead, whole regions are searched, with the aim of individuating a promising region, i.e., a region that contains the optimal solution. This implies that a strategy for searching the individuated region has to be adopted. In this paper we incorporate the probabilistic encoding into a multi-objective and multi-modal evolutionary algorithm. The algorithm re- turns a promising region, which is then searched by using simulated annealing. We apply our proposal to the problem of discovering biclusters in microarray data. Results confirm the validity of our proposal.
langue originaleAnglais
titreGECCO '11
Sous-titreProceedings of the Genetic and Evolutionary Computation Conference
rédacteurs en chefNatalio Krasnogor
Lieu de publicationNew York
EditeurACM Press
Pages339-346
Nombre de pages8
ISBN (imprimé)978-1-4503-0557-0
Les DOIs
Etat de la publicationPublié - 2011

Empreinte digitale

Examiner les sujets de recherche de « A Novel Probabilistic Encoding for EAs Applied to Biclustering of Microarray Data ». Ensemble, ils forment une empreinte digitale unique.
  • Best Paper Nominee

    Marcozzi, Michaël (Bénéficiaire), 16 juil. 2011

    Prix: Autre distinction

Contient cette citation