A Benchmark for Recipe Understanding in Artificial Agents

Jens Nevens, Robin De Haes, Rachel Ringe, Mihai Pomarlan, Robert Porzel, Katrien Beuls, Paul Van Eecke

Résultats de recherche: Contribution dans un livre/un catalogue/un rapport/dans les actes d'une conférenceArticle dans les actes d'une conférence/un colloque

121 Téléchargements (Pure)

Résumé


This paper introduces a novel benchmark that has been designed as a test bed for evaluating whether artificial agents are able to understand how to perform everyday activities, with a focus on the cooking domain. Understanding how to cook recipes is a highly challenging endeavour due to the underspecified and grounded nature of recipe texts, combined with the fact that recipe execution is a knowledge-intensive and precise activity. The benchmark comprises a corpus of recipes, a procedural semantic representation language of cooking actions, qualitative and quantitative kitchen simulators, and a standardised evaluation procedure. Concretely, the benchmark task consists in mapping a recipe formulated in natural language to a set of cooking actions that is precise enough to be executed in the simulated kitchen and yields the desired dish. To overcome the challenges inherent to recipe execution, this mapping process needs to incorporate reasoning over the recipe text, the state of the simulated kitchen environment, common-sense knowledge, knowledge of the cooking domain, and the action space of a virtual or robotic chef. This benchmark thereby addresses the growing interest in human-centric systems that combine natural language processing and situated reasoning to perform everyday activities.
langue originaleAnglais
titre2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
rédacteurs en chefNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Pages22-42
Nombre de pages21
ISBN (Electronique)9782493814104
Etat de la publicationPublié - mai 2024

Série de publications

Nom2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Mots-clés de la bibliothèque

  • Intelligence Artificielle

Empreinte digitale

Examiner les sujets de recherche de « A Benchmark for Recipe Understanding in Artificial Agents ». Ensemble, ils forment une empreinte digitale unique.

Contient cette citation