

# **RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE**

## **Generative Models and Quality Constraints for Anomaly Detection**

BOUGAHAM, Arnaud

Publication date: 2024

**Document Version** Peer reviewed version

### Link to publication

Citation for pulished version (HARVARD): BOUGAHAM, A 2024, 'Generative Models and Quality Constraints for Anomaly Detection: Application to Industrial and Medical Images', Mardi des Chercheurs 2024, Mons, Belgium, 26/03/24 - 26/03/24.

#### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal ?

#### Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

**Generative Models and Quality Constraints for Anomaly Detection : Application to Industrial and Medical Images** Arnaud Bougaham<sup>1</sup>, Benoît Frénay<sup>1</sup> and Isabelle Linden<sup>2</sup>

<sup>1</sup>Faculty of Computer Science, NaDI Institute, University of Namur, Rue Grandgagnage 21, Namur, 5000, Belgium. <sup>2</sup>Department of Management Sciences, NaDI Institute, University of Namur, Rempart de la Vierge 8, Namur, 5000, Belgium.



Advanced anomaly detection :

- Crucial quality control step
- Important part of Industry 4.0 opportunities

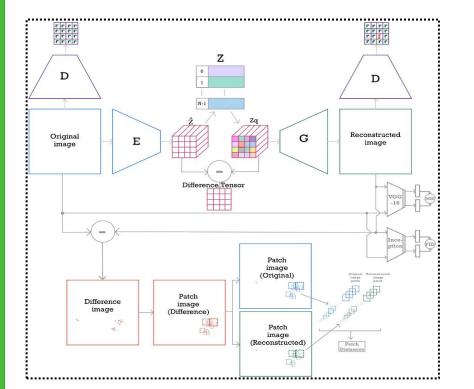
Traditional algorithms suffer from practical drawbacks :

High false positive rate

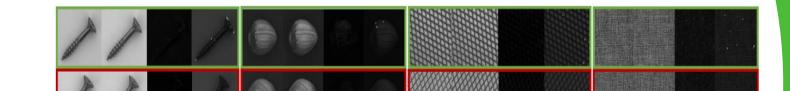


[1][2] VQGanoDIP = VQGAN Reconstruction + Metrics Classification for Anomaly Detection

- Train an Encoder, a Codebook, a Generator and a Discriminator through a GAN framework, in an autoencoder architecture
- Get statistics on the residual image and in the networks losses to quantify how the image is different from the normality
- Train a binary extra tree classifier to discriminate between normal and abnormal products







Limited Regions of Inspection

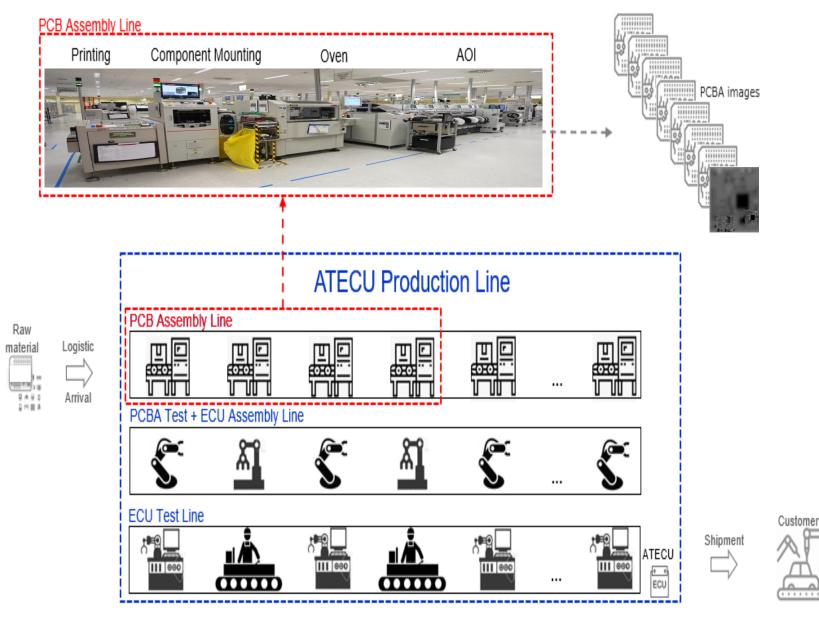
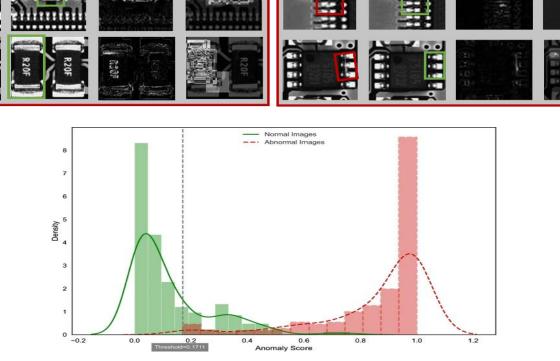


Figure 1: PCBA Manufacturing Process Flow



What are the best deep learning techniques to detect anomalies that exist in real-world industrial datasets? (unsupervised high-resolution learning, images, imbalanced datasets, etc.)

 $\mathcal{Q}^* = \underset{E,G,Z}{\operatorname{argmin}} \max_{D} \underset{x \sim p(x)}{\mathbb{E}} \left[ \mathcal{L}_{VQ}(E,G,Z) + \lambda \mathcal{L}_{GAN}(\{E,G,Z\},D) \right]$  $\mathcal{L}_{GAN}(\{E, G, Z\}, D) = \left| \log D(x) + \log \left( 1 - D \left( G \left( Z(E(x)) \right) \right) \right) \right|,$  $\mathcal{L}_{VQ}(E, G, Z) = \left\| x - G\Big(Z\big(E(x)\big)\Big) \right\|^2 + \|sg[E(x)] - z_q\|_2^2 + \|sg[z_q] - E(x)\|_2^2,$  $\lambda = \frac{\nabla_{GL}[\mathcal{L}_{rec}(\{E,G,Z\})]}{\nabla_{GL}[\mathcal{L}_{GAN}(\{E,G,Z\},D)] + \delta},$ 



|                      | $Accuracy(\%)\uparrow$ |                |  |  |  |
|----------------------|------------------------|----------------|--|--|--|
| Dataset (Classifier) | STD                    | $\mathbf{ZFN}$ |  |  |  |
| PCBA (ET)            | 95.69                  | 87.93          |  |  |  |
| Cable (XGBoost)      | 76.82                  | 57.94          |  |  |  |
| Carpet (LR)          | 85.6                   | 50.21          |  |  |  |
| Grid (LR)            | 95.98                  | 85.43          |  |  |  |
| Hazelnut (LGBM)      | 98.95                  | 98.25          |  |  |  |
| Leather (XGBoost)    | 92.17                  | 90.43          |  |  |  |
| Screw (ADA)          | 93                     | 83.67          |  |  |  |
| Transistor (LGBM)    | 88.7                   | 49.15          |  |  |  |
| Zipper (LGBM)        | 92.55                  | 81.57          |  |  |  |

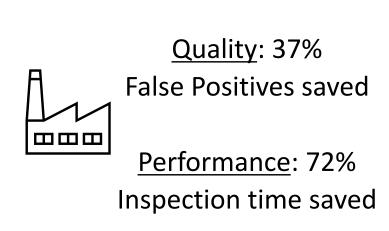
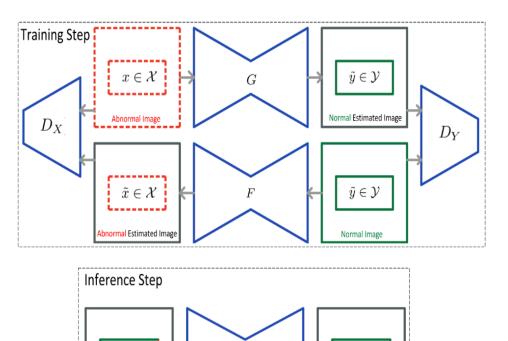


Figure 2: VQGanoDIP Training and Inference Architecture, Loss Functions, Anomaly Localisation, Qualitative and Quantitative Results

[3] Cycle-Consistent Adversarial Networks for Industrial and Medical Anomaly Detection

- Take the few abnormal data available into consideration, to train a cycle-GAN
- Evaluate on both Industrial and medical datasets



|                   |     | CycleGAN-AD-256 (ours) |              |              | CycleGAN-AD-64 (ours) |              | Ganomaly 3   |               | Padim 10     |              |               | PatchCore [25] |               |               |                 |                  |
|-------------------|-----|------------------------|--------------|--------------|-----------------------|--------------|--------------|---------------|--------------|--------------|---------------|----------------|---------------|---------------|-----------------|------------------|
|                   |     | ZFN                    | ACC          | AUC          | ZFN                   | ACC          | AUC          | ZFN           | ACC          | AUC          | ZFN           | ACC            | AUC           | ZFN           | ACC             | AUC              |
|                   | FID | 98.00 ± 2.14           | 99.14 ± 0.70 | 99.89 ± 0.12 | 74.86 ± 12.89         | 94.57 ± 2.10 | 97.32 ± 0.91 | 51.14 ± 1.67  | 66.57 ± 3.33 | 63.31 ± 4.73 | /             | /              | /             | /             | 1               | /                |
| Hazelnut          | SSE | 96.29 ± 2.94           | 98.29 ± 1.07 | 99.67 ± 0.25 | 95.43 ± 2.29          | 98.29 ± 0.57 | 99.71 ± 0.14 | 80.29 ± 10.32 | 87.14 ± 7.17 | 92.16 ± 4.90 | 53.43 ± 1.71  | 95.71 ± 0.00   | 92.02 ± 0.29  | 54.29 ± 0.00  | 95.71 ± 0.00    | 92.16 ± 0.00     |
|                   | FID | 52.03 ± 2.18           | 57.63 ± 4.25 | 54.34 ± 8.10 | 50.51 ± 0.68          | 57.46 ± 3.36 | 53.08 ± 5.96 | 51.19 ± 1.15  | 57.63 ± 1.42 | 54.04 ± 3.14 | /             | /              | /             | 1             | 1               | /                |
| Screw             | SSE | 52.37 ± 3.53           | 57.97 ± 5.46 | 52.81 ± 6.29 | 52.03 ± 3.24          | 57.63 ± 2.89 | 51.31 ± 5.06 | 62.71 ± 10.39 | 77.12 ± 5.22 | 80.86 ± 3.49 | 55.59 ± 4.57  | 66.27 ± 5.42   | 54.02 ± 11.91 | 59.32 ± 0.00  | 90.68 ± 0.00    | 84.83 ± 0.00     |
| Tile              | FID | 91.43 ± 7.88           | 98.33 ± 1.21 | 99.30 ± 0.73 | 58.81 ± 6.37          | 78.81 ± 1.90 | 83.53 ± 2.61 | 57.62 ± 3.07  | 70.48 ± 2.05 | 72.47 ± 1.56 | 1             | /              | /             | 1             | 1               | /                |
|                   | SSE | 78.10 ± 7.85           | 89.76 ± 3.42 | 95.40 ± 2.52 | 52.86 ± 2.21          | 75.24 ± 3.64 | 78.32 ± 2.67 | 50.48 ± 0.58  | 53.57 ± 2.61 | 42.39 ± 5.50 | 61.90 ± 0.00  | 88.10 ± 0.00   | 81.86 ± 0.00  | 61.90 ± 0.00  | 88.10 ± 0.00    | 81.86 ± 0.00     |
| Wood              | FID | 91.33 ± 6.78           | 97.00 ± 1.94 | 99.04 ± 0.79 | 71.00 ± 14.85         | 88.67 ± 1.63 | 92.82 ± 2.09 | 53.33 ± 3.80  | 56.00 ± 2.71 | 43.62 ± 3.76 | 1             | /              | /             | 1             | 1               | 1                |
|                   | SSE | 97.00 ± 3.71           | 97.67 ± 2.91 | 98.89 ± 1.37 | 92.33 ± 6.96          | 96.33 ± 2.87 | 98.48 ± 1.51 | 61.00 ± 4.29  | 71.67 ± 7.67 | 75.09 ± 7.24 | 94.67 ± 10.67 | 95.33 ± 9.33   | 95.02 ± 9.96  | 100.00 ± 0.00 | $100.00\pm0.00$ | 100.00 ± 0.00    |
| Brain MRI         | FID | 78.57 ± 4.65           | 87.76 ± 3.35 | 93.19 ± 2.56 | 73.27 ± 4.05          | 79.39 ± 2.99 | 80.85 ± 3.92 | 54.90 ± 2.08  | 60.20 ± 3.48 | 58.88 ± 4.83 | 1             | /              | /             | 1             | 1               | 1                |
|                   | SSE | 84.49 ± 3.95           | 86.94 ± 3.73 | 91.50 ± 2.92 | 84.08 ± 4.81          | 88.37 ± 3.63 | 91.96 ± 3.16 | 61.02 ± 4.63  | 68.37 ± 1.12 | 69.98 ± 2.78 | 50.41 ± 0.50  | 92.45 ± 13.06  | 91.58 ± 12.78 | 50.41 ± 0.50  | 98.98 ± 0.00    | $97.98 \pm 0.02$ |
| Breast Ultrasound | FID | 83.23 ± 6.53           | 91.38 ± 1.23 | 95.45 ± 0.91 | 84.92 ± 3.29          | 85.85 ± 3.46 | 89.62 ± 3.52 | 57.69 ± 2.48  | 70.15 ± 4.83 | 74.41 ± 5.29 | /             | /              | /             | /             | /               | /                |
|                   | SSE | 85.23 ± 2.98           | 89.38 ± 3.31 | 92.53 ± 2.41 | 86.46 ± 3.85          | 87.85 ± 3.01 | 91.23 ± 2.31 | 61.23 ± 5.19  | 68.62 ± 2.45 | 71.81 ± 2.29 | 50.62 ± 0.31  | 96.77 ± 4.92   | 97.27 ± 2.42  | 50.62 ± 0.31  | 99.23 ± 0.00    | 98.48 ± 0.01     |
| Retina OCT        | FID | 50.73 ± 0.59           | 97.23 ± 0.05 | 98.81 ± 0.08 | 50.19 ± 0.08          | 92.10 ± 0.22 | 96.87 ± 0.09 | 50.09 ± 0.07  | 69.92 ± 5.23 | 76.25 ± 6.61 | 1             | /              | /             | 1             | 1               | 1                |
|                   | SSE | 50.29 ± 0.26           | 96.74 ± 0.07 | 98.49 ± 0.10 | 51.02 ± 0.75          | 96.45 ± 0.04 | 98.33 ± 0.07 | 50.37 ± 0.40  | 79.33 ± 1.34 | 86.86 ± 1.47 | 50.01 ± 0.01  | 93.90 ± 3.03   | 98.24 ± 1.51  | 50.01 ± 0.01  | 99.95 ± 0.05    | 99.97 ± 0.00     |
| MEAN              |     | 79.89                  | 89.93        | 91.43        | 74.31                 | 86.25        | 88.05        | 62.03         | 74.89        | 78.83        | 59.52         | 89.79          | 87.14         | 60.94         | 96.09           | 93.61            |

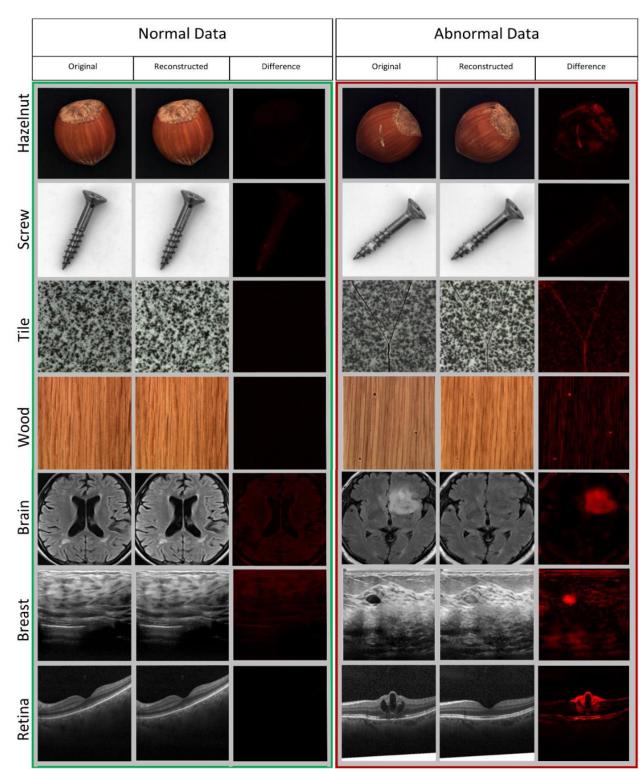
1.0

0.6

.....

0.0

0.2



How to integrate the business constraints (full TPR, acceptable inference time, worker interactions, explainable decisions, binary into etc.) а normal/abnormal classification algorithm?

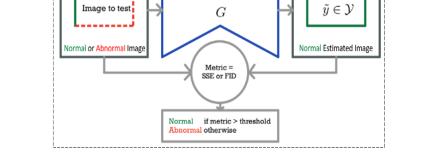


Figure 3: CycleGAN AD Training and Inference Architecture, Anomaly Localisation, Qualitative and Quantitative Results

Focus on this

optimization

0.6

0.4

**False Positive Rate** 

0.8



1<sup>st</sup> part of the approach is an image reconstruction through a GAN model. To optimally reconstruct the input image (and focus on the real anomalies), other generative model architectures will be compared.

ViT in GAN : Replace all or parts of the CNNs by Visual Transformers. CNNs of Vision Transformer

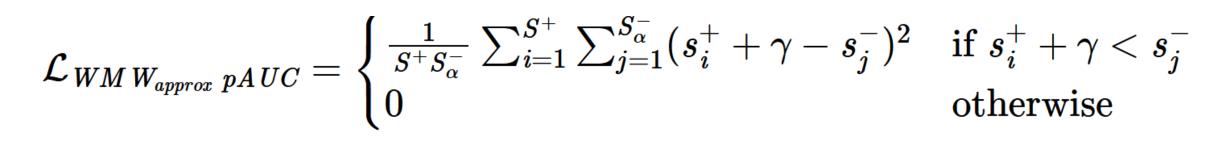
GAN

Diffusion Model : Consider an autoencoder with latent



2<sup>nd</sup> part of the approach is the metrics classification. A customized function loss is being designed to reflect a full sensitivity constraint.

- A partial AUC [4] is formulated, so that only the Full TPR part is targeted while minimizing the FPR.
- This pAUC is then approximated by a Wilcoxon-Mann-Whitney Statistic loss [5], well fitted for a neural network classifier.



@ FPR range  $[\alpha, 1]$ Another medical use case is being studied,

on activation detection

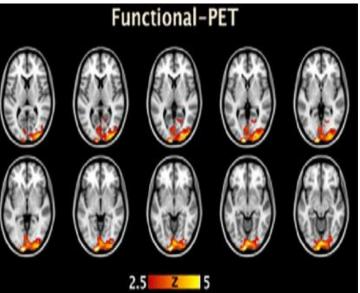
rest/stimulation phases

for fPET sinograms.

during

alternative

On-site industrial integration is performed, highly focused the on worker habits, the inference time and quality constraints.





[1] Bougaham, A. et al. (2021). GanoDIP - GAN Anomaly Detection through Intermediate Patches: a PCBA Manufacturing Case. Proceedings of the Third International Workshop LIDTA, PMLR. [2] Bougaham, A. et al. (2023). Composite Score for Anomaly Detection in Imbalanced Real-World Industrial Dataset. Machine Learning Journal, Springer. [3] Bougaham, A. et al. (2023). Industrial and Medical Anomaly Detection Through Cycle-Consistent Adversarial Networks. arXiv preprint. [4] Dodd, LE. And Pepe, MS. (2003), Partial AUC estimation and regression. Biometrics. [5] Yan, L. et al. (2003), Optimizing classifier performance via an approximate to the Wilcoxon-Mann-Whitney statistic. Proceedings of ICML.



Arnaud Bougaham Ph.D. Candidate AI applied to Industry arnaud.bougaham@unamur.be

humalearn.info.unamur.be directory.unamur.be/staff/abougaha





