
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Implementation of an IEEE 802.15.4-2006 Protocol Stack on the Texas Instrument
CC2430
Wauthy, Jean-François; Schumacher, Laurent

Published in:
PE-WASUN '10

DOI:
10.1145/1868589.1868596

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Wauthy, J-F & Schumacher, L 2010, Implementation of an IEEE 802.15.4-2006 Protocol Stack on the Texas
Instrument CC2430. in JJ Garcia-Luna-Aceves & I Guérin Lassous (eds), PE-WASUN '10: Proceedings of the
7th ACM workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM Press,
pp. 33-39. https://doi.org/10.1145/1868589.1868596

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1145/1868589.1868596
https://researchportal.unamur.be/en/publications/806ef3ec-7759-41e4-bcf2-af6a98f36bd5
https://doi.org/10.1145/1868589.1868596

Implementation of an IEEE 802.15.4-2006 Protocol Stack
on the Texas Instrument CC2430

Jean-François Wauthy
Faculty of Computer Science

FUNDP – The University of Namur
Namur, Belgium

jfw@info.fundp.ac.be

Laurent Schumacher
Faculty of Computer Science

FUNDP – The University of Namur
Namur, Belgium

lsc@info.fundp.ac.be

ABSTRACT

In this paper, we present our open source implementation
of the IEEE 805.15.4-2006 protocol stack on the TI CC2430
micro-controller in the framework of e-health services, and
offer an in-depth investigation with respect to the difficul-
ties towards such an implementation, the limitations of the
micro-controller and the hardware platform, as well as our
hand-tuning efforts to maximize performance on this off-
the-shelf platform. With our implementation, we report its
autonomy, maximum frame rate as well as the challenges
when enabling security extensions.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Architecture and Design—Wireless communication; C.2.2
[Computer Communication Networks]: Network Pro-
tocols; C.2.5 [Computer Communication Networks]:
Local and Wide-Area Networks; C.2.6 [Computer Com-
munication Networks]: Internetworking—Standards (e.g.,
TCP/IP); C.4 [Performance of Systems]; C.5.3 [Computer
System Implementation]: Microcomputers—Micropro-
cessors

General Terms

Design, Performance, Standardization

Keywords

Implementation, IEEE 802.15.4-2006, Wireless Sensors, En-
ergy Consumption

1. INTRODUCTION
The main focus of the WALIBI project (see administrative

details in Section 8) is to monitor a patient with the help
of many sensors (surveying body temperature, heart beat,
blood pressure, etc) located on his/her body. All the sensors
are connected to a node that sends data from sensors to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’10, October 17–18, 2010, Bodrum, Turkey.
Copyright 2010 ACM 978-1-4503-0276-0/10/10 ...$10.00.

central device. For the project, we chose to use the IEEE
802.15.4 technology mainly because of its long autonomy and
its use of the 2.4 GHz ISM band. Since we wanted to be able
to eventually modify the behavior of the radio protocols, we
looked for an open-source implementation that could run on
off-the-shelf hardware.

The open-source implementations that we identified at the
time (beginning of 2008) were : TinyOS [15], MeshNetics’
ZigBit modules [6] and Sensinode’s NanoStack [13].

TinyOS had limited support of IEEE 802.15.4, it only sup-
ported sending and receiving radio frames without handling
the network management or providing support for the bea-
con mode. The OpenZB [11] project was trying to provide
these functionalities but supported only TinyOS 1, the dep-
recated MicaZ board [7] and it was only starting to port the
code for the TelosB board [14].

MeshNetics’ hardware is based on an ATmega 1281v micro-
controller and an Atmel AT86RF230 radio transceiver which
are not really off-the-shelf hardware, also their IEEE 802.15.4
implementation was not entirely open-source, some libraries
were only available as binaries.

Sensinode’s implementation was entirely open-source and
available from SourceForge under the GPL license and was
advertised as running on both TI MSP430 with a CC2420
radio controller (which is the same as the one on the popular
TelosB [14] board) and CC2430 micro-controller.

Later after the start of the project, the Contiki [2] op-
erating system implemented support for IEEE 802.15.4 and
the TI CC2430 but, like TinyOS, only sending and receiving
frames are available without networking management and it
was too late for us to start over by implementing support
for these functionalities in Contiki.

We then chose to purchase a TI CC2430 based develop-
ment kit from Sensinode in order to have supported hard-
ware and an open-source IEEE 802.15.4 stack. However, we
quickly found out (and was confirmed by Sensinode) that
the beacon mode was only supported on the so-called Mi-
cro hardware line (based on TI MSP430 and a TI CC2420)
that was being deprecated in favor of the new Nano hard-
ware line although they advertised it was supported. It was
then decided to start writing our own implementation of
the IEEE 802.15.4-2006 standard on the TI CC2430 hard-
ware previously bought. We could not start from TinyOS or
Contiki because they both lacked support for the TI CC2430
micro-controller and its development toolchain.

To the best of our knowledge, there is no other open-
source implementation of the IEEE 802.15.4-2006 specifi-

Figure 1: Picture of the development set-up with a close-up showing the coordinator node (left), the sender
node (right) and the node capturing the radio traffic for analysis (middle). The programming and debugging
boards are also visible above the nodes.

cations supporting beacon mode, associations, and off-the-
shelf hardware.
This paper presents our implementation of the 2006 ver-

sion of the IEEE 802.15.4 specifications as well as the issues
and limitations encountered with the hardware during its
development. Section 2 presents the hardware, Section 3 de-
scribes our implementation of the IEEE 802.15.4-2006 speci-
fications, Section 4 details the optimizations that were made
during the development of the stack, Section 5 discusses the
main issues that arose during the development, Section 6
quickly presents the license under which our implementation
will be released and finally Section 7 concludes and discusses
future development.

2. HARDWARE
The TI CC2430 [1] bundles a 32 MHz optimized and en-

hanced Intel 8051 micro-controller and a TI CC2420 radio
controller on a single chip. The CC2430 can hold up to
128 KB of non-volatile program memory (when using mem-
ory banking) and 8 KB of data memory. It features, among
others, 5 direct memory access (DMA) channels, 8 ADC
channels, an AES co-processor, 4 timers whose 1 high defi-
nition “MAC” timer, two programmable UARTs, . . .
The unusual thing when working with the CC2430 is its

memory model inherited from the Intel 8051 architecture
and based on an Harvard architecture. The CC2430 CPU
has four different memory spaces: the code read-only mem-
ory that contains the program itself, the internal data mem-
ory quickly accessible but limited to 256 bytes, the XDATA
memory whose access is slower than data memory but can

address up to 65 KB and the Special Function Register
(SFR) memory for direct access to the registers controlling
the CPU and the peripherals.

One major drawback of the CC2430 is its very limited
debugging capability. It only offers a very limited low level
access through the two-wire debug interface. It allows paus-
ing the micro-controller, reading some status bytes and ex-
ecuting the microcode step-by-step but all this is not very
practical when developing and debugging a real-time system.

Also the CC2430 does not offer any hardware helpers for
implementing dynamic memory allocation or some kind of
protected kernel mode. Therefore, dynamic memory allo-
cation support has to be implemented from scratch and
its usage might introduce heap fragmentation reducing the
amount of memory actually usable by the application, as
discussed further in Section 3.3.

3. IMPLEMENTATION
Our implementation of the IEEE 802.15.4-2006 specifica-

tions supports beacon mode and security extensions but not
the Guaranteed Time Slot (GTS) scheme. It also includes
code for the basic functions required to run a coordinator
node.

Our code is written in C and is compiled with the Small
Device C Compiler (SDCC) [12].

3.1 Layers
As it is usually the case in networking stacks, our imple-

mentation of the IEEE 802.15.4-2006 standard can be di-
vided in layers where a layer depends on the ones below it.

These layers are presented on Figure 2 from the bottom to
the top.

Hardware layer

The hardware layer provides the functionalities enabling the
other layers to use the hardware itself. This includes setting
the hardware in a running and usable state (like initializa-
tion of the CPU at start up), easily accessing and config-
uring the Direct Memory Access (DMA) channels, writing
data into the UART ports or formatting debug statements.

Physical layer

The physical layer (PHY) provides access to the radio con-
troller and enables other layers to send and receive data over
the air. This layer implements the PHY data (PD-DATA)
and the physical layer management entity (PLME) inter-
faces of [5].
The PD-DATA service allows the next higher layer to di-

rectly send frames over the air. And the PLME provides
the PHY management service to the next higher layer. Its
functions can be used to configure the PHY layer through
the PHY PAN information base (PIB), perform energy de-
tection or clear channel assessment (CCA).

Data link layer

The data link layer or Media Access Control (MAC) layer
provides functions enabling the application layer to orga-
nize a network and to send and receive data in a orderly
manner in order to avoid conflicts or starvation on the me-
dia. This layer implements the MAC common part sublayer
(MCPS) and MAC layer management entity (MLME) inter-
faces of [5].
The MAC data service is accessed through the MCPS in-

terface. The MCPS provides functions to send data with the
correct radio channel access method (CSMA-CA or slotted
CSMA-CA) and to remove a pending transaction from the
queue.
The MLME provides the IEEE 802.15.4 MAC manage-

ment service to the higher layer. The MLME offers func-
tions to configure the MAC layer through the MAC PIB, to
manage the node in the personal area network (PAN), and
to alert the next higher layer of events in the MAC (such as
loss of beacon synchronization or detection of PAN identifier
conflict).

Application layer

The application layer is where the end-user application is
located. It can include support for the basic functionalities
of a coordinator, so the user does not have to implement
them him-/herself.

3.2 One main loop vs. multitasks
First, the whole code of every layer was running inside one

main loop in one stack space that processed the incoming
frames and allowed frames to be sent directly, sometimes,
from inside interrupt service routines. This worked fine with
simple use cases like association, disassociation or sending
small amounts of data at low rates but when trying to receive
data at an higher rate, stack overflow errors occurred on the
node running the coordinator code. The transmitted frames
are 60-byte long (47 bytes of payload and 13 bytes of headers
with no security extension and only short addresses used)
and sent at rate of 128 Hz.

Application layer

MAC layer

PHY layer

Hardware layer

MLME MCPS

PD-DATA PLME

Data

Debug

UART0

UART1

Radio

Figure 2: Layers of the IEEE 802.15.4 implementa-
tion

Due to these stack overflows, we later started basing our
code on FreeRTOS [3], a mini real time operating system
(RTOS) providing basic tasks, queues and synchronization
mechanisms with support for preemption. However, tasks
context switching requires copying the stack of the current
task (located in DATA memory) in XDATA memory and
copying back the stack image of the new task from XDATA
memory into the DATA memory. Now that each task has
its own stack space, no more stack overflow happens during
high rate reception.

However, for incrementing its internal clock, the kernel
requires a timer to generate a regular tick. This combined
with context switching introduces latency and overhead in
the firmware.

The use of different tasks also complicates the way func-
tions are invoked between tasks contexts (i.e. the applica-
tion task/layer wants to send a data frame which is managed
by the MAC task/layer). To handle this problem, a queue
storing pointers to structures containing an identifier of the
function to call and its parameters is associated with each
task.

We use three to four tasks in our implementation (depend-
ing whether coordinator support is activated): the trans-
mission task, the MAC task, the application task and the
optional beacon transmission task. To allow them to com-
municate with other, three message queues interconnecting
the tasks are used. The tasks and queues are represented on
Figure 3.

3.3 Memory allocation
As previously pointed out, a dynamic memory allocation

mechanism has to be completely implemented from scratch
on the TI CC2430 but the SDCC compiler implements one
and provides the usual functions used in dynamic allocation
(malloc, calloc and free). However, this code is not optimal
as it has to search through an organized chunk of memory for
a large enough space each time a new allocation is required.

A trade-off is to pre-allocate statically a pool of structures
of a given size in memory (simply as a C array) and to
provide functions to try obtaining a free member of this pool
and freeing it once it is not needed anymore. This increases
the code size and needs to be finely tuned to mitigate the
possible waste of memory due to the unused, but allocated,
pool members.

Queue event

Send on air
Process event

TX
Task

TX Beacon
Task

MAC
Task

App

Task

TX
Queue

MAC Event
Queue

App Event

Queue

Figure 3: Interactions between tasks and queues

Pre-allocation is used in our implementation for structures
with a fixed sized that are often allocated and relatively
quickly freed such as structures holding radio frames.

3.4 Debugging
When developing a software, debugging support is very

important to ease tracking down bugs and optimize code.
Usually developers have access to backtraces allowing them
to understand the call path that led to an error, they can also
change the value of variables while debugging a running code
or place breakpoints that stop the execution of the program
when reached.
The debugging support on the TI CC2430 is scarce. There

is no Joint Test Action Group (JTAG) connector but a 2-
wire interface to an on-chip debug module is available. With
an appropriate module and software, it is possible to use the
NoICE [10] debugger to debug a program running on the
chip at an assembler code level. While this assembler level
debugging can be helpful, it is not very suited to understand
the call path or to trace it back.
When possible, using one of the UART outputs enables

some sort of basic text console where short status messages
can be printed. This requires to be able to modify the code
to add the debug statements and to recompile the firmware
afterwards. It also enlarges the code size, might slow down
the execution or even fail to output anything on the UART
due to an error (i.e. infinite loop or a blocking call inside an
interrupt service routine with the highest priority). Different
kinds of debug statements in various subsystems of the stack
have been added during development and can be activated
using conditional compilation flags.
To help debugging, we also wrote a small firmware for

the TI CC2430 that sends the received radio frames to a
computer where they can be analyzed with a network traffic
analyzer such as Wireshark [16]. The Wireshark dissector
for IEEE 802.15.4 frames has also been extended to support
the 2006 format of the encrypted frames. These modifica-
tions have been submitted to the developers of Wireshark

and accepted for integration in the future versions of the
software.

4. OPTIMIZATIONS

4.1 DMA for radio
ADMA controller enables copying data within the XDATA

address space without using CPU cycles. Since most of the
SFR registers are mapped into XDATA memory, it can read
from or write data to any peripherals relieving the CPU of
handling data movement operations. The controller man-
ages several channels allowing multiple transfers to occur in
parallel, these transfers can be also automatically triggered
by a pre-configured event (new frame received, transmission
completed on an UART, . . .). Once the transfer is finished,
an interrupt is raised to let the CPU know about it.

Two DMA channels, one for reception and one for trans-
mission, are used to optimize memory transfer between the
radio buffer and the micro-controller memory. This enables
copying newly received frames or frames that are about to
be sent between the buffer of the radio controller and the
memory without using the CPU of the micro-controller. The
CPU freed from copying the data, it can then execute other
instructions in the meantime such as scheduling an other
task or processing other requests.

4.2 Conditional compilation
The available flash memory of the micro-controller is lim-

ited, therefore in order to reduce the code size of the IEEE
802.15.4 stack leaving more space for the application code,
extensive conditional compilation of optional functionalities
(FFD-only functions, coordinator support, security, . . .) is
used. This way, we currently obtain a binary image of
48 kbytes for the coordinator and 38 kbytes for the node
compiled without the security extensions.

4.3 Switching off the radio
One important feature for a standalone sensor is its auton-

omy. To understand when we can power off some component
to reduce power consumption, Figure 4 details this structure
of an IEEE 802.15.4 superframe. An IEEE 802.15.4 super-
frame is limited by the transmission of a beacon frame by
the network coordinator. It can be divided into an active
portion and an inactive portion. The Beacon Interval (BI) is
determined by the value of the Beacon Order (BO) parame-
ter selected by the coordinator. The coordinator also selects
the value of the Superframe Order (SO) parameter that de-
termines the length of the active portion of the superframe
also known as the Superframe Duration (SD). This portion
is divided into 16 equally spaced slots.

The active portion is composed of 3 parts: a beacon, a
Contention Access Period (CAP) and a Contention Free Pe-
riod (CFP). The beacon is transmitted at the beginning of
slot 0 and the CAP starts immediately after the beacon. The
CFP, if present, is composed of the Guaranteed Time Slots
(GTSs) and is located immediately after the CAP up to the
end of the active portion of the superframe. The network
coordinator may allocate a maximum of 7 GTSs as long as
the CAP is at least 440-symbol long. Figure 4 contains 2
GTSs spanning over 5 superframe slots.

To reduce the node current consumption, we switch off the
radio during the inactive period of the superframe because
with the radio left on even without receiving any frame the

3 4 5 6 7 8 90 1 2 10 11 12 13 14 15

InactiveGTSGTS

CAP CFP

Superframe Duration (Active)

Beacon Beacon

Beacon Interval

Figure 4: IEEE 802.15.4 Superframe structure rep-
resenting the Contention Access Period (CAP) and
Contention Free Period (CFP) and Guaranteed
Time Slots (GTSs)

CC2430 draws around 28 mA. With the radio shut down,
the current consumption goes down to an estimated 11 mA.
Transmitting a frame requires a little bit more current and
is estimated around 30 mA. These values are based on the
datasheet electrical specifications and considering an addi-
tional consumption for the activated peripherals.
To evaluate the autonomy with these estimated current

consumptions, we divide the beacon interval in three parts
and evaluate the consumption of each of them. These parts
are the beacon duration during which the beacon is either
sent or received, the active portion and the inactive por-
tion. Their current consumption can then be divided by the
duration of the beacon interval to obtain the mean current
consumption of the node.
Since the bitrate of IEEE 802.15.4 in the 2.4 GHz ISM

band is 250 kbps, the beacon duration can be expressed as
(in µs):

BeaconDuration =
BeaconLength× 8× 1000

250

= BeaconLength× 32

The BI is defined in the IEEE 802.15.4 specifications as
the duration of a superframe when the SO is equal to 0
multiplied by 2BO where BO is the beacon order. The BI
can be derived as:

BeaconInterval = aBaseSuperframeDuration× 2BO

= aBaseSlotDuration

× aNumSuperframeSlots× 2BO

= 60× 16 sym.× 2BO

= 60× (16× 16µs)× 2BO

= 2BO
× 15,360µs

where aBaseSuperframeDuration, aBaseSlotDuration, aNum-
SuperframeSlots are constants defined in [5] and the symbol
duration is 16 µs since the CC2430 makes use of the 2.4 GHz
version of IEEE 802.15.4.
The duration of the active portion of the BI is defined as:

ActiveDuration = aBaseSuperframeDuration× 2SO

= 2SO
× 15,360µs

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
u
to

n
o
m

y
 (

h
)

Superframe Order

BO=1
BO=4
BO=7

BO=10
BO=14

Figure 5: Mean autonomy of an idle coordinator in
beacon mode

The total current consumption can be then expressed as:

Consumption = (BeaconDuration

×BeaconConsumption)

+ [(ActiveDuration−BeaconDuration)

×ActiveConsumption]

+ [(BeaconInterval −ActiveDuration)

× IdleConsumption]

We can then obtain the mean current consumption:

MeanConsumption =
Consumption

BeaconInterval

Figure 5 shows the mean autonomy of coordinator running
on 2,500 mAh batteries and sending a 25-byte long beacon
which corresponds to a standard beacon with a small pay-
load and eventually basic security options. Several BOs are
considered and the mean autonomy is shown in function of
the SO. The decrease is due to the inactive period getting
smaller as the SO is nearer to the BO since the coordinator
radio must always be on in a beacon enabled network.

The mean autonomy of a node tracking its coordinator’s
25-byte long beacon with the same type of batteries as the
coordinator is almost constant around 227 hours because
the radio is even shut down during the active period of the
superframe since the node only needs to have it on to track
the beacon and eventually send frames.

The TI CC2430 also features low power consumption modes,
if we only consider the less power saving mode, the consump-
tion of the micro-controller can be estimated to 200 µA (ac-
cording to the manufacturer’s specifications). Using this low
power mode when the radio is not needed, we can reach an
estimated autonomy of around 12,000 hours with the same
parameters. Using the other power saving modes with a
long inactive period can achieve even longer autonomy with
a node idle most of the time.

In our implementation, we support switching off the radio
during inactive periods but we did not add support for these
low power modes because of the scenario considered. In our
project, data frames are sent all the time and since the BO
and SO parameters are the same, there is no inactive period
in the superframe.

5. ISSUES
During the development of our implementation of the IEEE

802.15.4-2006 specifications, several issues were encountered.
The two most important ones were related to the security
extensions of the standard and to the support of high rate
transmissions required by Walibi.

5.1 Security extensions
The IEEE 802.15.4-2006 MAC security extensions support

data confidentiality, data authenticity and replay protection
based on an extension of the counter with cipher block chain-
ing message authentication code (CBC-MAC) mode of op-
eration also known as CCM. This extension is named CCM*
and is described in [5]. While enabling the security exten-
sions of IEEE 802.15.4, we faced several issues.
First of all, the IEEE 802.15.4 specifications of the security

extensions do not detail how to distribute the keys in the
network and leave that uneasy task to an other layer. Even
storing these keys in the nodes makes use of complicated
(for small micro-controllers) data structures; and each node
in the network can have several keys depending on the frame
type and security level.
Moreover, the activation of the security extensions obvi-

ously complicates the processing of incoming and outgoing
frames, effectively reducing the transmission rate due to the
various checks, key lookups and modifications of the frames
that need to take place.
Finally, the IEEE 802.15.4 (either the 2003 or 2006 ver-

sion) standard uses the little-endian byte order and therefore
so does the TI CC2430. However, the security extensions
of IEEE 802.15.4 are based on the big-endian byte order
which complicates their implementation and prevents the
use of DMA on large memory block alternatively it requires
to prepare the block in taking into account this different
endianness which complicates and enlarges the code.
Our implementation of the CCM* algorithm has never-

theless been validated using CCM test vectors from the Na-
tional Institute of Standards and Technology (NIST) [8, 9]
and from the IEEE 802.15.4 specifications.

5.2 High rate transmission
In our project (see Section 8), we want to transmit elec-

troencephalography (EEG) data. The medical partners of
the project agreed on a 128 Hz 11-bit signed sampling of
the 20 electrodes. This leads to the following bit rate where
headers are the IEEE 802.15.4 headers of the data frame,
samples are the sampled data prefixed with a 5-bit sensor
identifier that are sent and overhead is the number of addi-
tional bytes used to store the sequence number, a checksum
and the length of the sampled data:

Bit rate = SamplingFrequency

×

[
(13× 8)
︸ ︷︷ ︸

headers

+20× (11 + 5)
︸ ︷︷ ︸

samples

+ (7× 8)
︸ ︷︷ ︸

overhead

]

= 128× (104 + 320 + 56)

= 61,440 bps

This bit rate is well within the theoretical limits of IEEE
802.15.4 but even when sending two measurements in an
IEEE 802.15.4 radio frame and intensively using DMA to
transfer data from the UART (from which the data is ac-
quired) and to the radio and vice-versa we could only achieve
100 Hz sampling (which corresponds to 48,000 bps) on the

sender node with the multitasks implementation whereas the
mono-task supported up to 128 Hz for a period of time, un-
til stack overflow occurs. This is due to the overhead intro-
duced by the multitask implementation where messages are
intensively exchanged between tasks. However, the receiver
node could handle receiving data sampled at 128 Hz when
running either the multitasked code or the basic mono-task
code.

6. LICENSING
We plan to release our implementation of the IEEE 802.15.4-

2006 specifications under a modified version of the GPL that
would prevent commercial usage of the stack while keeping
it under the GPL for other usages.

The source of the stack is available through our Git [4]
repository. It can be browsed with gitweb at the following
address: http://git.infonet.fundp.ac.be and cloned us-
ing http://git.infonet.fundp.ac.be/git/picostack as
source repository.

7. CONCLUSION
After detailing the reasons that led us to start writing

our own implementation of the IEEE 802.15.4-2006 stan-
dard, we presented the TI CC2430 micro-controller and how
our implementation is structured and works. Then we dis-
cussed the optimizations that we integrated to improve its
performance and autonomy. We evaluated this autonomy
in function of the BO and SO chosen for the coordinator of
the network. Finally, we presented the issues we encoun-
tered during the development of the security extensions and
producing high rate transmissions.

Future work includes reducing the overhead of the com-
munication mechanism between tasks to ultimately improve
the tranmission rate performance and adding support for
GTS reservation.

8. ACKNOWLEDGMENTS
The work presented in this paper has been realized within

the Wireless Acquisition and LInk for Body Information
(WALIBI) research project, a WIST2 project funded by the
Walloon region (Grant 616 449).

9. REFERENCES

[1] Texas Instruments CC2430, System-on-Chip Solution
for 2.4 GHz IEEE 802.15.4 / ZigBee (TM). http://
focus.ti.com/docs/prod/folders/print/cc2430.

html.

[2] The Contiki Operating System. http://www.sics.se/
contiki/.

[3] FreeRTOS. http://www.freertos.org/.

[4] Git – The fast version control system. http://www.
git-scm.org/.

[5] The Institute of Electrical and Electronics Engineers.
IEEE 802.15.4-2006: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks
(LR-WPANs), June 2006.

[6] MeshNetics. http://www.meshnetics.com.

[7] MicaZ sensor board. http://www.xbow.com/
Products/productsdetails.aspx?sid=101.

http://git.infonet.fundp.ac.be
http://git.infonet.fundp.ac.be/git/picostack
http://focus.ti.com/docs/prod/folders/print/cc2430.html
http://focus.ti.com/docs/prod/folders/print/cc2430.html
http://focus.ti.com/docs/prod/folders/print/cc2430.html
http://www.sics.se/contiki/
http://www.sics.se/contiki/
http://www.freertos.org/
http://www.git-scm.org/
http://www.git-scm.org/
http://www.meshnetics.com
http://www.xbow.com/Products/productsdetails.aspx?sid=101
http://www.xbow.com/Products/productsdetails.aspx?sid=101

[8] National Institute of Standards and Technology.
http://www.nist.gov/.

[9] NIST – Cryptographic Algorithm Validation Program.
http://csrc.nist.gov/groups/STM/cavp/index.

html#07.

[10] NoICE Debugger. http://www.noicedebugger.com/.

[11] Open-ZB. http://www.open-zb.net.

[12] SDCC - Small Device C Compiler. http://sdcc.
sourceforge.net/.

[13] Sensinode. http://www.sensinode.com/.

[14] TelosB sensor board. http://www.xbow.com/
Products/productdetails.aspx?sid=252.

[15] TinyOS. http://www.tinyos.net/.

[16] Wireshark. http://www.wireshark.org/.

http://www.nist.gov/
http://csrc.nist.gov/groups/STM/cavp/index.html#07
http://csrc.nist.gov/groups/STM/cavp/index.html#07
http://www.noicedebugger.com/
http://www.open-zb.net
http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/
http://www.sensinode.com/
http://www.xbow.com/Products/productdetails.aspx?sid=252
http://www.xbow.com/Products/productdetails.aspx?sid=252
http://www.tinyos.net/
http://www.wireshark.org/

	Introduction
	Hardware
	Implementation
	Layers
	One main loop vs. multitasks
	Memory allocation
	Debugging

	Optimizations
	DMA for radio
	Conditional compilation
	Switching off the radio

	Issues
	Security extensions
	High rate transmission

	Licensing
	Conclusion
	Acknowledgments
	References

