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Generalize or perish: Communication
range-Time-Accuracy trade-offs in swarm

collective perception

Dari Trendafilov, Ahmed Almansoori, Timoteo Carletti, and Elio Tuci

Namur Institute for Complex Systems, University of Namur, Belgium
[dari-borisov.trendafilov,ahmed.almansoori,timoteo.carletti,elio.tuci]@unamur.be

Abstract. We investigate the generalization characteristics of a recently
proposed dynamical neural network as an individual decision-making
mechanism, developed with evolutionary techniques for robotic swarms
engaged in the collective perceptual discrimination task. To explore the
performance of this neural model for opinion selection we conducted se-
ries of simulations with an artificial swarm of 20 epuck2 robots under var-
ious operating conditions. The controller, evolved in a randomly painted
in two colours arena (in 55%–45% ratio) with a swarm communication
range of 50cm, was evaluated in nine structurally different patterns rep-
resenting environmental variability related to the spatial distribution of
the options and in five levels of communication range – 10, 20, 30, 40,
and 50 cm, respectively. The results reveal that our neural controller gen-
eralizes well in the collective perceptual discrimination task in a range of
conditions with minor drops in consensus accuracy, however, the swarm
performance degrades in conditions with patchily distributed perceptual
cues and/or very short communication range.

Keywords: Swarm robotics · Collective perception · Evolutionary robotics.

1 Introduction

Swarm robotics studies multi-robot systems in which each robot has its own con-
troller, perception is local and communication is based on spatial proximity [10].
The group-level response emerges from a self-organisation process [7], based on
the interaction between the robots and their physical environment. However, the
autonomous nature of this process poses a challenge for designers, since it is no-
toriously difficult to infer which set of individual actions leads to the emergence
of a desired collective response. Moreover, traditional design methods lack the
ability to tackle problems and swarms of increasing complexity in uncertain and
unpredictable environments. This further intensifies the need for fundamental
and generic automated methodologies for modulating collective behaviour, with
the potential to circumvent tedious trial-and-error model tuning.

One type of widely studied paradigms in swarm robotics is the “best-of-
n” problem set [18, 21], which requires the swarm to reach a consensus on the
best among a number of available options. Consensus achievement is a process
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in which swarm members exchange their opinions with each other and even-
tually converge to a unique opinion. These studies instigate the search for con-
trollers that perform robustly in different conditions, while at the same time opti-
mize the utilization of critical device-operating resources. For example, emitting
longer-range signals for swarm communication inevitably contributes to higher
energy consumption and negatively impacts the autonomy of the robots. Since
swarm communication is inherently local, it is important to establish the optimal
bounds for the maximal communication range (and therefore constrain the en-
ergy consumption) and the exact trade-offs with respect to swarm performance
in a particular task.

In this paper, we investigate the ability of one particular neural model [1] to
generalize the opinion selection in a swarm of robots, engaged in the collective
perceptual discrimination task, across a range of qualitatively and quantitatively
different conditions, while preserving its effectiveness. We evaluate this previ-
ously developed neural model [1–3] over a set of test conditions in the collective
perceptual discrimination task, while varying the environmental patterns with
respect to the spatial distribution of the options and the communication range.
We use the nine benchmark environments proposed in [4] in which the options
are more patchily distributed than the environment experienced by the swarm
during the control system design phase. The results of this study contribute
to providing better awareness about the potential of the evolved controller for
swarm robotics.

2 Background

For designing large groups of robots, which coordinate and cooperatively per-
form a task, swarm robotics takes inspiration from natural self-organizing sys-
tems and attempts to recreate the emergence of collective behaviour from simple
local interaction rules [12, 22]. Through the design of individual robot behaviour,
swarm robotics aims to achieve locally coordinated interaction that results in a
self-organized collective behaviour [9, 6, 11]. Collective decision-making mecha-
nisms, designed by behaviour-based modular control systems, have demonstrated
their effectiveness in a variety of scenarios [20, 19, 15]. However, the adaptabil-
ity of these swarms to unexpected and unpredictable circumstances tend to be
limited by the designer imposed bias. Further research is required to design
collective decision-making mechanisms that allow swarms of robots to mimic
natural swarms with respect to robustness, scalability, and flexibility [10].

The collective perceptual discrimination task for swarm of robots has been
originally introduced by [14], who used a binary version of this scenario to de-
sign and evaluate individual mechanisms underpinning the collective decision-
making process. In this task, the swarm explored a close arena patched with
tiles, randomly painted in black and white, with the aim to collectively decide
which colour is dominant. The two colours are the options or features, and the
proportion with which each colour covers the arena floor corresponds to the
option/feature quality. The goal is to design individual opinion selection mech-
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anisms that allow the swarm to converge on the desired consensus state (i.e., all
robots sharing the correct opinion about the arena colour dominance). Various
individual mechanisms for opinion selection have been developed, from the clas-
sical hand-crafted solutions, based on the Voter model, the Majority rule, and
their variants [21], to more recent ones, based on the synthesis of artificial neural
networks [1]. More recently, an opinion selection mechanism based on artificially
synthesised neural network using evolutionary algorithms [2] have proved effec-
tive for the collective perceptual discrimination task [19]. Further studies with
evolved controllers [3] demonstrated that the neural network based opinion se-
lection mechanism is more effective and scalable than the Voter model [19] in
a set of environmental conditions. The perceptual discrimination task has been
used by [19] to investigate the performance of various decision-making strate-
gies for swarm of robots while varying the options quality (i.e., the features
ratio) for controlling task difficulty. [16] explored further variations of this task,
characterised by the presence of byzantine robots, i.e., robots that communi-
cate deceptive messages with the intent to entice the swarm to converge on a
consensus to a non-optimal choice. [8] investigated scenarios with more than
two options/features. Arguing that the key determinant of the difficulty of the
perceptual discrimination task for swarms of robots required to choose the best
option is the features’ distribution [4] proposed a set of nine structurally differ-
ent variations in the environmental topology of the patterns (Fig. 1) and a set
of measures for their characterization. Their work was further expanded by [17],
who proposed a universal and generic measure of task difficulty, which takes
into account not only the environmental complexity, but also the agent’s ca-
pabilities. More recently, [1] used these patterns to evaluate the effectiveness
of neural network-based decision-making mechanisms. This set of spatial distri-
butions of the perceptual cues have been evaluated [5] with a decision-making
mechanism tackling spatial correlations in unknown environments statistically.

3 Methods

This study is based on the collective perceptual discrimination task as described
in [1, 4], and is conducted in a simulation environment represented by a square
arena of 2x2 m, whose floor is covered with black and white tiles (see Fig. 2a),
10x10 cm each, distributed according to one of the nine patterns presented in
Figure 1. The dominant colour (either black or white) covers 55% of the arena
floor and corresponds to the best quality option/feature, while the other colour

Random Band-Stripe Band BandwidthR Bandwidth Block Off-diagonal Stripe Star

Fig. 1: All nine benchmark patterns used in our study, proposed by [4] and em-
ployed in perceptual discrimination tasks [1] to assess swarm performance.
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Fig. 2: (a)Simulated arena of the collective perceptual discrimination task.
(b)Multi-layer CTRNN underpinning the opinion selection of a single agent.

covers the remaining 45%. We used the widely popular in the research community
e-puck2 robot [13], which is equipped with eight proximity infra-red sensors, a
binary floor colour sensor, and a range&bearing board for local communication.
Swarm communication consists of emitting a binary signal, which represents the
robot’s current opinion about the arena colour dominance. To compensate for
the simulation–reality gap, 10% uniform noise is added to all sensor readings,
motor outputs and robot position.

Initially, a homogeneous swarm of 20 robots is distributed randomly in the
arena without knowing its colour dominance. During the evaluation they explore
the arena with a random walk with a fixed step length (5 s., at 20 cm/s), and
turning angles chosen from a wrapped Cauchy distribution, while avoiding ob-
stacles (arena walls and neighbours) for up to 1000 s. On every iteration, the
robots sample the arena under their body and communicate their opinion on
the dominant colour to spatially proximal robots. The objective of the swarm
is to reach a consensus (i.e., all robots sharing the same opinion) on the correct
colour dominance. The process underpinning the development of the individual
opinion is regulated by a continuous time recurrent neural network (Fig. 2b),
synthesised using evolutionary algorithms [1].

Since the operational principles of our controller are not functionally sym-
metrical with respect to the dominant colour we performed the evaluation both
in black-dominant and white-dominant environments separately and compare
the outcome. The maximal robot–robot communication range, which allows a
reliable implementation on the physical e-puck2 robot with the range&bearing
board, is 50 cm, therefore we explore five communication range limits between
10 cm and 50 cm. In order to investigate the trade-offs between communication
range, time-to-consensus and swarm accuracy, we analyze the performance of
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simulated robot swarms over 50 trials per each communication range for black-
dominant and white-dominant floor distributions in all nine environmental con-
ditions (patterns). To characterize swarm performance, we employ two measures
– decision accuracy and time-to-consensus. The former quantifies the proportion
of trials in which the swarm reached consensus on the correct opinion/option
and the latter characterizes each successful trial.

4 Results

In order to explore the relationship between the time the swarm spent on the
task, as a key performance indicator, and the swarm communication range, we
averaged the execution time of all 50 trials per condition, including the time-
to-consensus of successful and the time limit (1000s) of unsuccessful trials. The
results reveal decreasing trends with the increase of communication range for all
environmental patterns (Fig. 3), as expected, however with significant variability
in the shapes and slopes. At one extreme, for the homogeneous Stripe pattern,
the swarm achieved negligible success across conditions. At the other extreme,
the curves for the Random pattern show consistent monotonic trends of execu-
tion time as communication range increases (Fig. 3/right), with one exception
(Fig. 3/left), and largely outperform the rest. This is unsurprising, as the neural
model was evolved on the Random pattern only. The generalization capability
of this controller is best evidenced for the Star pattern, which approaches the
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Fig. 3: Average execution time over 50 trials per communication range in all nine
environmental conditions – black-dominant (left) and white-dominant (right).
At one extreme (Stripe) the swarm achieved only negligible success across-the-
board. At the other extreme, the curves for Random show a steady decrease of
execution time as communication range increases, with one exception (left).
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performance for Random pattern as the communication range increases and even
exceeds that, surprisingly, in the largest range. However, the robustness of this
controller shows its limitations for all patterns at the shortest range (10cm) and
for all but the Random pattern at the range of 20cm.

In order to get a deeper insight into the performance trade-off between com-
munication range, completion time and accuracy, we aggregated the number
of successful trials with correct swarm consensus reached within 200, 400, 600,
800, and 1000s, respectively. Figures 4 and 5 show the corresponding curves,
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Fig. 4: Time-Accuracy trade-off (white-dominant). Number of successful trials
with correct swarm consensus reached within 200, 400, 600, 800, and 1000s.
Saturation is reached for (a) Random and (i) Star at 400s in the longest commu-
nication range, while (e) Bandwidth and (f) Block require 600–1000s to attain
their peaks. Increasing the limit from 400 to 1000s allows (g) Off-diagonal to
double the performance in the largest communication range.
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representing the number of successful trials as a function of completion time
for white-dominant and black-dominant arenas, respectively. The figures reveal
important details regarding the time span required by a specific condition (en-
vironmental pattern, communication range and colour dominance) to achieve a
certain level of performance. The curves indicate that for most patterns the typ-
ical time limit of 400s is not sufficient, as performance continues to increase well
beyond that mark. Fig. 4 demonstrates that saturation is reached for Random
(a) and Star (i) patterns at the 400s mark in the longest communication range,
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Fig. 5: Time-Accuracy trade-off (black-dominant). Generally similar trends to
Fig. 4 with specific exceptions due to evolutionary bias. In the shortest commu-
nication range, the (a) Random pattern achieves close to optimal performance at
1000s in white-dominant, while staying significantly lower for black-dominant.
Similarly, for communication ranges 40cm and 50cm, (d) Bandwidth-R doubles
the performance in white-dominant compared to black-dominant at 1000s.
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while Block (f) and Bandwidth (e) patterns require between 600 and 1000s for
attaining their peaks. Increasing the time limit from 400s to 1000s allows the
challenging Off-diagonal (g) pattern to double its performance in the largest
communication range. Fig. 5 exhibits mostly similar trends to Fig. 4 with cer-
tain exceptions due to evolutionary bias. In the shortest communication range,
the Random pattern succeeds in reaching nearly perfect performance at the limit
of 1000s in white-dominant (Fig. 4(a)), while remaining significantly lower for
black-dominant. Likewise, in the two largest communication ranges Bandwidth-
R pattern reaches twice as high accuracy in white- than in black-dominant at
the 1000s mark (Figs. 4(d) and 5(d)). These results elucidate further the bias
in swarm behavior in black- vs. white-dominant environments of the same type
and ratio, scrutinized through the lens of the communication range.

Figure 6 presents the accuracy and time-to-consensus distribution for all con-
ditions (pattern, communication range, dominant colour), which provide further
insights about the performance of our controller. It reveals high accuracy for
both Star and Random patterns across the range of 20cm (b), 30cm (c), 40cm
(d) and 50cm (e), which is a strong indicator for the generalisability of the model.
The performance (Fig. 6/left) reveal strong generalisability for most patterns in
50cm range, with gradual decrease in 40cm and more significant drop in 30cm,
whereas in 10cm range the only performance still in-line is for Random pattern
(white-dominant). The time-to-consensus distributions exhibit large variability
across patterns and communication ranges (Fig. 6/right). The exception is con-
fined to Random pattern and to some extent to Star patterns, with more com-
pact time distributions. Varying the communication range does not provide an
evidence for a pronounced strong influence on the time distribution, except for
the Star pattern, which shows a consistent monotonic relationship between time
and range. Strikingly, the performance in 10cm range for the Random pattern
requires a fourfold time increase compared to 50cm. Increasing the time limit
to 1000s appears to allow the convergence to consensus for certain patterns as
the communication range decreases, but only to a certain degree, as the figure
suggests that in 10cm and 20cm range it is highly unlikely to achieve further
consensus gains if the time limit is increased beyond 1000s.

5 Discussion

The results of this study complement the findings reported in [1] by extending
the scope of the test conditions. Both studies employ the same neural network
controller, evolved for the Random pattern with communication range of 50cm.
While the earlier study evaluated the controller in the collective perceptual dis-
crimination task on nine environmental patterns using communication range of
50cm overall, this study evaluates it on all nine patterns in five communication
settings, ranging from 10cm to 50cm, with the aim to explore the limits of gen-
eralizability of the controller. Anticipating slower than typical convergence to
consensus, in this study, we have increased the cut-off time from 400s to 1000s,
which proved productive overall. Certain patterns required longer (600-800s)



Communication range-Time-Accuracy trade-offs in collective perception 9

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Dominance Black White

0

250

500

750

1000

T
im

e

Dominance Black White

(a)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0

250

500

750

1000

T
im

e

(b)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0

250

500

750

1000

T
im

e

(c)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0

250

500

750

1000

T
im

e

(d)

0.00

0.25

0.50

0.75

1.00

Random

Band−Strip
e
Band

Bandwidth−R

Bandwidth
Block

Off−diagonal
Strip

e
Star

A
cc

ur
ac

y

0

250

500

750

1000

Random

Band−Strip
e
Band

Bandwidth−R

Bandwidth
Block

Off−diagonal
Strip

e
Star

T
im

e

(e)

Fig. 6: Swarm consensus accuracy (left) and time-to-consensus distribution (in
sec., right) of successful trials, recorded in 50 simulation trials per condition in all
nine environmental patterns and five communication ranges: (a)10cm, (b)20cm,
(c)30cm, (d)40cm, and (e)50cm. The success rate (left) reveals strong perfor-
mance for most patterns in the 50cm range, with gradual decrease in 40cm and
more significant drop in 30cm, whereas in 10cm range the accuracy is still in-line
only for the Random pattern (white-dominant). The time-to-consensus distribu-
tion demonstrates large variability across patterns and communication ranges
(right). Varying the communication range does not provide an evidence for a
pronounced strong effect on the time distribution, except for the Star pattern,
for which a consistent monotonic relationship between time and range is visi-
ble. Notably, the performance in 10cm range for the Random pattern requires a
fourfold time increase compared to 50cm.
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time to converge, especially with decreasing communication ranges. However,
the results did not provide an evidence that further increasing the cut-off time
(beyond 1000s) could provide considerable benefits. This insight is an important
empirical benchmark, given that the typical cut-off time used by the research
community in this type of studies is 400s.

The results demonstrate strong performance in the Star pattern across all
but the shortest communication range, which provides an evidence that the
controller generalizes well along that dimension at least in one pattern type. For
larger communication ranges performance remains comparably high in multiple
pattern types with gradual drops. The large variability of time-to-consensus
reveal the difficulties this controller is facing in more clustered pattern types.

The results highlight that, with a few exceptions, performance drops with
decreasing communication range across all environmental patterns, as expected,
however at a different rate for different patterns. This study emphasized again
the role of evolutionary bias, leading to a significant difference in performance
between black-dominant and white-dominant environments of the same type
and ratio, which calls for further research to unravel the foundations, control
the levels or completely eliminate this bias.

Time-to-consensus increased gradually for all pattern types as the communi-
cation range decreased, as expected, however, the increase for the Random pat-
tern was negligible and for the Star pattern moderately steeper (Fig. 6/right(c-
e)), which highlights the robustness of the controller. Interestingly, the Star
and Block patterns outperformed the Random pattern in the range of 50cm
(Fig. 6/left(e)). Furthermore, in the white-dominant environment, the perfor-
mance for the Random pattern was unexpectedly higher in the ranges of 20cm
and 30 cm, compared to the ranges of 40cm and 50cm (Fig. 6/left(b-e)), an
artefact of the evolutionary bias effect.

6 Conclusion

This paper presents an investigation into the performance of a neural network
controller, recently developed for the collective perceptual discrimination task,
evolved for a randomly distributed environmental pattern with a swarm commu-
nication range of 50cm. The controller was evaluated in a simulated homogeneous
swarm of 20 robots in a set of conditions, varying the structural distribution of
the arena floor pattern and the swarm communication range. The results indi-
cate the ability of this type of neural models to generalize its decision-making
behaviour towards swarm consensus in a range of test conditions, and highlight
its limitations. This work elucidates the potential of the evolutionary approach to
automatically design decision-making mechanisms for swarm robotics and repre-
sents an important milestone towards the development of robust controllers that
adapt successfully to unexpected conditions while retaining their performance.
Future research will focus on the evolution of controllers for various conditions
in order to identify the optimal configurations and establish the precise perfor-
mance bounds and trade-offs in swarm collective perception.
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