
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Treemap-based Burst Mapping Algorithm for Downlink Mobile WiMAX Systems

Vanderpypen, Joël; Schumacher, Laurent

Published in:
2011 IEEE Vehicular Technology Conference

DOI:
10.1109/VETECF.2011.6093072

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Vanderpypen, J & Schumacher, L 2011, Treemap-based Burst Mapping Algorithm for Downlink Mobile WiMAX
Systems. in J Vanderpypen & L Schumacher (eds), 2011 IEEE Vehicular Technology Conference : Proceedings
: San Francisco, California, 5-8 September 2011. IEEE. https://doi.org/10.1109/VETECF.2011.6093072

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1109/VETECF.2011.6093072
https://researchportal.unamur.be/en/publications/04ad0f3f-67a8-4968-90ae-5558739b032e
https://doi.org/10.1109/VETECF.2011.6093072

Treemap-based Burst Mapping Algorithm
for Downlink Mobile WiMAX Systems

Joël Vanderpypen, Laurent Schumacher
FUNDP - The University of Namur, Belgium

Computer Science Faculty
{jva, lsc} @ info.fundp.ac.be

Abstract—This paper presents our sqTM burst mapping algo-
rithm for downlink Mobile WiMAX systems. Based on a treemap
visualization algorithm, we introduce a new burst mapping
scheme we called sqTM, greatly reducing the amount of wasted
slots. We obtained between 60% and 75% reduction compared
to some reference algorithms we implemented. These limited
wastes are able to provide better cell throughput and larger
cell capacities. Unfortunately, sqTM is significantly slower than
reference algorithms, but still easily coping with 5 ms frames.

I. I NTRODUCTION

Mobile WiMAX [1] has been pushed forwards by the IEEE
as the standard for Broadband Wireless Access. It is based on
Orthogonal Frequency Division Multiple Access (OFDMA),
so the frequency band is divided into many subcarriers.
Considering Partial Usage of the SubChannels (PUSC), which
is the most common mode [2], the subcarriers are logically
permuted before being gathered into subchannels. As a result,
intercell interferences and the effect of fast fading are reduced.

The radio resource is the frame, which represent the usage
of several subchannels for a 5 ms duration. A frame is
divided into two parts: the downlink (DL) and the uplink (UL)
subframes. In Time Division Duplexing (TDD), DL and UL
subframes are time alternated, while in Frequency Division
Duplexing (FDD), they use different frequency bands.

Resource allocation is performed by slots, which represent
the usage of one subchannel for one symbol duration. De-
pending of the channel quality, a given user will use a specific
PHY-profile, which determines the throughput he/she benefits
from a slot. The allocation is done per burst, where a burst
contains the data of one or multiple users, as long as a single
PHY-mode is used per burst.

The burst mapping problem is quite different in DL and
UL. After a one symbol duration preamble, the DL subframe
is composed of a Frame Control Header (FCH) and the
DL- and UL-MAPs, which are maps specifying the burst
profile of each allocation. Then each burst receives a rectangle
allocation, whose shape and position are specified through the
Information Elements (IEs) of the DL-MAP. The more there
are bursts, and the bigger the DL-MAP is. So it is preferable
to gather users into a minimal number of bursts, the unique
connection identifier (CID) separating them. In UL, the bursts
are simply mapped as contiguous slots in a row wise order.

J. Vanderpypen acknowledges the funding support of the Fonds à la
formation pour la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A.)

Since the UL mapping problem is straightforward, we focus
here on DL. This tiling problem is actually a bi-dimensional
bin packing problem, a variation of the knapsack problem,
which has been proven NP-Hard [3]. The authors of [4]
presented a heuristic where bursts size are rounded to a
multiple of the height of the frame, leading to a consequent
waste of slots. There are other strategies like SDRA [5]
or the Raster-based algorithm [6], with virtually no wasted
slots, but they multiply the number of bursts, and therefore
increase significantly the DL-MAP signaling overhead. The
authors of [7], [8] came up with some variations of what
they called the Sequential Rectangle Placement (SRP). They
define three sizes of bursts, and gather them into vertical
stripes of growing width, according to their size category.The
OCSA algorithm [9], [10] introduces an other stripe gathering
strategy, more complex, but leading to fewer wasted slots.

In this paper, we consider a treemap visualization algo-
rithm [11], and tune it to meet the WiMAX requirements to
propose a more efficient heuristic namedsqTM. Like OCSA,
we gather bursts into vertical stripes, but of growing width,
trying to limit the amount of wasted slots. As a result, our
algorithm is able to seriously reduce the waste of slots while
not increasing the DL-MAP. The rest of this paper is orga-
nized as follows. Treemap visualization is first introducedin
Section II, then our sqTM algorithm is explained in Section III.
Section IV details the reference algorithms we implemented
into MATLAB scripts. Afterwards some computer simulation
results are presented in Section V, first to compare algorithms
on a single snapshot allocation, then to present averaged
results. Finally some conclusions are drawn in Section VI.

II. T REEMAP VISUALIZATION

Treemap visualization has been initially designed to visu-
alize hard disk usage, in order to ease the identification of
large files. The tree structure of a file system is represented
by rectangles fitted into each other, whose area is proportional
to the disk usage of the directory they represent.

A simple algorithm presented in [12] lists the size of all
directories at the root level and divides the original rectangle
representing the whole disk into different slices, whose width
is proportional to the size of all first level directories. A
special slice to represent free space has to be added. And then,
recursively, for each directory, its area is cut into smaller slices
representing all its sub-directories. The cuts should be done

alternatively horizontally and vertically. One drawback of this
visualization algorithm is that it can lead to thin rectangles,
whereas one would prefer rectangles with aspect ratio close
to one (nearly square rectangles), for a better visualization.

The authors of [11] present a Squared Treemap algorithm,
dividing a rectangle into smaller nearly squared rectangles,
by cutting both horizontally and vertically. The idea is to cut
a first vertical stripe into the original rectangle, whose area
represents the first directory. Then an other directory is added
to that stripe, which therefore becomes wider. The different
directories of a stripe are divided by horizontal cuts. And
so on, other directories are added to that stripe, until their
aspect ratio can not be improved anymore. Then other vertical
stripes are cut and filled with the remaining directories. This
algorithm is a heuristic of linear time complexity.

III. O UR SQTM ALGORITHM

Even if we are not interested by the aspect ratio of the bursts,
the procedure of the Squared Treemap algorithm seemed us
pretty useful for the burst mapping problem. However, its
application is not straightforward. Indeed, different bursts can
not share the same subchannel during the same symbol time.
So ceiling operations have to be considered, both at subcarrier
scale on frequency dimension and at symbol scale on time
dimension. These ceiling operations lead to wasted slots,
whose quantity has to be minimized. Our allocation criteria
is therefore not the aspect ratio, but the number of wasted
slots.

A. The allocation procedure

Bursts are treated sequentially, and do not need to be sorted
out. The allocation is done through vertical stripes of variable
width. Each stripe is first composed of a single burst, with
full height and rounded width. The number of wasted slots
is evaluated. Then we sequentially try to add each of the
unallocated bursts. If adding the burst reduces the number of
wasted slots, it is added to the stripe. When adding any of the
remaining bursts can not reduce the number of wasted slots,
we start a new stripe, and try each unallocated burst.

The first stripe is built to include the FCH and the DL-MAP.

B. Ceiling operation

This section details how the resources are allocated to a
stripe, and shared to its different bursts. Let us consider a
stripeR composed of burstsbi with i = 1, ..., nB , each burst
requiringri slots. The height of the frame is denoted byH.

Firstly, an accurate allocation is computed, with no ceiling,
as Fig. 1(a) shows. The temporary width of the stripew̃R is
obtained as follows:

w̃R =

∑

bi∈R ri

H
(1)

and the temporary height̃hi of each burst is given by

h̃i =
ri
w̃R

∀i = 1, · · · , nB . (2)

Secondly, the height allocated to each burst has to be
rounded tohi, to match subchannel scale, paying attention that
the sum of all rounded heights must be equal to the height of
the frame. Defining the operator⌈·⌋ such as it rounds to the
closest integer, we have:

hi =







⌈

h̃i

⌋

∀i = 1, ..., nB − 1;

H −∑nB−1

j=1
hj i = nB .

(3)

As shown on Fig. 1(b), the width of each burst has to be
adapted consequently tõ̃wi:

˜̃wi =
ri
hi

∀i = 1, · · · , nB . (4)

And thirdly, the width of the stripewR, which is also the
final width wi of each burst, can be fixed to the closest larger
integer:

wR = max
i=1,··· ,nB

⌈

˜̃wi

⌉

. (5)

0 1 2 3 4
0

1

2

3

4

5

Symbols

S
ub

ch
an

ne
ls

~w
r

h
3

h
2

h
1

~

~

~

(a) Accurate allocation

0 1 2 3 4
0

1

2

3

4

5

Symbols

S
ub

ch
an

ne
ls

h
3

h
2

h
1

(b) Rounded heights

0 1 2 3 4
0

1

2

3

4

5

Symbols

S
ub

ch
an

ne
ls

w
R

H

(c) Ceilled allocation

Fig. 1. Ceiling operation, with bursts of size 4, 5 and 3 slots. After ceiling,
3 slots are wasted.

The numbertwasted of slots wasted in the stripe allocation
of Fig. 1(c) can be estimated by

twasted = (H · wR) −
nB
∑

i=1

ri. (6)

To limit computations, we can perform a single test before
the full ceiling operation, which is only fruitful if addingthe
new burst reduces the number of wasted slots. After comput-
ing (1), even if rounded heights shown on Fig. 1(b) would not
lead to any waste, we loose at leastH · (⌈w̃R⌉ − w̃R) slots.
This is a minimum bound on the amount of wasted slots for the
stripe. If this bound is greater than the amount of wasted slots
of a previous stripe composition, other ceiling computations
are useless, we know the current stripe composition does not
produce better results than the previous one.

C. Algorithm

We therefore came up with the Algorithm 1. While there
are still unallocated bursts, it makes a new stripe, sequentially
trying to add all the unallocated bursts. If the stripe is empty,
the burst is directly added to the stripe (lines 4 to 6). If not,
the ceiling of the previous section has to be done. The test of
line 9 prevents the algorithm to perform some computations
(lines 10 to 12, plus the evaluation of line 13) when we know
they are pointless. Finally, after all computations, if wasted
slots are reduced by adding burstbi (line13), it is definitely
added to the stripe, and other bursts are then tried to be added.

Algorithm 1 sqTM
1: while some unallocated bursts remaindo
2: Start a new stripeR;
3: for each unallocated burstbi do
4: if stripeR is emptythen
5: Add bi into R;
6: twasted ← (H − ri mod H)
7: else{R is non empty}
8: w̃R ←

∑

bj∈R∪{bi}
rj/H;

9: if (⌈w̃R⌉ − w̃R) ·H < twasted then
10: hj ← ⌈rj/w̃R⌋ ∀bj ∈ R;
11: hi ← H −∑

bj∈R hj ;
12: wR ← maxbj∈R∪{bi} ⌈rj/wR⌉;
13: if (H · wR)−

∑

bj∈R∪{bi}
rj ≤ twasted then

14: Add bi into R;
15: twasted ← (H · wR)−

∑

bj∈R∪{bi}
rj ;

16: end if
17: end if
18: end if
19: end for
20: end while

D. Complexity

The algorithm is composed of a main while loop, limited by
the numbern of bursts. Then for each stripe, all unallocated
bursts are tested, which number is also bounded byn. As a
result, the complexity of our sqTM algorithm isO(n2).

IV. SOME REFERENCE ALGORITHMS

To evaluate the performance of sqTM, we have implemented
four other burst mapping schemes, namely the bucket-based
algorithm [4], SDRA [5], SRP [7] and OCSA [9].

A. Bucket-based

The authors of [4] proposed a simple algorithm, where burst
sizes are ceiled to a multiple ofH, the number of subchannels,
and are handled sequentially. Bursts receive as many one-
symbol width columns as they require. This algorithm is of
complexityO(n). In average, it wastes1+H

2
slots per burst

since the last column of each burst can contain 1 toH slots.

B. SDRA

The SDRA algorithm of [5] has the same column filling
strategy as the bucket-based algorithm, but here when the
allocation of one burst is done, it continues filling the same
one-symbol width column with the allocation of the next burst.
As a result, no slots are wasted by any ceiling operation, and
this algorithm is also of complexityO(n).

However, to meet the rectangle shape allocation, each burst
actually receive multiple rectangles. Depending on its size,
each burst can receive up to 3 rectangles: one to complete the
previous column, one with several full columns, and one for
the end of the allocation on a new column. Because the size of
the DL-MAP depends on the number of rectangle allocations,
even if this algorithm does not waste any slot by ceiling
operations, many slots are wasted on DL-MAP signaling.

C. SRP

The authors of [7] modeled the resource allocation problem
as a Sequential Rectangle Placement. They defined three
classes of bursts, withW standing for the number of symbols
of the downlink scheduling period:

• the small bursts, withri ≤ 2
√
H. These ones can only

have one-symbol width allocation.
• the medium bursts, with2

√
H < ri ≤ W

2

√
H, receiving

maximum W
2

-symbol width allocation.
• the large bursts, withri > W

2

√
H, with maximum2W -

symbol width allocation.

They also defined the concept of job sets, which are column
shaped and contain only bursts of the same kind. The maxi-
mum width of a job setR is the maximum width of its bursts,
and is denoted by MAX(R). The width of a job setR is
denoted WIDTH(R) and is evaluated by:

WIDTH(R) = min

{⌈
∑

bj∈R rj

H − |R|

⌉

, MAX (R)

}

(7)

They sequentially handle each burst, trying to add it within
the current job set of its size. If there remains not enough
room, they close the job set, and start a new one. So SRP
complexity isO(n), even if it requires more computations
than the two previous algorithms.

D. OCSA

The authors of [9], [10] presented an algorithm where bursts
have to be sorted in a descending order (largest area first). The
largest unallocated burst is placed first, in a vertical stripe as
narrow as possible. Then on the top of that burst, the algorithm
tries to place the maximum amount of bursts fitting in the
stripe without modifying its width. When no more burst can
be added on the top of it, an other stripe is started with the
largest unallocated burst remaining, and so on.

Since there can ben stripes, and for each one then bursts
can be tested, the total complexity of OCSA isO(n2).

V. PERFORMANCE EVALUATION

We implemented both our sqTM algorithm and the four
reference ones into MATLAB scripts. We will detail first the
parameters of these simulations, then we will present some
allocation results. Afterwards, averaged results on the amount
of wasted slots and computational time will be presented.

A. Simulation parameters

We focused here on a TDD WiMAX system, with an DL:UL
ratio of 2:1. So the DL subframe lasts a 29-symbol duration,
whose first one is preamble. We considered a 10 MHz band-
width divided into 30 subchannels. As a result, the surface we
have for burst mapping is of size28× 30, giving 840 slots.

As [13] mentions, the FCH represents 24 bits. The DL-MAP
has a fixed 88-bit part, plus 60 extra bits for each burst. The
FCH and the DL-MAP are repeated 4 times and are transmitted
with QSPK 1/2. Since we do not consider any UL subframe,
only a burst of random size will act as the UL-MAP.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

5

10

15

20

25

30

Symbols

Su
bc

ha
nn

els

Bucket−based resource allocation
180 lost slots

(a) Bucket-based

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

5

10

15

20

25

30

Symbols

Su
bc

ha
nn

els

SDRA resource allocation
210 lost slots

(b) SDRA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

5

10

15

20

25

30

Symbols

Su
bc

ha
nn

els

SRP resource allocation
150 lost slots

(c) SRP

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

5

10

15

20

25

30

Symbols

Su
bc

ha
nn

els

OSCA resource allocation
150 lost slots

(d) OCSA
Fig. 2. Reference algorithms sample allocation

We considered the 9 Modulation and Coding Scheme
(MCS) levels of [14], from QPSK 1/2 to 64QAM. To reduce
the DL-MAP size, we gathered all users of the same MCS into
the same burst. As a result, there are the FCH, the DL-MAP,
9 DL bursts plus an extra burst for the UL-MAP to place on
the DL-subframe. With the0.937 bit/s/Hz spectral efficiency
of QPSK 1/2 [13], FCH requires 4 slots, and a 10-burst DL-
MAP requires 102 slots.

In this primary work, we wanted to focus of burst mapping
efficiency, and compare our new technique with some ref-
erences, without interference from different scheduling tech-
niques. For that purpose, the size of each burst has been gen-
erated randomly, such that the sum of each burst requirement
plus the FCH and a 10-burst DL-MAP correspond to the840
available slots. As a consequence, due to ceiling operations
or increased DL-MAP size due to SDRA’s divided bursts, all
bursts can not fit on the subframe. We will compare the number
of overflowing slots for each algorithm.

B. A sample output result

First let us present a single snapshot allocation. The slots
have been randomly shared between bursts as Table I details.
The allocation produced by reference algorithms are presented
in Fig. 2, while Fig. 3 shows our sqTM allocation. The first

FCH DL MAP UL-MAP Burst #1 Burst #2 Burst #3

4 102 71 8 189 109

Burst #4 Burst #5 Burst #6 Burst #7 Burst #8 Burst #9

141 76 44 38 37 21

TABLE I
SAMPLE SNAPSHOT OF BURST SIZES IN SLOTS.

dark grey stripe is the preamble, and the two light grey
rectangles of the lower left corner are the FCH and the
DL-MAP. Reference algorithms waste a lot more slots. The
bucket-based algorithm, shown in Fig. 2(a), wastes 180 slots,
with in average1+H

2
wasted slots per burst. SDRA achieves

to virtually waste no slot at all, but because it splits the
10 bursts into 23 rectangle allocations, the DL-MAP is more
than doubled, and as Fig. 2(b) shows, 210 slots overflow from
the burst allocation area. Both SRP and OCSA manage to limit
the waste to 150 slots in a quite similar way. With its strategy
of growing width stripes, SRP makes large stripes of multiple
bursts (Fig. 2(c)), while OCSA and its narrowest stripe strategy
make a lot of thin stripes (Fig. 2(d)).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

5

10

15

20

25

30

Symbols

Su
bc

ha
nn

els

sqTM resource allocation
30 lost slots

Fig. 3. sqTM sample allocation

As one can see on Fig. 3, sqTM manages to ceil bursts
needs with a very limited waste. For this snapshot, all the
unused slots of the burst allocation area correspond to only
one overflowing column of 30 slots wasted by sqTM. This
performance can be achieved thanks to our growing stripe
strategy, where decisions are taken to minimize wasted slots.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

ul
at

ive
 p

ro
ba

bi
lity

 d
ist

rib
ut

io
n

Number of wasted slots

Wasted slots, averaged on 100,000 runs

sqTM [51]
Bucket [159]
SDRA [214]
SRP [166]
OCSA [125]

Fig. 4. Wasted slots distributions.

C. Averaged results

We also averaged the number of wasted slots by each
algorithm on100, 000 runs. The cumulative probability func-
tion and the mean of these wastes are presented in Fig. 4.
Distributions are not smooth curves since wastes can only bea
multiple of the number of subchannels (30 here). As one can
see, sqTM manages to reduce the amount of wasted slots by
60% compared to OCSA, or even by75% compared to SDRA.

Considering the 840 slots available for allocation, it means
that in average, sqTM manages to only waste6% of the slots,
while the bucket-based algorithm, SDRA, SRP and OCSA
respectively waste19%, 25%, 20%, and15% of the available
slots, which seems quite impressive.

D. Complexity

We already demonstrated the important reduction of wastes
sqTM can provide, but let us now have a look at its complexity.
Even if it has aO(n2) complexity like OCSA while the others
three are inO(n), this is not a real issue since users can
be gathered into a limited number of bursts, according to
their channel quality. Actually, running time is more relevant.
Table II presents the running time of our MATLAB scripts to
perform 100,000 allocations. As one can see, OCSA inO(n2)
is as fast as SDRA which is inO(n).

As far as sqTM is concerned, it required 36.7s to perform
the allocations, so it is 2 times slower than OCSA, or even
6 times slower than the bucket-based allocation. Computations
are heavier and take more time with sqTM than with the
other reference algorithms, but36.7s for 100,000 allocations
corresponds to367µs per allocation. This is much shorter than
the 5ms frame duration so it is not really an issue.

VI. CONCLUSIONS

In this paper, we tackled the problem of burst mapping in
DL WiMAX systems, after scheduling been performed, when
it comes to allocate specific subchannels for a few symbol
durations. This problem is actually NP-Hard, and only a few
heuristics have been proposed to solve it. Allocations must
have a rectangular shape, and match both subchannel and
symbol scales. Needs therefore have to be ceiled, and this
leads to wastes which we have to limit.

We introduced a new burst mapping scheme named sqTM.
It is based on a treemap visualization algorithm. From our
numerical simulations, we obtained between60% and 75%

reduction of wasted slots compared to the reference algorithms
we implemented. These limited wastes are able to provide
better cell throughput and larger cell capacities from the same
radio resources. As far as the running times are concerned,
it appears our algorithm is significantly slower, but still fast
enough to meet the time constraint of 5 ms frames.

For future work we should consider more deeply how to
deal with these wasted slots and the overflow they cause.
They are considered allocated by the scheduling algorithm,but
actually can not be used. If bursts have to be dropped, it seems
be preferable to drop the bursts of the lowest PHY-modes to
maintain the highest cell throughput. The rescheduling of these
bursts should be investigated.

Algorithm Complexity Running time

sqTM O(n2) 36.7 s

Bucket O(n) 5.7 s

SDRA O(n) 22.8 s

SRP O(n) 27.9 s

OCSA O(n2) 19.3 s

TABLE II
RUNNING TIME FOR 100,000ALLOCATIONS.

REFERENCES

[1] “Draft standard for local and metropolitan area networkspart 16: Air
interface for broadband wireless access systems,” IEEE Unapproved
Draft Std P802.16 Rev2/D2, Tech. Rep., Dec. 2007.

[2] M. Maqbool, M. Coupechoux, and P. Godlewski, “Subcarrier Permuta-
tion Types in IEEE 802.16e,” ENST (Télécom Paris), Tech. Rep., Apr.
2008.

[3] S. Martello and P. Toth,Knapsack problems: Algorithms and computer
implementations. John Wiley & Sons, 1990.

[4] T. Ohseki, M. Morita, and T. Inoue, “Burst construction and packet
mapping scheme for ofdma downlinks in ieee 802.16 systems,” in
GLOBECOM ’07, 2007, pp. 4307 –4311.

[5] A. Erta, C. Cicconetti, and L. Lenzini, “A downlink data region
allocation algorithm for ieee 802.16e ofdma,” in6th International Conf.
on Information, Communications Signal Processing, 2007, pp. 1–5.

[6] Y. Ben-Shimol, I. Kitroser, and Y. Dinitz, “Two-dimensional mapping for
wireless ofdma systems,”Broadcasting, IEEE Transactions on, vol. 52,
no. 3, pp. 388–396, 2006.

[7] A. Israeli, D. Rawitz, and O. Sharon, “On the complexity ofsequential
rectangle placement in ieee 802.16/wimax systems,”Inf. Comput., vol.
206, pp. 1334–1345, November 2008.

[8] R. Cohen and L. Katzir, “Computational analysis and efficient algorithms
for micro and macro ofdma scheduling,” inThe 27th Conf. on Computer
Comm. INFOCOM 2008., 2008, pp. 511–519.

[9] C. So-In, R. Jain, and A.-K. Al Tamimi, “Ocsa: An algorithm for burst
mapping in ieee 802.16e mobile wimax networks,” in15th Asia-Pacific
Conference on Communications APCC., 2009, pp. 52–58.

[10] C. So-In, R. Jain, A.-K. C. S.-I. Al Tamimi, R. Jain, A.-K. C. S.-I.
Al Tamimi, R. Jain, and A.-K. Al Tamimi, “eocsa: An algorithm for burst
mapping with strict qos requirements in ieee 802.16e mobile wimax
networks,” inWireless Days (WD), 2nd IFIP, 2009, pp. 1–5.

[11] M. Bruls, K. Huizing, and J. J. van Wijk, “Squarified Treemaps,” in
Proceedings of the Joint Eurographics and IEEE TCVG Symposium on
Visualization VisSym’99, Vienna (Austria), May 1999, pp. 33–42.

[12] B. Shneiderman, “Tree visualization with tree-maps: 2-dspace-filling
approach,”ACM Transactions on Graphics, vol. 11, no. 1, pp. 92–99,
Jan. 1992.

[13] C. So-In, R. Jain, and A.-K. Tamimi, “Capacity Evaluationfor IEEE
802.16e mobile WiMAX,”J. Comp. Sys., Netw., and Comm., pp. 2:1–
2:1, January 2010.

[14] T. Celcer, T. Javornik, and G. Kandus, “Fairness oriented scheduling
algorithm with qos support for broadband mimo systems with heteroge-
neous traffic,” Jozef Stefan Institute, Slovenia, COST 2100TD(09)927,
Sep. 2009.

