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A CLASS OF TRUST REGION METHODS FOR NONLINEAR
NETWORK OPTIMIZATION PROBLEMS

A. SARTENAER*

Abstract. We describe the results of a series of tests upon a class of new methods of trust region
type for solving the nonlinear network optimization problem. The trust region technique considered
is characterized by the use of the infinity norm and of inexact projections on the network constraints.
The results are encouraging and show that this approach is particularly useful in solving large-scale
nonlinear network optimization problems, especially when many bound constraints are expected to
be active at the solution.

Key Words. Nonlinear optimization, nonlinear network optimization, trust region methods,
truncated Newton methods, numerical results

1. Introduction. We consider the problem:

min_ R, f(z)
(1.1) subject to Az =

where f: R” — R is a twice continuously differentiable partially separable function,
Ais a m x n node-arc incidence matrix, b € R" and satisfies Y .-, b; = 0, and [ and
u€eR™.

Many algorithms for solving the nonlinear network problem (1.1) have been pro-
posed (see [1], [3], [10], [11], [13], [21] and [22] for instance), most of them being of
the active set variety. In particular, a sequence of problems are solved for which a
subset of the variables (the active set) are fixed at bounds and the objective function
is minimized with respect to the remaining variables. Such algorithms typically use
linesearches to enforce convergence. A significant drawback of these methods, espe-
cially for large-scale problems, is that the active sets are allowed to change slowly and
many iterations are necessary to correct a bad initial choice.

In this paper, we propose a new algorithm of trust region type that allows rapid
changes in the active set. This algorithm is an adaptation of the one proposed by
Conn, Gould, Sartenaer and Toint in [4] for which we have already produced a general
convergence theory. At iteration k of the algorithm, we define a local model of the
objective function at the current iterate, z; say, and a region surrounding z; where
we trust this model. The algorithm then finds, in this region, a candidate for the next
iterate that sufficiently reduces the value of the model. If the function value calculated
at this point matches its predicted value closely enough, then the new point is accepted
as the next iterate and the trust region is possibly enlarged. Otherwise, the point is
rejected and the trust region size is decreased.

The determination of a candidate for the next iterate requires the computation of
a Generalized Cauchy Point which expands the notion of a Cauchy Point to problems
with general convex constraints (see [4]). This has the double advantage of allowing
significant changes in the active set at each iteration and permitting the extension
of well-known convergence results for trust region methods applied to unconstrained
problems (see [18]) and to simple bound constrained problems (see [7]).

* Department of Mathematics, Facultés Universitaires ND de la Paix, 61 rue de Bruxelles, B-5000,
Namur, Belgium.



The calculation of a suitable Generalized Cauchy Point, which makes use of the
first order information, is performed by solving a sequence of linear network problems.
The Generalized Cauchy Point is thereafter refined to calculate a candidate for the
next iterate using the second order information through a truncated conjugate gradient
technique. This technique, as well as the linear solver used for the Generalized Cauchy
Point, takes advantage of the network structure in the constraints of problem (1.1) by
combining a data structure of the type proposed by Bradley, Brown and Graves [2]
with a partition of the variables similar to that proposed by Murtagh and Saunders [19]
implemented in MINOS, also making use of variable reduction matrices. Moreover, we
use the concept of mazimal basis that is especially well suited in our context to allow
adequate adaptation of the theory developed in [4] for the active set identification
strategy. Note that most of the aforementioned techniques are equally exploited
in successful existing large-scale nonlinear network solvers, such as GENOS [1] and
NLPNET [10].

Section 2 of the paper gives a general introduction to the framework of our al-
gorithm, together with a detailed description of the computation of a Generalized
Cauchy Point and of a candidate for the next iterate. The optimality conditions and
the specific algorithm are also presented in this section. Section 3 reports and com-
ments on some numerical experiments, and includes a comparison with an existing
available specialized software for the same problem. Finally some conclusions and
perspectives are outlined in §4.

2. Description of the algorithm.

2.1. The basic algorithm. As already mentioned, our algorithm is of trust
region type and the description given here is a special case of the general framework
presented in [4], adapted to the solution of problem (1.1). We first introduce the
following concepts. The feasible region for problem (1.1) is the polyhedral set

X={zeR"Az=0b and | <z < u},

and any point z in the feasible region is called feasible. We define the active set with
respect to the vectors | and u at the feasible point x as the index set

Ale, L) ={ie{l,...,n}|fz]; = [l]; or [z]; = [u];},

where [v], denotes the ith component of the vector v.

At the kth stage of the algorithm, we suppose that we have a feasible point zy,
the exact gradient V f(z;) (denoted g;) and the exact Hessian V2 f(z;) (denoted Hy,)
of the objective function at z. We also require a scalar Ay > 0 for the trust region
radius, and choose the quadratic model of the form

1
my (2 + 8) def flag) + gts + ESTH;CS

to approximate the objective function around xj. A trial feasible step s; is then
computed by approximately solving the trust region problem

min_ R my (2 + 8)

subject to As=10
(2.1) I<zp+s<u

and [|s]| < Ap,



where [|-|| is a suitable chosen norm. The updates of the iterate 2y and of Ay are done
using the same criteria of acceptance as in trust region methods for unconstrained or
bound constrained minimization (see [18] and [7]). That is,

_{l‘/c+51c if pp >m
Lr+1 =

Ty if pp <m
and
20 if pp >
(22) Ak:+1 = Ag if m < pr <n2
g min([|sel|, Ag) if pr <,
where

F(xr) — f(xr + sp)

my(zr) — my (g + sp)

pr =

represents the ratio of the achieved to the predicted reduction of the objective function
and 0 < 71 < 73 < 1 are appropriate numbers. It now remains to describe our
approximate solution of (2.1).

The choice of the infinity norm for the trust region constraint in problem (2.1)
allows us to replace the bound constraints and the trust region constraint in this
problem by the bound constraints

(2.3) max([l];, [ex]; — M) E ]y < [en + 8]y < [we]; = min([u]; , [ex]; + Ar)

for i =1,...,n. Problem (2.1) then becomes

min R my (2 + 8)
(2.4) subject to As =0
lk S Tp+ s § Upg.

In order to satisfy the global convergence theory developed in [4], we need to
find a feasible point 2 + s within the trust region at which the value of the model
function is no larger than its value at the Generalized Cauchy Point (GCP). This GCP,
denoted z¢, is found through a projected search on the model along an approrimation
of the projected gradient path (i.e. the projection of the gradient on the feasible
set). Note that the determination of the active set (the set of variables that are
to be fixed at one of their bounds during the current iteration) takes place when
finding the GCP. Since no restriction on the number of variables moving in or out
the active set is imposed from one iteration to the other, rapid changes may occur in
the active set. This is extremely useful in large-scale optimization problems since the
number of iterations required to find the correct active set may hence be considerably
smaller than the number of active bounds at the solution. Subsequently we use second
order information to refine the GCP and provide a fast ultimate rate of convergence.
Therefore, following Murtagh and Saunders [19], we first partition the matrix A4 as

A=(B S N)
where the m x m submatrix B is nonsingular, and define

(2.5) {1,...,n}=BUSUN,
3



the induced partition of the variable indices. For a node-arc incidence matrix, Dantzig
[9, p. 356] has shown that the arcs whose indices are in B form a spanning tree of the
network. (These arcs are called basic arcs while the arcs whose indices are in § and
N are called superbasic arcs and nonbasic arcs respectively.) In that case, it is worth
using a specialized data structure of the type proposed by Bradley, Brown and Graves
[2] that allows us to store and update the basis of the network (i.e. the spanning tree)
in a very efficient manner.
According to assumption (AS.8) in [4],

(2.6) A(x$ L u) C Azy, + 55,1, u)

— the variables of z¢ that are at a bound must remain fixed when finding a better
approximation of a minimizer of (2.4). We then set, at each iteration k,

(2.7) N =A@z e, up) \ B and S = {1,...,n}\ (BUN).

Since j ¢ A(z{ Iy, ur) = j ¢ A(z{, 1, u), this choice for N produces a correct set
for & according to assumption (2.6), namely an index set of arcs ¢ B strictly between
the bounds I and u. Note that this choice imposes more than the assumption requires,
since 1t further fixes the components of the GCP that are on the trust region boundary
(even if they are not at a bound ! or u), which seems quite natural.

Using a variable reduction mairiz Z as proposed by Murtagh and Saunders [19]
(that is a matrix formed by column vectors that belong to the nullspace of A, yielding
the relation AZ = 0) and choosing

—B~1§
(2.8) 7= I :
0

we then solve approximately problem (2.4) by applying a conjugate gradient algo-
rithm, starting from the GCP, to the equation

7T Z [sls = -2  gr.

Let [s;]g be the approximation found. We define the full trial step s; by sp =
([st]g [kl s [sk] \) where [si]; and [si] ,, satisfy

(2.9) Bsi]g = =S [st]g
and

[se]xr = 0.

We defer to §2.3 the management of the constraints I < zp + s < uy during the
conjugate gradient schemes solving problem (2.4). Note that the matrix 7 in (2.8)
exhibits a useful structure [16]. Indeed, the jth column of Z corresponds to the cycle
formed by adding the jth superbasic arc to the spanning tree associated with the
basis. This cycle can be decomposed in the jth superbasic arc, joining nodes e and f,
say, and its associated flow augmenting path (also called basic equivalent path), which
is the (unique) path between nodes e and f belonging to the tree. Let 5; be the set



of indices of the arcs of this path. The element (i, j) of —B~1S is then given by

+1 if ¢ € 8; and the ¢th basic arc has an orienta-
tion identical to that of the jth superbasic arc

in the cycle,
—1 if i € §; and the ith basic arc has an orienta-

tion opposite to that of the jth superbasic arc
in the cycle,

0 ifigp;.

This special structure allows for a compact storage of the matrix 7, as well as for very
efficient techniques for computing products that involve this matrix or its transpose
(see [22] for more details). Moreover, this last structure is analogous to that of the
matrix —B~!N that arises in the computation of the Lagrange multiplier estimates,

l9:ly — N" B~ [gi] 5,

(2.10) [-B~'S]

ij

with the only difference being that the flow augmenting path is now associated with
a nonbasic variable instead of a superbasic one.

In order to be sure that assumption (2.6) holds, we further need to impose that the
basic arcs whose indices are in A(a:kc, l,u) remain fixed when finding the candidate
step sp. But this can be automatically induced by using the concept of mazimal
spanning tree, as introduced by Dembo and Klincewicz in [12], that is a spanning tree
which has a maximal number of arcs whose flows are strictly between the bounds [
and u (see also [23]). With such a spanning tree, a basic arc whose flow is at a bound
is not allowed to belong to the flow augmenting path of a free arc (that is an arc
whose flow is strictly between its bounds), since otherwise, the replacement of this
basic arc with the free one would increase the number of free arcs in the spanning
tree, in contradiction with its property of maximality. Given the way the index sets
N and 8§ are defined in (2.7), every superbasic arc is ensured to be strictly between
the bounds ! and u, and the use of maximal spanning trees therefore prevents any
basic arc that belongs to the flow augmenting path of a superbasic arc to be at one
of its bounds. Consequently, since a basic component of s; computed from (2.9) may
be non-zero only if its corresponding arc belongs to the flow augmenting path of at
least one superbasic arc (see (2.10)), we are sure that the only basic arcs allowed to
change during the process are those which are strictly between the bounds ! and .
Moreover, using the same argument, we force the basic arcs that are on the trust
region boundary to remain fixed by imposing that the spanning tree be maximal also
with respect to the bounds I, and uy (that is to have a maximal number of arcs whose
flows are strictly between the bounds [y and uy).

Under condition (2.6) and a nondegeneracy condition, the strategy described
above is sufficient to ensure that the correct active set is identified after a finite
number of iterations (see [4]). We now give, in the next two sections, more details on
the computations of the GCP Ikc and the trial step s;.

2.2. The Generalized Cauchy Point. Following [4], in order to find a Gener-
alized Cauchy Point, we first need to determine an approximation of a suitable point
on the projected gradient path. By this, we mean a feasible point ;L‘kc = xy —|—5kc inside
the trust region that satisfies the inequality

(2.11) g% sk < —paar(ty)
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for some fixed ps € (0,1] and ¢ > 0. Here ag(ty) > 0 represents the magnitude of
the maximum decrease of the linearized model achievable on the intersection of the
feasible domain with a box of radius #; centered at x:

def .
—ag(ty) = mingR. grd
(2.12) subject to Ad=0
Ly, <d <uy,,
where
def

[ltk]j = max([l]J ) [Ik]J _tk) - [xk]]

and
def .

[Utk]j = mm([“]j ; [*l’k]j +tr) — [l’k]j
for j = 1,..., n. Furthermore, this point must satisfy the two Goldstein-like conditions
(2.13) my(zy, + s ) < mg(zx) + pgi 5§
and

(2.14) either t3 > min[v1 Ay, va] or my(zr + skc) > my(2r) + pogts$

where 0 < g1 < p2 < 1, v1 €(0,1) and vy € (0, 1] are appropriate constants.

The GCP Algorithm given in [4] is a model algorithm for computing a Generalized
Cauchy Point that verifies conditions (2.11), (2.13) and (2.14). It is iterative and uses
bisection. At each iteration i, given a bisection parameter value ¢; > 0, it computes
first a candidate step s; that satisfies condition (2.11) (with ¢; = #; and Skc = 8),
checking then conditions (2.13) and (2.14) (with #; = ¢; and skc = s;), until either
an acceptable GCP is found or two candidates xj + sﬁc and zp + s}, are known that
violate condition (2.13) and condition (2.14). Thus, if an acceptable GCP is not yet
found, the algorithm carries out a simple bisection linesearch on the model along a
particular path between these two points, yielding a suitable GCP in a finite number
of iterations. This particular path, called the restricted path, is obtained by applying
the so-called restriction operator,

def .
Ry [y) = arg  min ||z |2
Z k, X

€lzr,yIn

where [z, y] is the segment between z; and y, on the piecewise linear path consisting
of the segment [zj + sk, zj + s}] followed by [z), + s§, 2y + 5], where

Il

k..
[EAIS

p_
5}, = max [1,

This restricted path is an approximation of the unknown projected gradient path
between the points zp + 52 and z; + s} in the sense that each point on this path
satisfies condition (2.11) for some ¢ > 0. Tt also closely follows the boundary of the
feasible domain, as does the projected gradient path. We refer the reader to [4] for a
detailed discussion of these concepts.

In order to perform the simple bisection linesearch along the restricted path, a
call to the RS Algorithm given below is made in the GCP Algorithm. The inner
iterations of Algorithm RS are denoted by the index j.

6



RS Algorithm.
Step 0. Initialization. Set &, = ||sh — si||2, 6u = &, + ||s¥ — sh[]2, lo = 0,
ug = 6, and j = 0. Then define §; = %(lo + ug).
Step 1. Compute the point on the restricted path corresponding to §;.
Step 1.0. Compute the step from z; to the piecewise linear path. Set

i P b5yl s
mse+ (1= 5)s, if 6; < &p,
def
S5 =
Dizlegu (1 — LiZleyb if 5 > 6
Bu—Bp ok Bu—0p/5k i Z Op-

Step 1.1. Calculate the smallest value of o such that z; + as; hits a
bound. Set

[xk]i — [l]z

[Sj]i

[l’k]i — [u]z

of = mi
[Sj]i

n min , min
{ie{1,...,n}|[s;],<0} {ie{1,...,n}|[s;],>0}

Step 1.2. Compute the point on the restricted path. Set

«; = min[l, a*]

and
T; =T+ Q;S;.
Step 2. Check the stopping conditions. If
(2.15) my(zj) > mp(ze) + p1gi (2j — zx),
then set

li+1 =1 and wuj41 = 05,
and go to Step 3. Else, if
(2.16) my(2;) < my(ex) + p2gy (2 — 1),
then set

li41 =0; and ujp1 = uy,

and go to Step 3; else (that is if both (2.15) and (2.16) fail), set z{ = z; and STOP.
Step 3. Choose the next parameter value by bisection. Increment j by
one, set

1
8 = 5l +uj)

and go to Step 1.

Note that the point z; calculated at Step 1 satisfies the constraint Az = b and
minimizes the distance from z3+s; in the direction —s; while satisfying the constraints
[ <ix; <u,as expected.

As mentioned before, at a given iteration ¢ of the GCP Algorithm we first compute
a candidate step s; that satisfies condition

(2.17) g si < —psan(t;)

-
{



where #; is the current bisection parameter value. We obtain s; by applying a simplex-
like algorithm to problem (2.12) (where #j is replaced by ;) and by stopping this
algorithm as soon as an admissible iterate d, has been found that verifies

(2.18) o dil > s min (15477, + (e, — 1) e — gF 1]
where
(2.19) = = [gk]gr B! and (ur]; = max(0, 7, Ae; — [gi];) (G =1,...,n),

where B, is the admissible basis associated with some previous candidate d,, [gk]B,
is the basic part of g and e; is the j-th vector of the canonical basis of R”. Indeed,
the right-hand-side of condition (2.18) is an upper bound on the value of pzay(¢;) and
(2.18) thus implies condition (2.17) for s; = d, (see [4] for more details).

Now we give the GCP Algorithm itself. Its inner iterations are denoted by the
index 1.

GCP Algorithm.

Step 0. Initialization. Choose A € (0,1). Set lo = 0, ug = Ay, s}, = 0 and
i = 0. Also choose s¥ an arbitrary vector such that [[s¥|lcc > Aj and an initial
parameter tg € (0, Ag].

Step 1. Compute a candidate step. Compute a vector s; such that

As; =0 and ltl < s < ugy,

and
g si < —psog(ty).
Step 2. Check the stopping rules on the model and step. If
(2.20) mi(@r + s:) > mi(xr) + p1gi si,
then set
Uigr =t Sipy = 8
and

l 1
liyi =1 sipq =i,

and go to Step 3. Else, if

(2.21) my(zg + 5;) < mp(xg) + pagh si
and

(2.22) t; < minfv) Ay, va),

then set

u u
ui-l-l = Ui SZ'-I-]. = SZ'
and

]
li+1 =t Siy1 = Sis
8



and go to Step 3. Else (that is if (2.20) and either (2.21) or (2.22) fail), then set

c
Ty =Tk + 5

and STOP.
Step 3. Define a new trial step by bisection. We distinguish two mutually
exclusive cases.
Case 1. sj,, = s{ or sl = sli. Set
tigr = Mlig1 + ig1),
increment ¢ by one and go to Step 1.
Case 2. 5§'+1 # s} and Sy F 85 Set

[ | u o u
s, = 8,41 and sy = s,

define

u
si = max [1, HS;CHOO] 52,
[EARS
apply the RS Algorithm to find a GCP .I‘kc and STOP.

For the computation of s; in Step 1, we have implemented a self-contained routine
that uses the same data structure as that representing problem (1.1) and is a partic-
ular implementation of the simplex algorithm specialized to network problems, along
the lines described in [2], [16] and [17]. This routine includes at each iteration the
computation of the vectors 7, and p, from (2.19) as well as the update of the upper
bound on the value of pgag(t;) given in (2.18), and stops as soon as an appropriate in-
exact solution is computed. This implementation provides in particular a total pricing
routine (see [17]) for seeking a nonbasic candidate to enter the basis, since the vector
1 has to be totally evaluated at each iteration. In order to compare the performances
of this last algorithm with one that completely solves problem (2.12) (as required if
ps is set to 1), we have also implemented a routine that finds the exact solution of
(2.12), without adding the extra burden of computing the quantities required for an
approximate solution (namely p, and the upper bound on psay(t;)), but rather using
a partial pricing routine to select a nonbasic arc to be moved. More precisely, we
select sets of thirty variables taken at regular intervals among the nonbasic variables
and test each variable in the successive sets until a candidate to enter the basis is
found.

We have left unspecified the parameter A € (0,1) in the GCP Algorithm (see
Case 1 of Step 3) in order to test the effect of varying its value. Indeed, in order
to avoid an excessive number of computations of a candidate step s; in Step 1 —
the most costly calculation of the algorithm — it could be worth to accelerate the
branching to the second case of Step 3 by choosing a smaller value for A than the
classical 0.5.

The above algorithm for the calculation of a GCP has the advantage of avoiding
the repeated computation of the projection on the feasible domain, which is a quadratic
program. Instead we repeatedly compute an approximate solution of linear programs.
This can be related to the convex combination algorithm originally suggested by
Frank and Wolfe (see [20]) for solving quadratic programming problems with linear
constraints. The Frank and Wolfe algorithm is based on finding a descent direction by
minimizing a linear approximation to the function subject to the linear constraints.
A linesearch on the quadratic objective function along the descent direction found is
then performed to determine the next iterate.

9



2.3. The candidate step s;. In this section, we develop an algorithm for solv-
ing problem (2.4), or more precisely, for finding an approximate solution to the reduced
equation

(2.23) 7T 0,7 [s]g = =77 gi.

The strategy considered uses a truncated conjugate gradient technique, starting from
the GCP, which handles the bound constraints

(2.24:) e <xp+s<ug

during the conjugate gradient iteration.

The conjugate gradient method is well suited to solve (2.23) without forming the
reduced Hessian ZT H;Z (which may be considerably denser than both Z and Hy),
since it only requires matrix-vector products of the form Z7 HyZv. These products
can be computed relatively cheaply by forming, in turn, v1 = Zv, vo = Hpvy and vs =
ZTvy. This is all the cheaper here as a sparse Hessian H}, and a sparse representation
of 7 can be stored, due to the partially separable structure of the objective f and the
structure of the matrix 7 (see (2.8) and (2.10)).

The TCG Algorithm terminates the conjugate gradient iteration in the solution
of (2.23) at the point = 2}, + s whenever:

o The reduced residual norm at z (i.e. the norm of the reduced gradient of the
model at the point 2) is small enough, that is

2P He Z [s]s + Z7 gkll2 < mi,
where

(2.25) N = max [\/EM, min[0.01, ||ZTgk||2]] ||ZTgk||2

and e,y 1s the relative machine precision. This stopping rule allows for better
and better approximations to the solution of the Newton equation (2.23) when
close to a local minimizer of problem (1.1) and is the essence of a truncated
Newton scheme.

e S =0, 1i.e. there is no way to better refine the current solution z.

e A direction of negative curvature has been encountered.

e An excessive number of iterations has been taken.

The main characteristics of the TCG Algorithm are the following. At each recur-
rence of a conjugate gradient iteration, the TCG Algorithm will verify if feasibility
with respect to the bound constraints (2.24) is still respected. In the case where a
bound is reached, the conjugate gradient iteration is temporarily stopped and the
current maximal spanning tree is possibly updated, depending on the type of bound
encountered. Thereafter, the active set is updated according to the decomposition
(2.5), where the index set 8§ corresponds to the arcs whose current flow is strictly
between the bounds I and ujp. The conjugate gradient iteration is then possibly
restarted.

Now we specify the TCG Algorithm in more detail. In the description given
below, we denote by r the residual vector —(gr + Hps). For a given vector v and
a given partition BU S U N of the set {1,...,n}, we also define the corresponding
reduced vector v" as the vector of R” defined componentwise by

0 ifie BUN,
[ZT'U]]. if 7 is the jth element of & (that is the jth
superbasic arc).
10
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TCG Algorithm.

Step 0. Initialization. The GCP, z{ = z; + s{, and an initial maximal
spanning tree whose indices define the set B are given. Set z = z{ and r = —(g; +
Hkskc).

Step 1. The conjugate gradient iteration. As long as there exist arcs ¢ B
which are strictly between the bounds I and uj, we continue the conjugate gradient
iteration to further minimize the reduced model of the objective function at the point
zp. Each time a restarting is considered, we redefine the index set & and equation
(2.23) accordingly, and solve this last equation starting from the current point 2, until
one of the stopping rules mentioned above is satisfied or a bound is encountered.

Step 1.0. Define the active set. Set

N: A(x,lk,uk)\B

and deduce S from the partition (2.5). If S = ), go to Step 2. Otherwise, compute
the matrices B, S, N and Z from the partition (2.5) and (2.8).

Step 1.1. Restart the conjugate gradient iteration. Now that the
subspace where the minimization can take place is fixed (namely the space spanned
by the superbasic variables indexed by &), we can proceed with the conjugate gradient
iteration.

Step 1.1.0. Imitialization before restarting. Compute the reduced
residual v" from (2.26) and the relative accuracy level gy from equation (2.25). Set
d=0,3=0and ps = ||r"||2.

Step 1.1.1. Test for the required accuracy. If p» < 5?, go to Step 2.

Step 1.1.2. Conjugate gradient recurrences. Compute

ldls = ["]s + Bld]s
[d]; from
Bld]; = —Sd]g

and set d = ([d]z,[d]g,0). Compute the vectors y = Hyd, y" from (2.26), and the
curvature ¥ = d'y. Find oy, the largest value of « for which I <  + ad < up. If
v < 0, then set

z=x+ a1d
and go to Step 1.2. Otherwise, calculate ay = pa/y. If @y > ay, then set

z=x+ a1d

r=r—aoay
and go to Step 1.2. Otherwise, set

=2+ ayd
r=7r—ay

rm =7 — ayy”

11



p2 =" |l3
2
8= P2
P1

and go to Step 1.1.1.
Step 1.2. Update the maximal spanning tree. Update the index set B
in order to keep a maximal spanning tree (see further on). If ¥ < 0, go to Step 2.
Otherwise, go to Step 1.
Step 2. Termination of the conjugate gradient iteration. Set

Sp = — Tk,

In order to maintain a maximal spanning tree when a pivoting step is required, we
need to take into account the bound constraints of both problem (1.1) and problem
(2.4) (the latter varying from one iteration to the other, depending on the trust region
size), since the spanning tree has to remain maximal with respect to the bounds [
and u and l;; and uy. As illustrated by the following example, it is not sufficient
to only consider the maximality of the spanning tree with respect to the bounds I
and ug. Suppose indeed, when moving to a point z, that the basic arc of index 2
hits a bound such that not only i € A(z,li,ux), but also i € A(z,l,u), and that
no arc j ¢ B satisfying [lx]; < [z]; < [ug]; may be found to pivot with. In that
case, if the current maximal spanning tree remains unmodified and if there exists
an arc of index j, say, such that j € A(z,l;,ux), ¢ € B; (i.e. arc i belongs to the
flow augmenting path of arc j), but j ¢ A(z,l,u), this spanning tree will not be
maximal any more with respect to the bounds [ and u as soon as the trust region
constraint vanishes from (2.4) or is modified. Therefore, based on the observation
that ¢ € A(z,l,u) = i € A(z,lk,ux) and j € Az, lp,ur) = j & A(z,l,u), we
consider the following algorithm for maintaining a maximal spanning tree:

If, for some 7 € B,

i€ A(z,l u)
or
i¢ Az, u) and i € Az, ly, up),

then determine (if possible) j & B such that ¢ € 8;, min || [I]J — [lk]j [ [:L‘]J — [u]

1s maximum and either

il

J & Az, u)

or

J ¢ Az, b, up),
respectively. Then redefine the set B by

B =B\ {i}u{j}
and update the submatrix B accordingly, performing a pivoting step as described in
[2].

Note that the choice of j in the above description is intended to allow larger steps
in the next search, which may result in a more useful decrease of the cost function
(see [21]).

12



2.4. Optimality test. We consider that optimality for problem (1.1) is reached
whenever the objective function cannot be further reduced at the current iterate zp.
This may be checked in the following manner.

e Select the arcs that allow for a possible improvement. This amounts to find-
ing the arcs ¢ B which are either strictly between the bounds [ and u or
at one of these bounds, but whose release may induce a decrease in the ob-
jective function. (These last arcs are found through an examination of the
corresponding Lagrange multipliers.)

e Remove the so-called blocked arcs ([11]), that is the arcs at a bound ! or u
whose release causes the immediate violation of another bound ! or u for one
of the arcs of their flow augmenting path. This may be easily verified using
the following test:

If arc j is such that, either

[2x]; = [u]; and Ji € B; such that

([-B~'N];j =1 and [zx], =[1];) or ([-B™'N]j =—1 and [a4]; = [u];),

[zx]; = [l]; and 3i € fB; such that

([-B~'Nlyj =1 and [zx]; = [u];) or ([=B7'Nlj=—1 and [z]; = [I];),

then it is blocked.
(Note that this situation cannot occur for the arcs that are strictly between
the bounds ! and u, because of the properties of the maximal spanning tree.)
e Denoting by & the set of indices obtained from the above selection, deduce
the set A from the partition (2.5) and define an active set accordingly.
e Check if the current iterate x; is optimal on this active set, that is, if the
corresponding reduced gradient at zj is null.
This framework may be summarized by the following algorithm.
OT Algorithm.
Step 0. B is given. Set S=0 and N = {1,...,n}\ B.
Step 1. For each j € {1,...,n}\ B, redefine & and A in the following way. If

ng(mk)l:U)a
then redefine S and A by
S=8U{j} and N =N\ {j}.

Otherwise, compute the Lagrange multiplier estimate associated with the jth variable,
namely

[J]j = [gk]j + Z [_B_lN]Z‘j [gk]z .
i€8;
If [mk]j is not potentially blocked (see above), and if either

[o]; <0 and [z;]; = [1];

13



or

[o]; >0 and [z]; = [u];

then redefine Sand N by
S=8U{j} and N =N\ {j}.

Step 2. Compute the matrices B, S, N and Z from the partition (2.5) and (2.8).
IfS=0or

127 gtlleo < 115,

STOP (zy is a local optimum within the required accuracy).
The constant 73 whose choice controls the final accuracy requirement will be
specified later.

2.5. The specific algorithm. We are now in position to specify our trust region
algorithm for nonlinear network optimization in its entirety.

TRNNO Algorithm.

Step 0. The bounds [ and u, the vector b and the network associated with the
matrix A are given. Compute a feasible starting point 2 (if not given) and an initial
trust region radius Ag. Compute f(zo), go and Hy. Find an initial maximal spanning
tree of the network, defining a set of basic indices B. Set k£ = 0.

Step 1. Given 73, test the optimality of the current iterate zj using the OT
Algorithm of §2.4 and STOP if z; is optimal.

Step 2. Calculate the bounds I and uy from equation (2.3). Given pus, find
a Generalized Cauchy Point z{ using the GCP Algorithm detailed in §2.2. (Also
include an updating phase for the maximal spanning tree.)

Step 3. Compute the active set A(mkc,lk,uk) and apply the TCG Algorithm
proposed in §2.3, using a truncated conjugate gradient scheme, to find an approxima-
tion z + sp to the minimizer of the trust region problem (2.4), with the additional
restriction that the variables whose indices are in A(z$, Iy, uy ) remain fixed at the cor-
responding values of .L’kc (Also include an updating phase for the maximal spanning
tree.)

Step 4. Compute f(zp + s) and

f(xr) — f(zr + si)

my(zg) — my(zr + Sk).

pPr =
Step 5. If pr > 11, then set
Try1 = X + Sp
and update grp41 and Hypyq accordingly. Otherwise, set
Tp41 = Tg

and update the maximal spanning tree (with respect to the bounds ! and u only). Set
Ap41 according to equation (2.2), increment k by one and go to Step 1.

14



3. Numerical experiments. In this section, we analyse and compare the var-
ious versions of our algorithm and we also briefly interpret our results when varying
the storage scheme, the conditioning, the dimension and the nonlinearity of the prob-
lem, the final accuracy level (n3) and the type of bounds imposed on the variables,
as in [21] and [22]. We then consider our algorithm in comparison with the LSNNO!
routine, developed by Toint and Tuyttens in [21]-[22], that uses a linesearch approach
rather than a trust region approach to solve problem (1.1). Although it might have
been instructive to compare the present algorithm with another such as GENOS [1]
and an interior point method like [3], the amount of additional work would have been
prohibitive and we preferred to use a competitive algorithm for which we had direct
access to both the authors and the software.

We have experimented on all the test problems of [21] for which the first and
second derivatives were available. Indeed, though the framework presented here is well
suited to large dimensional problems and can be used in conjunction with partitioned
secant updating techniques on the general class of partially separable problems (see
[14] and [15]), the purpose of this paper is to show the viability of the framework
proposed and studied in [4], as well as its efficiency on large-scale nonlinear problems.
Consequently, the results are presented for problems with easily computable first and
second derivatives. For the same reason, we did not consider any preconditioning in
our present implementation.

We have mainly tested problems obtained by varying the five parameters of the
so-called model test problem P({,a,¢,i,r) constructed by Toint and Tuyttens [21],
where:

£ defines the number of arcs n = 2(2¢ + 1)(2¢ + 2) and the number of nodes
n, = (2¢+ 2)? of the problem;

a defines the nonlinearity of the function (for a = 0 the function is a simple
quadratic);

¢ is an estimate of the condition number of the objective’s Hessian matrix pro-
jected in the subspace of variables that satisfy the network constraints;

i and r determine a specific set of bounds on the flows (for i = 0 no bounds are
imposed, for i = 1 a lower bound equal to r is imposed on the flows whose index is a
multiple of three, for i = —1 some flows are fixed while others are bounded, principally
those on the border of the grid with lower bound equal to 7).

A brief description of this model test problem follows, the reader being refered to
[21] for more details. The network is constructed as a square planar grid. An example
with £ = 2 is shown in Fig. 1. The supply/demand vector is

by=+10, b;=0(G=2....,nn—1), b, =—10.

Furthermore, sets of £ horizontal cycles and ¢ vertical cycles are distinguished in the
grid (see the dashed lines in the example of Fig. 1). We define, for i = 1,...,n,

i) def { s if the ith arc belongs to cycle s (horizontal or vertical),

0 if the ¢th arc does not belong to any cycle.
The objective function is then given by

f@) = g Sy ailel? + 535 (T80 VI+ BT+ (0] — [ei40)?
(3.1)

33 [10+ 2, (-1 Tal] ) |

1 1.SNNO is available from NETLIB.
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Fi1g. 1. The network of the model test problem for £ = 2
TABLE 1
Dembo’s test problems
|| Name || n | Nn | Description ||
W30 46 30 | Small Dallas water distribution model
W150 196 150 | Medium Dallas water distribution model
W666 906 666 | Large Dallas water distribution model
MB64 117 64 | Small Thai matrix balancing problem
MB1116 || 2230 | 1116 | Large Thai matrix balancing problem

where

Caer [ 10T om0 ip () >
T if j(i) =

We have also tested the so-called Dembo’s test problems given by Dembo in [11].
These problems are summarized in Table 1 (where n denotes the number of arcs and
ny, denotes the number of nodes). All of them are totally separable, convex and rather
ill-conditioned (the condition number of the reduced Hessian at the solution varying
between 10* and 10%), and the number of bounds active at the solution is small,
compared to n.

All the computations have been performed in double precision on a DEC VAX
3500, under VMS, using the standard Fortran Compiler (3 ~ 1.39 x 10~17).

The tests reported below all use the following values for the algorithm’s constants
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(suggested in [4]):
m =0.25 and 72 =0.75, w1 =0.1 and 2 =0.9, 13 = 1075 and vy = 0.01.

In order to allow the initial parameter {5 in the GCP Algorithm to be more refined
than Ay itself (since this last value represents a trust region radius for the quadratic
model much more than for the linear model used in Step 1), we have selected the
following value,

nggk

3.2 to = min | | A
(32 o = min | AL . ]

where the first quantity in brackets is the distance from z; to the minimum of the
quadratic model in the steepest descent direction, computed in the infinity norm. The
value of p3 in the GCP Algorithm (that can be interpreted as the level of solution of
the linear network problem (2.12)) is specified for each table of results given below.
We have chosen the value 0.1 (rather than the classical value 0.5) for the scalar A in
the GCP Algorithm. This is intended to speed up the branching to the second case of
Step 3 in this algorithm, therefore possibly reducing the number of times a candidate
step s; is computed in Step 1, since this last calculation is expected to be expensive
compared with the rest of the algorithm. The final accuracy level 53z in the OT
Algorithm is specified for each model problem and is set to 102 for the Dembo’s test
problems, as recommended in [11]. In all cases, the (possibly infeasible) starting point
is the origin. A feasible starting point z( as required in the statement of the TRNNO
Algorithm is then computed via an “all artificial start Phase 1” (see [21]). This allows
comparison with the LSNNO routine that starts with the same point. (Note that since
the cpu-time for the computation of this point, when required, is always negligible
compared with the overall cpu-time, it will be ignored in the cpu-times given in the
tables.) Finally, the initial trust region radius is fixed to the following value in our
tests:

3.1. Comparison between the different versions. In this section we com-
ment on the five Dembo’s test problems and on twenty others selected from particular
choices in [21]-[22] of the model test problem’s parameters. Table 2 reports the char-
acteristics of these twenty test problems which are divided into six subsets, according
to the different features tested in [21]-[22] and mentioned above. Note that the sym-
bols I, F and O in the last column of this table are used to denote storage using
internal dimensions (I), elemental dimensions (E) or using one element (O) for the
Hessian matrix (see [21]-[22] for more details). When required for comparisons in the
next section, we report the relevant numerical results of all the twenty tests, even if
some of these are identical (namely MP6, MP11, MP16 and MP19).

We introduce the notation used in the tables presenting the results:

it: the number of major iterations (in the TRNNO Algorithm of §2.5);

gep: the total number of iterations in the GCP calculations;

avn: the average number of GCP calculations per major iteration;

cg: the total number of conjugate gradient recurrences;

nf: the number of function evaluations (i.e. the number of element function eval-
uations divided by the number of elements);

ng: the number of gradient evaluations (i.e. the number of element gradient eval-
uations divided by the number of elements);

17



TABLE 2
The model test problems

Name L |a c 1] r 73 storage
MP1 11107 [ 1] &% [107° T
Storage scheme || MP2 811110 |-1 % 107° E
MP3 8|1 ]|10° | -1 | & |107° 0
MP4 sT1| 1 [ 1]+ [107° T
MP5 81|10 | 1|4 |107° I
Conditioning || MP6 811 ]10° | 1|4 [107° I
MP7 81 ]10°| 1|4 [107° I
MP38 8 110" | 1|L [107° I
MP9 81]10° | 1|+ |10 I
MP10 || 41 [10° [ 1] & [107° I
Dimension MP11 || 8|1 [10° | 1| & [107° I
MP12 || 12 | 1| 10° | 1| 4 | 107° I
Nonlinearity MP13 8o 10° 1 % 10~° I
MP14 |12 |0 | 10° | -1 | & | 107° I
MP15 || 81|10 | 1|+ [107° I
Final accuracy MP16 8| 1] 102 1 % 10~° I
MP17 || 8|1 ]10° | 1| & | 1077 I
MP18 || 8[1[10°| o 0 [107° T
Type of bounds || MP19 81 ]10° | 1| & [107° 1
MP20 || 8|1 ]10° | 1] L1 [107° I

nH: the number of Hessian evaluations (i.e. the number of element Hessian eval-
uations divided by the number of elements);

np: the number of maximal spanning tree updates where a pivoting step occurs;

gepepu: the cpu-time in seconds for the GCP calculations;

cgepu: the cpu-time in seconds for the conjugate gradient recurrences;

totcpu: the total cpu-time in seconds (Phase 1 excluded).

Note that fractional numbers of function, gradient or Hessian evaluations are expected,
since the partial separability of the objective allows skipping the re-evaluation of the
elements whose variables have not been modified since the last evaluation. On the
other hand, for the sake of clarity, we round off the cpu-times to the nearest integer
number.

We first turn our attention to the computation of a candidate step s; at Step 1
of the GCP Algorithm. As already mentioned in §2.2, we have implemented a total
pricing routine that approzimately solves problem (2.12). We have tested this routine
for different values of us. The results are presented in Table 3 for a representative
sample of the twenty-five problems.

We first observe that the number of major iterations usually increases when the
value of ps decreases (especially for uz = 0.6). The reason is that for smaller and
smaller values of ug, the GCP is allowed to be chosen further and further from the
projected gradient path. This exhibits the importance of the part played by the GCP
in our class of trust region methods and the need of computing a sufficiently good
approximation of this point on the projected gradient path. The total number of
GCP iterations increases accordingly. However, we observe that the average number
of GCP calculations per major iteration decreases with the value of us, while the cpu-
times for the GCP calculations considerably decrease, particularly for larger problems
(such as MP12, MP14, W666 and MB1116). This is due to the fact that the solution
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TABLE 3
Total pricing, us =1, 0.9 and 0.6

Problem || w3 || it | gcp | avn | cg || gepepu | cgepu | totcpu ||

MP4 1 11 31 2.8 587 118 110 241
0.9 || 11 31 2.8 564 103 106 223
0.6 || 11 31 2.8 530 78 99 190
MP8 1 7 30 | 4.3 2433 60 441 510
0.9 9 43 | 4.8 3315 63 607 681
0.6 || 11 47 | 4.3 3475 31 619 663
MP12 1 7 28 | 4.0 1078 333 479 833
0.9 8 34 | 4.2 1254 280 554 857
0.6 9 31 3.4 1125 88 489 602
MP14 1 5 16 3.2 291 30 29 68
0.9 6 24 | 4.0 357 20 35 66
0.6 || 13 39 3.0 603 12 58 88
MP16 1 8 30 3.7 815 83 152 244
0.9 8 29 3.6 871 70 164 243
0.6 8 27 | 3.4 726 49 134 193
MP18 1 12 45 3.7 823 113 166 295
0.9 || 12 45 3.7 810 109 164 288
0.6 || 12 45 3.7 827 78 166 260
W150 1 15 61 4.1 362 6 5 16
0.9 | 15 61 4.1 405 5 6 14
0.6 || 18 73| 4.1 442 3 6 14
W666 1 19 97 | 5.1 1314 247 110 385
0.9 || 21 | 108 5.1 1890 146 159 334
0.6 || 26 | 130 5.0 2076 64 162 260
MB1116 1 39 60 1.6 | 15039 2834 4632 7541
0.9 || 40 57 1.4 | 13806 1886 3643 5599
0.6 || 40 57 1.4 | 14587 1481 4739 6302

of the linear network problem (2.12) may be stopped prematurely when finding an
approximate solution. Nevertheless, comparing the total cpu-times, we conclude that
it is worthwhile solving (2.12) approximately whenever the GCP found does not depart
too much from the projected gradient path and the total number of iterations is largely
unaffected (see MP4, MP16 and MP18). This means that the value of uz must be
reduced with care.

We have also tested the partial pricing routine that completely solves problem
(2.12) (hence setting ug = 1). These results are reported in Table 4. The total cpu-
times are better than those given in Table 3. This is due to much better cpu-times
for the GCP calculations. Indeed, problems MP4 and MP18 for instance present
similar numbers of GCP calculations and yet, the exact solution’s calculation using
partial pricing is less expensive than the approximate solution’s calculation, even
when pg = 0.6. This can be explained by the additional amount of work required for
maintaining the upper bound on the value of uza(#;) in (2.18) when approximately
solving (2.12). This additional work is not sufficiently balanced by the use of the upper
bound and leads to the conclusion that it is not worth solving approximately the linear
problem (2.12) in the GCP calculation, at least in the presence of network constraints,
since a fast solver can then be implemented to solve problem (2.12) exactly. We
therefore abandon, from now on, the approximate solution of (2.12) in favour of the

19



TABLE 4
Partial pricing, us = 1

Problem || it | nf | ng | nH | np |gcp| cg || gepepu | cgepu | totcpu ||

MP1 6 5.9 5.9 5.0 0 27 393 8 63 79
MP2 6 5.9 5.9 5.0 0 27 402 53 628 709
MP3 6 7.0 7.0 6.0 0 27 400 50 571 649
MP4 11 | 11.3 | 11.3 | 104 6 31 583 22 111 147
MP5 9 9.5 9.5 8.5 4 29 683 18 133 163
MPé6 8 8.5 8.5 7.5 5 30 816 17 154 182
MP7 8 8.5 8.5 7.5 5 36 1610 19 306 334
MP8 7 7.5 7.5 6.6 5 31 2450 15 453 477
MP9 10 | 10.3 | 10.3 9.3 3 50 6649 24 1260 1297
MP10 5 5.6 5.6 4.7 3 17 190 2 10 14
MP11 8 8.5 8.5 7.5 5 30 816 17 154 182
MP12 7 7.5 7.5 6.6 54 28 1116 39 492 551
MP13 5 5.4 5.4 4.5 7 19 521 7 37 49
MP14 5 3.7 3.7 3.1 3 16 295 6 29 44
MP15 7 7.5 7.5 6.5 5 23 713 14 134 157
MP16 8 8.5 8.5 7.5 5 30 816 17 155 182
MP17 9 9.5 9.5 8.5 5 39 1024 21 196 227
MP18 12 | 13.0 | 13.0 | 12.0 0 45 809 24 166 206
MP19 8 8.5 8.5 7.5 5 30 816 17 155 182
MP20 7 7.1 7.1 6.2 7 30 631 12 112 133
W30 15| 13.9 | 13.9 | 13.0 1 72 113 1 1 2
W150 15 | 12.4 | 12.4 | 11.6 4 61 351 4 5 13
W666 16 | 15.1 | 15.1 | 14.2 6 79 1087 37 91 151
MB64 55 | 50.6 | 50.6 | 49.6 42 56 2551 8 30 43
MB1116 || 36 | 23.4 | 23.4 | 22.6 | 142 55 | 12823 255 4064 4391

exact one using partial pricing.

We now further analyse the results reported in Table 4 for the twenty-five test
problems. The number of iterations used in the GCP calculations are generally quite
reasonable when compared with the number of major iterations or with the total num-
ber of conjugate gradient recurrences. The same conclusion applies when comparing
the respective cpu-times. This is partly due to the choice of a small value for A in
the GCP Algorithm. Indeed, we have tested the same code with A = 0.1 replaced
by A = 0.5, and we have clearly detected a substantial increase in the number of
iterations and the cpu-times for the GCP calculations. This thus justifies a choice for
A that allows a rapid branching to the RS Algorithm (Case 2 of Step 3 in the GCP
Algorithm), therefore avoiding an unnecessarily high number of solutions of the linear
network problem (2.12). Moreover, we also observe that the amount of work in the
GCP calculations grows more slowly with the size of the problem than in the conju-
gate gradient scheme (compare MP10, MP11 and MP12 or the Dembo’s problems,
for instance). This is true for the number of iterations as well as for the cpu-times.

We have also tested the impact of the choice of the initial trust region radius
Ay on the performances of the method. Indeed, the initial value given in (3.3) is
rather heuristic, and we actually observed that eighteen on the twenty-five test prob-
lems selected Ag = 100. Table 5 reports the results obtained when solving problem
MBI1116 for different initial trust region radii, with the GCP Algorithm with pus =1
(economical version). These results, compared with those of Table 4, show a possible
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TABLE 5
The effect of varying the initial trust region radius for MB1116

|| Ao || it | gcp | cg || gepepu | cgepu | totcpu ||

10° 35 [ 55 | 10166 243 | 3033 3343
10° 34 | 56 | 10805 241 | 3373 3678
10 || 34 | 57 | 10645 240 | 3238 3542
10'® || 34 | 57 | 10645 239 | 3244 3547

saving of up to 25% in the total cpu-times, depending only on the value of Ag. This
saving occurs essentially in the conjugate gradient iteration counts. This emphasizes
the importance of a good choice for this last value.

3.2. Variation of the test problems’ features. We briefly interpret here our
results on the twenty model test problems of §3.1 when varying the six items mentioned
at the beginning of §3. The reader is invited to consult Table 4 in order to confirm
the comments given below.

We first observe essentially identical behaviour for the method of this manuscript
and that of [22] when using the three different storage schemes for the Hessian ma-
trix (see MP1 to MP3). Our cpu-times are clearly in favour of the internal storage
technique, although, for example, the additional subroutine calls necessary in this
context can be quite significant. We also observe a small increase in function, gradi-
ent and Hessian counts when going from the elemental dimension storage to that of
one element, the number of conjugate gradient steps and the iteration counts being
approximately unchanged. This effect is due to the loss of the partially separable
character of the objective in the latter case, which prevents partial evaluations of the
function or of its derivatives. The gains in cpu-time for the storage using one element
as opposed to the elemental dimension storage is caused by the fact that the products
involving the Hessian matrices are cheaper to compute (see [21]).

We also see, as in [21]-][22], that the method is sensitive to variations of condi-
tioning (see MP4 to MP9). This is due to the use of the conjugate gradient method
which is a conditioning sensitive method, and leads to an increase in the numbers of
conjugate gradient recurrences (while the GCP calculations remain comparable).

The problem becomes slightly more difficult when its size increases, mostly be-
cause of the added complexity of the bound constraints (see for example MP10 to
MP12). Nevertheless, the difficulty seems to increase faster in [21] than for our code.
This will be confirmed in the next section.

Moreover, when the objective function is quadratic (i.e. when @ = 0 in Table 2 or
in (3.1)), we can say, unlike [21], that the problem is easier in terms of major iterations,
function, gradient and Hessian evaluations, as well as in terms of conjugate gradient
steps and cpu-times (see MP13 to compare with MP6, and MP14).

As observed in [21]-[22], a tighter requested accuracy on the solution does not
cause a large increase in the number of major iterations (see MP15 to MP17). This
is explained by the rapid rate of convergence achieved by both methods. The number
of conjugate gradient recurrences may however be significantly increased by a tighter
accuracy requirement, because a large part of this computational effort occurs in
the last iterations of the algorithm, where the linear system (2.23) must be solved
accurately.

Finally, unlike [21]-[22], we note that the introduction of bounds does not increase
the number of major iterations, but even decreases it (see MP18 to MP20). This will
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TABLE 6
Number of arcs and nodes for a given £

be discussed in the next section. On the other hand, as in [21]-][22], the number of
pivoting steps increases with the tightness of the bounds. This is due to the fact that
the basic variables are increasingly constrained.

3.3. Comparison with the LSNNO routine. In this section, we compare
the TRNNO routine (partial pricing, Ag given by (3.3)) with the LSNNO code of
Tuyttens, both tested on the same machine.

We first consider the results of Table 4 in comparison with those produced by
LSNNO in [21]-[22] when using Newton’s method without preconditioning. We ob-
serve, in most cases, a decrease in the number of major iterations for TRNNO (es-
pecially for problems MP9 and MP12). This implies fewer function, gradient and
Hessian evaluations. On the other hand, the number of conjugate gradient recur-
rences generally increases, mainly because the TCG Algorithm allows the restarting
of the conjugate gradient scheme. So we may conclude that the TRNNO code requires
fewer iterations than the LSNNO code, but that one iteration is more expensive for
TRNNO, due to the GCP calculations and the restarting steps in the conjugate gradi-
ent iterations. For this first set of problems (whose characteristics are summarized in
Table 2), we may observe that LSNNO generally outperforms TRNNO in cpu-times,
except, in particular, for the large model test problems (MP12 and MP14) and when
the bounds on the variables become tighter (MP18 to MP20), that is, when the num-
ber of bounds potentially active at the solution increases. In order to investigate this
issue further, we have extended our original set of problems and tested both codes
on the model test problem for different sizes and types of bounds, with the fixed pa-
rameters a = 1, ¢ = 102, 53 = 107° for the final accuracy, and using a storage with
internal dimension (I). This last choice is indeed the most common choice made in
the original set of problems (see Table 2). We report the results in Tables 7 to 10 and
in Fig. 2 to 8. The various sizes specified by the parameter £ are given in Table 6.
We have selected three types of bounds:

Case i = 1. We impose that r < [z]; < oo for all index j such that mod(j,3) = 0,
all other variables being unconstrained. r is successively equal to 0.15, 0.35, 0.55 and
0.75.

Case i = 2. We impose that r < [z]; < oo for all index j such that mod(j,3) = 1,
all other variables being unconstrained. r is successively equal to 0, 0.5, 1 and 2.5.

Case i = 3. We impose that » < [z]; < oo for all index j whose corresponding arc
is on horizontal lines or alternate vertical lines (beginning at the first) of the grid, all
other variables being unconstrained. r is successively equal to 0, 0.1 and 0.2.

For the two first cases, one third of the variables are constrained while this ratio
increases to three quarters for Case i = 3.

Firstly we comment on the results given in Table 7 and Fig. 2 and 3 for Case
i = 1. In Table 7 and the following ones, “%act” denotes the percentage of active
bounds at the solution (computed by LSNNO).

The results of Table 7 show that on the whole the number of major iterations
decreases when bounds become tighter for TRNNO, as mentioned in the previous
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TABLE 7
Comparison with LSNNO for Casei=1

r £ it %act
TRNNO | LSNNO
16 13 19 9.6
0.15 | 19 9 28 11.4
22 17 34 13.4
16 15 18 23.3
0.35 | 19 9 32 24.6
22 10 66 25.1
16 9 25 26.2
0.55 | 19 7 41 26.6
22 7 42 27.0
16 5 24 27.4
0.75 | 19 8 63 27.6
22 7 41 28.0
TABLE 8

Comparison with LSNNO for Case i =2

r V4 it Y%act
TRNNO | LSNNO
16 16 11 0.6
0.0 | 19 12 19 0.7
22 21 29 0.7
16 8 29 26.1
0.5 | 19 6 28 26.8
22 8 39 27.2
16 10 41 28.9
1.0 | 19 7 53 28.9
22 7 63 29.3
16 8 50 30.9
2.5 | 19 9 42 31.1
22 10 103 31.3

section. On the other hand, these numbers increase for LSNNO. Now comparing
the cpu-times given in Fig. 2, we may observe that this behaviour has the effect of
improving the performances of TRNNO while those of LSNNQO deteriorate. Moreover,
we observe that TRNNO outperforms LSNNO for the largest problem first, then for
the medium one and finally for the smallest one. Figure 3 once again confirms the
above observation. For tighter and tighter bounds, TRNNO produces better and
better cpu-times (except for [ = 19 when going from r = 0.55 to r = 0.75), while
those for LSNNO behave erratically but are consistently worse. Finally, from Fig. 2
and the last column of Table 7, we can see that the cpu-times are overwhelmingly in
favour of TRNNO when about a quarter of the bounds are active at optimality.

The second case is reported in Table 8 and Fig. 4 and 5. These results corroborate
the conclusions made for the previous case. It further shows (see Fig. 5) how constant
the number of iterations for TRNNO remains when the bounds and the size vary,
while these numbers grow for LSNNO. Figure 4 displays this characteristic for { = 22.

Finally, Table 9 and Fig. 6 show the results for the third case of bounds. The
absence of results for LSNNO means that it stopped with a flag error before having
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solved the problem. The results also confirm the above comments, except that this
time TRNNO outperforms LSNNO immediately, even when about one per cent of
the bounds are active at optimality. In particular, Fig. 6 clearly shows the uniform
behaviour of TRNNO. Indeed, for the three different bounds, the iterations numbers
stay alike while the cpu-times grow slowly with the dimension of the problem. The
tightness of the bounds does not seem to affect the performances of the code. On the
other hand, it is not possible to attribute the same stability to LSNNO. Moreover,
although optimal function values usually agree for both codes in Cases ¢ = 1 and 2,
we have observed here a significant difference, always in the favor of TRNNO, for
three quarters of the test problems. We also observed that the strict complementarity
slackness condition did usually not hold at the solution for these problems.

Furthermore for Case i = 3, Table 10 and Fig. 7 and 8 report the results for
higher dimensions. They confirm the efficiency of TRNNO on large-scale problems.
We also tested other cases of bounds which are not reported in this paper. They all
corroborate the conclusions made in this section.

4. Conclusions and perspectives. In this paper, we propose a new algorithm
of trust region type to solve the nonlinear network problem (1.1). We consider prac-
tical implementation issues, including an explicit procedure for computing an ap-
proximate Generalized Cauchy Point and a truncated conjugate gradient strategy for
calculating a candidate step at each iteration. Numerical tests are reported and dis-
cussed, showing the efficiency of the trust region approach, especially for large-scale
problems with potentially many active bound constraints at the solution. We believe
that part of the success may be attributed to the ability of the GCP calculation to
swiftly determine the set of (nondegenerate) active bounds at the solution.

The encouraging results show that the framework presented is worth considering
for the solution of problem (1.1), especially in view of the good theoretical properties
of the framework given in [4] and the numerical results for large problems. It also
suggests some directions for future research and continued development. The method
given here could be adapted for solving general large-scale linearly constrained prob-
lems. We could then envisage to produce effective methods for solving general large-
scale nonlinear programming problems by combining the nonlinear constraints in a
suitable fashion with the objective function (for instance in an augmented Lagrangian
function [8], [5], [6]), and solving the resulting sequence of linearly constrained prob-
lems using the method described in this paper.
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TABLE 9
Comparison with LSNNO for Case i =3

r /] it %act
TRNNO | LSNNO
11 13 54 1.1
12 13 58 1.1
0.0 | 13 12 68 1.1
14 13 53 1.1
15 13 150 3.4
16 14 76 1.3
11 10 54 13.1
12 12 52 14.0
0.1 | 13 9 48 14.7
14 12 101 14.7
15 9 85 17.9
16 11 132 17.1
11 9 83 28.6
12 23 142 30.8
0.2 | 13 9 159 35.2
14 11 237 40.1
15
16 8
TABLE 10

Comparison with LSNNO for Case i = 3 (higher dimensions)

r £ it Yoact
TRNNO | LSNNO
fooJ19] 12 [ 142 [ 11]
fo1]22] 10 | 495 | 26.0 |
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