A Comprehensive Introduction to Label Noise: Proceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014)

Benoît Frénay, Ata Kaban

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

Résumé

In classification, it is often difficult or expensive to obtain completely accurate and reliable labels. Indeed, labels may be polluted by label noise, due to e.g. insufficient information, expert mistakes, and encoding errors. The problem is that errors in training labels that are not properly handled may deteriorate the accuracy of subsequent predictions, among other effects. Many works have been devoted to label noise and this paper provides a concise and comprehensive introduction to this research topic. In particular, it reviews the types of label noise, their consequences and a number of state of the art approaches to deal with label noise.
langue originaleAnglais
titreProceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014)
Editeuri6doc.com.publ.
Etat de la publicationPublié - 2014
Modification externeOui

Empreinte digitale Examiner les sujets de recherche de « A Comprehensive Introduction to Label Noise: Proceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014) ». Ensemble, ils forment une empreinte digitale unique.

  • Contient cette citation

    Frénay, B., & Kaban, A. (2014). A Comprehensive Introduction to Label Noise: Proceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014). Dans Proceedings of the 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014) i6doc.com.publ..