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Construction grammar and procedural semantics for
human-interpretable grounded language processing

Liesbet De Vos1, Jens Nevens2, Paul Van Eecke∗2, and Katrien Beuls∗1

1Faculté d’informatique, Université de Namur
2Artificial Intelligence Laboratory, Vrije Universiteit Brussel

Abstract

Grounded language processing is a crucial component in many artificial intelligence systems,

as it allows agents to communicate about their physical surroundings. State-of-the-art

approaches typically employ deep learning techniques that perform end-to-end mappings

between natural language expressions and representations grounded in the environment.

Although these techniques achieve high levels of accuracy, they are often criticized for

their lack of interpretability and their reliance on large amounts of training data. As an

alternative, we propose a fully interpretable, data-efficient architecture for grounded language

processing. The architecture is based on two main components. The first component comprises

an inventory of human-interpretable concepts learned through task-based communicative

interactions. These concepts connect the sensorimotor experiences of an agent to meaningful

symbols that can be used for reasoning operations. The second component is a computational

construction grammar that maps between natural language expressions and procedural

semantic representations. These representations are grounded through their integration

with the learned concepts. We validate the architecture using a variation on the CLEVR

benchmark, achieving an accuracy of 96%. Our experiments demonstrate that the integration

of a computational construction grammar with an inventory of interpretable grounded concepts

can effectively achieve human-interpretable grounded language processing in the CLEVR

environment.

Keywords— grounded language understanding; procedural semantics; computational construction

grammar; Fluid Construction Grammar

1 Introduction

Intelligent systems that need to communicate about the world in which they are situated must be equipped

with capacities for grounded language processing. Grounded language processing is the subarea of artificial

intelligence that studies the connection between natural language on the one hand and perception and

action in the world on the other (cf. Winograd 1972; Mooney 2008; Steels 2012; Kazemzadeh et al. 2014;

Cirik et al. 2018; Nevens et al. 2019a; Persson et al. 2019; Alomari et al. 2022). For instance, when asked

to answer the question What color is the small sphere? about the scene that is depicted in Figure 1,

∗ Joint last authors.
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 What color is the small sphere?

get-context

filter shape sphere

unique-object

filter size small

query color

Figure 1: Grounded language processing in a visual question answering scenario.

an intelligent agent must be able to map the question onto its semantic structure, as well as to use this

semantic structure to find an answer to the question. This semantic structure can for example take the

form of a query that filters the scene for spheres, filters the set of spheres for small objects, checks whether

the set of small spheres contains a single object, and retrieves the colour of this object. Upon execution of

this query with respect to the scene depicted in Figure 1, the answer yellow would then be retrieved.

Methodologically, the state of the art in grounded language processing is dominated by deep neural network

techniques (see e.g. Chen et al. 2015; Lu et al. 2016; Das et al. 2017; Jang et al. 2017; Yu et al. 2019). While

these techniques are lauded for their high performance, they are often criticized for their reliance on large

amounts of training data and their lack of interpretability (Massiceti et al. 2018; Marcus 2018; Mitchell

2020, 2021). As an alternative to these techniques, we propose a data-efficient and human-interpretable

architecture for grounded language processing. The architecture is based on two main components.

The first component comprises an inventory of human-interpretable concepts that were learned through

task-based communicative interactions (Nevens et al. 2020). These concepts associate symbolic labels

(e.g left, blue, or sphere) with combinations of prototypical values on human-interpretable feature

channels (e.g. position-on-x-axis, position-on-y-axis, red-value, green-value, blue-value,

number-of-corners). The second component is a computational construction grammar that can be used

to map between English questions and procedural semantic representations (Nevens et al. 2019b). These

procedural semantic representations are composed of primitive cognitive operations that can be executed

by an agent (e.g. filter, count, or query), and which make use of the concept representations provided

by the first component. For example, the filter shape sphere and filter size small operations used

in Figure 1 make use of the concept representations for sphere and small respectively. By integrating

the concept inventory into the primitive operations, we provide the agent with effective building blocks to

perform interpretable grounded language processing.

The remainder of this paper is structured as follows. Sections 2 and 3 introduce the two foundational

components on which our system builds, namely Nevens et al.’s (2020) discrimination-based learning

of grounded concepts and Nevens et al.’s (2019b) computational construction grammar-based approach

to visual question answering. Section 4 describes our integrated architecture for human-interpretable

grounded language processing, which constitutes the main contribution of this paper, and evaluates it with

respect to a variation on the CLEVR visual question answering benchmark (Johnson, Hariharan, van der

Maaten, Fei-Fei, et al. 2017). Finally, Section 5 reflects on the evaluation results and concludes the paper.
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2 Discrimination-based learning of grounded concepts

As humans, we observe the world through our sensory experiences. We see colour and shape, feel texture

and temperature, hear pitch and loudness, taste sweetness and bitterness, and smell a wide range of

scents. To share these sensory experiences with others, we rely on a variety of concepts that can be

expressed using language. While linguistic expressions can be shared between individuals, the concepts

and their grounding in underlying experiences are personal and differ across individuals. Concepts and

their linguistic expressions form thus an abstraction layer over personal experiences that is crucial for

communication (Steels and Belpaeme 2005). Correspondingly, intelligent agents should have at their

disposal an inventory of concepts that allows them to abstract away from individual sensor values. Ideally,

this inventory should be established incrementally and in a dynamic manner, so that new concepts can

easily be added, and existing ones can adapt over time (Wellens 2012; Loetzsch 2015; Bleys 2016; Steels

et al. 2016).

To learn such adaptive concepts, Nevens et al. (2020) introduce a discrimination-based architecture for

grounded concept learning. Adopting the language game methodology (Steels 2001, 2012), in which a

population of agents engages in task-oriented communicative interactions in order to converge on a shared

communication system, the authors set up a scenario with two agents: a tutor and a learner. The tutor

is provided with an inventory of ontological categories that can be used to discriminate objects in the

CLEVR dataset (Johnson, Hariharan, van der Maaten, Fei-Fei, et al. 2017). The learner, on the other

hand, starts the experiment without any concepts in place, any notion of how many concepts should

be learned, nor any knowledge of the ontological categories that the tutor makes use of (e.g. colours,

shapes, materials, etc.). Each interaction is situated in a randomly generated scene comparable to the one

depicted in Figure 1 and proceeds as follows:

1. The tutor agent selects a topic from the scene, that is, the object to which they will try to draw the

learner’s attention.

2. The tutor agent searches for a concept that can uniquely discriminate this topic from the other

objects in the scene.

3. The tutor agent produces the linguistic expression associated to the chosen concept.

4. The learner agent then retrieves the concept associated to the observed linguistic expression in their

inventory.

5. If a concept is found, the learner agent points to the object in the scene most similar to this concept.

Otherwise, the learner signals that they do not know the word.

6. The tutor provides feedback to the learner by pointing to the topic object.

7. The learner agent updates its concept inventory according to the outcome of the interaction.

A game succeeds if the learner agent correctly pointed to the topic object, and fails otherwise. As a

consequence of the updating phase that takes place after each interaction, the concept inventory of the

learner gradually converges towards the inventory of the tutor.

Figure 2 shows an example of the concept cube, learned through a series of tutor-learner language games.

We see that the label “cube” has been associated with two attributes: number of sides (with a prototypical

value of six sides) and number of corners (with a prototypical value of eight corners). A score is assigned

to each attribute, representing how strongly that attribute is associated to the concept.

In order to use the learned concepts in communicative interactions, an agent must be able to calculate

3



cube

nr_of_sides: 6.00, [5.99 - 6.01]
1.00

nr_of_corners: 8.00, [7.99 - 8.01]
1.00

Figure 2: Example of the concept cube, learned over the course of 1000 interactions. The label
“cube” is associated to two attributes, namely “nr of sides = 6” and “nr of corners =
8”.

the fit between concepts and objects in the scene. This fit is calculated by a weighted similarity measure

that takes into account all attributes of the concept and weighs them using the attribute’s certainty score.

Through a series of such communicative interactions with the tutor agent, the learner agent acquires a

dynamic repertoire of concepts that enables them to communicate about the objects in their environment.

3 A computational construction grammar for visual question answering

Grounded language understanding requires an autonomous agent to relate the meaning of linguistic

expressions to the concrete situations in which these are uttered. For example, in order to answer the

question in Figure 1, a mapping needs to be established between its semantic structure and the image

about which the question is asked. Operationalizing a grounded language understanding system involves

thus mapping between natural language expressions and semantic structures that ground entities or events

in the world.

The field of semantic parsing is concerned with mapping natural language utterances onto a formal

representation of their meaning. Coarsely, techniques for semantic parsing can be grouped into approaches

that model the grammar of a language formally and those that do not. The second group consists of

neural and statistical approaches that rely on regularities extracted from large amounts of annotated

corpus data (e.g. Hu et al. 2017; Johnson, Hariharan, van der Maaten, Hoffman, et al. 2017; Yi et al.

2018; Mao et al. 2019; Andreas et al. 2016). While these technologies generally achieve high levels of

accuracy on broad-coverage benchmark datasets, they are often criticized for their lack of transparency

(Marcus 2018; Mitchell 2020). The first group consists of grammar-based techniques, including approaches

based on formalisms such as Head-Driven Phrase Structure Grammar (McFetridge et al. 1996; Frank et al.

2007), Lexical-Functional Grammar (Yarmohammadi et al. 2008), Combinatory Categorial Grammar

(CCG) (Zettlemoyer and Collins 2005), and Fluid Construction Grammar (FCG) (Marques and Beuls

2016; Beuls et al. 2021; Van Eecke et al. 2022). These approaches have the advantages of transparency,

linguistic motivation, and human interpretability, but they are notoriously difficult to operationalize on a

large scale as the grammars typically need to be designed by a grammar engineer (van Trijp et al. 2022).

Yet, advances in the automatic learning of CCG (Liang 2016) and, more recently, FCG grammars (Van

Eecke 2018; Nevens et al. 2022; Doumen et al. 2023; Beuls and Van Eecke 2023) show that this limitation

has been lifted.

For the purposes of this paper, we will employ the FCG formalism (van Trijp et al. 2022; Beuls and Van

Eecke 2024), including the grammar proposed by Nevens et al. (2019b). This grammar adequately covers

the CLEVR dataset and makes use of a procedural semantic representation formalized in Incremental

Recruitment Language (IRL) (Van den Broeck 2008; Spranger et al. 2010). The meaning representation

used by the grammar is executable on symbolic scene representations but not grounded in continuous data.

In other terms, it does not deal with the problem of relating the semantic structures to perceptual sensor
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values. For example, when asked to filter a set of objects for cubes, the IRL engine considers each element

of the set and returns all those that have the value cube for their shape attribute. Likewise, when asked

to query the colour of an object, it literally retrieves the value of the object’s color property. Figure

3 shows an example of such a symbolic scene representation, a meaning representation for the question

What material is the blue cube?, and its execution with respect to the symbolic scene. An overview of the

15 primitive operations is provided in Table 1.

4 An integrated architecture for human-interpretable grounded language processing

This section describes our architecture for grounded language understanding, which integrates the

discrimination-based learning of concepts introduced in Section 2 and the grammar-based approach to

parsing natural language expressions into procedural semantic representations introduced in Section 3. It

thereby presents the main contribution of this paper.

The cornerstone of the integration of both strands of research is an implementation of the primitive

operations presented in Table 1 that is grounded in continuous perceptual data through concepts that

bridge between symbolic and numerical representations as exemplified in Figure 2. In order to achieve this,

the first step was to replace the ontology underlying the semantic representation used by the computational

construction grammar (cf. Section 3) with a new ontology that consists of the concepts learned through

discrimination-based language games (cf. Section 2). A schematic overview of this ontology is shown in

Figure 4.

The second step consisted in operationalizing the actual primitives using these concepts, that is, to use

the concepts for supporting the operations of (i) filtering objects according to their perceptual categories

(e.g. retrieving the set of blue objects in a scene), (ii) querying the perceptual categories applicable to

a given object (e.g. querying the colour of an object), (iii) spatially relating objects to each other (e.g.

retrieving the objects to the left of a given object), and (iv) comparing objects with respect to a given

category (e.g. retrieving all objects with the same colour as a given object). When operationalizing these

primitives, it is important to consider that concepts are not only meaningful on their own, that is, they

take the form of a prototype, but also in relation to each other. For example, an object can be situated at

a certain distance from prototypical blue, yet this is not sufficient for this object to be called blue. Indeed,

calling the object blue would also need to entail that no other colour prototype is situated closer to this

object than the blue prototype. This behaviour is achieved in the primitives by computing the distance

between an object and all concepts on an ontological axis (e.g. large and small for the size axis), and

selecting the concept that is closest to the object. In our example, an object would be considered blue

if no other colour category prototype is closer to the object than the blue one. The same reasoning is

applied to all other ontological axes, such as size, shape, and material.

An additional challenge consists in the integration of the spatial concepts left, right, front, and

behind. As these concepts were learned in isolation, they represent absolute prototypes. For example,

left refers to the left portion of the scene. However, the CLEVR dataset uses these concepts in a relative

fashion. Indeed, the objects left of the red cube establishes the red cube as a landmark and refers to all

objects that appear left relative to this landmark. This is exemplified in Figure 5, where the absolute

concept is shown on the left-hand side and the relative concept is shown on the right-hand side. In the

primitives, this behaviour is achieved by dynamically shifting the prototypical values of a concept with

respect to the landmark object. As such, the neutral value for left and right is shifted from the middle of

the image to the position of the landmark.

An example of the integrated architecture in action is shown in Figure 6. In this figure, the question What
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Table 1: CLEVR IRL primitives as implemented by Nevens et al. (2019b).

Primitive Arguments Implemented behaviour

1. bind type, ?target, category Binds category, of type (concept or pathname)
to ?target.

2. get-context ?target, ?scene Loads ?scene and binds it to ?target.

3. count ?target-num, ?source-set Counts the number of objects in ?source-set

and binds that number to ?target-num.

4. equal-integer ?target-bool, ?num-1,

?num-2

Compares ?num-1 to ?num-2 and binds the re-
sulting Boolean value to ?target-bool.

5. less-than ?target-bool, ?num-1,

?num-2

Checks whether ?num-1 is smaller than ?num-2

and binds the resulting Boolean value to
?target-bool.

6. greater-than ?target-bool, ?num-1,

?num-2

Checks whether ?num-1 is greater than ?num-2

and binds the resulting Boolean value to
?target-bool.

7. equal ?target-bool, ?concept-1,

?concept-2

Checks whether ?concept-1 and concept-2 are
the same and binds the resulting Boolean value
to ?target-bool.

8. exist ?target-bool,

?source-set

Checks whether ?source-set is non-empty
and binds the resulting Boolean value to
?target-bool.

9. intersect ?target-set,

?source-set-1,

?source-set-2

Finds the intersection of ?source-set-1 and
?source-set-2 and binds it to ?target-set.

10. union ?target-set,

?source-set-1,

?source-set-2

Finds the union of ?source-set-1 and
?source-set-2 and binds it to ?target-set.

11. unique ?target-object,

?source-set

Checks whether there is exactly one object
in ?source-set and binds that object to
?target-object if it is the case.

12. filter ?target-set, ?source-set,

?concept

Filters ?source-set using ?concept and binds
the resulting set of objects to ?target-set.

13. query ?target-category,

?source-object,

?attribute

Finds out which ?target-category ap-
plies to ?source-object when querying for
?attribute.

14. same ?target-set, ?source-set,

?source-object,

?attribute

Finds all objects in the ?source-set that be-
long to the same category for ?attribute

as the ?source-object, and binds them to
?target-set.

15. relate ?target-set, ?source-set,

?source-object,

?spatial-concept

Finds all objects in ?source-set that are
in the given spatial relation (indicated by
?spatial-concept) to the ?source-object,
and binds them to ?target-set.
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ontology

colors materials shapes sizes spatial relations

blue
brown
cyan
gray
green
purple
red

yellow

metal
rubber

cube
cylinder
sphere

large
small lateral frontal

left
right

front
behind

red

r: 173.01, [170.69 - 175.32]
1.00

g: 33.95, [31.67 - 36.23]1.00

b: 35.01, [32.69 - 37.33]

1.00
behind

ypos: 110.43, [74.36 - 146.49]
1.00

zpos: 12.29, [10.50 - 14.08]1.00

Figure 4: The ontology underlying the grounded language understanding experiment.

How many objects are left of the red cube?left

Figure 5: The use of the spatial concept left in an absolute and a relative fashion.
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material is the blue cube? is asked about the image shown in the upper left corner. First, the utterance is

analysed by the grammar into the meaning representation shown in the lower right corner of the figure.

Then, this meaning representation is executed on the scene. Steps 1 (bind) and 2 (get-context) involve

retrieving the image and mapping the objects in the image to visual features, according to the procedure

described in Nevens et al. (2020). Steps 3 (bind) and 4 (filter) involve filtering the set of retrieved

objects for cubes. Steps 5 (bind) and 6 (filter) involve filtering the resulting set of cubes for blue

objects. Step 7 (unique) verifies whether the resulting set contains a single object and steps 8 (bind) and

9 (query) query the material of this object.

In order to evaluate our integrated architecture, its accuracy was computed on the 149,991 questions

of the CLEVR validation split, by comparing the predicted answers to the ground truth annotation.

This process was repeated 10 times with a different series of concepts, that is, concepts resulting from a

different experimental run during the learning phase. All experimental runs led to an accuracy between

95% and 98%, with an average of 96%. These results are in line with most state-of-the-art approaches

to the CLEVR dataset, although they are not directly comparable due to the different procedure for

generating continuous scene representations (see Nevens et al. 2020). It is important to keep in mind that

the CLEVR dataset is conceived as a diagnostic dataset that aims to boost the development of innovative

approaches to visual question answering. This means that the primary objective is not to compete on

a percentage point accuracy level, but to diagnose possible problems with new techniques. In fact, a

wide variety of approaches have been shown to obtain an accuracy of 95–99.9% on the CLEVR dataset,

including approaches that make use of scene graphs (Yi et al. 2018; Mao et al. 2019), MAC networks

(Hudson and Manning 2018), and neural module networks (Johnson, Hariharan, van der Maaten, Hoffman,

et al. 2017; Hu et al. 2018).

An important asset of our methodology concerns the human interpretability of all steps involved in

the language understanding process. A human-interpretable grammar maps between natural language

questions and a meaning representation that lays out the reasoning steps involved in answering the

questions. These reasoning steps correspond to human-interpretable operations which in turn make use of

human-interpretable concepts. Consequently, if the model provides an unexpected answer to a question, a

human expert can trace back the chain of operations that led to this answer. Figure 7 shows an example

where the system could not answer the question What color is the thing in front of the large cube?. We

can see that the grammar has mapped the question to a suitable semantic representation, but that the

unique operation fails as a result of a wrong value returned by the relate operation. Indeed, the relate

operation falsely considered two objects to be in front of the large cube. As a result of this failure, the

system detects that it cannot adequately perform all reasoning steps and signals that the question could

not be answered. In fact, this behaviour sets our system apart from the deep learning-based approaches

that dominate the field today, as these have great difficulties at self-diagnosing reasoning uncertainties

and thereby often make overconfident false predictions (see e.g. Guo et al. 2017; Thulasidasan et al. 2019).

5 Discussion and conclusion

This research has brought together two distinct strands of research and has integrated them into an

architecture that aims to achieve human-interpretable grounded language processing on both the conceptual

and the grammatical level. The first strand of research concerned the learning of concepts that map

between continuous sensor values and categories that are meaningful in the environment. These concepts

were learned through discrimination-based language games and it was previously shown that they can be

learned in a data-efficient manner, that they generalize well to unseen instances, that they are transparent

and human-interpretable, that they are adaptive to changes in the environment and that they can be

9
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combined compositionally (Nevens et al. 2020). However, this strand of research focused exclusively on

concept learning and was not concerned with linguistic structures exceeding the level of individual words.

The second strand of research concerned the use of construction grammar and procedural semantics to

model the relation between linguistic expressions and their underlying semantic structure. We have focused

on a grammar that covers the CLEVR visual question answering benchmark dataset and a procedural

semantic representation that was executable on symbolic scene representations, but did not deal with the

problem of grounding concepts in continuous environments (Nevens et al. 2019b). In our architecture, we

have tied together the grammar-based approach to visual question answering and the discrimination-based

approach to concept learning. We have evaluated the results on a variation of the CLEVR dataset and

achieved an accuracy of 96% on average. We have thereby shown that both strands of research are

complementary to and compatible with each other, and that their combination can be leveraged to achieve

human-interpretable grounded language processing down to the level of continuous features. These results

are in line with the growing body of research on neuro-symbolic artificial intelligence that combines

sub-symbolic and symbolic techniques to tackle cognitive tasks that involve both perception and reasoning

(Garcez et al. 2015; Manhaeve et al. 2021). The main challenge remains the scaling of the approach

that we have introduced. Recent breakthroughs in the abductive learning of computational construction

grammars show that the automatic learning of interpretable construction grammars that can map between

utterances and procedural semantic representations is feasible (Van Eecke and Beuls 2017; Nevens 2022;

Doumen et al. 2023; Beuls and Van Eecke 2023), although more research is needed in this area to make

the learning methods applicable to broad-coverage corpora. When it comes to the concept representations,

it is unlikely that the representations introduced by Nevens et al. (2020) would as such scale far beyond

scenes of geometrical figures. More research would here be required to include more flexible ways to

represent the distribution of relevant values on the individual feature channels. While this would possibly

render the learning process less data-efficient, a wider range of more fine-grained concepts could then be

captured.
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& Roman Garnett (eds.), Advances in Neural Information Processing Systems 31 (NeurIPS

2018), 1031–1042. Red Hook, NY, USA: Curran Associates.

Yu, Zhou, Jun Yu, Yuhao Cui, Dacheng Tao & Qi Tian. 2019. Deep modular co-attention

networks for visual question answering. In 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 6274–6283. Washington, D.C.: IEEE Computer Society.

https://doi.org/10.1109/CVPR.2019.00644.

Zettlemoyer, Luke & Michael Collins. 2005. Learning to map sentences to logical form: Structured

classification with probabilistic categorial grammars. In Fahiem Bacchus & Tommi Jaakkola

(eds.), Proceedings of the twenty-first Conference on Uncertainty in Artificial Intelligence,

658–666. Edinburgh: AUAI Press.

16


