Projets par an
Résumé
We show to what extent the accuracy of the inner products computed in the GMRES iterative solver can be reduced as the iterations proceed without affecting the convergence rate or final accuracy achieved by the iterates. We bound the loss of orthogonality in GMRES with inexact inner products. We use this result to bound the ratio of the residual norm in inexact GMRES to the residual norm in exact GMRES and give a condition under which this ratio remains close to 1. We illustrate our results with examples in variable floating-point arithmetic.
langue originale | Anglais |
---|---|
Pages (de - à) | 1406-1422 |
Nombre de pages | 17 |
journal | SIAM Journal on Matrix Analysis and Applications |
Volume | 43 |
Numéro de publication | 3 |
Les DOIs | |
Etat de la publication | Publié - 2022 |
Empreinte digitale
Examiner les sujets de recherche de « A NOTE ON INEXACT INNER PRODUCTS IN GMRES ». Ensemble, ils forment une empreinte digitale unique.Projets
- 1 Terminé
-
Multigrilles algébriques en optimisation non linéaire
Toint, P. (Responsable du Projet) & Weber Mendonca, M. (Chercheur)
1/10/05 → 3/09/09
Projet: Projet de thèse