Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

SIP Overload Control Testbed
Roly, Antoine; Schumacher, Laurent

Published in:
2011 IEEE Consumer Communications and Networking Conference

DOI:
10.1109/CCNC.2011.5766460

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Roly, A & Schumacher, L 2011, SIP Overload Control Testbed: Design, Building and Validation Tests. in 2011
IEEE Consumer Communications and Networking Conference: CCNC'2011. IEEE Consumer Communications
and Networking Conference, IEEE. https://doi.org/10.1109/CCNC.2011.5766460

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1109/CCNC.2011.5766460
https://researchportal.unamur.be/en/publications/0fb40c3f-decb-484c-a6e3-7971504bfa82
https://doi.org/10.1109/CCNC.2011.5766460

SIP Overload Control Testbed:
Design, Building and Validation Tests

Antoine Roly
University of Namur
Faculty of Computer Science
Namur, Belgium
Email: aro@info.fundp.ac.be

Abstract—This paper! presents the first steps of our work
related to overload control techniques. These techniques are
currently under development in the SIP Overload Control (SOC)
Internet Engineering Task Force (IETF) Working Group (WG).
A preliminary step to this work is to build a realistic test
environment.

I. INTRODUCTION

Our work focuses on overload control in SIP networks.
Overload occurs if a SIP server does not have sufficient
resources to process all incoming messages. These resources
may include CPU, memory, bandwidth, or disk space. Despite
the fact that these situations are relatively common, and can
have important economic impacts on service providers, the
inter-domain congestion problem is not well handled yet.

To face this problematic, the IETF created in 2009 a
Working Group to work on the overload problem: the SIP
Overload Control WG [1]. The objective of the SOC WG is
to develop functional solutions for SIP overload control. These
overload situations can have various causes:

o Holy days, when calls are more numerous than usual,
with calls coming from the entire network, without spe-
cific destination,;

o Natural disasters, with a lot of calls to a specific area,
and the issue of emergency calls’ priority. In this case,
for each message arriving at a server, it must be decided
whether the message must absolutely be processed (even
if another call has to be stopped to free resources) or if
it can safely be dropped.

o TV game shows with participation of the audience, and
some fairness issues when people must all have a fair
chance to be selected.

e An electrical failure or any other problem that causes
a server to reboot. Once power is restored, SIP agents
will re-register at the same time with their server. All of
a sudden, the latter will be flooded with messages and
would not be able to process them. In the case of an
Instant Messaging server, if all buddies try to reconnect
after a failure, the same problem can occur and cause the
server to collapse.

Our goal is to develop and test overload control techniques.
To allow us to realize realistic tests, a virtual SIP test environ-

I'This paper was student-peer reviewed for CCNC 2011

Laurent Schumacher
University of Namur
Faculty of Computer Science
Namur, Belgium
Email: 1sc@info.fundp.ac.be

ment has been built. It must include SIP callers and callees
able to simulate various types of traffic, SIP proxies/registrars
with real routing capabilities and a tool allowing reproducible
test, result analysis and generation of complete reports.

The environment can be used to validate overload control
techniques specified by the SOC WG. Currently, WG partici-
pants seem to agree about a technique based on the use of
new parameters for the Via header of SIP messages (‘oc’,
oc-seq’ and ’oc-validity’ parameters). The ’oc’ parameter
“when inserted by a SIP entity in a request going downstream,
indicates that the SIP entity supports overload control. When
the downstream SIP server sends a response, the downstream
SIP server will add a value to the parameter that indicates a
loss rate (in percentage) by which the requests arriving at the
downstream SIP server should be reduced.” [2] To validate this
technique, a SIP environment including several SIP proxies
is mandatory. Our environment meets this requirement, and
behavior of SIP servers can be easily defined, modified and
analyzed thanks to the use of appropriate softwares (more
details below). Moreover, this environment can also be used
for mathematical studies of congestion control techniques
chosen within the body of knowledge in this matter, for
example related to the Internet Research Task Force (IRTF)
work described in [3], or the European Telecommunications
Standards Institute (ETSI) Telecommunications and Internet
converged Services and Protocols for Advanced Networking
(TISPAN) Next Generation Network (NGN) Specifications [4].

II. BUILDING OF THE TEST ENVIRONMENT

The creation, configuration and deployment of a test envi-
ronment is usually very time-consuming. To achieve tests as
close as possible to reality, a set of virtual machines generating
SIP traffic were built. These virtual machines use free software
in most cases, both for the simulation of traffic and the SIP
servers deployment.

The server is a double quad-core, Intel Xeon @2.13GHz,
with 12GB of RAM. The main host and virtual machines
run Linux distributions, respectively Debian 5.0.5 (Debian
testing, kernel 2.6.32-3) and CentOs 5.4 (kernel 2.6.18-194).
Virtual environment is managed by gemu-kvm 0.12.5. The
advantage of using virtual machines is obvious for several
reasons. The cost (a single 3 KEUR server hosts more than
15 virtual machines) and ease of configuration are the main

incentives. A virtual network has been deployed to represent
a basic real network. This network is made of four DNS
domains, including DNS SRV and A records pointing to each
domain’s proxy. This configuration allows hosts to do some
“real” routing activities.

An important aspect was the deployment of different plat-
forms, in order to investigate potential compatibility issues.
For the SIP part, these platforms are Sailfin on the one hand,
and a commercial IMS platform on the other hand. The com-
mon feature of these two platforms is to relieve the developer
from low-level aspects of programming, such as receiving
or sending messages, dealing with potential retransmissions,
management of error, etc. Hence, the developer can focus on
the logic of his/her application.

A. Modification of SIPp Ims Bench

The implementation of a software useful for our work
was another work item. The base used is the free software
SIPp [5]. This software is a SIP traffic generator, relatively
flexible and efficient. Unfortunately, it is relatively limited
when one must generate “realistic” traffic. For example, the
call rate is constant or increases linearly whereas the real traffic
comes in bursts, and interactions between multiple instances
of SIPp (one or more caller(s) and one or more callee(s)) are
complicated or even impossible to implement.

To overcome these limitations, a modified version of SIPp
has been developed by Intel: SIPp Ims Bench. These changes
have been made to meet the requirements of the IMS/NGN
Performance Benchmark document [6]. It defines the criteria
for performance testing in the IMS? world. SIPp Ims Bench
[7] therefore generates more realistic traffic patterns (with
bursts, non-linear increase, etc.) and can execute a scenario
with several callers. It also allows the generation of a complete
report on performance of the different hosts used to generate
traffic (CPU and memory use) and the performance of the
system under test (CPU and memory use, call rate, error rate,
response time, etc.). Plots are generated to give an overview
of the results.

However, these changes do not yet fulfill our requirements.
SIPp Ims Bench remains too limited in how the SIP traffic
is routed between the callers and the callees. One of the
requirements to achieve our tests is indeed having at least two
routers between the ends of the network, to develop and test
the sharing of the overload information between SIP servers,
and the reaction of those servers. Another modification is
related to the role of SIPp hosts. Currently, all SIPp Ims
Bench hosts generate traffic. Modifications are currently done
to allow the support of both roles, callers and callees. The
network is depicted in Figure 1.

We have begun to look into the source code of SIPp Ims
Bench to customize it. Some of the modifications have already
been implemented, but the main changes are in progress. These
modifications should allow us to generate traffic in a more
flexible way, test solutions and produce detailed reports of the
behavior of the servers (traffic rate accepted, rejected, errors,

2The IP Multimedia Subsystem is an architectural framework for delivering
Internet Protocol (IP) multimedia services.

etc.). These reports will enable the evaluation of the congestion
control mechanisms.

B. Building, configuration and deployment of SIP platform

As mentioned above, an important part of our work has been
to design, configure and deploy a SIP virtual environment. This
environment should be as close as possible of a real one, and
use proper routing techniques. For the time being, the SIP
generator is the free and open-source SIPp software, while
the SIP platforms used to deploy proxies/registrars are Sailfin
version 23 [8] and another IMS platform. When modifications
to SIPp Ims Bench will be completed, it will be used instead
of basic SIPp, bringing its advantages on the traffic generation.

Sailfin is based on the applications server Glassfish (version
2.1 is used) [9]. This open-source platform is designed to
facilitate the deployment of Java applications. Applications
can be easily launched, monitored, stopped, etc. via a control
interface. As indicated above, it hides the low-level aspects
to the developer and offers a congestion control mechanism
which may be useful in testing.

The other platform is a commercial platform, much more
complex than Sailfin, and using other technologies to manage
the application life cycle (i.e. the OSGi framework [10]). Also,
this platform has a web interface through which applications
can be managed and offers a wide range of services to the
developer. It manages a large number of protocols, and can
be used to develop IMS applications using multiple protocols,
e.g. SIP for Voice over IP, and HTTP for the Internet part, to
build applications combining these two protocols. For example
a chat window that opens if the callee is busy. This platform
offers a local congestion control mechanism. Again, it may be
useful to test its effectiveness at a local level, then combined
with Sailfin congestion control.

Obviously, the goal is to define cooperative overload control
mechanisms (for example between pairs of servers), but local
mechanisms must be put in place as well, preferably to be
used in last resort.

The current test environment consists of 9 machines acting
as callers, 3 acting as callees. Added to these 12 hosts, 4
act as proxies using Sailfin and a small SIP proxy/registrar
implementation. The environment is depicted in Figure 1.

Callers are on the left, callees on the right. Between them
sit proxies. The target server (the system under test, which will
be overloaded during the tests) is the one in the right frame.
It receives traffic from callers via the three other servers,
and routes it towards callees. Proxies on the left, in case of
congestion of the tested server, are expected to reduce their
outgoing traffic upon request.

The whole environment has been built to simulate a real
network, but there are obviously some differences. The net-
work (the data transport) is here reliable and instantaneous.
This may affect the results, although delay and packets losses
can be emulated, for instance with Network Emulator (netem)
[11]. Another limitation is the absence of redundant servers.
It is indeed common to configure two servers identically, so

3Sailfin is the SipServlet implementation, initially developed by Ericsson.

DNS server
[T

domainl.sip

19216801
19216812

19216813

domain4.sip

192.168.24 19216841

19216825 192168.4.1

192168.2.6 19216641

» domain3.sip“

& \\‘
S
e e
fuids proxy3
Fig. 1. Test environment

one can take over in the case of the failure of the first one.
This kind of architecture is complex to implement (because of
mechanisms of data replication, etc.) and has not been set up
so far. Additionally, some problems were encountered when
building up this testbed, probably due to the use of virtual
machines. They were analyzed and quickly resolved.

The final aim is to generate enough traffic to overload the
target proxy, and test solutions for preventing, managing or
facing these situations in the best possible conditions.

III. SETTING UP AND EXECUTION OF PRELIMINARY TESTS

A series of preliminary tests have been implemented. They
simply aimed at validating the configuration of the envi-
ronment and the components. Indeed, as explained above,
performing “realistic” tests requires the modification of SIPp
Ims Bench, which is a work in progress. These tests have been
performed with and without Sailfin’s congestion mechanism
to measure its effectiveness. Obtaining relevant results was
relatively difficult, due to the limitations described above,
e.g. the rate of outgoing calls increased linearly, and it was
impossible to know precisely when the errors occur.

Nevertheless, some tests have been executed with the con-
figuration described above (9 callers, 3 callees and 4 proxies)
but did not produce really exploitable results.

Sailfin provides a limited Overload Protection Service.
When enabled, the service monitors CPU and/or memory
occupation, and sends 503 messages (Service Unavailable)
back to the caller when a preconfigured threshold is reached.
Unfortunately, the reaction of SIPp when receiving 503 error
messages is not well defined. It is possible than the call
rate is not really decreased. More precisely, SIPp does not

wait several seconds to send more messages to the server,
accordingly to RFC 3261 [12], but marks the call with the
503 as failed. The potential influence of the Retry—-After
header is not clear neither.

These tests showed that without the mechanism of Sailfin
activated, errors occurs when the call rate is approximately
30 call attempts per second (CAPS) at the target proxy.
With the congestion control enabled, the call rate increases
to approximately 35 CAPS, thus a 15% increase. In extreme
cases, when the traffic exceeds the rate Sailfin is able to
process, CPU use increases to 100% and no more messages
are sent. The platform is completely overloaded and tends to
collapse. Both tests were made to serve as reference.

Once the modifications of SIPp Ims Bench completed, tests
could be re-executed with the benefits of the software for the
analysis and interpretation of the results.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented the very first steps of
our work related to the SIP overload control techniques. The
development and test of such techniques require the building
of a complete SIP test environment, including benchmark tools
as well as SIP hosts (traffic generator and proxies/registrars).

In the future, the work will be mainly focused on the
modifications of SIPp Ims Bench. This step is a requirement
to make tests and development of overload control techniques
possible. The future modifications will be about roles of tests
system, with the addition of callers and callees. Modifications
related to the reaction when receiving 503 error messages are
also planned.

REFERENCES

[1] SIP Overload Control Working Group Charter. Last consulted on August
24, 2010. [Online]. Available: http://tools.ietf.org/wg/soc/charters

[2] V. Gurbani, V. Hilt, and H. Schulzrinne, “Session Initiation Protocol
(SIP) Overload Control,” draft-gurbani-soc-overload-control-02, Aug.
2010, work in progress.

[3] D. Papadimitriou, M. Welzl, and B. Briscoe, “Open Research Issues in
Internet Congestion Control,” draft-irtf-iccrg-welzl-congestion-control-
open-research-08, Sep. 2010, work in progress.

[4] European Telecommunications Standards Institute (ETSI) Telecommu-
nications and Internet converged Services and Protocols for Advanced
Networking (TISPAN). Last consulted on October 01, 2010. [Online].
Available: http://www.etsi.org/tispan

[5] SIPp. Last consulted on August 24, 2010.
http://sipp.sourceforge.net/

[6] “Telecommunications and internet converged services and protocols for
advanced networking (tispan); ims/ngn performance benchmark,” ETSI
TS 186 008, European Telecommunications Standards Institute, Oct.
2007.

[71 SIPp Ims Bench. Last consulted on August 24, 2010. [Online].
Available: http://sipp.sourceforge.net/ims_bench/index.html

[8] Sailfin. Last consulted on August 24, 2010. [Online]. Available:
https://sailfin.dev.java.net/

[9] Glassfish Application Server. Last consulted on August 24, 2010.

[Online]. Available: http://sipp.sourceforge.net/ims_bench/index.html

The OSGi Alliance. Last consulted on August 24, 2010. [Online].

Available: http://www.osgi.org/Main/HomePage

The Linux Foundation: Network Emulator (NETEM). Last consulted

on August 24, 2010. [Online]. Available: http://www.linuxfoundation.

org/collaborate/workgroups/networking/netem

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation

Protocol,” RFC 2481, Jun. 2002.

[Online]. Available:

[10]

(11]

[12]

