TY - JOUR
T1 - 3‐ and 5‐Isoxazolol zwitterions
T2 - A model of interaction with the GABA‐A receptor relating to agonism and antagonism
AU - Boulanger, Thierry
AU - Vercauteren, Daniel P.
AU - Durant, Francois
AU - Andre, Jean-Marie
N1 - Publication code : **RES. ACAD.
PY - 1988
Y1 - 1988
N2 - Using molecular orbital methods, we propose various models of interactions between GABA or analogs (TACA, muscimol, isomuscimol) and an hypothetical receptor molecular fragment, a methylguanidinium ion. The respective geometries of the GABA‐, TACA‐, muscimol‐, and isomuscimol–methylguanidinium ion complexes are optimized using the semi‐empirical MNDO method. Stabilization energies of the complexes obtained by substraction of the heats of formation of the optimized complexes from those of the optimized isolated molecules differentiate the behavior of the anionic heads between the agonist and antagonist compounds. Affinity and stabilization are confirmed by computing ab initio STO−3G ionization potentials and interaction energies taking into account counterpoise corrections. Results show a decrease of the interaction energy from GABA and TACA (−54.9 and −49.4 kcal/mol) to isomuscimol (−35.6 kcal/mol), via muscimol (−46.0 kcal/mol). The low interaction energy of the 5‐isoxazolols as isomuscimol compared to the 3‐isoxazolols, as muscimol, may explain their antagonist character. Copyright © 1988 John Wiley & Sons, Inc.
AB - Using molecular orbital methods, we propose various models of interactions between GABA or analogs (TACA, muscimol, isomuscimol) and an hypothetical receptor molecular fragment, a methylguanidinium ion. The respective geometries of the GABA‐, TACA‐, muscimol‐, and isomuscimol–methylguanidinium ion complexes are optimized using the semi‐empirical MNDO method. Stabilization energies of the complexes obtained by substraction of the heats of formation of the optimized complexes from those of the optimized isolated molecules differentiate the behavior of the anionic heads between the agonist and antagonist compounds. Affinity and stabilization are confirmed by computing ab initio STO−3G ionization potentials and interaction energies taking into account counterpoise corrections. Results show a decrease of the interaction energy from GABA and TACA (−54.9 and −49.4 kcal/mol) to isomuscimol (−35.6 kcal/mol), via muscimol (−46.0 kcal/mol). The low interaction energy of the 5‐isoxazolols as isomuscimol compared to the 3‐isoxazolols, as muscimol, may explain their antagonist character. Copyright © 1988 John Wiley & Sons, Inc.
UR - http://www.scopus.com/inward/record.url?scp=84990712074&partnerID=8YFLogxK
U2 - 10.1002/qua.560340714
DO - 10.1002/qua.560340714
M3 - Article
SN - 0020-7608
VL - 34
SP - 149
EP - 165
JO - International Journal of Quantum Chemistry
JF - International Journal of Quantum Chemistry
IS - 15 S
ER -