
Some recent proposals for nonconvex
optimization

Serge Gratton, Sadok Jerad, Philippe Toint

INP - ANITI / UNamur

BRAZOPT 2024 Rio de Janeiro, March 2024



First: a brief publicity break :-)



The problem

Once more, the standard unconstrained nonconvex optimization
problem

min
x∈IRn

f (x)

where the objective function f is

I “sufficiently” smooth

I bounded below

Remarkable one can still say (hopefully) interesting things on this
subject!



A brief outline

Yet another fast variant of Newton’s method

I The full-space AN2C. . . and its complexity

I A subspace version

I Numerical illustration

Objective Function Free Optimization (OFFO)

I Noise and nonlinear optimization

I Adagrad (and friends) as trust-region method(s)

I A fully second-order variant

I OFFAR: a “fast” second-order OFFO method



Outline

AN2C: a fast regularized Newton’s method

A story of OFFO



Motivation and inspiration

Newton’s method:
xk+1 = xk − Hk

−1gk

where Hk = ∇2
x f (xk) and gk = ∇1

x f (xk)

=⇒ the workhorse of nonlinear optimization, but. . .

I local convergence only for the vanilla version

I can be (very) slow O(ε−2) when convergent (Cartis, Gould, T,

2010), even with exact linesearch (Cartis,Gould, T., 2022)

Globalizations:

I quadratic regularization (Goldfeldt, Quandt, Trotter, 1966): simple
subproblem but can be just as slow (Ueda,Yamashita, 2014)

I trust-region (Moré, 1983, Conn, Gould, T, 2000): more
complicated subproblem... and also slow

I cubic regularization (Nesterov, Polyak, 2006, Cartis, Gould, T.,

2011): more complicated subproblem, but “fast” O(ε−3/2)



Today’s question...

Can one combine fast convergence and simple subproblem?

(simple = a single linear solve?)
A previous proposal: (Birgin, Martinez, 2017): pick a subproblem to
ensure fast convergence
Recent progress (Doikov, Nesterov, 2023, Mischenko, 2023) for convex
problems: a combination of quadratic regularization (à la GQT)
and gradient-dependent scaling (Fan, Yuan, 2001). Consider

xk+1 = xk − (Hk +
√
α‖gk‖I )−1gk

Not enough for nonconvex problems! Can we improve it?

I Cannot ignore possible negative eigenvalues in Hk !

Our aim: use this idea with minimal consideration of eigenvalues



Adaptive Newton with Negative Curvature (AN2C) (1)

The idea (using the generic constant κ)

1) first try an a priori regularization using
√
κσk‖gk‖:

REGSTEP( gk ,Hk , σk , κ )
Attempt to solve the linear system

(Hk +
√
κσk‖gk‖I )sdefk = −gk .

If sdefk can be obtained such that

(sdefk )T (Hk +
√
κσk‖gk‖I )sdefk > 0,

‖sdefk ‖ ≤ κ

√
‖gk‖
σk

,

‖rdefk ‖ ≤ min
(
κ
√
κσk‖gk‖‖sdefk ‖, κ‖gk‖

)
where rdefk = (Hk +

√
κσk‖gk‖I )sdefk + gk , return sdefk .



Adaptive Newton with Negative Curvature (AN2C) (2)

2) if unsuccessful and curvature not too negative:

NWTSTEP( gk ,Hk , σk , κ )
(Approximately) solve(

Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)I

)
sneigk = −gk

such that∥∥∥[Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)I

]
sneigk + gk

∥∥∥
≤ min

(
κ
√
σk‖gk‖‖sneigk ‖, κ‖gk‖

)
.

Return sneigk



Adaptive Newton with Negative Curvature (AN2C) (3)

3) if still unsuccessful, take a negative curvature step:

EIGENSTEP( gk ,Hk , σk , κ )
Compute uk such that

gᵀ
k uk ≤ 0, ‖uk‖ = 1 and uTk Hkuk ≤ κλmin(Hk)

and set

sk = κ

√
‖gk‖
σk

uk .

Return sk .

(This is the case we wish to avoid as much as possible)



An overview of the full AN2C

Step 0: Initialization x0, σ0 > 0 ε ∈ (0, 1], κ. Set k = 0.

Step 1: Check termination Terminate if ‖gk‖ ≤ ε.
Step 2 (Optional): Attempt an a priori regularization step

sk = REGSTEP(gk,Hk, σk, κ). If successful, go to Step 5.

Step 3 : Newton Step Computation If λmin(Hk) > −κ
√
σk‖gk‖,

sk = NWTSTEP(gk,Hk, σk, κ) and go to Step 5.

Step 4 : Else take an eigen-step sk = EIGENSTEP(gk,Hk, σk, κ).

Step 5: Acceptance test Evaluate f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

−(gᵀ
k sk + 1

2s
ᵀ
kHksk)

.

If ρk ≥ η1, set xk+1 = xk + sk else xk+1 = xk .

Step 6: Regularization parameter update Set

σk+1 ∈

[max (σmin, γ1σk) , σk ] if ρk ≥ η2,
[σk , γ2σk ] if ρk ∈ [η1, η2),
[γ2σk , γ3σk ] if ρk < η1.



AN2C: comments

I Step 2 not necessary for the theory, but instrumental in
reducing the number of eigenvalue computations

I In the full-space context, checking positive definiteness can be
achieved by attempting a Cholesky factorization. . .

I . . . but can also be checked if a Krylov solver is used

I Acceptance rule and regularization parameter update standard
(as in adaptive cubic)



AN2C: worst-case complexity
AS.1 f is two times continuously differentiable in IRn.
AS.2 f (x) ≥ flow for all x ∈ IRn.
AS.3 ∇2

x f is globally Lipschitz continuous
AS.4 There exists a constant κB > 0 such that
max(0,−λmin(∇2

x f (x))) ≤ κB for all x ∈ {y ∈ IRn | f (y) ≤ f (x0)}.

Suppose AS.1-AS.4 hold. Then AN2C (with suitable choices for κ!)
requires at most

O
(
ε−3/2 + | log(ε)|

)
iterations (and evaluations of f and its derivatives) to produce an
iterate xk such that ‖gk‖ ≤ ε, and at most an additional

O
(
ε−3(1 + | log(ε)|)

)
iterations and evaluations to ensure that λmin(∇2

x f (xk)) ≥ −ε.



Numerical illustration (1)

Environment: Matlab

Criteria: performance (πalgo) (# of iterations) and reliability (ρalgo)

Test problems:

119 small, 74 medium, 59 “largish” problems from the
OPM/CUTEst collection

Algorithms::

AN2CER: Uses REGSTEP + Cholesky factorization + eig() for
eigenvalue computations

AN2C: Does not use REGSTEP + Cholesky factorization + eig()

AR2: Adaptive cubic regularization (AR2) with modified subproblem
termination

TR2M: l2 trust-region with Moré-Sorensen subproblem solver



Numerical illustration (2)

small pbs. medium pbs. largish pbs.

algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CER 0.88 96.64 0.85 93.24 0.85 94.92
AN2CE 0.91 96.64 0.91 95.95 0.81 86.44
AR2 0.92 97.48 0.85 93.24 0.84 93.22
TR2M 0.91 94.96 0.86 93.24 0.83 91.53

Efficiency and reliability statistics for the OPM problems
(full-space variants)

I AN2CER; NWTSTEP for 6.4% of all iterations and
EIGENSTEP for < 1%

I AN2C: NWTSTEP at all iterations, but never EIGENSTEP

I results for second-order points undistinguishable



A subspace variant (AN2CKU)

Ideas:

I at each iteration, choose a subspace Sk
I compute steps/eigenvalues/eigenvectors in Sk (potentially

much cheaper)

I in each subspace ensure that the step yields

‖subspace-residual‖ ≤ κ ‖full-space residual‖

The same complexity results continue to hold.

Specialized Lanczos-based implementation for Krylov subspaces!



Numerical illustration (3)
• Lanczos-based subproblem solvers for all algos
• AN2CKYU uses a slightly modified eigen-step

small pbs. medium pbs. largish pbs.

algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CKU 0.86 96.64 0.81 93.24 0.77 86.44
AN2CKYU 0.91 96.64 0.90 95.95 0.85 91.53
AR2K 0.92 97.48 0.87 93.24 0.89 93.22
TR2K 0.94 96.64 0.85 87.84 0.77 84.75

Efficiency and reliability statistics for the OPM problems
(Krylov-space variants)

AN2CKYU uses the eigen-step for 0.25% of all iterations for small
problems, 0.23% for medium problems and never for largish ones.
In all other case, it reduces to a Lanczos-based approximate linear
system solver.



Outline

AN2C: a fast regularized Newton’s method

A story of OFFO



And now something very different. . .

Our target: robust algorithms for noisy functions/inexact arithmetic

For convergence, standard methods (TR, AR) requires an error on
function values which is the square (!) of that on the gradient
(e.g. Bellavia et al, 22)

⇒ Design algorithms that
do not evaluate the function

Adaptive gradient methods:
• Adagrad (Duchi et al, 2011)
•WNGrad (Wu, Ward, Bottou, 2018)

• Adam (Kingma, Ba, 2014)
A trust-region method:
•: Adatr (Grapiglia, 2022)

⇒ Objective Function Free Optimization = OFFO



ASTR1 an adaptive trust-region algorithm
Step 0: Initialization. x0 is given. Set k = 0.

Step 1: Define the TR. Compute gk = g(xk) and define

∆i ,k =
|gi ,k |
wi ,k

where wi ,k ≥ ςi > 0 are weights.

Step 2: Hessian approximation. Select a symmetric Bk .

Step 3: GCP. Define
sLi ,k = −sgn(gi ,k)∆i ,k and sQk = γks

L
k

with

γk =

 min

[
1,
|gT

k sLk |
(sLk )TBks

L
k

]
if (sLk )TBks

L
k > 0,

1 otherwise.

Step 3: Step. Compute a step sk such that |si ,k | ≤ ∆i ,k (∀i) and

gT
k sk + 1

2
sTk Bksk ≤ gT

k sQk + 1
2
(sQk )TBks

Q
k

Step 5: New iterate. Set xk+1 = xk + sk , increment k, and go to
Step 1.



ASTR1: comments

I the objective function is not evaluated ⇒ OFFO . . . and thus
the TR radius cannot depend on ared/prered.

I large weights ⇒ short steps

I γk minimize the quadratic model between 0 and sLk

Suppose that f ∈ C 1, has Lipschitz gradient with constant L and
that ‖Bk‖ ≤ κB . Then

f (xk+1) ≤ f (xk)−
n∑

i=1

ςming
2
i ,j

2κBwi ,j
+ 1

2
(κB + L)

n∑
i=1

g2
i ,j

w2
i ,j

⇒ descent for large enough weights wi ,k



ASTR1 with ADAGRAD-like weights (1)
For given ς ∈ (0, 1], ϑ ∈ (0, 1] and µ ∈ (0, 1), define

wi ,k ∈

[
ϑ

(
ς +

k∑
`=0

g2
i ,`

)µ
,

(
ς +

k∑
`=0

g2
i ,`

)µ]

For ϑ = 1 and µ = 1
2
, wi ,k =

√
ς +

∑k
`=0 g

2
i ,` and

ASTR1 with ϑ = 1, µ = 1
2

and Bk = 0 is ADAGRAD

Suppose that f ∈ C 1, has Lipschitz gradient with constant L and
is bounded below. Then ASTR1 with ADAGRAD-like weights, µ ∈
(0, 1] and ‖Bk‖ uniformly bounded requires at most

O
(
ε−1
)

iterations to produce an iterate k such that average0,...,k ‖g`‖2 ≤ ε.



More on ASTR1

I Extends known result by (Wu, Ward, Bottou, 2018)

I Allows the use of curvature information in an ADAGRAD-like
method (Barzilai-Borwein, LBFGS, quasi-Newton, . . . true
Hessian)

I The above bound is essentially sharp.

Also possible with the “divergent” weights

wi ,k ∈ [vi ,k(k + 1)ν , vi ,k(k + 1)µ]

for 0 < ν ≤ µ < 1 and

vi ,k = max
0,...,k

|gi ,`| or vi ,k = average
0,...,k

|gi ,`|

Slightly weaker (sharp) complexity result



Some results on the small noiseless OPM problems

Method πalgo ρalgo
adagbfgs3 0.75 69.75
sdba (using f ) 0.73 68.91
adagH 0.72 69.75
adagrad 0.69 73.11
maxg 0.66 66.39
adagbb 0.63 64.71
adam 0.54 30.25

Performance and reliability statistics for deterministic OFFO and
steepest descent algorithms on small OPM problems (ε = 10−6)



The impact of noise

ρalgo/relative noise level
algo 0% 5% 15% 25% 50%

adagH 83.19 84.96 84.20 84.71 82.18
adagbfgs3 78.15 80.50 80.50 80.84 80.18
adagrad 77.31 80.50 80.25 80.17 80.17
adagbb 75.69 80.08 80.17 79.58 79.41
maxg 74.79 74.37 75.55 78.15 78.07
adam 40.34 35.55 36.30 44.03 45.80
sdba 81.51 30.92 31.85 34.87 29.58

Reliability of OFFO algorithms and steepest descent as a function
of the level of relative Gaussian noise (ε = 10−3)



Towards second-order criticality

Use a similar mechanism for second-order criticality?

At xk , let

Tf ,2(xk , d) = f (xk) + g(x)Tk d + 1
2
dTH(xk)d .

and the second-order criticality measure

φδf ,2(xk) = max
‖d‖≤δ

−
(
g(xk)Td + 1

2
dTH(xk)d

)
= max
‖d‖≤δ

∆qk(d)

Define:

xk is ε-second-order critical if φδf ,2(xk) ≤ ε

Idea: Use φδf ,2(xk) to define weights for the trust-region



ASTR2: a TR OFFO method for 2nd-order criticality
Step 0: Initialization. Given: x0 and algo constants. Set k = 0.

Step 1: Compute derivatives. Compute gk and Hk , as well as φk

and φ̂k
def
= min[φδf ,2(xk), κ].

Step 2: Define the TR radii. For weights wL
k and wQ

k , set

∆L
k =
‖gk‖
wL
k

and ∆Q
k =

φ̂k

wQ
k

.

Step 3: Step computation. If ‖gk‖2 ≥ φ̂3
k , set sk = −gk/wL

k .
Otherwise, set sk such that

‖sk‖ ≤ ∆Q
k and ∆qk(sk) ≥ max

[
∆qCk ,∆qEk

]
where ∆qCk = maxα≥0,α‖gk‖≤∆Q

k
∆qk(−αgk) and

∆qEk =

{
maxα≥0,α≤∆Q

k
∆qk(αuk) if λmin[Hk ] < 0

0 if λmin[Hk ] ≥ 0
with

uTk Hkuk ≤ κλmin[Hk ], uTk gk ≤ 0 and ‖uk‖ = 1,

Step 4: New iterate. Define xk+1 = xk + sk , increment k and
return to Step 1.



Function decrease for ASTR2

Suppose that f ∈ C 2 and has Lipschitz continuous gradient and
Hessian. Then, if ‖gk‖2 ≥ φ̂3

k ,

fk+1 ≤ fk −
‖gk‖2

wL
k

+
L1

2

‖gk‖2

(wL
k )2

while, if ‖gk‖2 < φ̂3
k ,

fk+1 ≤ fk − κmin

[
1

2(1 + L1)
,

1

wQ
k

,
1

(wQ
k )2

]
φ̂3
k +

L2

6

φ̂3
k

(wQ
k )3

.

⇒ roles of wL
k and wQ

k complementary



Complexity of ASTR2 for ADAGRAD-like weights

When using

wL
k ∈

ϑ
ς +

k∑
`=0,`∈KL

‖g`‖2

µ

,

ς +
k∑

`=0,`∈KL

‖g`‖2

µ

wQ
k ∈

ϑ
ς +

k∑
`=0,`∈KQ

φ̂3
k

µ

,

ς +
k∑

`=0,`∈KQ

φ̂3
k

µ

Suppose that f ∈ C 2 with Lipschitz gradient and Hessian and is
bounded below. Then ASTR2 with the above weights and µ ∈ (0, 1]

requires at most O
(
ε−1
)

iterations to produce an iterate k such that

average0,...,k ‖g`‖2 ≤ ε and average0,...,k φ̂
3
` ≤ ε. [Essentially sharp!]



. . . and now for an OFFO regularization algorithm!

Consider now the more general

Tf ,p(x , s) = f (x) +

p∑
i=1

1

i !
∇i

x f (x)[s]i .

and the derived regularized model

mk(s) = Tf ,p(xk , s) +
σk

(p + 1)!
‖s‖p+1

We assume that ∇p
x f is globally Lipschitz.



The OFFAR algorithm

(again using generic κ)

Step 0: Initialization: x0, ν0 > 0, ε and constants. Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
x f (xk) and

terminate if ‖gk‖ ≤ ε. Else, evaluate {∇i
x f (xk)}pi=2.

Step 2: Step calculation: If k = 0, set σ0 = µ0 = ν0. Else set

µk =
p!‖gk‖
‖sk−1‖p

− κσk−1 and σk ∈ [κνk ,max (νk , µk)] .

Then compute a step sk such that

mk(sk) < mk(0) and ‖∇1
sTf ,p(xk , sk)‖ ≤ κσk

p!
‖sk‖p.

Step 3: Updates. Set xk+1 = xk + sk and νk+1 = νk + νk‖sk‖p+1.
Increment k by one and go to Step 1.



Complexity of OFFAR

I No objective function evaluation ⇒ OFFO

I The use of µk is optional: one could simply set µk = 0
without altering the theory. But it is important for
performance.

I The definition of µk promotes fast growth of the
regularization parameter up the problem’s Lispchitz constant

I The definition of σk helps to limit this growth once the value
of the Lipschitz constant has been reached.

I If p = 1, νk+1 = νk + νk‖sk‖2, recovering WNGrad (Wu, Ward,

Bottou, 2018)

Suppose that f ∈ Cp with ∇p
x f Lipschitz gradient, is bounded below

and is such that min‖d‖≤1∇i
x [d ]i ≥ κ for i = 2, . . . , p. Then OFFAR

(with suitable constants) requires at most O
(
ε
− p+1

p

)
iterations to

produce an iterate k such that ‖gk‖ ≤ ε. [Sharp!]



More on OFFAR

I Same rate as ARp using function values (Birgin et al, 2016)

I For p = 2, same rate as ARC/AR2 (Cartis, Gould, T. 2011).
Optimal rate for second order methods

I Optimal rates for exact pth order methods (Carmon et al. 2019).

MOFFAR: If one requires that the step also satisfies

max
(
0,−λmin[∇2

sTf ,p(xk , sk)]
)
≤ κσk

(p − 1)!
‖sk‖p−1

Suppose that f ∈ Cp with ∇p
x f Lipschitz gradient, is bounded below

and is such that min‖d‖≤1∇i
x [d ]i ≥ κ for i = 2, . . . , p. Then MOF-

FAR (with suitable constants) requires at most O
(
ε
− p+1

p

)
iterations

to produce an iterate k such that ‖gk‖ ≤ ε and φ̂k ≤ ε. [Sharp]



Numerical illustration

For AR2 and two variants of OFFAR with p = 2, differing on how
aggressively µk forces growth in σk (b more aggressive than a)

AR2 OFFAR2a OFFAR2b

πalgo 0.99 0.78 0.83
ρalgo 97.48 81.51 88.24

Performance and reliability statistics on the small OPM problems
without noise

5% 15% 25% 50%

AR2 40.67 30.84 24.54 6.81
OFFAR2a 80.76 75.38 70.76 56.30
OFFAR2b 85.97 80.67 72.69 47.98

Reliability statistics ρalgo for 5%, 15%, 25% and 50% relative
random Gaussian noise (averaged on 10 runs)



Conclusions

AN2C promising, both in full-space and subspace versions

Computing the value of f is not necessary for (theoretical) fast con-
vergence

The use of curvature information is possible (and beneficial)
in standard OFFO adaptive methods

OFFO creates some interesting challenges in convergence theory!

In particular stochastic variants are of interest.

Thank you for your interest. . . and patience!
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