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Abstract
Suprathermal ions, which have an energy greater than the quasi-Maxwellian background

plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion

devices, they are generated by the fusion reactions and auxiliary heating. Controlling their

transport is essential for the success of future fusion devices that could provide a clean, safe

and abundant source of electric power to our society. In space, suprathermal ions include

energetic solar particles and cosmic rays. The understanding of the acceleration and transport

mechanisms of these particles is still incomplete.

Basic plasma devices allow detailed measurements that are not accessible in astrophysical and

fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter.

The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized

plasma scenarios and validated numerical simulations of its turbulence dynamics, making it

the ideal platform for the investigation of suprathermal ion transport.

This Thesis presents three-dimensional measurements of a suprathermal ion beam injected

in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first-

principle numerical simulations reveals the general non-diffusive nature of the suprathermal

ion transport. A precise characterization of their transport regime shows that, depending

on their energies, suprathermal ions can experience either a superdiffusive transport or

a subdiffusive transport in the same background turbulence. The transport character is

determined by the interaction of the suprathermal ion orbits with the turbulent plasma

structures, which in turn depends on the ratio between the ion energy and the background

plasma temperature.

Time-resolved measurements reveal a clear difference in the intermittency of suprathermal

ions time-traces depending on the transport regime they experience. Conditionally averaged

measurements uncover the influence of field elongated turbulent structures, referred to as

blobs, on the suprathermal ion beam.

A theoretical model extending the Brownian motion to include non-Gaussian (Lévy) statistics

and long-range temporal correlation is developed. This model successfully describes the evo-

lution of the radial particle density from the numerical simulations and provides information

on the microscopic processes underlying the non-diffusive transport of suprathermal ions.

Key words: plasma physics, astrophysics, nuclear fusion, turbulence, transport, suprathermal

ions, fast ions, ion beam, blobs, non-diffusive transport, superdiffusion, subdiffusion, anoma-

lous transport, continuous time random walk, Lévy flight, Lévy walk, fractional Lévy motion,
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fractional derivatives, intermittency
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Résumé
Les ions suprathermiques, qui ont une énergie supérieure à la température du plasma d’arrière-

plan, sont présents dans de nombreux plasmas de laboratoires et d’astrophysique. Dans les

dispositifs de fusion, ils sont générés par les réactions de fusion et par le chauffage auxiliaire.

La maîtrise de leur transport est essentielle pour le succès des futurs réacteurs à fusion qui

pourraient fournir une source d’énergie électrique propre, sûre et abondante notre société.

Dans l’espace, les ions rapides comprennent les particules solaires énergétiques et les rayons

cosmiques. La compréhension des mécanismes de leur accélération et de leur transport est

encore incomplète.

Les machines à plasmas de base permettent des mesures détaillées qui ne sont pas possibles

dans les plasmas d’astrophysique et de fusion à cause de la difficulté d’accès des premiers et

des températures élevées des seconds. La machine toroïdale de base TORPEX offre à la fois un

accès facile aux diagnostiques, des scénarios de plasmas bien caractérisés et des simulations

de turbulence validées. Cela en fait la plate-forme idéale pour l’étude du transport des ions

suprathermiques.

Dans cette Thèse, des mesures tridimensionnelles d’un faisceau de ions injecté dans les

plasmas turbulents de TORPEX sont présentées. La nature généralement non-diffusive du

transport des ions suprathermiques est révélée par le truchement de mesures de haute réso-

lution et de simulations numériques basées sur des principes premiers. Une caractérisation

précise du régime de transport montre que, selon leur énergie, les ions suprathermiques su-

bissent soit un transport supra-diffusif, soit un transport sous-diffusif, dans le même plasma

d’arrière-plan. Le caractère du transport est déterminé par l’interaction des orbites des ions

avec les structures turbulentes du plasma. L’importance de cette interaction dépend du rap-

port entre l’énergie des ion et la température du plasma.

Des mesures résolues dans le temps révèlent une différence claire dans l’intermittence des

traces temporelles des ions selon le régime du transport qu’ils subissent. Des mesures moyen-

nées conditionnellement montrent l’influence des structures turbulentes allongées le long

des lignes de champs, appelées blobs, sur le faisceau de ions suprathermiques.

De plus, un modèle théorique qui généralise le mouvement Brownien pour y inclure une

statistique non-Gaussienne (de Lévy) et des corrélations temporelles à longue distance est dé-

veloppé. Ce modèle décrit correctement l’évolution de la densité radiale de particule calculée

avec les simulations numériques et délivre des informations sur les processus microscopiques

sous-jacents au transport non-diffusif des ions suprathermiques.
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1 Introduction

1.1 Plasma and fusion reactions

The vast majority of the visible matter in the universe is in the state of plasma, the “fourth

state” of matter together with solid, liquid and gas. The plasma consists of partially or totally

ionized gas creating an ensemble of positively charged ions, negatively charged electrons, and

neutral molecules, where collective interactions dominate over binary interactions and which

is quasineutral [1]. It is the collective behavior, resulting from the long-range Coulomb force

existing between charged particles, which makes the plasma behave in a different, sometimes

complex, manner.

Plasma is ubiquitous in space, it fills the space between planets, star systems and galaxy in a

very tenuous form such that binary collisions are extremely rare and can be neglected. Solar

wind is also made of plasma streaming from the Sun surface and drifting with a typical velocity

of 300 km/s and temperature of tens of eVs (1 eV ' 11000 K°) [1]. Stars such as the Sun are also

made of extremely dense and hot plasma. For example, the temperature in the core of the

Sun is of the order of 1 keV and its density of 150 g/cm3 (about 10 times the density of gold).

In such conditions, hydrogen ions have very high velocities and collisions between them are

frequent. When two ions collide with large enough energy, they can overcome their Coulomb

repulsion and get sufficiently close to each other, so that the nuclear attractive force makes

them form a new, heavier, nucleus. This process is called fusion reaction. Elements heavier

than hydrogen are created within stars or supernovae through this process. All the energy

emitted by the Sun that we receive on Earth, is carried by photons released by fusion reactions

that took place in the Sun. Fusion reactions provide the energy necessary for life on Earth.

It is less common to find matter in the form of plasma on Earth. A gas at a standard density on

Earth becomes ionized only when its temperature reaches values above 10000 ◦C. However,

there are spectacular examples of plasmas on Earth, such as auroras that are due to the arrival

of solar wind, released by a coronal mass ejection on the Sun, in the magnetosphere of the

Earth. Lightnings, flames and the gas inside neon tubes are other examples of plasmas on Earth.

Plasmas are also widely used in industry processes, mainly to modify the physical properties

1



Chapter 1. Introduction

Figure 1.1 |Examples of plasmas in the Universe. From left to right: an image of the Sun from the
Extreme Ultraviolet Imaging Telescope (EIT) installed on the SOHO spacecraft showing a coronal mass
ejection event; photograph of aurora australis taken from the International Space Station; Photograph
of lightnings.

of surfaces (etching, cleaning, thin layer deposition, etc.). One of the recent applications of

plasmas is in medicine, where cold atmospheric plasmas are used to improve wound healing

or selectively eradicate cancer cells [2].

Scientists have bean thinking to build power plants harnessing fusion energy since the 1920s,

when they discovered that the combined mass of four hydrogen nuclei weights more than

the mass of one helium atom with four nucleons. This discovery led them to understand

the mechanism by which fusion reactions in the Sun release energy. The mass difference

between reactants and products of fusion reactions is converted in kinetic energy according

to the law E = mc2. This mass difference comes from the binding energy of the nuclei, due

to the strong nuclear force, which is greater in the combined reactants than in the products.

This holds for all atoms as heavy as iron. When heavier atoms than iron fuse, energy is

consumed by the reaction and it is the opposite nuclear reaction that releases energy, the

fission reaction. In fusion power plants, the fuel is necessarily in the state of a plasma as it has

to be sufficiently hot and dense for the fusion reactions to occur frequently and overcome the

losses inevitably present. Research in fusion energy started in the 1950s with the invention of

the first experiments trying to confine a hot plasma in order to allow the fusion of its nuclei. In

a reactor, a simple power balance shows that, not only the temperature and the density have

to be sufficiently high, but also the confinement time of the energy has to be long enough.

Many fusion reactions are possible, but the one involving the two hydrogen isotopes, deu-

terium and tritium, is the one that occurs the most easily at the lowest energy:

2
1D+3

1 T −→4
2 He (3.5 MeV)+n (14.1 MeV). (1.1)

The reaction releases an alpha particle (4
2He) and a neutron with very high kinetic energies. A

plasma where the fusion reactions are sustained purely by the heating of the alpha particles, i.e.

the plasma self-heating, is in a state called ignition, this is the case for the plasma inside stars.

A fusion reactor does not necessarily need to reach such a state to be economically viable, but

2



1.2. Plasma confinement and fusion devices

Figure 1.2 |Schematic view of a tokamak.

the closest it is to ignition, the better. The alpha particles need to be confined during a long

enough time so that they can transmit their energy back to the plasma. The power gain factor

of fusion reactors is characterized by the ratio, Q, of the fusion power produced to the power

input. This can be expressed as a function of the fraction of the heating power provided by the

alpha particles to the total heating power, which comprises the heating provided by auxiliary

systems, as [3]

Q = 5
fα

1− fα
(1.2)

For an ignited plasma, fα = 1 and therefore Q =∞. If the self-heating by the alpha particles

dominates over other forms of heating, i.e. fα ≥ 1/2, the plasma is said to be in the burning

plasma regime. This condition corresponds to Q ≥ 5.

1.2 Plasma confinement and fusion devices

In stars, the plasma is confined by its own gravitational pull. The gravitational pull of plasmas

created in laboratories is extremely small compared to that of stars and other means must be

used to confine the plasma in a vacuum chamber. Inertial confinement aims at compressing

and heating a fuel target by creating shock waves symmetrically directed towards its center,

usually with the help of high-energy lasers, to initiate fusion reactions [4]. Magnetic con-

finement uses magnetic fields to trap the charged particles constituting the plasma. Under

the influence of the Lorentz force exerted by the magnetic field, charged particles perform a

3



Chapter 1. Introduction

Figure 1.3 |Schematic view of a stellarator configuration.

circular motion around the magnetic field lines referred as gyromotion. A multitude of mag-

netic configurations have been investigated since the early days of plasma physics research.

Linear devices, such as Z-pinches [5], θ-pinches [6] or mirror machines [7] have the simplest

magnetic configurations but suffer from large losses at the two ends of the open magnetic field

lines. Closing the magnetic field lines leads to torus-shaped configurations [8]. Two important

versions of devices with a closed magnetic configuration are the tokamak and the stellarator.

In a tokamak, coils surrounding a torus-shaped vacuum vessel create a toroidal and a vertical

magnetic field. A toroidal current is induced in the plasma by a set of inner poloidal field coils

that act as the primary of a transformer, the secondary being the plasma. The plasma current

in turn generates a poloidal magnetic field (i.e. perpendicular to the toroidal direction), which

results in helical magnetic field lines (Fig. 1.2). These provide the topological configuration

counterbalancing the tendency of particles to drift outside of the tokamak [9]. A stellarator

(Fig. 1.3) consists of a vacuum vessel isomorphic to a torus in which a helical magnetic field is

created by external coils without inducing a toroidal current in the plasma. While tokamaks

are intrinsically pulsed devices due to the fact that the toroidal current is generated by a

transformer action, stellarators are steady-state. Wendelstein 7-X (Fig. 1.4), currently under

construction in Germany, will be the world’s largest fusion device of the stellarator type [10]. It

has the objective of investigating the suitability of the stellarator concept for a power plant.

ITER, currently under construction in Cadarache in France, is the result of an intense inter-

national collaboration of the controlled fusion research community. The objective of ITER

is to provide an integrated demonstration of the scientific and technological feasibility of

fusion energy, and of its safety [11]. It will be the largest tokamak ever constructed, with a

major radius of 6.2 m and a toroidal magnetic field of 5.3 T. One of the goals of ITER is to

attain a fusion gain Q ≥ 10 during inductively driven operation and Q ≥ 5 during steady-state

operation. It will therefore be the first burning plasma ever produced.

4



1.3. Suprathermal ions

Figure 1.4 |On the left, photograph of the interior of the stellerator Wendelstein 7-X currently being built
in Greifswald, Germany by the Max-Planck-Institut für Plasmaphysik (IPP). On the right, photograph of
the interior of the Tokamak à Configurations Variables (TCV) operated at the Centre de Recherches en
Physique des Plasmas (CRPP) at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

1.3 Suprathermal ions

Suprathermal ions, also referred to as fast ions, are characterized by energies larger than

the quasi-Maxwellian background plasma temperature. Many laboratory and astrophysical

plasmas are characterized by the presence of suprathermal ions.

In magnetic fusion reactors, the alpha particles generated by the D-T fusion reactions (Eq. (1.1))

are suprathermal ions that will provide the dominant fraction of the heating and regulate the

burning plasma regime [12]. Auxiliary heatings such as neutral beam injection (NBI) and ion

cyclotron resonance heating (ICRH), which are widely used in present-day devices and will

play a crucial role in future fusion devices, also generate a population of suprathermal ions

that transfer their energy to the bulk plasma via Coulomb collisions.

ICRH typically heats a minority ion species that is injected in the plasma by injecting electro-

magnetic waves with a frequency of the order of the cyclotron frequency1 of the minority ions.

A resonant interaction transfers energy from the wave to the particles. The bulk plasma ions

are then heated by collisions with the energetic minorities [13].

NBI consists of injecting highly energetic neutral atoms in the plasma. The neutral atoms

are ionized by interacting with the plasma particles and become confined by the magnetic

field. These confined energetic ions transfer their energy and momentum to the background

plasma as they are slowing down due to the collisions. Consequently, they increase the plasma

temperature and can also drive a current if the injection direction is carefully chosen.

In space, cosmic rays are an example of suprathermal charged particles, mostly protons,

1The cyclotron frequency Ωc = qB
m , where q is the particle charge, m its mass and B is the magnetic field

intensity, is the frequency of the gyromotion of charged particles around the magnetic field lines.

5



Chapter 1. Introduction

with energies varying from ∼ 1GeV to ∼ 1×1011 GeV and with Larmor radius ranging from

∼ 1×107 km to a size larger than the size of the Galaxy [14]. Recently, measurements by

the Fermi Large Area Telescope [15] and the Very Large Telescope [16] confirmed that the

acceleration of cosmic rays to velocities close to the speed of light takes place in supernovae

remnants, the expanding shells of material created in stellar explosions. An other sort of

suprathermal ions in space are solar energetic particles, emitted by the Sun and accelerated to

very high energies (up to ∼ 1GeV) during solar flares or in interplanetary space by the shocks

associated with coronal mass ejections. These energetic particles can be harmful to spacecraft

functioning, disrupt radio transmissions on Earth and cause damage to electrical transmission

line facilities. The details of the processes that lead to the acceleration of particles are not yet

fully understood.

1.4 Transport of suprathermal ions

In fusion reactors, the transport of suprathermal ions, created by fusion reactions or auxiliary

heating, plays a key role. Losses or internal redistributions of the suprathermal ions can

quench fusion energy production and lead to dramatic damages to the reactor structure,

hence they need to be kept under control.

In tokamaks, losses and redistribution of suprathermal ions can arise due to their interaction

with macroscopic instabilities. For example, Alfén waves, which can bend and compress the

magnetic field, have a phase velocity that can be close to the velocity of suprathermal ions.

As a consequence, suprathermal ions can resonate with the waves, destabilize them [17, 18],

and in turn be expelled by them outside of the plasma. On the other hand, by carefully

controlling auxiliary heatings, suprathermal ions can have a stabilizing effect on certain large

scale instabilities [19]. The study of the interaction between energetic particles and large scale

modes in tokamaks has been an ongoing field of research for several decades and is still the

focus of intense theoretical, experimental and numerical efforts [20].

Fusion plasmas are also characterized by the presence of small-scale turbulence produced by

electric and magnetic fluctuations with length scales of the order of the thermal ion Larmor

radius and responsible for the major part of thermal particle and heat transport [21, 22]. Due

to their high velocities, suprathermal ions perform their gyromotion around the magnetic field

lines with much larger radii than the thermal ions. Because of their large orbits, it was initially

expected that suprathermal ions would not interact with the small-scale turbulence due to

the effects of orbit-averaging [23–25]. Recent tokamak results indicate that redistribution of

suprathermal ions can be induced by turbulence, at least in some ranges of energy and of the

ratio between suprathermal ion energy and background plasma temperature [26–29].

At present, most predictions of the turbulent transport of energetic and thermal particles

are based on the assumptions of the diffusion paradigm [28–33], i.e. a local and Markovian

transport. However, several experimental [34–41] and numerical [42–47] studies have shown

that the transport of particles in turbulent magnetized plasmas is generally non-diffusive, and

6



1.5. Motivation and outline

that it cannot be described by a simple diffusion equation.

The leading explanation of the acceleration of cosmic rays and solar energetic particles is based

on the diffusive shock acceleration theory, which was originally developed by Fermi [48]. In

this theory, the particles are accelerated by the shocks waves present in supernovae remnants,

during coronal mass ejections or at the solar wind termination [49]. Because of their random,

diffusive motion, they cross the shock many times. At each shock crossing they gain energy

and momentum. However, observations are not fully explained by the diffusive theory. For

example, the fluxes of energetic ions and electrons accelerated at interplanetary shocks,

measured by the spacecrafts Ulysses and Voyager 2 [50], show a power-law dependence in

time that is in disagreement with the exponential decay predicted by diffusive theory. Also,

the energy spectra of cosmic rays and solar energetic particles predicted by this theory do

not always match observations [51]. Non-diffusive transport is thought to play a role in the

energetic particle acceleration [42, 49–58].

1.5 Motivation and outline

The process of diffusion is the most elementary stochastic transport process. Brownian motion,

the representative model of diffusion, played a important role in the advancement of scientific

fields such as physics, chemistry, biology and finance. However, in recent decades, non-

diffusive transport processes with non-Brownian statistics were observed experimentally in a

multitude of scientific fields2. Examples include human travel [59, 60], in-cell dynamics [61],

the motion of bright points on the solar surface [62], the transport of charge carriers in

amorphous semiconductors [63], the propagation of contaminants in groundwater [64] and

the search patterns of foraging animals [65]. Recently, a theoretical model provided a unified

explanation for the prevalence of non-diffusive transport [66].

Understanding the physical mechanisms underlying the transport of suprathermal ions in

turbulence is a major challenge for fusion reactors and astrophysical plasmas. Several obser-

vations indicate that transport in plasmas, under certain circumstances, may be explained

by non-diffusive models. However, direct measurements of suprathermal ion transport in

fusion and astrophysical plasmas are limited by the high temperatures of the former and the

difficulty to access the later. In addition, detailed knowledge of the turbulence characteristics

and of the background plasma is necessary to realistically model the transport of suprather-

mal ions. Thanks to easy diagnostic access and well characterized plasma scenarios, basic

plasma devices, such as TORPEX, offer the ideal framework to investigate the transport of

suprathermal ions.

At the beginning of this Thesis, a numerical investigation of the transport of suprathermal

ions in TORPEX had shown that their transport was generally non-diffusive [47, 67] and the

2We note that non-diffusive transport in fields different than fusion plasma research is often referred to as
anomalous diffusion, which has a different meaning in the fusion community (see Chapter 4). To avoid any
confusion, we use the term non-diffusive.
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Chapter 1. Introduction

installation of a suprathermal ion source had started [68]. In this Thesis, we perform exper-

imental measurements of a suprathermal ion beam in TORPEX and verify the agreement

between the measurements and the propagation of the suprathermal ions in experimen-

tally validated numerical simulations of the turbulent plasma. A non-diffusive model that

explains the measurement is also developed. The experimental measurements, the numerical

simulations and the theoretical model presented in this Thesis contribute to advancing the

understanding of the fundamental mechanisms responsible for the transport of suprathermal

ions in magnetized toroidal plasmas. The structure of the Thesis is as follows.

Chapter 2 introduces the toroidal device TORPEX and the specific setup developed for the

injection and detection of suprathermal ions. The main features of the TORPEX plasmas

investigated in this thesis are also presented.

Chapter 3 describes in details the data analysis methods applied to the suprathermal ion

measurements. The estimate of the errors due to the measurements and data analysis is

also presented. Finally, we present experimental measurements revealing the motion of the

suprathermal ion beam.

In Chapter 4, the classical diffusion model and its assumptions are recalled, followed by a

review of two of the main theoretical non-diffusive models, namely the continuous time

random walk (CTRW) and the fractional Lévy motion (fLm).

Chapter 5 exposes the numerical simulations used to model the plasma dynamics in TORPEX

and the propagation of suprathermal ions in the turbulent plasma. We present the results of

an investigation of the suprathermal ion transport in TORPEX and some considerations about

the simulations used for the comparison with the experiment.

Chapter 6 presents the application of the fractional Lévy motion (fLm) model to the numerical

simulations of the suprathermal ions in TORPEX. We generalize one of the models presented

in Chapter 4 to allow for an asymmetric propagator. We show that asymmetric fLm can

be described by a transport equation using space-fractional differential operator with non-

zero skewness. The time evolution of the radial particle position distribution is shown to be

described by solutions of the fractional diffusion equation corresponding to asymmetric fLm.

Chapter 7 presents the comparison between experimental time-averaged measurements

of the suprathermal ion beam dynamics and numerical simulations. In the first case, the

suprathermal ions have an energy E ' 70eV and in the second they have an energy E ' 30eV.

We compare the evolution of the radial width of the suprathermal ion beam with the results of

numerical simulations to which a synthetic diagnostic is applied. The transport exponent is

computed from the numerical simulations for the two cases. During the interaction phase,

we find that the 30 eV ions experience a superdiffusive transport, while the 70 eV experience a

subdiffusive transport.

In Chapter 8, the first time-resolved measurements of the cross-field transport of suprathermal
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ions in a turbulent magnetized plasma are presented. We consider the same two cases than

in Chapter 7, with suprathermal ion energies of 30 eV and 70 eV, for which the transport

was identified to be superdiffusive and subdiffusive, respectively [40, 69]. We show that the

time traces of the suprathermal ion current show a clear difference in the intermittency level.

Using the technique of conditional average sampling (CAS) [70, 71], we identify the effect of

turbulent structures on the suprathermal ion beam confirming the efficiency of gyroaveraging,

depending on the ion energy, to decrease transport.

Finally, Chapter 9 summarizes the achievements of this Thesis and offers and outlook on

possible future developments.
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2 Experimental setup

In this Chapter, the toroidal device TORPEX is presented, together with the specific setup

developed for the injection and detection of suprathermal ions, namely the suprathermal ion

source on its toroidally movable system and the gridded energy analyzers. The main features

of TORPEX plasmas investigated in this thesis are also presented.

2.1 TORPEX device

The TORoidal Plasma EXperiment (TORPEX) is a toroidal plasma device [72] with a major

radius R0 = 1m and a minor radius a = 0.2m (Fig. 2.1). It is being operated at the CRPP at EPFL

since 2003 with the purpose of investigating turbulence and theory-experiment comparisons.

The stainless steel vessel consists of 12 sectors, each having several ports accessible for the

installation of multiple diagnostics. Four of the twelve sectors can be moved radially on rails

to open the vessel and facilitate the installation of devices inside the torus. Although different

magnetic configurations are possible using different sets of coils, such as the Ohmic coils for

tokamak-like discharges [73] or the recently installed in-vessel toroidal conductor creating

closed flux surfaces [74], all the experiments investigated in this Thesis are conducted in the so-

called simple magnetized torus (SMT) configuration. In this configuration, the magnetic field

is produced by 28 water-cooled toroidal coils (in red in Fig. 2.1) and 4 vertical coils (in orange

in Fig. 2.1). The resulting magnetic field configuration has a main toroidal component and a

weaker vertical component creating helical field lines. The return field line vertical distance is

given by ∆= 2πR Bv
Bt

, where Bt and Bv are the values of the toroidal and vertical magnetic field

at the center of the poloidal cross section. This configuration created a radial gradient and a

curvature of the magnetic field that are key ingredients for the plasma instabilities developing

in TORPEX and for the motion of suprathermal ions. These features along with open field lines

are also characteristic of the magnetic field in the scrape-off layer (SOL) of tokamak plasmas.
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Chapter 2. Experimental setup

Figure 2.1 |View of the TORPEX vessel with the copper coils producing the magnetic field. The
toroidal coils are in red and the vertical coils are in orange. In the SMT, magnetic field lines (vio-
let) are open and helical, terminating on the bottom and the top of the vessel. Simulated snapshots of
the plasma potential are also displayed at two toroidal positions.

2.1.1 Plasma production

TORPEX is equipped with two magnetrons, injecting microwaves in the O-mode polarization

in the electron cyclotron (EC) range of frequencies ( fmw =2.45 GHz), that are used to produce

and sustaine a stationary plasma. The first magnetron injects microwaves from the outboard

of the device, called the low field side low field side (LFS), with a maximum power Pmw < 50kW

and permits to modulate the injection power. The second magnetron injects microwaves from

the bottom of the device with a smaller maximum power of Pmw = 1kW and allows to sustain

plasmas during long period (∼ 15min). The microwaves are absorbed at the EC resonance

and the upper hybrid (UH) resonance layers, which act as particle and heat sources for the

plasma [75]. The radial position of the EC layer (defined by fmw = fEC) is controlled by the

strength of the toroidal magnetic field, as the EC frequency is given by fEC = eB/m, where

e and m are the charge and mass of electrons. The position of the UH layer ( fmw = fUH '
( f 2

EC + f 2
p )1/2) also depends on the plasma density profile, n(R), through the dependence of

fUH on the density in the plasma frequency fp = (
ne2/mε0

)1/2
. For a detailed explanation of

the plasma production in TORPEX, we refer the reader to Mario Podesta’s PhD Thesis [76].

In the experiments addressed here, plasmas are sustained with the second magnetron over

relatively long durations to allow statistically significant measurements of the suprathermal

ion current. The plasma source is always located on the inboard of the device, called the high

field side (HFS).
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2.1. TORPEX device

Figure 2.2 |Photographs of some of the main diagnostics used on TORPEX

2.1.2 Main diagnostics

The low temperature of TORPEX plasmas, the presence of movable sectors and the large num-

ber of ports on the vacuum vessel offer easy access for diagnostics. Most measurements are

performed with electrostatic probes, magnetic probes and a fast framing camera. Photographs

of some of the main diagnostics are shown in Fig. 2.2. The Bdot probe is an array of magnetic

pick-up coils that measures three components of the magnetic field at three locations, yielding

the tangential component of the local current density [77]. The hexagonal turbulence imaging

probe (HEXTIP) consists of 86 Lamgmuir probes (LPs) arranged in an hexagonal grid with a

grid constant d = 35mm [73] that covers the entire plasma cross-section. The array of 8 LPs
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Chapter 2. Experimental setup

that can be moved radially (SLP) and the five-tip triple probe (FRIPLE) are other examples

of electrostatic LPs used in TORPEX. A fast framing Photron-APX-RS camera used with an

image intensifier unit complements the electrostatic probe measurements. A tomographic

reconstruction of the line-integrated camera images allows to study plasma structures smaller

than the spatial resolution of electrostatic probes array in a non-perturbative manner with a

high temporal resolution [78–80].

Langmuir probe theory on TORPEX

In the next paragraphs, we present the basic theory of the electrostatic LPs used in TORPEX.

Electrostatic probes are routinely used in TORPEX as they are one of the simplest and cheapest

diagnostics in plasma physics, particularly suited for low temperature plasmas. However, the

interpretation of their data can be delicate. When the electrostatic potential applied on the

probe, Vpr, is held below the plasma potential, Vpl, the potential drop between the plasma

and the probe is mostly confined in a region, called sheath, having a thickness of the order of

a few Debye length λD =
√
ε0Te /(ne2). In the sheath, ions are attracted to the probe tip and

electrons are partially repelled. Therefore, quasi-neutrality is broken and strong electric fields

exist in the sheath. The simplest model considers a collisionless unmagnetized plasma with

cold ions, Maxwellian electrons and a probe radius that satisfies rp ÀλD. Such model allows

one to express the current measured by the probe, Ipr, as a function of its electric potential [81]

Ipr(Vpr) = 1

2
encs Aeff

[
1−exp

(
e(Vpr −Vfl)

Te

)]
= Isat

[
1−exp

(
e(Vpr −Vfl)

Te

)]
, (2.1)

where n is the plasma bulk density, cs = p
Te /mi the sound speed for cold ions, Aeff the

effective probe surface at the sheath boundary and Vfl the floating potential. If the probe

voltage is strongly negative, only ions are collected. In this case e(Vpr−Vfl)/Te ¿ 1 and Eq. (2.1)

yields the ion saturation current Ipr = Isat = 1
2 encs Aeff ∝ n

p
Te . Time traces of Isat provide

straightforward access to a fluctuating plasma quantities and are therefore commonly used to

study fluctuations properties such as power spectra or to perform statistical [82] or multifractal

analysis [83]. They also provide an estimate of the plasma density by neglecting the square

root dependence upon temperature. When the probe is floating, Vpr =Vfl, no current can flow

and Ipr = 0. The floating potential is also commonly measured to characterize fluctuations

in the plasma. It can be used to estimate the plasma potential since Vpl 'Vfl +µTe /e, where

µ' 3 for hydrogen plasmas [75]. As the potential on the probe potential increases, electrons

become gradually attracted and the current on the probe exponentially decreases as given

by Eq. (2.1) and as can be seen in Fig. 2.3 between Vfl and Vpl. When the probe potential

reaches the plasma potential the sheath disappears and Eq. (2.1) is no longer valid. If the

probe voltage is biased over Vpl, the current measured by the probe is the electron saturation

current. Measuring this transition provides a way to evaluate the value of Vpl, however, as seen

in Fig. 2.3, the transition to the electron saturation does not occur sharply and this method is
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2.1. TORPEX device

Figure 2.3 | I-V characteristics from the SLP probe in TORPEX. The red dots represents the data from
many voltage ramps and the blue line is the averaged characteristic. The floating potential is attained
when Jpr = 0 and the plasma potential is situated around 15 V. The imperfect ion saturation due to the
ion sheath expansion is visible for Vpr .−10V.

accompanied with large incertitudes.

In order to compute the values of the density, temperature and plasma potential from Eq. (2.1),

a complete I-V characteristics is measured. This is done by sweeping the voltage applied to

the probe while measuring the current reaching the probe. The voltage range for the sweep

is chosen to cover the ion saturation branch and the exponentially growing part of the I-V

characteristics, typically from −40 V to 20 V. As the plasma parameters vary rapidly, the sweep

is done at a slow frequency (330 Hz) compared to the fluctuations frequency. The average of

many sweeps provides a measure of the background profiles. Figure 2.3 shows an example of

such measurements. A least-square fit of Eq. (2.1) to the averaged I-V curve gives the time-

averaged values of n, Te and Vpl. A more refined theory taking into account the expansion

of the sheath, which depends on the probe potential, is used on TORPEX [84]. The sheath

expands when the probe potential is decreased, increasing the effective collection area of the

probe and leading to an imperfect saturation of the ion current. This effect is modeled with a

linear term with parameter α [84]

Ipr = Isat
0
[

1−α(Vpr −Vfl)−exp

(
e(Vpr −Vfl)

Te

)]
, (2.2)

where Isat
0 is the value of the ion saturation current extrapolated to the floating potential.

The four parameters Isat, Te , Vfl and α are fitted to the averaged I-V characteristics. Then, the

density is evaluated from the value of Isat and the plasma potential from Vpl =Vfl +µTe /e. The

parameters Aeff and µ are determined experimentally for each probe. The effective size of the

probe, Aeff, is taken such that the measured density at the UH resonance matches the value

computed from theory. The value of µ is evaluated by measuring I-V curves that cover both

the ion and the electron saturation current branches [75], allowing to measure Vpl, Vfl and
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Chapter 2. Experimental setup

Te . The probes are then swept over a reduced voltage range, limiting the perturbations to the

plasma. For example, for the probe SLP in hydrogen plasmas, µ' 3.1±0.6 [75].

Triple probe on TORPEX

In order to measure time traces of n, Vpl and Te on TORPEX, a five-tip triple probe called

FRIPLE (Fig. 2.2) was developed [84, 85]. FRIPLE is based on the principle of the triple probe

and has five tips that allow to reduce phase delay errors. The standard triple probe consists of

three nearby probes that simultaneously measure three points of the I-V characteristics. One

tip measures Vfl, while a constant potential difference ∆V À Te /e is applied between the two

other tips, forming a double probe circuit. The current flowing between the two probes, I ,

and the potential at each tip, V+ and V−, are measured. These quantities, together with the

value of Vfl, permit to evaluate ne , Te and Vpl, provided that the three tips all see the same

plasma conditions. The tips are generally arranged perpendicularly to the background plasma

gradients in order to come close to this situation. However, phase delay between the tips,

for example if a wave propagates along the tip alignment direction, leads to errors in the

measurements. To overcome this issue, a design with five tips is used in the FRIPLE probe.

The fourth and fifth tips also measure V+ and Vfl, providing conjugate phase information to

reduce phase delay errors [85]. The values of the electron temperature, density and plasma

potential are then given by

Te = e(V+−Vfl)

ln3
, n = I

ecs A
and Vpl =Vfl +µTe /e, (2.3)

where A is the tip area. Ion-sheath expansion and stray capacitance due to the coaxial cables

connecting the probe to the acquisition module are also taken into account when analyzing

the data acquired on TORPEX. FRIPLE also features a novel guarding circuit reducing the stray

capacitance [85]. We refer the reader to reference [85] for an explanation of these refinements.

2.1.3 Turbulence regimes

Extensive numerical investigations of the plasma instabilities in the SMT configuration have

been performed using the three-dimensional (3D) fluid code global Braginskii solver (GBS)

[86–89]. These have showed that three turbulence regimes can exist, each driven by an

instability of different nature: the ideal interchange instability, the resistive-interchange

instability and the drift-wave instability [89]. Numerical simulations validated against probe

data in TORPEX [90, 91], show a transition from an ideal interchange regime to a resistive

interchange regime, depending on the pitch of the magnetic field lines. The pitch depends

upon the number N = Lv /∆ of field lines toroidal turns from the bottom to the top of the vessel,

where Lv is the vessel height. For low values of N , the pitch angle of the field line is large and

the turbulent regime is characterized by the presence of ideal interchange modes with parallel

wave number k∥ = 0 and vertical wave number kv = 2π/∆. In this regime, the dominant
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(b) Profile of the density fluctuations computed
from the standard deviation of the Isat time traces.
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Figure 2.4 |Poloidal profiles of the time-average, fluctuations and skewness of the electron density
computed from the ion saturation current time traces, assuming Te = 2.5eV. Two regions with different
statistical signatures are visible, on the HFS, the mode region and on the LFS the blob region.

ideal interchange mode has a toroidal mode number n = 1 and a vertical mode number

l = Lv /λv = Lv /∆= N . Measurements reveal a transition, predicted by numerical simulations,

for N & 7 to a state dominated by resistive interchange fluctuations with l ' 1, kv ' 2π/Lv ,

n = 0 and k∥ ' 1/(RN ) [89]. The drift-wave regime is obtained for sufficiently steep radial

pressure gradient. However, the simulations suggest that, at the relatively high collisionalities

of the TORPEX experiments, the transport driven by interchange modes prevents the gradient

scale lengths from ever steepening into the drift-wave dominated regime [89].

In this Thesis, all experiments have been conducted with hydrogen plasmas in conditions

corresponding to the ideal-interchange regime. The main parameters characterizing these

plasma discharges are indicated in Table 2.1. Figure 2.4 shows the time-averaged density
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(b) Probability distribution functions of the Isat time
traces from the probe locates in the mode region.
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(c) Probability distribution functions of the Isat time
traces from the probe locates in the blob region.

Figure 2.5 |Time traces and PDF of the Isat signal from two probes located in the mode (blue) and blob
(red) region of the poloidal plane. The positions of the probes are indicated in Fig. 2.4.

profile in a poloidal cross section, computed from the array of 86 Langmuir probes (indicated

by the black crosses) HEXTIP [92], measuring the ion saturation current, Isat, and assuming

a constant temperature Te = 2.5eV. Two main regions are visible in Fig. 2.4. The plasma

production takes place in the region defined by X .−5cm, as the EC resonance is located at

X ≈−15cm. In this region, the plasma density forms a vertically elongated slab (Fig. 2.4a). The

ideal-interchange mode is located at the position of the maximum of the pressure gradient

(X ≈ −10cm), corresponding to the position where the density fluctuations are maximum,

visible on Fig. 2.4b. On the other side of the device, the LFS, the plasma density is much lower

as no plasma production occurs in this region. However, the profile of the skewness1 of the

fluctuations (Fig. 2.4c) reveals a clear difference compared to the mode region. Figure 2.5a

shows the two time traces of the Isat signals from two probe tips positioned in the two different

1The skewness of a random variable is the third standardized moments of a PDF. It is a measures of the
asymmetry of a PDF, indicating the presence of a long tail on the right, or on the left, of the PDF if it is positive, or
negative, respectively. The Gaussian distribution has a skewness equal to zero.
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2.1. TORPEX device

Table 2.1 |Plasma parameters for the reference hydrogen plasma discharge.

Quantity Symbol Value

Major radius R0 1 m
Minor radius a 0.2 m
Toroidal magnetic field Bt 74 mT
Vertical magnetic field Bv 2 mT
Field line return vertical distance ∆ 18 cm
Number of toroidal field turns N 2.2
Microwave power Prf 150 W
Neutral pressure pn 5×10−5 mbar
Electron density ne 1016 m−3

Electron temperature Te 2.5 eV
Ion temperature Ti < 1 eV
Neutral density nn 1×1018 m−3

Ionization degree ne /nn 0.7 %
Density gradient scale length Ln 6 cm
Electron Debye length λD 0.12 mm
Electron plasma frequency fpe 897 MHz
Ion plasma frequency fpi 21 MHz
Electron thermal velocity vthe 6.6×105 m/s
Ion thermal velocity vthi < 9.8×103 m/s
Sound speed cs 1.5×104 m/s
Electron Larmor radius ρe 0.05 mm
Ion Larmor radius ρi < 1.4 mm
Ion Sound Larmor radius ρs 2 mm
Electron cyclotron frequency fce 13 GHz
Ion cyclotron frequency fci 7 MHz

regions. While the time trace from the probe in the mode region reveals coherent, periodic,

fluctuations, the probe on the LFS displays a bursty time trace with intermittent spikes. These

are responsible for the large skewness of the fluctuations in this region. As can be seen in

Fig. 2.5c, the PDF of the time trace of the LFS probe is positively skewed, while the PDF of

the other probe (Fig. 2.5b) is almost Gaussian. The bursts in the time traces in this region are

caused by intermittent convective particle transport. Bunches of particles are ejected from

the main plasma and travel radially outward [84]. This phenomenon is commonly observed

at the edge of magnetically confined plasmas, such as in the low-latitude ionosphere [93] or

at the edge of tokamaks [94]. These plasma structures are generally called blobs or filaments

because of their shape which is elongated and aligned with the magnetic field lines.

In TORPEX, an in-depth investigation of blob creation and propagation [71, 77, 95–101] has

revealed that blobs are generated from an interchange wave that increases in amplitude and

extends radially in response to a decrease of the radial pressure scale length. The radially

elongated plasma density structures are then sheared off by the E×B flows and propagate
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Figure 2.6 |Example of the 2D profile of Jsat, n, Vfl, and Te for a H2 blob obtained with the conditional
sampling method (taken from [95]).

radially outwards. Blob motion is caused by the electric field created by the charge separation

arising inside blobs because of the ∇∇∇B and curvature drifts. The E×B convection resulting

from this vertical electrical field gives rise to the radial motion of the blob. An experimentally

verified analytical formula predicts the blob velocity by taking into account parallel currents,

ion polarization current, inertia and ion-neutral collisions that can damp charge separation

[100]. Due to charge separation and sheath boundary conditions, parallel current and plasma

potential dipoles are associated with the blob density monopole. Figure 2.6 shows the density

monopole, floating potential (Vfl 'Vpl−3Te /e) dipole and temperature associated with a blob,

measured using conditional sampling [70]. A comprehensive study of blobs in TORPEX can be

found in Christian Theiler’s PhD Thesis [84].

2.2 Production and detection of suprathermal ions

In this section, we describe the experimental setup (Fig. 2.7) designed and built at the CRPP to

study the transport of suprathermal ions in TORPEX. It was specifically designed to identify

the transport regime in a turbulent interchange-mode plasma by measuring the spreading

of a suprathermal ion beam. This setup allows measurements of the time-averaged three-

dimensional (3D) profile of the suprathermal ion beam as it interacts with the plasma turbu-

lence [40]. The first versions of the suprathermal ion source and detector were developed in

collaboration with the group from the University of California at Irvine (UCI) working on the

Large Plasma Device (LAPD) at UCLA [68, 102] in the context of G. Plyushchev PhD Thesis [68].

This setup demonstrated the feasibility of the suprathermal ion measurements in TORPEX,

however, it also revealed their difficulty due to the extremely low signal-to-noise ratio. During

my Thesis, several improvements were brought to the design of the source and detector, and to
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Figure 2.7 |View of the TORPEX vessel with magnetic field line and suprathermal ion detection sys-
tem. TORPEX contains open, helical magnetic field lines (violet) with a radial gradient in field strength
that terminate on the vessel. Also shown are the suprathermal ion source on a toroidal sliding track and
one detector mounted on a 2D moveable system that can also be displaced toroidally. This combina-
tion allows measurement of a 3D suprathermal ion current profile. Computed examples of simulated
suprathermal ion trajectories with an initial energy of 30 eV are shown in red, emitting from the source.
Gyromotion and the irregular spreading of the ion beam due to interaction with the plasma turbulence
is apparent. Simulated snapshots of the plasma potential are also displayed at two toroidal positions.

the measurement technique. An issue with the suprathermal ion source is the relatively short

life of its emitter and its sensitivity to exposition to atmospheric pressure. In order to overcome

this issue, the design of the suprathermal ion source was improved to facilitate and accelerate

its assembly. Furthermore, a movable system was developed, allowing to move the source

inside the vessel along the toroidal direction. An analog lock-in was developed in order to use

synchronous detection in real-time. This device has the possibility to remove capacitive effects

with the addition of a dead-time in the demodulation of the signal. A second detector was also

built to perform measurements at different toroidal locations, without opening TORPEX and

therefore breaking the vacuum.

2.2.1 Suprathermal ion source

The source is based on a two-grid accelerating system with a thermionic emitter similar to the

one used in the LAPD at UCLA [39,103]. The emitter is made of an aluminosilicate layer doped

with lithium 6 ions deposited onto a cylindrical molybdenum body purchased from HeatWave

Labs Inc [104]. Figure 2.10 shows a schematics of the source. A current I ' 2.5A and a voltage

U ' 8.5V (P ' 21W) are used to heat the emitter by Joule effect up to a temperature of the order

of 1000 ◦C [103] to start the thermionic emission. At this heating power, the suprathermal ion

current is ∼ 10µA. For its first usage, each emitter is slowly heated, typically over a period

of 6 hours, to avoid the deterioration of its surface and the deposition of impurities. The

following heating procedures can be faster, lasting typically 3 to 4 hours. Figure 2.8 shows the
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Figure 2.8 | (a) Emitted current as a function of the heating power of the source emitter. (b) Evolution
of the heating power as a function of time.

emitted current as a function of heating power measured during a test made in a vacuum

chamber where the emitter is held at 1.5 mm from a metallic plate and a voltage difference of

300V is imposed between the emitter and the plate.

The emitters are heated inside TORPEX and are kept in its vacuum (p . 1×10−6 mbar) until

they are depleted. The extracted current is increased by applying an accelerating electric

field between the emitter and the inner grid (Schottky effect) reducing the potential energy

barrier at the surface of the emitter [105]. Figure 2.9 shows the voltage biasing scheme of the

source. In order to sustain the high temperature of the emitter, the metallic parts of the source

are made of molybdenum and the grids of tungsten (Fig. 2.10). The outer grid is grounded

so that ions are decelerated between the inner and the outer grids. The exit ion energy is

given by the voltage difference between the emitter and the outer grid. The voltage on the

inner grid is biased typically at −20 V, not too negatively to avoid the acceleration of electrons

thermo-emitted from the heated tungsten or secondary electrons emitted by the grid. The

mesh of the grids has 150 wires per inch with a wire diameter of 0.02 mm resulting in a nominal

aperture size of 0.15 mm which is of the order of the Debye length. The optical transparency

of the grids is 75 %. Thus, the grids prevent the plasma from entering into the source and let a

significant fraction of the suprathermal ions pass through them.

The original design of the suprathermal ion source [68,102] has been improved to have a better

electrical insulation of the different components by carving paths for the different electric

wires directly in the boron nitride casing (Fig. 2.11). In addition, to facilitate the assembly

of the source, the original design of the boron nitride casing, consisting of a cylinder with a

screwcap, has been modified to a design with two boron nitride pieces encasing the emitter

and the grids, held by ceramic screws (Fig. 2.10). Speeding up the mounting of the source is

important since the 6Li ions emitter has a relatively short life expectancy (∼40 hours).

In order to perform 3D measurements of the suprathermal ion beam, the source is mounted
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2.2. Production and detection of suprathermal ions

Figure 2.9 |Voltage biasing scheme of the suprathermal ion source used to accelerate the ions and
prevent the plasma from entering into the source.

(a) Side view of the suprathermal ion
source showing the emitter, the molyb-
denum pieces holding the grids and the
emitter, and the boron nitride pieces.

(b) Open view of the suprathermal ion source
showing the two nitride boron pieces encasing
the emitter and the grids.

Figure 2.10 | Schematic of the suprathermal ion source. Nitride boron pieces are in white, molybdenum
pieces in gray and the emitter is in red.

on a rail that allows it to be moved in the toroidal direction (Fig. 2.12). The rail is installed in

one of the movable sector of TORPEX and permits to move the source continuously along the

toroidal direction over a distance of ∼ 48cm. The source is moved between discharges and a

high-resolution poloidal cross-section of the suprathermal ion current profile is measured by

the detector for each toroidal position of the source. The complete system is contained inside

the vacuum chamber of TORPEX. The possibility of moving the source without having to

open TORPEX, and breaking the vacuum, is essential for the experimental campaign. Indeed,

the lifetime of the emitter is greatly diminished when it is exposed to atmospheric pressure.

An ultrasonic piezoelectric motor was chosen to move the source along the rail. Ultrasonic
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Figure 2.11 |Photograph of the inside of the suprathermal ion source showing the paths for the electric
wires carved in the boron nitride casing.

motors are particularly well suited to work in vacuum and magnetized environments since

they do not need any greasing and do not embed permanent magnets. The source motion was

measured with a system tracking infrared LEDs attached to the cart moving on the rail [106].

The 3D translation and the 3D rotation were recorded during several motions along the rail

and a resulting maximum deviation of the source from its expected vertical position of 4.5 mm

was recorded.

2.2.2 Suprathermal ion detection

Gridded energy analyzers

Gridded energy analyzers (GEAs), also called retarding-field or retarding-potential energy

analyzers, are widely used in plasma physics to measure electron or ion energy distribution

functions or fluxes. For examples, they are used in industrial plasma processing [107] to

measure ion fluxes impinging onto substrates or in space plasmas, installed on satellites for

in-situ measurements [108]. GEAs allow to discriminate the measured particles depending on

their energy. Electrostatic potentials on metallic grids and on the collector create electrostatic

“retarding” fields that let only ions, or only electrons, with an energy above a certain value reach

the collector [81]. The simplest GEAs have just one grid in front of the collector, while more

advanced models can have four or five grids that limit the collection of secondary electrons

that can disturb the measurements [109].

In TORPEX, the suprathermal ion detector consists of two identical miniaturized GEAs, each

having two grids, allowing the measurement of the suprathermal ion current [39, 68, 102]. The

two GEAs face opposite directions so that differential detection is used to remove a significant

part of the background noise. During this thesis, a second detector was build, based on
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2.2. Production and detection of suprathermal ions

Figure 2.12 |Photograph of the suprathermal ion source mounted on the toroidally-movable system in
one of the TORPEX sectors. The source is positioned in the lower part of the device to maximize the
distance traveled by the ions before they reach the upper wall because of their vertical drift.

(a) Photograph of one of the detectors mounted on the
poloidal movable system.

(b) Photograph of a part of one of the GEAs
inside a detector. The red arrow indicates the
direction of entry of the detected particles.

Figure 2.13 |Photographs of the inside and outside of one of the detectors consisting of two GEAs
facing opposite direction.

the same design that the one used previously on TORPEX [68]. Using two detectors allows

doubling the number of measurements without having to open TORPEX. The two detectors

are positioned at different toroidal positions along the suprathermal ion beam.

Figures 2.13 and 2.14 show photographs and a schematics of the new detector. Metallic parts

holding the grids are in aluminum, insulating pieces are in plastic, the casing is made of Macor

glass-ceramic and, the grids and collectors are made of copper. The mesh of the grids has
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Figure 2.14 |Drawing of the detector indicating the distances between each element and the size of the
inlet and of the collector. The color scheme represents the actual colors of the connection cables. The
voltage biasing scheme is represented on the bottom.

200 wires per inch and 0.02 mm wire diameter. The bias voltage on the collector is chosen to

repel thermal ions from the bulk plasma. As plasma ions in TORPEX are cold (Ti ¿ 10eV), a

value of 10 V is sufficient to ensure that only ions emitted by the source are detected. Resistors

with a resistance of 10 kΩ are connected to the collectors and embedded inside the detector

(Fig. 2.14) to convert the collected current in a voltage difference. The inner grid is biased

to a negative voltage to repel plasma electrons. The outer grid is grounded to zero potential

and serves as a first barrier preventing the plasma to enter the detector. Measurements of

the ion energy distribution can be done by varying the voltage on the collector. However,

GEAs with only two grids cannot repel secondary electrons liberated by the inner grids as

suprathermal ions collides on them. This effect obscures the ion signal and does not allow

to reliably measure the energy distribution of the collected particles. For this purpose, GEAs

have typically three or more grids. Nevertheless, this is not in issue for the measurement of

suprathermal ion current profile, since the collector voltage is not varied in this case. For

GEAs with three of more grids, the selection of the ions is done by positively biasing one of the

inner grid and an other placed between this grid and the collector is negatively biased in order

to repel the secondary electrons [81, 109]. Here, we use the detector to selectively measure

the current due to suprathermal ions and not to measure their energy distribution. As we do

not vary the potential on the collector, the collection of secondary electrons only affects the

absolute value of our measurements.
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2.2. Production and detection of suprathermal ions

Figure 2.15 | a) Electronic diagram showing the principle of a lock-in amplifier with a dead-time. The
system consists of two switches operated in a staggered pattern, a RC low-pass filter and a differential
amplifier. b) Time trace of the reference signal used to modulate the source bias voltage. c) The resulting
signal in the detector with capacitive effects due to the voltage modulation of the source. d) and e)
Switching pattern for the two switches. On these time traces, a signal value equal to zero represents an
open switch.

Synchronous detection of the suprathermal ion current signal

As the suprathermal ion current is extremely weak (∼10µA) and its signal is small compared

to the background noise, a synchronous detection scheme is used to improve the signal-

to-noise ratio [110]. In our case, the emitter bias is square-modulated by a reference signal

(Fig. 2.15b) at a frequency, fref = 1073 Hz, chosen to avoid harmonics of the electric grid (50 Hz).

The suprathermal ion current is therefore “switched” on and off at this frequency, while the

background noise remains independent of this modulation.

The detection is made using a phase-sensitive detector (PSD), also called a “lock-in” amplifier,

consisting of a switch operated at the reference frequency, a RC low-pass filter (R = 220kΩ,

C = 1µF, τ= RC ' 0.2s) and a differential amplifier (Fig. 2.15a). The switch inverts the signal
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periodically resulting in a signal consisting of the suprathermal ion current component and

the background noise, during the “on” phase, and only the inverted noise during the “off”

phase. The low-pass filter averages the resulting signal over many periods of the reference

signal, effectively averaging-out the noisy part of the signal and giving a DC signal proportional

to the suprathermal ion current. Unfortunately, in our setup, the modulation of the emitter

results in undesired space-dependent capacitive effects in the detector (Fig. 2.15c). In order

to remove this capacitive noise, a new lock-in amplifier allowing to set a dead-time has been

developed. The dead-time is introduced with the help of a second switch (Fig. 2.15a). The two

switches are opened and closed according to the pattern shown in Fig. 2.15d and Fig. 2.15e.

During the dead-time, the two switches are open and the common-mode rejection of the

differential amplifier removes the capacitive effects from the output signal. The duration of

the dead-time is adjusted to optimize the removal of these capacitive effects. The final signal

is then integrated to obtain a DC output proportional to the suprathermal ion current.

Gain of the detection chain

The detection chain comprises different elements that each amplify the collected current with

a certain gain. The first element is an analog circuit connected on the output of the detector

with a theoretical gain G1 = 56×103. Then, there is a differential amplifier used to subtract the

signal of the detector measuring the background noise to the one measuring the suprathermal

ion current that has a variable gain G2 = {10,20,50,100,200,500}. And finally, the lock-in

amplifier has a gain, G3, that depends on the value of the dead-time and which is measured to

be 1.4 <G3 < 12. The value of the entire amplification chain is measured to take into account

the imperfections due to the cables and electronics and a correction factor C = 0.88 is found

between the theoretical gain and the real gain. The factor is almost independent upon the

test signal frequency between 10Hz and 10kHz. The total gain is given by G =G1G2G3C and

varies between Gmin ' 784×103 and Gmax ' 336×106, depending on the value of G2.
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This Chapter describes in details the data analysis to reconstruct the time-averaged 3D

suprathermal ion current profile. The quantity used to measure the spreading of the suprather-

mal ion beam due to its interaction with the plasma turbulence, namely the standard deviation

of the suprathermal ion profiles, is discussed. The estimate of the errors due to the measure-

ments and data analysis is also presented. Finally, we present experimental measurements

revealing the motion of the suprathermal ion beam. Measurements of the radial spreading of

the beam are presented in Chapter 7.

3.1 Poloidal cross section of the suprathermal ion current

Poloidal cross sections of the suprathermal ion current are reconstructed from the time-

averaged current measurements. The detector is mounted on a motorized two-dimensional

(2D) movable system [102]. In the configuration used for these experiments, a typical discharge

lasts several minutes, during which the plasma is continuously sustained by microwave power.

The detector is moved in the poloidal plane allowing measurements at several positions.

Figure 3.1 shows an example of the time trace of the 2D position and of the signal measured by

the detector during a plasma discharge. Several scans allow to recover the entire suprathermal

ion current profile. The resolution of the measurements is adapted to the shape of the profile.

For example, the gray circles shown on Fig. 3.2 represent the measurement positions used

to reconstruct the poloidal suprathermal ion current profile in the chosen example. The

detector is moved in steps and remains at each position for at least 10 seconds to provide

a statistically-relevant time average. The time average is obtained using the analog lock-in

amplifier presented in section 2.2.2. The poloidal current profile is then reconstructed by

interpolating the scattered data points onto a 2D uniform grid with 1 mm spacing using the

natural-neighbors method [111]. The offset arising from the analog lock-in amplifier is finally

removed by computing its value as the average of all the interpolated data points that have a

value smaller than the 5% of the maximum ion current value anywhere on the profile.
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Figure 3.1 |Example of a time trace from a poloidal scan with the suprathermal ion detector for 70 eV
ions at a toroidal distance of 2.2 m from the source. The radial position, r , and the angle, θ, defining
the position of the detector in polar coordinates shown in Fig. 3.2 are also recorded. The period during
which the detector is at rest are indicated in red on the detector time trace. The displacement of the
detector is reported on the poloidal plane in Fig. 3.2.

3.2 Mean position and standard deviation of the suprathermal ion

current poloidal profiles

To quantify the displacement and the broadening of the suprathermal ion beam, the mean

position and the standard deviation of the suprathermal ion current profile are computed.

Different methods can be employed to evaluate these quantities. The position of the maximum

value of the profile and the full width half maximum can be used. Alternatively, fitting a 2D

Gaussian on the profile can also provide a value for the mean position and width of the profile.

However, these methods assume that the profile is smooth and regular. The assumption

that the profile is Gaussian, and therefore that it can be described by only two parameters, is

very strong. Here, we decided to use the general definition of the mean and of the standard

deviation of a distribution, making no assumptions on the shape of the profiles. It must be

noted that, ultimately, we want to compare the experimental profiles with profiles computed

from numerical simulations with a synthetic diagnostic (Chapter 5). Different methods could

be used to compute the position and width of the profiles, but the important point is to use

the same method for both, experimental and simulated profiles. In the following, we detail the

method used to compute these quantities. We are mostly interested by the radial width of the
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3.2. Mean position and standard deviation of the suprathermal ion current profiles

Figure 3.2 |Reconstructed poloidal suprathermal ion time-averaged current density [A/m2] profile for
70 eV ions at a toroidal distance of 2.2 m from the source. The gray circles represents the positions of the
detector used to reconstructed the poloidal profile. The size of the circle represents the aperture size of
the detector. The black line shows the displacement of the detector corresponding to the measurement
shown in Fig. 3.1, measured by r and θ.

profile as we are investigating the radial transport of suprathermal ions. The vertical position

of the beam is also computed, since it allows to verify the displacement of the beam, which is

mostly vertical due to the curvature and ∇B drifts. The radial position and the vertical width

of the profiles can naturally be computed using the same method.

The mean vertical position of the suprathermal ion current distribution is computed from the

interpolated profiles (Fig. 3.2) by taking vertical slices of the profile every millimeter. In order

to select the relevant portion of the profile, only slices that have a maximum value greater than

30% of the global maximum value of the current are taken into account. Selecting more slices

by chosing a smaller ratio than 30% do not significantly change the result. Then, the mean

vertical position is computed for each selected slice j as

ȳ j =
∑

i yi · Ii∑
i Ii

, (3.1)
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Figure 3.3 |Example of the evaluation of the mean radial position and radial width of a suprathermal
ion current profile. The blue lines represents the selected horizontal slices of the profile in Fig. 3.2. The
red points indicates the radial position of the mean of each j slice, x̄ j . The black lines under each j
slice have a length 2σ j , representing their width. The green line show the position of the mean radial
position of the entire profile, µx '−1cm, and the dashed black lines are separated from the green line
by a distance σ' 1.2cm, showing the mean width of the entire profile.

where the yi are the vertical positions along the y axis and the Ii are the corresponding ion

current values. Finally the mean vertical position of the beam profile, µy , is computed as the

average of all the ȳ j : µy =
〈

ȳ j
〉

j . Figure 3.3 shows the computation of the mean radial position

and of the radial width of a typical profile.

To quantify the radial transport, the standard deviation of the ion current distribution profiles,

is computed using a similar technique. Relevant horizontal slices are selected using the same

criteria as for the vertical slices (Fig. 3.3) and the radial standard deviation of each slice is

computed as

σR, j =
[∑

i
(
xi − x̄ j

)2 · Ii∑
i Ii

]1/2

. (3.2)

Here, xi represents the radial positions and x̄ j the mean radial position of the slice j . The

radial standard deviation of the entire profile is given as the average of the standard deviation

of all the slices : σR = 〈
σR, j

〉
j .
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3.3 Evaluation of the measurement errors

The errors arising from the measurements of the position and width of the 2D profiles depend

on the size of the detector, the height and the shape of the profile, the resolution of the

measurements and the accuracy of the detector positioning system.

To take into account the size of the detector, the resolution of the measurements and the

accuracy of the positioning system, a simulation of the measurements and of the data anal-

ysis is done on prescribed profiles. The results are then compared with the actual values.

Gaussian profiles with different standard deviations, σ, are created on a high resolution 2D

grid with 0.5 mm spacing. An example is shown in Fig. 3.4a. A synthetic detector is displaced

over the profile on a coarser grid (4 mm spacing), representing the typical resolution of our

measurements. At each step, an error on the position of the detector is created by a random

variable with a Gaussian distribution with zero mean and a standard deviation σpos = 2mm,

representing the uncertainty in the position of the movable system. The value at each point of

the coarser grid is computed as the average of all the points of the 2D Gaussian contained in a

circle of the size of the detector (radius of 4 mm), centered on the point position (Fig. 3.4b).

This profile is then interpolated by using the same method used to reconstruct the suprather-

mal ion current profiles from the experiments (Section 3.1). The resulting profile is shown

in Fig. 3.4c. Finally, the standard deviation of the interpolated profile, σmes, is computed by

using the technique detailed in Section 3.2. In order to average the effect of the random error

on the position, this procedure is repeated 50 times for each profile width and the average of

the standard deviation off all profiles is taken. The convergence of the average was verified.

The relative error, εr = |σmes −σ|/σmes, is shown in Fig. 3.5 as a function of the measured

standard deviation of the profiles. The error is smaller than 10% for profiles having a standard

deviation larger than 0.65 cm and increases rapidly when the width of the profiles decreases.

For measured standard deviations of 0.25 cm, the error is 95%. This shows the limitation of our

measurement set-up due to the size of the detector aperture. However, this is only an estimate.

In reality, the resolution of the measurements can be increased and the error associated with

the positioning system has a systematic part due to the motion of the detector and depends

on the direction of the motion, which changes during the scan (Fig. 3.1). Modeling it with

a Gaussian random variable does not capture this complexity but it gives an estimate of its

importance.

Another source of errors comes from the fact that the suprathermal ion current profiles are not

perfectly Gaussian. In this case, using only the mean position and the standard deviation of

the profile is not enough to completely describe them. Higher moments, such as the skewness

and the kurtosis, could be used. In order to take into account this effect without using higher

moments we compute the error associated with this effect. For a 2D Gaussian profile, the

method described in Section 3.2 to measure the standard deviation of the profile provides the

same value for the standard deviation σR, j of all slices. Therefore, the standard deviation of all

the σR, j provides a measure of the deviation of the profile shape from a perfect Gaussian.
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Figure 3.4 |Profiles showing the technique used to evaluate the error due to the measurement with
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Figure 3.5 |Relative error associated to the finite size of the detector and the uncertainty of its position
as a function of the standard deviation of the ion current density profiles.

We note here that an arbitrary 2D elliptic Gaussian that can be tilted with respect to the x and

y axes, has the same standard deviation, along the x axis, for all value of y regardless of its tilt.

Indeed, a general expression for a 2D Gaussian, centered at the origin, is given by

f (x, y) = Ae(−(ax2+2bx+c y2)), (3.3)
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where
(

a b
b c

)
is a positive-definite matrix. The variance along the x axis is given by

σ2
x (y) =

∫
(x −µx (y))2 f (x, y)d x∫

f (x, y)d x
= 1

2a
(3.4)

where the mean along x is given by

µx (y) =
∫

x f (x, y)d x∫
f (x, y)d x

=−by

2a
. (3.5)

The variance along the x axis does not depend on y . The standard deviation of all the σR, j ,

which is equal to zero for a 2D Gaussian profile, provide therefore a measure of the irregularity

of the profiles.

To conclude this section, the error on the vertical mean position is given by the standard

deviation of all the ȳi , and takes into account the size of the detector as well as the irregularity

of the rail:

eµy =
[

1

N −1

N∑
j=1

(
ȳ j −µy

)2

]1/2

+ d

2
+ r , (3.6)

where N is the number of slices, d = 8mm is the diameter of the detector aperture and

r = 4.5mm represents the deviation due to the irregularity of the rail.

The error on the width of the profiles is given by the standard deviation of all the σR, j added to

the error, εr , computed with the method detailed above:

eσR =
[

1

N −1

N∑
j=1

(
σR, j −σR

)2

]1/2

+εrσR . (3.7)

3.4 Motion of the suprathermal ions

In this section, we evaluate the motion of the suprathermal ions in the absence of the pertur-

bations due to their interaction with the turbulence. We compute the vertical position of the

suprathermal ion beam as a function of the toroidal distance it travels and of its energy.

In the absence of a plasma, the motion of suprathermal ions in TORPEX is a combination

of the cyclotron motion around the magnetic field lines and the vertical drift of the guiding

center due to the curvature and gradient of the magnetic field. The cyclotron frequency for

Lithium 6 ions is given by

fsi = Ωfi

2π
= 1

2π

qB

m
' 188KHz, (3.8)
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where m and q are the mass and the electric charge of the particle, B is the magnitude of the

magnetic field, and the Larmor radius of the suprathermal ion orbits is

ρL = mv⊥
qB

, (3.9)

where v⊥ is the component of the particle velocity perpendicular to the magnetic field. The

guiding centers drift due to the gradient and the curvature of the magnetic field are expressed

as [1]

v∇B = 1

2

mv2
⊥

qB

B ×∇∇∇B

B 2 , (3.10)

vR =
mv2

∥
qB

Rc ×B

R2
c

, (3.11)

where v∥ is the component of the velocity parallel to the magnetic field and Rc is the curvature

radius. The grad-B drift direction depends on the charge of the particles. For ions in TORPEX,

it is directed upwards.

Considering cylindrical coordinates (r,φ, z), in TORPEX the magnetic field can be written as

B = B0
R0
R eφ+Bz ez , where B0 is the value of the toroidal magnetic field at the injection position

R0. The pitch angle of the magnetico field, θ = arctan Bz
B0

' 0.027rad, being very small, we

consider that the drift velocities perpendicular to the magnetic field can be taken along the

vertical axis. In the following we consider first order approximations in θ. We also neglect the

contribution of the vertical component of the magnetic field to the value of its norm (|B | ' B0).

In this geometry, the vertical drift due to grad-B and curvature is

vup = v∇B +vR = m

qB0R0

(
v2
∥ +

1

2
v2
⊥

)
ez . (3.12)

Defining the velocity pitch angle as λ= v⊥/v∥ and recalling the definition of the suprathermal

ion energy E = 1
2 m

(
v2
⊥+ v2

∥
)
, the upward drift can be written as

vup = E

qB0R0

(
2

λ2 +1
+ 1

1+ 1
λ2

)
ez = E

qB0R0

2+λ2

1+λ2 ez . (3.13)

A supplementary vertical velocity of the guiding center, vp, appears in cylindrical coordinates

because of the vertical pitch angle of the magnetic field lines θ,

vpitch = v∥θez =
(

2E

m(λ2 +1)

) 1
2

θez . (3.14)
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Table 3.1 |Parameters of the suprathermal ions.

Quantity Symbol Value

Lithium 6 mass m 1.0036×10−26 kg
Lithium 6 ion charge q 1.6022×10−19 C
Injection position R0 1 m
Toroidal magnetic field at the injection position B0 0.074 T
Magnetic field pitch angle θ 0.027 rad
Velocity pitch angle λ 0.1 rad
Mean radial electric field Ēr 40 V/m
Energy of the suprathermal ions E 70 eV
Cyclotron frequency fsi 188 KHz
Cyclotron period τsi 5µs
Larmor radius ρL 8 mm

Velocities

Initial v0 47.3 km/s
Parallel v∥ 47.0 km/s
Perpendicular v⊥ 4.7 km/s
Curvature drift vR 1.9 km/s
Grad-B drift v∇B 9 m/s
Mean E×B drift vE×B 540 m/s
Vertical magnetic pitch vpitch 1.3 km/s

In the presence of a plasma, a mean radial electric field, Ē = Ēr er , is present in TORPEX due

to the gradient of the plasma potential [75]. This field gives rise to an additional vertical drift

velocity

vE×B = E×B

B 2 = Ēr

B0
ez . (3.15)

The unperturbed vertical velocity of the suprathermal ion guiding center can be written as

vz = vup + vpitch + vE×B and the vertical position as a function of the toroidal distance, R0φ, is

given by

z = z0 + vz t = z0 + vz
R0φ

v∥
= z0 + vz R0φ

(
2E

m(λ2 +1)

)− 1
2

. (3.16)

Typical values of each drift velocity term are reported in Table 3.1 along with the suprathermal

ion parameters. We see that, except for the grad-B drift, all the upward drifts are important.

Figure 3.6 shows measurements of the vertical position of the beam along with the position

computed from Eq. (3.16) and computed from numerical simulations detailed in Chapter 5. A

very good agreement is shown. An oscillation of the vertical position, caused by the cyclotron
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Chapter 3. Experimental technique

Figure 3.6 |Vertical position of the suprathermal ion beam as a function of the toroidal distance for
two ion energies. The dots represent experimental data, the dashed lines are computed with Eq. (3.16)
and the continuous lines are obtained with a synthetic diagnostic from numerical simulations detailed
in Chapter 5. The vertical drift experienced by the suprathermal ions is visible.

motion of the ions, is visible in the experimental measurements as well as in the simulation

results. Indeed, the toroidal distance traveled by 70 eV ions during one gyromotion, v∥τsi '
23cm, corresponds to the observed oscillation period.

3.5 Measurements with and without plasmas

Here, we present an example of measurements of the suprathermal ion beam width made with

and without plasma, in the presence of a magnetic fields [39]. The radial and vertical standard

deviations of the current profiles are shown as a function of the toroidal angle φ in Fig. 3.7.

Together with the experimental measurements, the standard deviation of the beam profiles

obtained with the synthetic diagnostic from numerical simulations is shown (Chapter 5 details

the numerical simulations and the synthetic diagnostic).

Figure 3.7 reveals an oscillation of the beam width at the cyclotron frequency. A small spreading

in the initial parameters creates a small spreading of the ion Larmor radii and a small initial

phase difference in the gyromotion among the ions. This induces an oscillation of the beam

width at the cyclotron frequency [37, 39]. In the presence of plasma (Fig. 3.7 right), one can

notice, on top of the oscillations, a broadening of the beam width due to its interaction with the

plasma. This turbulent broadening will be investigated and characterized in Chapter 7. The

agreement between simulations and experiments is remarkable, although a small mismatch

in the phase of the oscillations between experiment and simulation is observed for the case
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Figure 3.7 |Radial (top row) and vertical (bottom row) standard deviation of the suprathermal ion
current density profiles as a function of toroidal distance for ions with an energy of 70 eV, in the absence
(left) and with a plasma (right). The blue crosses represent the experimental data and the red lines
represent the value obtained from profiles computed from numerical simulations with a synthetic
diagnostic (Chapter 5). The oscillations due to the gyromotion is visible. In the case where a plasma is
present, a spreading on top of the oscillation is revealed.

without plasma. The absolute value of the standard deviation is also decreased in the presence

of plasma. Those differences between the operation of the source with and without plasma

could be explained by the fact that the functioning of the source is affected by the surrounding

plasma. In the absence of a plasma, an accumulation of ions on the surface of the source outlet

can deviate the ions exiting the source, increasing their perpendicular velocity and, therefore,

their Larmor radii. When the source is surrounded by a plasma, the ions accumulated on the

source surface are neutralized and the beam is more focused.
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4 Non-diffusive transport

Transport of particles, heat and momentum in plasmas is generally described in the framework

of the diffusion-advection paradigm [112–114]. Diffusion is the transport of a quantity in a

medium down a concentration gradient due to random collisions with the particles of the

medium. Advection is the transport of a quantity by a fluid due to the fluid’s bulk motion. At a

microscopic level, the diffusion-advection paradigm assumes the existence of an underlying

uncorrelated, Gaussian stochastic process, i.e. a Brownian random walk with a drift. This

implies a number of restrictive assumptions such as the locality of transport and the lack of

long-range correlations. For example, in Fick’s law, the fluxes are assumed to depend only on

local quantities, i.e., the gradients of the fields. In the language of plasma physics and fusion,

the term classical transport refers to the motion of charged particles that is due to Coulomb

collisions. Across the magnetic field, such motion has step sizes that correspond to the charged

particles’ Larmor radius. In toroidal magnetically confined plasmas, such as tokamaks and

stellarators, the model of neoclassical transport extends the diffusion-advection paradigm

of classical transport to complex magnetic geometries [115] to include complex orbit effects.

Orbits in tokamaks are in fact characterized by particle trapping in local magnetic mirrors,

due to the field non-uniformity in the toroidal direction, and guiding center drifts across the

magnetic field lines. Both classical and neo-classical models assume that the plasma is in

a quiescent state. When applied to tokamaks, these underestimate the observed transport

by an order of magnitude or more [21]. This discrepancy is due to the transport caused by

turbulent fluctuations in the plasma. Indeed, magnetized plasmas are often characterized by

the presence of turbulence, which may transport or trap particles much more effectively than

Coulomb collisions and therefore invalidate the classical or neo-classical models. The excess

of measured loss rates compared to neoclassical predictions is what is called anomalous trans-

port [21]. Anomalous diffusion coefficients are usually estimated by the means of quasilinear

theory [22,116], which investigates the diffusion in phase space due to the interaction between

wave and particles, non-linear simulations [117,118] and experiments [119]. These treatments

are based on the validity of the diffusion paradigm. However, growing theoretical [120–122],

numerical [34, 123] and experimental [124, 125] evidence suggest that, under certain circum-

stances, the diffusion-advection paradigm may not be valid and that its assumptions need to
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Chapter 4. Non-diffusive transport

Figure 4.1 |Example of trajectories of small particles (radius of 0.53µm) in suspension in a fluid mea-
sured by Jean Perrin [132]. The successive positions are marked every 30 s and joined by straight lines
to guide the eye. The grid size is 3.2µm.

be relaxed to describe the turbulent transport in magnetized plasmas, which can be non-local

and can exhibit long-range temporal correlations.

In this Thesis, the transport of suprathermal ions in the turbulent plasma of TORPEX is

investigated. It is shown that their transport is non-diffusive, meaning that it cannot be

described in the context of the diffusion-advection paradigm. This Chapter does not aim at

presenting a complete review of non-diffusive transport, but rather an introduction to the

topic. For more in depth reviews, we recommend the references [126–129]. First, we recall

the basics of the classical diffusion model and then we present two approaches of possible

generalizations of this model: the CTRW and the fLm.

4.1 Classical diffusion and the random walk model

The model of the random walk was first developed by Einstein [112] in 1905 and, independently,

by Smoluchowski [113] in 1906, to explain the observation made by a Scottish botanist, Robert

Brown (1773-1858), of the random motion of pollen particles in suspension on water. The

term Brownian motion has been coined in honors of Brown to designate the random walk. In

1913, in his book Les Atomes [130], Perrin verified the results of Einstein and Smoluchowski by

measuring with a microscope the displacement of small particles in suspension in a liquid.

Figure 4.1 reproduces some of his observations. Using Einstein’s theory, he was able to measure

the Avogadro Number [131]. This remarkable success bore the definite proof of the existence

of the atom which awarded Perrin the Nobel Prize for physics in 1926.

Einstein’s model of the random walk assumes that each individual particle motion is indepen-

dent of the other’s and that the displacements of the same particle at different times are also
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4.1. Classical diffusion and the random walk model

independent, provided that the interval separating the different times is not too small. Next,

he introduces a time interval, τ, very small compared to the observation time but sufficiently

large so that the motions between two consecutive time intervals τ can be considered as

independent. In a one-dimensional (1D) model, considering n particles, during the time

interval τ, each particle position along the x-axis will increase by a value ∆, different for each

particle. The PDF of the step sizes ϕ(∆) is defined by the following relation: the number dn of

particle experiencing a displacement lying between ∆ and ∆+d∆ is given by

dn = nϕ(∆)d∆. (4.1)

The step size probability satisfies the relation ϕ(∆) =ϕ(−∆) and differs from zero only for very

small values of ∆.

Let f (x, t ) be the distribution of particles. Using Eq. (4.1), the number of particles at time t +τ
found between x and x +dx is written

f (x, t +τ)dx = dx
∫ +∞

−∞
f (x +∆, t )ϕ(∆)d∆. (4.2)

Since τ is very small, we can write

f (x, t +τ) = f (x, t )+τ ∂f

∂t
, (4.3)

and by expanding f (x +∆, t ) in powers of ∆, we find

f (x +∆, t ) = f (x, t )+∆ ∂f (x, t )

∂x
+ ∆

2

2

∂2 f (x, t )

∂2x
+O(∆3). (4.4)

We note that, after the assumption of independent time steps and symmetrically distributed

step sizes, we assume here that τ and ∆ cannot take large values in order to perform the two

previous expansions. This is, as we will see below, a fundamental restriction of the diffusive

model which gives it its local character in time and space.

Since only very small values contribute to it, the expansion can be performed under the

integral. We find

f (x, t )+τ ∂f

∂t
= f

∫ +∞

−∞
ϕ(∆)d∆+ ∂f

∂x

∫ +∞

−∞
∆ϕ(∆)d∆+ ∂2 f

∂2x

∫ +∞

−∞
∆2

2
ϕ(∆)d∆+O(∆3). (4.5)

All the terms with odd powers of ∆ vanish due to the fact that ϕ(∆) = ϕ(−∆). Taking into

account the fact that
∫ +∞
−∞ ϕ(∆)d∆= 1, defining the variance of the step sizes

〈∆2〉 =
∫ +∞

−∞
∆2ϕ(∆)d∆ (4.6)
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and retaining the terms up to O(∆3), we find the well-known diffusion equation

∂f

∂t
= D

∂2 f

∂2x
, (4.7)

where D = 〈∆2〉
2τ is the diffusion coefficient. The equation of diffusion had already been discov-

ered experimentally by Fick in 1855, but Einstein was the first to derive it from this physical

and atomistic model.

Let us now find the fundamental solution, G(x, t ), of Eq. (4.7), i.e. the solution of the equation

with initial condition G(x, t = 0) = δ(x). This solution is also called the Green function or the

propagator of the equation. Its convolution with an arbitrary initial condition f0(x) provides

the evolution of the initial condition at all times t > 0

f (x, t ) = (
G ∗ f0

)
(x, t ) =

∫ +∞

−∞
G(x −x ′, t ) f0(x ′)dx ′. (4.8)

As we will see later, it is interesting to take the Fourier transform in space of Eq. (4.7)

∂Ĝ(k, t )

∂t
=−k2DĜ(k, t ), (4.9)

where

Ĝ(k, t ) =
∫ +∞

−∞
e−i kxG(x, t )dx. (4.10)

The solution of Eq. (4.9) is

Ĝ(k, t ) =Ce−k2Dt . (4.11)

As Ĝ(k,0) = ∫ +∞
−∞ e−i kxδ(x)dx = 1, we find that C = 1.

We find the solution by taking the inverse Fourier transform of the previous expression

G(x, t ) = 1

2π

∫ +∞

−∞
e−k2Dt+i kx dk = 1

2π

∫ +∞

−∞
e
−

(
Dt

(
k− i x

2Dt

)2+ x2

4Dt

)
dk. (4.12)

After a little effort, one finds that the solution is the Gaussian, or normal, distribution

G(x, t ) = 1p
4πDt

e−
x2

4Dt , (4.13)

with a variance, or mean-squared displacement, given by

〈x2〉 = 2Dt . (4.14)

The linear time dependence of the mean-square displacement of diffusive processes is a

fundamental results of the random walk model.
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The fact that the distribution of positions of the random walkers is a Gaussian distribution

arises naturally from the central limit theorem (CLT). Indeed, the position of each particle

is a sum of independent and identically distributed steps having the same mean and the

same variance. Each step being independent, the diffusive process is also memory-less, i.e.

Markovian.

4.2 Non-diffusive transport

Since its discovery, the model of diffusion and Brownian motion plays a crucial role not only in

physics but also in biology, chemistry, sociology, economics and finance. However, numerous

examples of transport show a deviation from the diffusive paradigm given by Eq. (4.14). Non-

diffusive transport is in fact ubiquitous in nature. Examples ranges from the dispersal of

bank notes [59], the motion of particles inside living cells [61] or the foraging movements

of spider monkeys [65]. In plasma physics, examples are also multiple. The acceleration of

electrons and ions by interplanetary shocks in the solar wind [50], ion transport across the

magnetopause [133], the motion of magnetic bright points on the solar surface [62] or the

transport of tracer particles in 3D pressure-gradient driven turbulence [134] are evidences

indicating the presence of non-diffusive transport in magnetized plasmas.

Non-diffusive transport is characterized by a mean-squared displacement (variance of dis-

placement) of an ensemble of individuals that does not necessarily scale linearly with time

〈
(r (t )−〈r (t )〉)2〉∝ tγ, (4.15)

where r (t ) represents the positions of individuals and γ is called the transport exponent. When

γ> 1 or γ< 1, the transport is called superdiffusive or subdiffusive, respectively. For the special

case of classical diffusion, γ= 1 in accordance with Eq. (4.14). When γ= 2, the transport is

ballistic. Non-diffusive transport is at the heart of many complex systems, such as turbulence,

where well-defined scale-lengths or time-scales do not exist, and thus transport cannot be

modeled as a classical diffusive process. In these systems, the transport is characterized by

the presence of long-term memory and/or non-Gaussian (heavy-tailed) PDFs. Mandelbrot

coined the terms Noah effect and Joseph effect [135], as a reference to the natural events

experienced by these biblical figures, to describe those two effects in the context of hydrology.

The great flood experienced by Noah and the seven years of abundance followed by seven

years of famine experienced by Joseph are well known examples that reflects that extreme

events with low probability and cycles or trend do, in fact, occur in nature.

In order to account for these effects, the hypotheses of the CLT need to be loosen. By removing

the restriction on the finiteness of the variance of the random variables (here, the step sizes),

we allow large fluctuations in the random walk. The limiting distributions in this case are given

by the generalized central limit theorem, due to the work of Lévy, Khintchine, Gnedenko and

Kolmogorov [126,136,137] in the 1930. They are calledα-stable distributions and are presented
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in Appendix A. They are characterized by their index of stability, α ∈ (0,2], and include the

Gaussian distribution as a special case, forα= 2. Whenα< 2, they have algebraically decaying

heavy tails with exponent −(1+α), and infinite variance. For this reason, they are particularly

interesting to model stochastic processes with high variability, such as solar flare intermittency

[138]. By removing the hypothesis on the independence of the steps of the CLT, we allow for

long-time correlations in the Brownian motion.

In the next section, we introduce the model of the continuous time random walk (CTRW) which

is a generalization of the random walk. We give two notable examples of this model, the Lévy-

flight and the Lévy-walk. Finally, we introduce an other model of non-diffusive transport which

is based on the Langevin equation of motion and includes long-range temporal correlations,

the fractional Brownian motion (fBm) and its generalization to a non-Gaussian, heavy-tailed

process, the fractional Lévy motion (fLm).

4.2.1 Continuous time random walk

The model of the CTRW was first developed in 1965 by Montroll and Weiss to describe the

mobility of charges in amorphous semiconductors [139]. It has since then found a wide range

of applications in physics, chemistry, biology, etc. The CTRW supposes that a particle, also

called random walker, makes successive jumps interrupted by rests. The step sizes and the

waiting times are drawn from a PDF, called the jump PDF, ψ(x, t ). Various choices of the form

of ψ(x, t ) lead to different situations. For example, if the step sizes and the waiting times are

independent random variables, the CTRW is decoupled and the jump PDF can be written

as ψ(x, t) = λ(x)w(t), where λ(x) and w(t) are the step size PDF and the waiting time PDF,

respectively. In the case of a coupled jump PDF, a jump of a certain length involves a certain

duration. This is, for example, the case of the Lévy-walk.

The CTRW can be described by the equation [140]

η(x, t ) =
∫ +∞

−∞
dx ′

∫ +∞

0
dt ′η(x ′, t ′)ψ(x ′−x, t − t ′)+δ(x)δ(t ), (4.16)

which links the PDF η(x, t) of arriving at position x at time t with the PDF η(x ′, t ′) of being

arrived at position x ′ at time t ′ with a delta Dirac initial condition.

For the decoupled case, the PDF of the density of walkers is therefore given by

n(x, t ) =
∫ t

0
dt ′η(x, t ′)Ψ(t − t ′)dt ′, (4.17)

whereΨ(t ) = 1−∫ t
0 w(t ′)dt ′ is the probability for a walker of making no jumps between the

time interval (0, t ).

By taking the space Fourier transform and time Laplace transform1 of Eq. (4.17), one finds the

1 In the following we us the notation f̂ for both the Fourier and the Laplace transforms of the function f . The
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Montroll-Weiss equation

n̂(k, s) = 1− ŵ(s)

s(1− ŵ(s)λ̂(k))
. (4.18)

Starting from this equation, the fluid limit, meaning that all details of the CTRW that are

irrelevant at very large temporal and spatial scales are neglected, is usually sought to find a

equation describing the temporal evolution of the density of random walker.

For example, classical diffusion is found by taking a Gaussian distribution of step sizes and a

Poissonian wating time PDF. In fact, the fluid limit is always found to be the classical diffusion,

as long as the characteristic waiting time

τ=
∫ +∞

0
t w(t )dt (4.19)

and the variance of step sizes

∆2 =
∫ +∞

−∞
x2λ(x)dx (4.20)

are finite [127]. In this case the diffusion coefficient is given by D =∆2/τ.

To describe non-diffusive transport, λ and w have to be chosen such that τ or ∆2, or both,

diverge. A natural choice is to draw both functions in the family of stable distributions (with

certain restrictions) since they are the limit of sums of random variables [141]. The non-

Gaussian property will arise from a divergent ∆2 and the non-Markovianity from a divergent τ.

In the case where both characteristic scales diverge, we can choose a strictly symmetric stable

distribution with characteristic exponent α< 2 for the step sizes distribution and a one-sided

stable distribution with characteristic exponent β< 1 for the waiting time distribution (see

Appendix A):

λ̂(k) = e−σ
α|k|α ' 1−σα|k|α for k → 0 with α< 2 (4.21)

and

ŵ(s) = e−µ
βsβ ' 1−µβsβ for s → 0 with β< 1, (4.22)

with the following asymptotic behavior

λ(x) ∼ x−(α+1), when |x|→∞ (4.23)

and

w(t ) ∼ x−(β+1), when t →∞. (4.24)

difference between the two transforms is indicated by their conjugate variables: x
F T−−→ k and t

LT−−→ s.
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Using those expression in Eq. (4.18) and keeping terms up to first order, one finds

n̂(k, s) = sβ−1

sβ+ σα

µβ
|k|α , (4.25)

which can be rearranged as

sβn̂(k, s)− sβ−1 =−σ
α

µβ
|k|αn̂(k, s). (4.26)

If α = 2 and β = 1, one recognizes the Laplace transform of the first order time derivative

of n̂(k, t) on the left hand side (lhs) and the Fourier transform of the second order space

derivative of n̂(x, s) on the right hand side (rhs). Therefore, in this case, we recover the classical

diffusion equation (Eq. (4.7)) with D =σ2/µ.

In the case were α< 2 and β< 1, the lhs and rhs correspond to generalizations of the differen-

tial operator to fractional orders (see Appendix B)

∂β

∂tβ
n(x, t ) = Dα,β

∂α

∂|x|αn(x, t ), (4.27)

where Dα,β =σα/µβ [mα/sβ] is a generalized diffusion coefficient. This equation is called the

space and time fractional diffusion equation and describes the time evolution of the fluid limit

of a CTRW with long-term memory (non-Markovian) and long-range spatial correlations (non-

Gaussian). When α→ 2 and β→ 1, the classical diffusion equation (Eq. (4.7)) is recovered.

We call α the spatial transport exponent and β the temporal transport exponent. The time

derivative operator is the Caputo fractional derivative and the space derivative is the Riesz

fractional derivative (Appendix B).

By using the scaling properties of the Fourier and Laplace transform

F [ f (ax)] = |a|−1 f̂ (k/a) and L [ f (bu)] = b−1 f̂ (s/b), b > 0, (4.28)

on Eq. (4.25), the following scaling property of the propagator of Eq. (4.27) is inferred

Gα,β(x, t ) = t−H Kα,β

( x

t H

)
, (4.29)

where H =β/α is the self-similarity index also called Hurst exponent [142], Kα,β is called the

reduced Green function and x
t H is the similarity variable [129]. This scaling implies that the

stochastic process associated with the propagator is self-similar with index H =β/α (or H-self

similar). Indeed, if we rescale the time by a factor λ> 0, we find

Gα,β(x,λt ) =λ−H t−H Kα,β

( x

t HλH

)
∝Gα,β(xλ−H , t ), (4.30)
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implying that the motion is invariant under the following transformation

(x, t ) 7→ (λH x,λt ). (4.31)

The self-similarity of the process leads then to the following scaling of the moments of the

distribution with time

〈|x|s〉∝ t sH . (4.32)

Indeed, if we assume 〈|x|s〉∝ t K , we have

〈|λH x|s〉∝ (λt )K ⇒ λsH 〈|x|s〉∝λK t K ⇒ K = sH . (4.33)

By identifying Eq. (4.15) with Eq. (4.32) we see that γ= 2H . The transport is therefore superdif-

fusive if 2β>α and subdiffusive if 2β<α. For the special case 2β=α,β 6= 1,α 6= 2 the transport

is called quasidiffusive [59] and exhibits the same scaling as the classical diffusion despite the

crucial difference of a non-Gaussian PDF and non-Markovian time increments. We would like

to point out that only verifying the time dependence of the variance of displacements is not

sufficient to conclude that a transport process is diffusive. Whenever possible, the temporal

evolution of higher moments, or of the full distribution, should be examined to determine

the presence of non-Gaussian features. Evaluating moments of the distribution can be del-

icate since the integrals that define them do not always converge. For example, the s-order

moments of a α-stable distributions converges only for s <α [126]. However, in practice, the

temporal scaling can be recovered by taking “truncated” moments or by computing moments

of fractional order smaller than α [127].

Lévy flight

The Lévy flight is a particular case of the CTRW with a finite characteristic waiting time, τ<∞,

but step size distribution given by a symmetric stable distribution with diverging variance,

∆2 →∞. The trajectories of Lévy flights have been shown to model the foraging motions of

many living organisms [65,143]. Mandelbrot also used this model to simulate the fractal galaxy

distribution in the Universe [132]. In fact, a fractal dimension D =α can be assigned to the

trajectories. An example of a Lévy flight trajectory is shown in Fig. 4.2.

The Lévy flight can be modeled by taking a Poissonian distribution for the waiting time PDF

w(t) = τ−1e−t/τ, with Laplace transform ŵ(s) = (1+ sτ)−1 ' 1−τs, for s → 0. Using this in

Eq. (4.18), we find

Ĝα(k, s) = 1

s + σα

τ |k|α , (4.34)

which, upon Fourier-Laplace inversion, shows that the propagator of the Lévy flight is a
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Figure 4.2 |Example of a Lévy flight trajectory with α= 1.5. Contrary to the Brownian motion (Fig. 4.1,
arbitrary long steps can arise, on all scale length, leading to the clustering nature of the Lévy flight.

symmetric stable distribution

G(x, t ) = t−H Lα,σ

( x

t H

)
, (4.35)

with a self-similar index H = 1/α. Rearranging the terms of Eq. (4.34) and Fourier-Laplace

inverting it, we find the space fractional diffusion equation

∂

∂t
n(x, t ) = Dα

∂α

∂|x|αn(x, t ) (4.36)

describing the Lévy flight.

The Lévy flight results in a superdiffusive process (with the exception of the case α= 2) with a

diverging mean-square displacement 〈x2〉→∞ for α< 2.

The presence of arbitrary long jumps without any restriction on the step duration leads to

rather unphysical situations [127, 128]. One way of solving this is introduced in the Lévy walk

model, which is often more appropriate to describe physical systems.

Lévy walk

Similarly to the Lévy flight, the Lévy walk model maintains a diverging variance of distribution

of step sizes. However, a coupling between the step sizes and the step duration is included in

the jump pdf such that [140]

ψ(x, t ) =λ(x)δ(|x|− v tν), (4.37)
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where λ(x) → |x|−µ as |x| →∞ and v is a generalized velocity which penalizes long jumps

such that the variance is finite [128]. Depending on the values of the two exponent µ and ν

the transport can be either superdiffusive or subdiffusive. Due to the coupled form of the

jump pdf, the derivation of a transport equation describing the evolution of the PDF has

only been achieved recently in the case ν = 1, by using a fractional version of the material

derivative [144].

The Lévy walk model has been applied to the suprathermal ion transport in TORPEX [145] and

is presented in Section 5.2.2. However, important features of the transport of suprathermal

ions in TORPEX, such as its asymmetry and the temporal correlations, not present in the Lévy

walk model as lead to the development of an other model, the fractional Lévy motion (fLm),

presented in the following section.

4.2.2 Langevin approach

A microscopic description of Brownian motion equivalent to the one of Einstein presented

in Section 4.1 was introduced by Langevin in 1908 [114] An uncorrelated Gaussian noise,

representing the random force due to the interaction with the fluid molecules, is used in the

equation of motion of a test particle. The equation of motion becomes a stochastic equation,

whose average motion shows the same diffusive scaling. Fractional Brownian motion (fBm)

introduces long-range temporal dependence in the Gaussian noise, which can lead to a non-

linear scaling of the positional variance. On the other hand, non-Gaussian statistics can be

introduced by choosing a non-Gaussian noise. For example, stable Lévy motion [126] replaces

the Gaussian noise with a random noise distributed according to a Lévy stable distribution

with heavy-tails (Appendix A).

The classical Langevin equation is written [114]

mẍ(t ) =−mγẋ(t )+ξ(t ), (4.38)

where m is the mass of the test particle, γ is the friction coefficient and ξ(t) is the random

force due to the random collisions with the surrounding particles. In the case of the Brownian

motion, ξ(t) is a a white noise, i.e. a Gaussian noise with an infinitely short correlation

time: 〈ξ(t1)ξ(t2)〉 =Cδ(t1 − t2), where C is a constant. In Eq. (4.38), the forces acting on the

particle are separated in two groups, the macroscopic, slowly varying ones, represented by

the dissipative force −mγv , and the microscopic, rapidly varying ones, represented by the

fluctuating force ξ(t ).

If the time scale of the particle motion is comparable to the time scale of the collisions, the

assumption of a white noise and a constant friction have to be abandoned. This leads to the

generalized Langevin equation (GLE) [146]

ẍ(t ) =−
∫ t

0
β(t − t ′)ẋ(t ′)dt ′+ξ(t ), (4.39)
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where m = 1 is used for simplicity. Here, β(t ) is the memory kernel and ξ(t ) is the random force

which is zero-centered and stationary, i.e. 〈ξ(t1)ξ(t2)〉 =C (|t1 − t2|) =C (τ). The fluctuation-

dissipation theorem [146–149] states that the dissipation is the macroscopic manifestation of

the disordering effect of the fluctuations and relates the correlation function of the random

forces C (t ) with β(t ) by

kB Tβ(t ) =C (t ). (4.40)

Assuming x(0) = 0, v(0) = v0 and Laplace transforming Eq. (4.39), we find

x̂(s) = v0 + β̂(s)+ ξ̂(s)

s(s + β̂(s))
, (4.41)

where β̂(s) and ξ̂(s) are the Laplace transforms of β(t ) and ξ(t ). Upon Laplace inversion, one

finds the equation of the particle position

x(t ) = v0H(t )+
∫ t

0
H(t − t ′)ξ(t ′)dt ′, (4.42)

where H(t ) is the relaxation function [149] defined by its Laplace transform

Ĥ(s) = 1

s(s + β̂(s))
. (4.43)

We note that, in accordance with the classical Langevin equation, if β(t) = γ = cste., the

relaxation function, H(t ) = 1
γ (1−e−γt ), is exponentially decaying and the position is given by

x(t ) = v0

γ
(1−e−γt )+ 1

γ

∫ t

0
(1−e−γ(t−t ′))ξ(t ′)dt ′. (4.44)

For t → 0 the ballistic motion x(t ) = v0t is recovered and for t À γ−1,

x(t ) = v0

γ
+ 1

γ

∫ t

0
ξ(t ′)dt ′. (4.45)

When v0 = 0, Eq. (4.45) is referred to as ordinary Brownian motion (oBm).
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4.2. Non-diffusive transport

If we take ξ as a white noise and 〈v0〉 = 0, the variance of the displacement is given by

〈x2(t )〉 = 1

γ2
〈
∫ t

0
ξ(t − t1)dt1

∫ t

0
ξ(t − t2)dt2〉

= 1

γ2
〈
∫ t

0
dt1

∫ t

0
dt2ξ(t − t1)ξ(t − t2)〉

= 1

γ2

∫ t

0
dt1

∫ t

0
dt2 〈ξ(t − t1)ξ(t − t2)〉

= 1

γ2

∫ t

0
dt1

∫ t

0
dt2Cδ(t2 − t1)

= 1

γ2

∫ t

0
C dt1 = C

γ2 t = kB T

γ
t , (4.46)

where we used Eq. (4.40). Thus, we recover the linear temporal scaling of the mean-squared

displacement of the classical diffusion (Eq. (4.14)).

Fractional Brownian motion

Fractional Brownian motion (fBm) was proposed by Mandelbrot and Van Ness in 1968 [150] to

model the variations of cumulated water flows in the great lakes of the Nile river basin observed

by Hurst [151]. Hurst studied the record of river level and other physical quantities such as

rainfall, temperature, pressure, the growth of tree rings, sunspot numbers and wheat prices.

He found that the range of those records, rescaled by their standard deviation, is proportional

to t H , where t is the time and 1/2 < H < 1 is, ever since, called the Hurst exponent. Since then,

it has found a wide range of applications in systems showing long time interdependence.

Slightly different representations exists in the literature, here we use the following [152]

xH (t ) = 1

Γ(H +1/2)

∫ t

0
(t − t ′)H−1/2ξ(t ′)dt ′, (4.47)

where xH (t ) represents the position of a particle experiencing fBm, ξ(t ) is a Gaussian uncorre-

lated noise, H ∈ (0,1] and Γ(·) is the gamma function. FBm is constructed as a moving averaged

of the ordinary Brownian motion (oBm) (Eq. (4.45)), in which past increments are weighted by

the power law kernel (t − t ′)H−1/2. It has a zero mean 〈xH (t )〉 = 0 for H < 1. From its definition

and the fact that the Gaussian noise is self-similar with exponent 1/2, it follows that xH (t ) is

H-self similar (Eq. (4.31)) and that it has stationary increments, xH (t )−xH (s) = xH (t − s) [126].

Using these two properties, we can show that the correlation function is

〈xH (t )xH (s)〉 = KH
1

2

{〈x2
H (t )〉+〈x2

H (s)〉−〈(xH (t )−xH (s))2〉}
= KH

1

2

{〈x2
H (t )〉+〈x2

H (s)〉−〈x2
H (t − s)〉}

= KH
1

2

{
t 2H + s2H −|t − s|2H }

, (4.48)
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where KH is a positive constant and where we recall that for a H-self similar process, the

variance scales with time as

〈x2
H (t )〉∝ t 2H . (4.49)

We note that fBm is subdiffusive for 0 < H < 1/2, superdiffusive for 1/2 < H < 1, ballistic for

H = 1 and correspond to oBm for H = 1/2.

The increments of the fBm, ξH (t ), is a stationary Gaussian process known as fractional Gaus-

sian noise (fGn) and defined as

xH (t ) =
∫ t

0
ξH (t ′)dt ′. (4.50)

The correlation function, CH (t), of ξH (t) is given by the derivative of equation (4.48) with

respect to t and s

CH (|t − s|) = 〈ξH (t )ξH (s)〉 = 2KH H(2H −1)|t − s|2H−2 +2KH H |t − s|2H−1δ(t − s). (4.51)

We note that CH (|t − s|) behaves as a power law for τ= |t − s|→∞ and recovers the ordinary

Brownian behavior, CH (|t − s|) = K1/2δ(t − s), for H = 1/2.

The function CH (τ) tends to zero for τ= |t − s|→∞ for 0 < H < 1, but when 1/2 < H < 1, ξH (t )

exhibits long-range dependence, i.e. CH (τ) tends to zero so slowly that
∫ ∞

0 CH (τ)dτ=∞. It is

said to be correlated. For 0 < H < 1/2, there is no long-range dependence, but the coefficient

(2H −1) is negative [126]. In this case the ξH (t ) is said to be anti-correlated. Figure 4.3 shows

three examples of fBm trajectories.

In the framework of the generalized Langevin equation (GLE), it is possible to find the fBm

as a solution by using a random force with long-range correlations, namely with a power-law

correlation function. The memory kernel, β(t ), is then found with the fluctuation-dissipation

theorem (Eq. (4.40)) and, consequently, also have a power-law form. When the random force

is chosen to be the fractional Gaussian noise (fGn), the GLE can be written as a fractional

differential equation [153], however, the solution of this equation is limited to the subdiffusive

and diffusive case. From the physical point of view, the superdiffusive case is found only when

the random force is “external”, meaning that the fluctuation-dissipation theorem does not

hold and that the driving noise and the dissipation may have different origins, which may be

the case in nonequilibrium systems [149].

It is possible to find the propagator of the fBm by using the method of path integrals [152],

borrowed from quantum mechanics (note that Shrödinger’s equation resembles a diffusion

equation with an imaginary diffusion coefficient). The propagator, given by

GH (x, t ) =
√

H

π

Γ(H +1/2)

t H
exp

[
−H Γ2(H +1/2)

x2

t 2H

]
, (4.52)
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Figure 4.3 |Examples of realizations of the fractional Brownian motion (fBm) for different values of
the self-similar index H . For H = 0.8, the increments of the trajectory are positively correlated which
results in a persistent motion. The oBm with uncorrelated increments is retrieved for H = 0.5 and for
H = 0.2, the increments of the trajectory are anti-correlated which results in a anti-persistent motion.

is a Gaussian function with a variance proportional to t 2H . It has the same form than the

propagator of the oBm (Eq. (4.13)) but with a “stretched” time t 2H . The transport equation of

the fBm is easily found from the Fourier transform of Eq. (4.52) to be

∂

∂t
n(x, t ) = Dβtβ−1 ∂2

∂x2 n(x, t ), (4.53)

where 0 <β= 2H < 2 and Dβ = (2Γ2(H +1/2))−1 is a stretched diffusion coefficient of dimen-

sions [m2/sβ]. This equation is called the stretched time diffusion equation [154]. By using the

rule

∂

∂tβ
=βtβ−1 ∂

∂t
, (4.54)

it can be interpreted as the result of the classical diffusion equation with a stretched time.

We note that the Langevin approach and the CTRW approach are not equivalent in the non-

Markovian case. Equation (4.53) is local in time, whereas Eq. (4.27) with α = 2,β < 1, the

time-fractional diffusion equation, is not. In the fBm case, the non-Markovian character is

provided by a time dependent diffusivity D = D0tβ−1. Moreover, The solution of Eq. (4.53)

is Gaussian, while the solution of the time-fractional diffusion equation is not; it is given by

the transcendental functions known as the M-Wright function which tends to the Gaussian

function for β= 1 [154].
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Figure 4.4 |Examples of propagators for different parameters of the fLm for times ti = 1,2, ...,9 and
effective diffusivity K = 1. a: Subdiffusive case with α = 2 (Gaussian) and β = 0.5 (anti-correlated)
(H = 0.25). b: Diffusive case with α= 2 (Gaussian) and β= 1 (uncorrelated) (H = 0.5). c: Superdiffusive
case with α= 1 (Lévy stable) and β= 1 (uncorrelated) (H = 1).

Fractional Lévy motion

Here, we discuss the fractional Lévy motion (fLm), which is a generalization of the fBm,

including both long-range temporal dependence and non-Gaussian statistics.

The stochastic equation defining the fLm process is [155, 156]

xα,H (t ) = 1

Γ (H −1/α+1)

∫ t

0
(t − t ′)H−1/αξα,σ(t ′)dt ′, (4.55)

where ξα,σ(t ) is an uncorrelated noise distributed according to a Lévy symmetric, strictly stable

distribution, with index of stability α, (0 <α≤ 2) and scale parameter σ. From the properties

of α-stable random variable, we have xα,H (λt ) =λH xα,H (t ), with H =β/α. Therefore, the fLm

belongs to the important family of H-self similar process with stationary increments (also

abbreviated H-sssi), like the fBm. Consequently, the moments of xα,H (t ) exhibit the desired

general non-classical feature〈|xα,H (t )|s〉∝ t sH , (4.56)

where 0 < s <α, to ensure convergence of the moments. For a non-degenerated process, the

values of H are restricted to [126]{
0 < H ≤ 1/α if α< 1,

0 < H ≤ 1 if α≥ 1.
(4.57)

The long-term memory is engendered by the convolution with the power-law kernel and the

non-Gaussian statistics by the Lévy noise. The fLm generalizes the fractional Brownian motion

(fBm) [150]. Indeed, for α= 2, the noise has a Gaussian distribution and the process is the fBm.

When H = 1/α the process is time-uncorrelated and when H < 1/α or H > 1/α the process

exhibits negative or positive time correlations, respectively. Therefore, for α= 2 and H = 1/2,

one recovers the oBm corresponding to classical diffusion (Eq. (4.45)).
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4.2. Non-diffusive transport

Using path integrals, Calvo, Sánchez and Carreras have shown that the transport equation of

the fLm process is a space-fractional diffusion equation with time dependent diffusivity [156]

∂

∂t
n(x, t ) = K tβ−1 ∂α

∂|x|αn(x, t ). (4.58)

Here n(x, t ) is the density of particles, K is an effective diffusion coefficient and α and β are

the space and time transport exponents, respectively, with H =β/α. The space derivative of

order α is the Riesz fractional differential operator [157] (Appendix B). The restriction on the

range of permissible values for H (Eq. (4.57)) translates for β as{
0 <β≤ 1 if α< 1,

0 <β≤α if α≥ 1.
(4.59)

When β< 1 or β> 1 the process is negatively or positively time correlated, β= 1 corresponding

to an uncorrelated process.

The propagator of Eq. (4.58) is a Lévy distribution which depends on x/t H [156]

Gα,β(x, t ) = C (α,β)

tβ/α
Lα,σ

[
C (α,β)

x

tβ/α

]
, (4.60)

where C (α,β) =β1/αΓ
(
β−1
α +1

)
and σ= K 1/αΓ

(
β−1
α +1

)
.

Again, for α= 2 the space-fractional derivative becomes a second order derivative and the

propagator is a Gaussian corresponding to the case of the fBm (Eq. (4.52) and Eq. (4.53)).

For α = 2 and β = 1 (H = 1/2), Eq. (4.58) becomes the classical diffusion equation and the

propagator has the well known form of a Gaussian with variance growing linearly with time

(Eq. (4.7) and Eq. (4.13)). Finally, for β= 1 and α< 2, Eq. (4.60) and Eq. (4.58) are Markovian

and correspond to the propagator and transport equation of the Lévy flight (Eq. (4.35) and

Eq. (4.36)). Examples of fLm propagators are shown in Fig. 4.4 and the different transport

regimes of the fLm, as a function of α and β are summarized in Fig. 4.5.

In this Thesis, we have compared the fLm model with the PDF of the suprathermal ion radial

position (Chapter 6). The model that we developed allow the PDF to have a non-zero skewness.

We have also derived, for the first time, the transport equation of the fLm with skewness.
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Figure 4.5 |Parameter space for the fLm. The values of H =β/α lie in the shaded region and depending
on the values of the spatial transport exponent,α, and the temporal transport exponent,β, the transport
can be superdiffusive (H > 1/2) or subdiffusive (H < 1/2). Diffusive transport is found for H = 1/2
(white line), the classical diffusion corresponding to the case β = 1 and α = 2 (black dot). Gaussian
transport is found for α= 2 and Markovian transport for β= 1. For β> 1 the motion is persistent and
for β< 1 it is anti-persistent. The fBm (green line) is found for α= 2 and 0 <β< 2 and the Lévy flight
(yellow line) for α< 2 and β= 1. A similar figure can be drawn for the CTRW, but with the difference
that the non-Markovianity is not due to persistence or anti-persistence but to the non-locality in time
and, in this case, β≤ 1.
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5 Numerical simulations

This Chapter presents the numerical simulations used to model the plasma dynamics in

TORPEX and the propagation of suprathermal ions in the turbulent plasma. The global

Braginskii solver (GBS) code has been developed in the last few years to model the plasma

turbulence in the tokamak SOL. It evolves full profiles of fluid quantities without separating

the perturbations from the equilibrium by solving the drift-reduced Braginskii’s equations.

The suprathermal ion simulations are performed by injecting tracers in the turbulent electric

field generated by the GBS simulations. The tracer trajectories are computed by solving the

Newton equation of motion. We present the results of a investigation of the suprathermal ion

transport in TORPEX and some considerations about the simulations used for the comparison

with the experiment.

5.1 Fluid simulations of the turbulence

Owing to the open magnetic field lines of the SMT configuration and the low heating power,

TORPEX plasmas are characterized by relatively low temperatures. Collisions usually play an

important role in low temperature plasmas allowing the local thermodynamic equilibrium

to be reached relatively rapidly. This motivates the use of a fluid model to describe the

plasma dynamics. In a fluid model, instead of solving the Boltzmann equation for the full

particle distribution functions as in kinetic models, the equations for a number of moments

of the distribution functions are computed by taking moments of the Boltzmann equation.

The first three moments of the particle distribution functions provide the density, velocity

and temperature for each species. As each equation usually includes higher moments, an

additional equation is usually needed to close the set of fluid equations.

For the fluid approximation to be valid, the time taken and the distance traveled by the

particles between collisions must be small compared to the time and distance over which

the macroscopic quantities vary. Under these conditions, the distribution functions can be

approximated with Maxwellian distributions. In TORPEX, for hydrogen plasmas with the

parameters reported in Table 2.1, the collision frequencies for energy and momentum transfer
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(for thermalization and isotropization) are

νi = 1

3

1p
π

Z 2e4 lnΛ

4πε0

ni

m1/2
i T 3/2

i

& 7kHz, (5.1)

νe = 1

3

1p
π

Z 2e4 lnΛ

4πε0

ni

m1/2
e T 3/2

e
' 72kHz (5.2)

where νi and νe are the frequencies for ion-ion collisions and electron-electron collisions,

respectively. We have νe À νi > fint where fint is the frequency of the interchange mode (of

the order of magnitude of a few kHz) representing the typical frequency of the variation of

macroscopic quantities. For strongly magnetized plasmas such as in TORPEX ( fce À νe , fci À
νi ), the distances perpendicular and parallel to the magnetic field between collisions are given

by the Larmor radius of the particles and the mean free path between collisions, respectively.

Looking at Table 2.1, we have ρi ,e ¿ L⊥ where L⊥ ' Ln ' 6cm. The parallel distances between

collisions, λmfp,e = vth,e/νe ' 9m and λmfp,i = vth,i/ν
i ' 1.5m should be much smaller than

the magnetic field connection length L∥ = Lc ' 2πR0N . For a number of field line turns

N = 2, L∥ ' 12.5m. The hypothesis justifying the use of a fluid model are not all perfectly

satisfied. Indeed, suprathermal electrons are presents in TORPEX plasmas. Measurements

of the electron energy distribution [68] show that a fraction of the electrons accelerated at

the EC and UH resonances does not have time to thermalize. The collisions with neutrals are

also important in TORPEX, which is in regime of weakly ionized plasmas. The ion-neutral and

electron-neutral collision frequencies are [84] νi n ' 10kHz and νen ' 1MHz. Their role in the

thermalization of electrons has not been studied yet but, since the collisions between electrons

and neutrals are almost elastic, they are thought to play a minor role. At present, the effect

of neutrals are included in GBS only through the plasma resistivity. Despite these potentially

significant departures from the conditions in which a fluid approximation would be fully

justified, a thorough validation exercise of the GBS simulations with TORPEX experimental

data has shown that the 2D version of the code correctly models the dynamics of the ideal-

interchange regime and the 3D version captures the resistive-interchange regime [90, 91].

Effort to couple a kinetic model of the neutrals, that includes ionization, recombination and

charge-exchange processes, to GBS has started [158].

Braginskii’s equations [159] are a closed set of two-fluid equations describing the evolution

of the electron and ion densities, velocities and temperatures on time scales ranging from

the electron Larmor scale to the confinement time scale. The GBS code is based on the drift-

reduced Braginskii equations [86, 87, 89, 160] in the cold ion limit (in TORPEX Ti ¿ 10eV) and

for electrostatic fluctuations (in TORPEX, the ratio of the plasma pressure to the magnetic

pressure is β ' 10−6). The drift-reduced approximation consists of eliminating the fastest

time scale of the electron and ion gyromotion by assuming d
d t ¿ fci, such that only the

particle drifts remain in the equations describing the perpendicular motion [161]. The 3D GBS

model consists of a set of five self-consistent equations describing the evolution of the plasma
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Figure 5.1 |Consecutive snapshots of the plasma potential φ [V] from 2D GBS simulations. The
ideal-interchange mode is located at X ∼−10cm with a maximum vertical wave-length equal to the
vertical spatial domain length λv = 18cm and blobs moving radially outward are visible. Periodic
boundary conditions are applied in the vertical direction.
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density, n, the vorticityω=∇⊥φ (whereφ is the plasma potential), the electron and ion parallel

velocities, V∥e and V∥i , and the electron temperature, Te , which can be applied to different

geometries with open field lines (SMT or tokamak SOL). The equations of the 2D version of

GBS, reported in Appendix C, are obtained by integrating the 3D equations along the magnetic

field lines. Thes evolve the line-integrated density, vorticity and electron temperature. They

take into account diffusion, convection by the E×B velocity and magnetic curvature. We refer

the reader to Joaquim Loizu’s PhD Thesis [161] for a detailed description of the model and

its equations. Figure 5.1 shows snapshots of the plasma potential, φ or Vpl, from a 2D GBS

simulation for the SMT configuration in the ideal-interchange regime. Periodic boundary

conditions are used in the vertical direction. The horizontal direction represents TORPEX

radial direction. Similarly to TORPEX plasmas, the ideal-interchange mode is located in the

HFS, at X '−10cm, and the region defined by X &−5cm is characterized by the presence of

intermittent blobs.

5.1.1 Comparison of GBS simulations with TORPEX plasmas

To model the suprathermal ion transport, suprathermal ions are injected in the turbulent

plasma potential modeled with GBS. Figure 5.2 shows time-averaged radial profiles and

fluctuations profiles of Vpl, Te and ne , measured with the five-tip triple probe FRIPLE, together

with the same quantities computed from a GBS simulation. The particle and heat sources

in GBS were varied to have the best match between the experimental and simulated plasma

potential in the region where the suprathermal ions propagate: −5cm. X . 5cm. The details

of the simulation parameters are reported in Appendix C. A very good match of the value,

the gradient and the fluctuations is visible. The positions of the maxima of the experimental

profiles match the position of the maxima of the simulated profiles. However, a discrepancy

between the maximum values of the Vpl and Te profiles is apparent. This is due to the presence

of suprathermal electrons at the positions of the EC and UH resonances, which perturb the

measurement with Langmuir probes.

5.2 Suprathermal ion simulation model

Numerical modeling of suprathermal ion transport in TORPEX is performed by computing

the ion full trajectories in the turbulent electrostatic field generated by 2D GBS simulations.

The equation of motion is

dv

dt
= q

m
(E+v ×B) , (5.3)

where the electrical field is time dependent, E(x, y, t) =−∇∇∇φ(x, y, t), and the magnetic field

is static, B = B(x, y). Suprathermal ions are treated as tracers, i.e. they do not influence the

fields through Poisson’s equation or Ampere’s Law. This is a reasonable approximation since

in the experiments their density is very small compared to that of the plasma. Considering
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Figure 5.2 |Comparison of the radial profiles of the time-averaged and fluctuating (computed as
the standard deviation) of (a) plasma potential, (b) electron temperature and (c) density from the
experiment and from the simulations.

70 eV ions, a current I = 10µA and a beam radius d = 2cm, an estimate of the suprathermal

ion density is given by

n = I

qv A
=

√
m

2E

I

qπr 2 ' 1×1012 m−3 ¿ ne , (5.4)

where E is the energy of the ions, m their mass, q their charge and v their velocity. Coulomb

collisions with thermal ions and neutral particles are neglected. The computation of the

respective collision frequencies and mean free paths is presented in Appendix D. The full

gyro-orbit is computed to correctly describe the effects of turbulence on the suprathermal

ions across spatial and temporal scales, including those comparable to their Larmor radii and

cyclotron frequency. All initial parameters of the suprathermal ion injection, namely, position,
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Figure 5.3 |Representation of the method used to have the suprathermal ions sample different realiza-
tions of the GBS turbulence. The injected suprathermal ions are separated in different bins (represented
by the arrows on the top) and each bin is injected at a different time in the the turbulence (represented
by the arrow on the bottom). The time of the GBS simulations is indicated by tGBS and the time of the
suprathermal ions simulations by tsim.

energy and orientation, are modeled using Gaussian distributions. The averaged injection

energy, normalized to the mean of the electron temperature at the injection position, is

denoted by E ≡ E/T̄e . The relative amplitude of the turbulent fluctuations is varied a posteriori

in order to describe the dependence of the suprathermal ion transport on the turbulence

amplitude. This is also motivated by the fact that, as revealed by validation exercises [87],

TORPEX turbulence tends to have a different amplitude in the experiment compared to

the two-dimensional simulations. The turbulent fluctuation amplitude is quantified by the

parameter ξ = eφ̃/T̄e , where Te denotes the electron temperature at the ion injection site

averaged over both time and vertical coordinate, and φ̃ is standard deviation of the electrostatic

potential. The value of ξ is varied by redefining the electric potential

φ(r, z, t ) → φ̄(r )+ξ/ξ0(φ(r, z, t )− φ̄(r )). (5.5)

Here, r is the radial direction, z is the vertical direction and φ̄ is the t-and z-averaged radial

electric potential profile. Note that ξ decreases from the HFS to the LFS. In the investigation

presented next, the value of ξ at R = R0, ξ0 ' 0.8, is taken as the reference value and ξ varies as

a function of r (0.8. ξ/ξ0 . 1.2).

The difference in the trajectories followed by different suprathermal ions has different sources

of stochasticity. Firstly, the ions have slightly different initial parameters, which in a chaotic

dynamical system such as the turbulence of TORPEX plasmas, can lead to very different

trajectories. This effect could be characterized by a Lyapunov exponent which indicates the

exponential rate at which the trajectories diverge [162]. Secondly, in the experiment, the

source is continuously emitting. Ions emitted at different times sample different realizations

of the turbulence which, comforted by the high reproducibility of TORPEX discharges, we

suppose to be a stationary stochastic process. In order to take into account this effect in the

simulations, the suprathermal ions are separated in a large number of bins and each bin is

injected at different times in the GBS simulation such that there is no overlap between the

realizations of the turbulence experienced by each bin as shown in Fig. 5.3. All the trajectories

are then regrouped to compute the variance of the displacements.
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5.2. Suprathermal ion simulation model

Figure 5.4 |Variance of displacements of suprathermal ions in the radial (solid curve), vertical (dashed
curve), and parallel (dashed-dotted curve) directions for E = 50 and ξ = 0.8 from [67]. Dispersion
exponents γ are fitted with solid line segments, which have error of ±0.1. An initial ballistic phase
occurs (red-shaded region) with γR ' γZ ' 2. This is followed by a fast transition to the turbulence
interaction phase when γR remains nearly constant. Later, a slower transition to the asymmetric phase
(blue-shaded region) shows an increased value of γR . For the parallel direction, since there are no
forces, γ∥ ' 2 always. The z-directed spreading also shows three phases in which the superdiffusion is
due to the vertical drift velocity.

5.2.1 Numerical investigation of the suprathermal ion transport

A comprehensive numerical study of the behavior of the suprathermal ions [47, 67] has shown

that the dispersion of suprathermal ions in the radial direction is generally non-diffusive, with

σ2
δR (t ) ∼ tγR , (5.6)

where 0 < γR ≤ 2. Here, σ2
δR (t) = 〈(δR −〈δR〉)2〉 and δR(t) = R(t)−R(0), where R is the ion

radial positions. For this study, a point-like source is used with an isotropic injection cone

with opening angle σα = 0.1rad, directed parallel to the magnetic field lines. The Gaussian

distribution of initial velocities is characterized by a mean, v0, and a standard deviation

σv0 = 0.1v0. A large number of tracers (104 separated in 100 bins) is used.

This investigation revealed that the transport of suprathermal ions is characterized by three

phases referred to as the ballistic phase, the interaction phase and the asymmetric phase.

Figure 5.4 shows the evolution of the variance of displacements of the suprathermal ions in

the radial, vertical and parallel directions for E = 50 and ξ= 0.8 [67]. Initially, the dispersion

of the suprathermal ions is ballistic, with γR = 2, analogous to the short ballistic transport

phase in a typical collisional random walk predicted (see Eq. (4.44)) and observed in neutral

fluids [163]. During this ballistic phase, which lasts approximately one gyroperiod, particles

move relatively unperturbed with respect to the initial velocity, unaffected by the turbulent
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Figure 5.5 |Dispersion exponents γR (colored dots) in the interaction phase are presented in the (E ,ξ)
space for the SMT (a) and slab (b) (from [67]). Error on the value of γR is ±0.1. For ξ < 0.3 (dashed-
dotted horizontal lines), the turbulent fluctuations are too small for connected radial streamlines
to form, therefore γR → 0 abruptly. Above the k∆ρ = 2 (solid black curves) gyroaveraging reduces
γR . In the SMT case, drift-averaging is indicated by the dashed red curve. To the right of this curve,
drift-averaging reduces γR .

electric field and the background magnetic field, and therefore have a uniform motion. Due to

the prescribed spread in initial velocities, uniform motion leads to a spatial dispersion with

γR ' 2.

The second phase begins when the interaction with the plasma becomes significant and is

referred to as the interaction phase. The radial transport is due to the turbulent vE×B arising

from the turbulence in the plasma potentialφ. A large number of suprathermal ion simulations

have revealed that the transport during the interaction phase is set by two mechanisms that can

reduce it: gyroaveraging and drift-averaging [47, 67]. The importance of these two effects was

investigated as a function of the dimensionless quantities representing the suprathermal ion

energy and the amplitude of the turbulent fluctuations: E and ξ. It was seen that, depending

on the values of these parameters, the value of γR can vary from superdiffusive (γR > 1) to

subdiffusive (γR < 1). Figure 5.5 shows the value of γR in the interaction phase as a function

of the two parameters E and ξ, for the SMT case (a) and in the case of a plasma slab (b),

corresponding to the limiting case of the SMT when R →∞. Studying the slab case allows

highlighting the importance of the curvature and grad-B drifts present in the SMT case and

not in the slab case. We now review the main aspects of gyroaveraging and drift-averaging.

Gyroaveraging

Gyroaveraging takes place when the suprathermal ion Larmor radii become comparable

to the linear size of the turbulent structures and when the turbulence varies over a time

scale that is large compared to the cyclotron frequency of the suprathermal ions. In this

case, the effective electric potential that the suprathermal ion guiding centers experience
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5.2. Suprathermal ion simulation model

is averaged over their cyclotron motion and, considering a plane wave decomposition

of the electrostatic potential φ(r , t ) = φ̂exp[i (k · r −ωt )], reduces to a multiplication by

a Bessel function [164]

〈φ(r , t )〉R = φ̂e i (k ·R−ωt ) 1

2π

∮
e(i k⊥ρ cosθ) dθ = J0

(
k⊥ρ

)
φ̂e i (k ·R−ωt ). (5.7)

Here, R is the position of the guiding center, k⊥ is the perpendicular wave number of

the turbulence, ρ is the suprathermal ion Larmor radius, θ is the angle swept by the

by the Larmor motion around the guiding center and J0(x) = 1
2π

∫ 2π
0 exp(i x cosθ)dθ is

the zeroth order Bessel function of the first kind. In the limit k⊥ρ→ 0, gyroaveraging is

ineffective and, if drift-averaging is also small, the suprathermal ions are transported by

the turbulent structures and the transport is expected to by superdiffusive. Figure 5.6

shows an example of the trajectories of suprathermal ions experiencing a superdiffusive

transport (in black) and a subdiffusive transport due to gyroaveraging (in red). It is

found that the transition from superdiffusive to subdiffusive happens when k∆ρ ' 2,

which is indicated by the solid back lines in Fig. 5.5. However, this transition is not sharp

and the condition k∆ρ ' 2 is rather arbitrary. We note that the Larmor radius depends

on the perpendicular velocity of the ions, ρ = v⊥/Ω, and

v⊥ ' v0,⊥+ vE×B + v∇B , (5.8)

where v0,⊥ 'p
2E/mλ is the initial perpendicular velocity (λ= v⊥/v∥), vE×B ' k∆φ̃/B

and v∇B ' 2E/(qBR). Using these expressions, the condition k∆ρ =C can be written as

a function of ξ and E

ξ' 1

k2
∆ρ

2
sµ

(
C −k∆ρsλ

√
2Eµ−2

ρ2
s k∆
R

µE

)
, (5.9)

which is used to draw the black line in Fig. 5.5. Here,µ= m/mi , where m is the suprather-

mal ion mass and mi is the mass of the plasma ions, and ρs = cs/Ωci .

Drift-averaging

Drift-averaging in the SMT configuration arises due to the vertical drift of the suprather-

mal ions and the vertical periodicity of the turbulence in the ideal interchange regime.

Provided that the vertical motion of the ions is sufficiently fast, an effective drift-average

of the electric field fluctuations reduces the radial dispersion, making it subdiffusive.

Due to the vertical periodicity of the turbulence, when suprathermal ions have large

vertical velocities, the E×B drift results in radial displacements of the guiding centers

that are followed by radial displacements in the opposite direction with the same ampli-

tude, averaging the total radial displacements toward zero. This mechanism leads to an

anti-correlated motion that is known to be a source for subdiffusion (see Section 4.2)

when particles are trapped in eddies or, for example, in numerical simulations of trac-

ers in sheared zonal flows in electrostatic ion-temperature-gradient turbulence [165].
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Figure 5.6 |Example of simulated suprathermal ion trajectories superimposed on a snapshot of the tur-
bulent electrostatic potential used in the simulations. The mechanism of gyroaveraging is represented
by the red trajectory with a Larmor radius size comparable to the size of the turbulent structures. The
blue trajectory represents an ion that is experiencing drift averaging due to its large vertical drift. The
transport experienced by the red and blue ions is subdiffusive. The black trajectory represents an ion
with a small Larmor radius and a small vertical drift whose trajectory is strongly affected by E×B drifts,
leading to a superdiffusive transport.

Figure 5.6 shows an example of the trajectory of a suprathermal ion experiencing a

subdiffusive transport due to drift-averaging (in blue). The ratio of the time taken by an

ion to move across a turbulence wavelength in the radial direction to the time it takes

to vertically move across it quantifies the importance of drift-averaging [67]. The time

required to move radially across the structure is

τR ' LR

vE×B,R
, (5.10)

where LR is the radial scale of the vortex, which has been estimated for the ideal-

interchange mode as LR '
√

Lp /k∆, where Lp ' 5cm is the pressure gradient length

scale [86]. Similarly, the time taken to move vertically across the structure is

τz ' Lz

v∇B + vE×B,Z
, (5.11)

with Lz ' 1/k∆. The value τR /τz = 5 corresponds approximately to the transition from

superdiffusive to subdiffusive transport indicated by the dashed red line in Fig. 5.5.

The last phase of the transport takes place when the suprathermal ions start sampling regions
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5.2. Suprathermal ion simulation model

Figure 5.7 |Probability density (PDF) of suprathermal ion displacements in the direction of the density
gradient for the SMT: (a) E = 50 and (b) E = 250 injection, and slab: (c) E = 50 and (d) E = 250 injection
(from [67]. The color of the PDF changes from blue-red-black-brown, in evenly spaced time increments
for 0 ≤Ωt ≤ 1000.

with different values of ξ and E , both depending on the value of T̄e (r ). When the suprathermal

ion beam becomes large compared to the scale over which the electron temperature varies

(see Fig. 5.2(b)), the ions experience different transport regimes depending on the local values

of ξ(r ) and E (r ) (as described by Fig. 5.5) and the resulting total transport is close to diffusive

(γR ' 1). This is reflected in the asymmetry of the PDF of the particle position as a function of

time shown in Fig. 5.7.

5.2.2 Lévy walk description of the suprathermal ion transport in TORPEX

The Lévy walk model presented in Section 4.2.1 has been applied to the numerical simulations

of the suprathermal ion transport in TORPEX [145]. The exponents µ and ν of the jump

PDF ψ(∆r,∆t) ∝∆r−µδ
(
∆t −α∆r 1/ν

)
are computed from the PDF of the step sizes and the

plot of the correlation between step sizes, ∆r , and step durations, ∆t , for a superdiffusive, a

subdiffusive and a diffusive case of transport (Figs. 5.8). The values of the transport exponents

corresponding to each case are then computed from the values of µ and ν and show a good

agreement with the values computed from the temporal evolution of the variance. A Lévy walk

generator is used to recreate the trajectories of the random walkers and to verify the accuracy

of the procedure. This confirmed that the fundamental elements of the suprathermal ion

transport process are contained in the two microscopic parameters of the Lévy walk, µ and ν.

However, the assumption of a symmetric distribution of step sizes does not capture the asym-

metric nature of the suprathermal ion transport in TORPEX, which is due to the inhomogeneity

of the background plasma profiles. Moreover, Figs. 5.8(c),(d) and (e) show that the coupling

between the step sizes and the step durations is not well described by a power law, ∆r = v∆tν.

For a given ∆t , the range of step sizes spans to more than a order of magnitude. In this Thesis,
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Figure 5.8 |Lévy walk analysis of the suprathermal ion numerical simulations on TORPEX [145]. a:
Radial variance of the ion positions as a function of time for three different injection energies: E/Te = 5
(red) superdiffusive, E/Te = 25 (blue) diffusive and E/Te = 250 (blue) subdiffusive. b: PDF of the step
sizes for the three injection energies showing the values of the exponent µ. c,d,e: Correlation between
step sizes and step durations in log-log scale for E/Te = 250 (c), E/Te = 25 (d) and E/Te = 250 (e) with
the best-fitting power law showing the values of ν.

we have developped a new theoretical model that allows for an asymmetric transport and that

does not assume a coupling of the step sizes and step durations, while allowing for temporal

correlations (see Chapter 6).

5.2.3 Considerations for the comparison with experiment

For this Thesis, the numerical simulations previously developed were used to compare with

experimental results. For this purpose, a realistic model of the injection parameters is crucial.

The point-like model previously used is replaced by a more realistic model using a 2D Gaus-

sian distribution for the initial positions. This mimics the finite size of the source aperture

in TORPEX. In the experiment, the source is installed horizontally on the toroidal rail and

therefore the injection cone forms a small angle with the helical magnetic field lines. Moreover,

the orientation of the source relatively to the magnetic field lines can slightly change during

the displacement of the source on the toroidal rail. The injection parallel to the magnetic field

lines used previously in the simulations is replaced by an injection with a small angle (0.1 rad)
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Figure 5.9 |Radial profile of the fluctuations (standard deviation) of the vertical electrical field measured
in TORPEX with the FRIPLE probe (blue) and from the GBS simulations (red).

to take this into account. The source parameters are also varied within the experimental

uncertainties and the sensitivity of the results to these parameters is found to be small. The

source parameters used to model the source in the simulations are reported in Chapter 7.

Using a non-point-like source with a non-parallel injection revealed the need of increasing

the number of tracers in order to achieve a statistical convergence of the variance of particle

displacements. This is of crucial importance since the time evolution of the latter is used to

compute the value of the transport exponent γR . A convergence study has led to the choice of

4000 bins each containing 40 particles resulting in a total number of 160 000 particles. The

relative error of the variance, averaged over its entire temporal evolution, compared to a case

ran with 6000 bins containing each 100 particles, is smaller than 0.01%. The necessity of

using more tracers in the simulations (16 times more than previously) considerably increased

the running time of the simulations, which has motivated the parallelization of the code,

performed in the context of a student project by Emil Rotilio.

The amplitude of the electrostatic fluctuations of GBS are adjusted to match the amplitude

of the fluctuations in the experiment. Since the turbulent transport is caused by the E×B

drifts due to the fluctuating electric field, it is important to match the amplitude of the

electric field. Furthermore, since we focus on the radial transport, we compared the vertical

component of the electric field. Figure 5.9 shows the radial profile of the vertical electric

field fluctuations measured with FRIPLE, at the midplane, and computed from the values

of the floating potential from tips separated vertically by 1.6 cm [85]. The same quantity

computed from the GBS simulation is also shown. At the injection position (X = 0), the value

of the vertical electric field in the experiment is Ey,TORPEX ' 48V/m while the value in the
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simulations is Ey,GBS ' 64V/m. The amplitude of the fluctuations is therefore multiplied by a

factor Ξ= 0.75 in the simulations as described in Section 5.2.

5.2.4 Fitting the transport exponent

When fitting the temporal evolution of the variance of displacements to compute the value of

the transport exponent (Eq. (5.6)), one is confronted with the fact that the value of the variance

is oscillating at the Larmor frequency of the suprathermal ions and therefore does not exactly

follow a power law (Fig. 5.10(a)). Several options allow circumventing this issue. One can

compute the variance from the trajectories of the guiding centers. However, the existence of

the guiding centers relies on assuming the conservation of the magnetic moment, µ, which is

not always true for suprathermal ions in TORPEX [67]. Therefore this method implies a loss of

generality. A smoothing of the variance as a function of time can be performed, but this does

not rely on any physical ground.

Instead, we choose to fit the transport exponent using only the maxima of the variance,

corresponding to the point of the ion gyromotion where they are the most separated. The

reason for this choice is motivated in the following. Figure 5.10(a) shows the variance of

displacements as a function of time for 70 eV ions injected in the magnetic field of TORPEX

in the absence of electrostatic field. The maxima of the variance are indicated by red circles

and the minima by red crosses. Figures 5.10(b) and (c) show the skewness and kurtosis

of the distribution of displacements. The time index corresponding to the maxima and

minima of the variance are also indicated by circles and crosses, respectively. We see that the

maxima (circles) correspond to the points where the distribution of displacements is the least

affected by orbit effects. Skewness and kurtosis measure the deviation of the distribution from

perfect Gaussians. In particular, the skewness measures the asymmetry of the distribution

(equal to zero for a Gaussian distribution), while the kurtosis measures the peakedness of the

distribution (equal to 3 for a Gaussian). Figure 5.10 shows that a deviation from Gaussianity

appears even in the absence of turbulence. The effect of the orbits could be misinterpreted as

a turbulent interaction if we were to consider, for example, only the minima. Figure 5.10(b)

also shows that, even by considering only the maxima, the skewness slightly increases over

long times. This is due to the inhomogeneity of the magnetic field, upon which the Larmor

frequency depends. At long times, the suprathermal ions desynchronize and the distribution

of positions slightly deviate from a Gaussian. This is confirmed by simulations in a constant

magnetic field, which do not display this effect. An investigation of this effect was carried

out during a student Master’s Thesis [166] and revealed that, for the ion energies under

consideration here, it is negligeable for injection angle . 0.17rad. This discussion points out

the importance of taking into account higher moments of the distribution of displacements,

or, if possible, the complete distribution (see Chapter 6).
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Figure 5.10 | (a) variance of displacement as a function of time for 70 eV ions injected in the magnetic
field of TORPEX in the absence of electrostatic field. The maximas of the variance are indicated by
red circles and the minimas by red crosses. (b) and (c) shows the skewness and kurtosis of the ion
displacements. The time index corresponding to the maximas and minimas of the variance are also
indicated by circles and crosses, respectively.
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6 Fractional Lévy motion analysis

This Chapter presents the application of the fractional Lévy motion (fLm) model to the numer-

ical simulations of the suprathermal ions in TORPEX. We generalize the fLm model presented

in Chapter 4 to allow for an asymmetric propagator. We show that asymmetric fLm can be

described by a transport equation using space-fractional differential operator with non-zero

skewness [167]. The time evolution of the radial particle position distribution is shown to be

described by solutions of the fractional diffusion equation corresponding to asymmetric fLm

in subdiffusive and superdiffusive cases.

6.1 Asymmetric fractional Lévy motion

Asymmetric fractional Lévy motion (afLm) is based on the fLm (see Section 4.2.2), with

the difference that it does not restrict the Lévy noise to be symmetrically distributed (see

Appendix A). Similarly to the fLm, which generalizes the Langevin description of Brownian

motion [114], it is characterized by long-range positive or negative time correlation and Lévy

distributed spatial increments.

The Langevin stochastic equation defining the afLm process is x(t ) is [167]

x(t ) = 1

Γ (H −1/α+1)

∫ t

0
(t − t ′)H−1/αξθα,σ(t ′)dt ′, (6.1)

where ξθα,σ(t ) is an uncorrelated noise distributed according to a Lévy strictly stable distribu-

tion, with index of stability 0 <α≤ 2, scale parameterσ and asymmetry parameter θ. Γ(·) is the

Gamma function. The definition and the main properties of the Lévy α-stable distributions

are recalled in Appendix A. When θ = 0, ξθα,σ(t) is symmetrically distributed and the afLm

reduces to fLm.

From the definition and properties of strictly stable Lévy distributions (see Appendix A and

[126]), it follows that, beside its asymmetry, afLm shares the same properties of fLm. We briefly

recall them here.
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AfLm is H-self-similar with stationary increments, meaning that the process is invariant under

rescaling

x(λt ) =λH x(t ) for all λ> 0, (6.2)

and exhibits a non-diffusive scaling of its moments〈|x(t )|s〉∝ t sH , (6.3)

where 0 < s <α, to ensure convergence of the moments. The values of H are restricted to [126]

{
0 < H ≤ 1/α if α< 1,

0 < H ≤ 1 if α≥ 1.
(6.4)

Figure 4.5 summarizes the properties of the fLm and afLm as a function of the space transport

exponentα and time transport exponentβ=αH , and shows that they encompass the ordinary

Brownian motion (oBm), the fractional Brownian motion (fBm) and the Lévy flight.

Following the derivation of Calvo et al. [156], and allowing for non-symmetric noise, we find

that the propagator is given by a strictly stable distribution depending on x/t H

Gθ
α,β(x, t |x0,0) = C (α,β)

tβ/α
Lθα,σ

[
C (α,β)

x −x0

tβ/α

]
. (6.5)

To find the diffusion equation associated with this propagator, we first take its Fourier trans-

form in space

Ĝθ
α,β(k, t ) = exp

[
− σαtβ

β|Γ(β−1
α +1)|α

|k|αe i sign(k) θπ2

]
. (6.6)

Taking the time derivative of the previous expression,

∂

∂t
Ĝθ
α,β(k, t ) =− σαtβ−1

|Γ(β−1
α +1)|α

|k|αe i sign(k) θπ2 Ĝθ
α,β(k, t ) , (6.7)

we recognize the Riesz-Feller space-fractional derivative of order α and skewness θ, defined

as F [Dα
θ

f (x)] = −ψθ
α(k) f̂ (k), where −ψθ

α(k) = −|k|αe i sign(k) θπ2 is the symbol of the pseudo-

differential operator [129, 168]. The transport equation is found by Fourier inverting Eq. (6.7),

∂

∂t
Gθ
α,β(x, t ) = Kα,βtβ−1 Dα

θ Gθ
α,β(x, t ) , (6.8)

where the effective diffusion coefficient Kα,β = σα/|Γ(β−1
α + 1)|α has units mα/sβ. When

θ = 0, the equation is equivalent to Eq. (4.58) and for β = 1 one finds the equation describ-

ing Lévy-Feller diffusion [168]. It is necessary to use an asymmetric propagator to capture
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δ1 [rad] δ2 [rad] E [eV] X [cm] eφ̃/Te

subdiffusive −0.10±0.08 −0.10±0.08 70±5% −0.4±0.12 0.56
superdiffusive 0.03±0.08 0.00±0.08 10±5% −0.4±0.12 0.56

Table 6.1 | Initial parameters of the simulated ions trajectories. The standard deviation of the Gaussian
spreadings is also indicated. δ1 is the angle between the source orientation and the horizontal plane and
δ2 is the angle between the source orientation and the toroidal direction. Injection energy E , injection
position X (X = 0 represents the center of the poloidal cross-section) and fluctuation amplitude, eφ̃/Te ,
at the injection position are also indicated

the asymmetry of the transport found in magnetically confined plasmas, including in ba-

sic toroidal plasma experiments, where the inhomogeneity of the magnetic field and of the

fluctuations between high and low field sides can lead to an asymmetric dynamics [67].

Similarly to fLm, the restriction on the range of permissible values for H (Eq. (6.4)) translates

for β as{
0 <β≤ 1 if α< 1

0 <β≤α if α≥ 1,
(6.9)

and when β< 1 or β> 1 the process is negatively or positively time correlated, β= 1 corre-

sponding to an uncorrelated process.

6.2 Numerical simulations of suprathermal ions transport in TOR-

PEX

To find the values of the spatial and temporal transport exponents, α and β, describing the

transport of suprathermal ions in TORPEX, we perform numerical simulations that model the

suprathermal ion experimental setup installed in TORPEX as described in Section 5.2.1. Here,

we are interested in the interaction phase. This phase can last several dozens of gyroperiods,

until the ions sample regions with sufficiently different turbulence characteristics. The average

resulting transport is close to diffusive (γR ' 1). We focus on two cases, with different initial

conditions (reported in Table 6.1): a superdiffusive case with an injection parallel to the mag-

netic field lines and an energy of 10 eV (corresponding to a ratio E/Te ' 9) and a subdiffusive

one with an energy of 70 eV (E/Te ' 64) and a small angle between the injection direction and

the magnetic field.

The variance of the ion radial position, computed as

σ2
R (t ) = 〈

(δR(t )−〈δR〉)2〉 , (6.10)

where δR(t) = R(t)−R(0), is shown in Fig. 6.1 as a function of time. The choice of the time
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Figure 6.1 |Variance of the suprathermal ion radial positions as a function of time. Ions with an energy
of 70 eV (blue) experience a subdiffusive transport whereas ions with an energy of 10 eV (red) experience
a superdiffusive transport. The circles represents the 10 selected time points for the fit. They are chosen
at maxima of the gyromotion in the interaction phase. The time axis is normalized to the suprathermal
ion gyroperiod 1/Ω.

points to compute the radial distribution has to be done carefully. Indeed, as can be seen in

Fig. 6.1, the evolution of the variance is modulated by the gyromotion of the ions. As explained

in Section 5.2.4, we choose time points corresponding to maxima of the gyromotion (shown

in Fig. 6.1), where the trajectories are the least affected by orbit effects. The time intervals

considered for the transport analysis cover the interaction phase and consist of 9 gyroperiods

for the case of ions having an energy of 10 eV and 27 gyroperiods for ions of 70 eV.

The definition of the self-similarity exponent H (Eq. (6.2)) implies the following scaling of the

variance of radial positions

σ2
R (t ) ∝ t 2H ∝ tγR . (6.11)

We note that, although the variance of stable distributions is infinite when α< 2, the variance

of our particle distribution is always finite due to the finite number of particles and the

finite size of the spatial domain. Equation (6.11) provides the relation between the different

transport exponents, γR = 2β/α, thus providing an additional method to compute γR , from α

and β, different from that used in Section 5.2.4, which is based on the scaling of σ2
R with time.

However, care has to be taken in the evaluation of γR from the evolution of σ2
R (t ) if one wants
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Figure 6.2 |Same as Fig. 6.1 but with the axis shifted so that the beginning of the interaction phase
corresponds to the origin of the plot. Fits of the slope (indicated in black dashed lines) provide the
values of γR for the two cases.

to compare it with 2β/α. Since the value of γR changes between the ballistic phase and the

interaction phase, new initial conditions have to be considered at the beginning of the latter.

The definition of H in Eq. (6.2) implies that x(t = 0) = 0, which is not true if we consider the

initial condition at the end of the ballistic phase. In this case, the process satisfies

x(λt ) =λH x(t )+ c, (6.12)

for all λ > 0. Here c is a constant and the process belongs to the family of broad-sense self-

similar processes ( [169, definition 13.5] and [170, p. 272]).

The correct scaling of the variance with time is thus given by

σ2
R (t )−σ2

R (t0) ∝ (t − t0)2H , (6.13)

with γR = 2H .
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Indeed, if we assume 〈x2(t )〉−〈x2(t0)〉∝ (t − t0)K , using Eq. (6.12), we have

〈(λH x(t )+ c)2〉−〈(λH x(t0)+ c)2〉∝λK (t − t0)K

⇒〈λ2H x2(t )+2cλH x(t )+ c2〉−〈λ2H x2(t0)+2cλH x(t0)+ c2〉∝λK (t − t0)K

⇒λ2H (〈x2(t )〉−〈x2(t0)〉)+2cλH (〈x(t )〉−〈x(t0)〉) ∝λK (t − t0)K

⇒λ2H (〈x2(t )〉−〈x2(t0)〉)∝λK (t − t0)K . (6.14)

The last relation implies K = 2H since it must be true for all λ> 0 and 〈x(t )〉 = 〈x(t0)〉, as the

process has a constant mean.

Figure 6.2 shows the time evolution of the variance of radial positions, with the axis correctly

shifted so that the slope of the plot is equal to γR . A least-squares fit gives for the subdiffusive

case, γR ' 0.5 and for the superdiffusive case γR ' 1.24. The values found by shifting the time

and the variance with the initial conditions are slightly different from those found without

the shifts (γR ' 0.3 and 1.5, for the sub- and superdiffusive case, respectively). The previous

approach [47, 67] (without shifts) gives a global value of γR and the new one gives a local value

in the interaction phase.

6.3 Least-squares fit of the radial distribution

In this section we describe the procedure and the results of the fit of the radial profiles with

the evolution given by the propagator of the fLm. Histograms of the radial position PDF

are computed at selected times, ti , i = 0, ...,9, (indicated by circles in Figs. 6.1 and 6.2). The

profiles are centered around r = 0, removing the mean drift velocity, thus focusing on the

radial spreading of the profiles. The first profile is used as initial condition n0(x, t = 0) and its

convolution with the propagator (Eq. (6.5)) provides the profile at all times ti ,

n(x, ti ) =Gθ
α,β(x, ti |x0,0)∗n0(x) . (6.15)

The four parameters (α,β,K ,θ) characterizing the transport are fitted, in the least-squares

sense, such that the convolution of the propagator with the initial condition simultaneously

best-fits the profiles at each times ti , i = 1, ...,9.

Figures 6.3 and 6.4 show the resulting profiles for ions with an energy of 10 eV and 70 eV,

respectively. The parameters corresponding to the best fit are displayed in Table 6.2.

6.3.1 Superdiffusive case

The fit of the superdiffusive case is in very goog agreement with the profiles of the simu-

lations as well as the value of γR and the value of 2β/α. The value of β > 1 indicates the

presence of positive time correlations in the process, revealing the persistent motion of the

ions. The value α< 2 indicates that the process is non-Gaussian and characterized by a heavy-
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α β K [cmα/sβ] θ

subdiffusive 2.00±0.01 0.58±0.02 0.100±0.001 -
superdiffusive 1.81±0.02 1.13±0.01 0.300±0.003 −0.193±0.002

2β/α γR

subdiffusive 0.58±0.02 0.51±0.04
superdiffusive 1.24±0.02 1.243±0.003

Table 6.2 |Parameters of the propagator (Eq. (6.5)) and fractional diffusion equation (Eq. (6.8)) giving
the best fit of the radial profiles. α and β are the spatial and temporal transport exponents, respectively,
K is the effective diffusion coefficient and θ is the asymmetry parameter. The value of the transport
exponent γR computed from the radial position variance evolution (Fig. 6.2) is reported along with the
value of the transport exponent computed as 2β/α and show a very good agreement. 95% confidence
intervals of the fits are reported.

Figure 6.3 |a) Radial profiles of the suprathermal ion density for the superdiffusive case (E = 10 eV).
The initial condition is in black dotted line and the profiles at times ti , i = 1, ...,9 are in blue. The best fit
of the evolution given by the propagator of fLm is shown in dashed red lines, and show an excellent
agreement. b) Same as a), but on logarithmic vs linear scale, for times ti , i = 1,3,5,7,9, showing that the
fits have heavy-tails on their left side. The profiles follow the heavy-tails up to a certain radial extent. A
cut-off is present due to the limitation of the radial velocity of the suprathermal ions.

tailed propagator. The value of the skewness θ reaches its maximum value (2−α), meaning

that the propagator is a stable distribution totally skewed to the left [126]. This reflects the

asymmetry of the plasma fluctuations in TORPEX, where the turbulence is dominated by an

ideal-interchange mode on the high field side and intermittent blobs propagating radially

outward on the low field side [77, 97, 98, 100, 101]. Consequently, the profiles of the electron

temperature and of the plasma potential fluctuations are strongly inhomogeneous. The values

of E/Te and eφ̃/Te change when the ions sample different regions of the plasma, leading
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Figure 6.4 | a) Radial profiles of the suprathermal ion density for the subdiffusive case (E = 70 eV). The
initial condition is in black dotted line and the profiles at times ti , i = 1,3,5,7,9 are in blue. The best
fit of the evolution given by the propagator of fLm is shown in dashed red lines, and show a good
agreement. b) Same as a), but on logarithmic vs linear scale, for times ti , i = 1,4,7, showing the absence
of heavy-tails for this subdiffusive case.

to an asymmetric transport (see Fig. 5.2). A cut-off of the heavy tails is visible in Fig. 6.3(b).

Indeed, in the fLm model, space and time are decoupled (Section 4.2), allowing arbitrary

fast radial steps of the suprathermal ions. On the other hand, in the simulations, the radial

velocity, determined by the fluctuating E×B drifts, is naturally limited, resulting in a cut-off

of the propagator’s tails similarly to the Lévy-walk model [128, 145, 171]. We note that the

model of exponentially truncated Lévy processes [172,173], which is described by a propagator

having heavy-tails tempered by an exponentially decaying function could be used to refine

the afLm [174]. The exponential truncation takes into account the non-ideal properties of

the system (finite size, inhomogeneity). In the superdiffusive case, the truncation introduces

a transition to a subdiffusive regime at long times, something that we have also observed

experimentally (see Figs. 7.3 and 7.5). This model has also the advantage of possessing finite

moments at all orders.

6.3.2 Subdiffusive case

For the subdiffusive case (Fig. 6.4), the fit reproduces the global evolution of the profiles. How-

ever, the agreement between the fits and the profiles is less good than for the superdiffusive

case. In this case, we obtain α = 2, indicating a Gaussian process, and β < 1, indicating a

negatively correlated process. This is consistent with the picture of gyro- and drift-averaging

causing an anti-persistent motion of the suprathermal ions leading to subdiffusion. As the

propagator is Gaussian, it is forced to be symmetric. The asymmetry parameter θ is irrelevant,

although the profiles are slightly skewed. This causes a mismatch between the profiles and
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the fits (Fig. 6.4) and represents a limitation of our model.

6.4 Conclusions

In this Chapter, we have derived the fractional diffusion equation and the propagator corre-

sponding to asymmetric fractional Lévy motion [167]. This model embodies Lévy statistics of

the displacements and time-correlations. Using numerical simulations, we showed that the

temporal evolution of the radial position distribution of suprathermal ions in TORPEX can

be well represented by solutions of the asymmetric fLm fractional diffusion equations in two

cases: a superdiffusive case and a subdiffusive case matching experimental measurements [40].

This method provides the value of the spatial and temporal transport exponents (α and β),

which are related to the transport exponent by γR = 2β/α, and the asymmetry parameter

θ. The knowledge of these two exponents provides insights into the microscopic processes

underlying the transport of suprathermal ions in TORPEX, previously not quantifiable. These

findings complement and extend previous numerical studies of suprathermal ion transport

in TORPEX [47, 67, 145], confirming that superdiffusion is caused by large intermittent and

persistent E×B drifts, while gyro- and drift-averaging effectively suppress these large drifts

resulting in a Gaussian anti-persistent motion, which leads to subdiffusion.

The Lévy, heavy-tailed, statistics of the superdiffusive motion reflects the presence of large

fluctuations in the particle motion characterizing intermittent bursts in the suprathermal

ion transport. An investigation of the time-resolved measurements of the suprathermal ion

transport in TORPEX and a characterisation of its intermittence is presented in Chapter 8.

Intermittency of the transport can be a concern for burning plasmas because of its effects

on the core reactivity, and, to a larger extent, on the heat load that suprathermal ions may

produce on localized areas of the reactor first wall.
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7 Comparison between experiment and
simulations

The comparison between experimental time-averaged measurements of the suprathermal

ion beam dynamics and numerical simulations is presented in this Chapter. To identify the

transport regime, the radial transport exponent, γR , has to be computed from the tempo-

ral evolution of the variance of radial displacements of the suprathermal ions (Eq. (4.15)).

However, the experimental data is time-averaged and the radial spreading of the ions is only

accessible as a function of the toroidal distance. Owing to a small spreading in the initial

injection parameters, the suprathermal ions all have a slightly different toroidal velocity and

there is not a unique relation between their time of flight and their toroidal position. For

this reason, numerical simulations are necessary to compute the transport exponent. In the

following, we focus on two cases of transport of suprathermal ions in TORPEX, which are

differentiated by their energy. In the first case, the suprathermal ions have an energy E ' 70eV

and in the second they have an energy E ' 30eV. We compare the evolution of the radial width

of the suprathermal ion beam with the results of numerical simulations to which a synthetic

diagnostic is applied. The transport exponent is computed from the numerical simulations

for the two cases. During the interaction phase, we find that the 30 eV ions experience a

superdiffusive transport while the 70 eV experience a subdiffusive transport.

7.1 Experimental and numerical parameters

The experimental injection parameters in the experiment are reported in Table 7.1. The

measurements have been performed over a period of more than two years using several

suprathermal ion emitters. For this reason, the injection parameters slightly vary from one

experimental campaign to the other. The values reported in Table 7.1 show the range spanned

by the parameters during the different measurements. Plasma conditions in TORPEX are very

reproducible. The plasma parameters characterizing the discharges used for this study are

detailed in Section 2.1.3, Table 2.1, and Fig. 5.2.

Table 7.2 shows the initial parameters used for the injection of suprathermal ions in the

simulated turbulent electric potential used for the comparison with the experiments. To take
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E [eV] X [cm] Y [cm] Te [eV] eṼpl/Te

1 [68,74]
[−2,−0.4] [−15,1.3] [1.4±0.4,1.2±0.3] [0.58,0.98]

2 [28,32]

Table 7.1 | Injection parameters used in the experiments. We indicate the range over which the pa-
rameters have varied during the different experiments that we have conducted for this study. E is
the ion initial energy, X is horizontal position of the source, Y its vertical position, Te is the electron
temperature at the injection position and eṼpl/Te denotes the amplitude of the fluctuations. The
vertical position of the source was changed for some experiments to maximize the distance traveled by
the ions before they reach the upper wall (see Fig. 2.12).

E [eV] δ1 [rad] δ2 [rad] X [cm] Y [cm] Ξ eφ̃/Te

1 75±5% −0.10±0.08 −0.10±0.08 −0.4±0.12 1.1±0.12 0.75 0.58
2 65±5% −0.1±0.1 −0.1±0.1 −2±0.12 1.1±0.12 0.85 0.66

3 30±5% −0.10±0.08 −0.10±0.08 −2±0.12 1.1±0.12 0.75 0.57
4 25±5% −0.10±0.08 −0.1±0.08 −2±0.12 1.1±0.12 0.75 0.57

Table 7.2 | Initial parameters of suprathermal ions in the simulations. The standard deviation of the
Gaussian spreading is also indicated. Injection energy E , injection positions X and Y and fluctuation
amplitude, eφ̃/Te , at the injection position are indicated. Ξ is the factor by which the plasma potential
fluctuations are multiplied as explained in Section 5.2.3, δ1 is the angle between the source orientation
and the horizontal plane and δ2 is the angle between the source orientation and the toroidal direction.

into account the experimental uncertainty of the initial values and their variation from one

measurement to the other, two simulations are performed for each experimental case with

initial parameters spanning the variation of the experimental initial parameters. Note that

the initial vertical position is not important since the turbulence is periodic in the vertical

direction. The turbulent electric potential is modeled with the GBS code and the details of the

simulations are given in Section 5.1, Fig. 5.2, and Table C.1.

7.2 Synthetic diagnostic

Comparisons between the suprathermal ion current profiles measured in TORPEX and the

simulations are made using a synthetic diagnostic. This produces the time-averaged poloidal

suprathermal ion current profiles using the simulated tracer trajectories. To reconstruct the

suprathermal ion current at a fixed toroidal position, the poloidal plane is tiled in squares of a

size comparable to the experimental resolution of the measurements. To take into account

the fact that, in the experiment, the resolution in the poloidal plane is varied as a function of

the profile shapes (see Fig. 3.2), we use two different sizes of tiles in the synthetic diagnostic:

4×4mm2 and 8×8mm2, representing the minimum and maximum resolutions typically used

in the experiment. To compare the time-averaged ion current measured from the continuously
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emitting source with the results of the simulations in which the tracers are all launched

simultaneously, the current is integrated in each tile by letting all the tracers cross the poloidal

plane. The profile is then interpolated using the exact same method used for the experimental

profiles (Section 3.1). The mean vertical position and the radial variance are also computed in

the same manner as for the experimental profiles (Section 3.2).

7.3 Comparison of the experiments with the synthetic diagnostic

Figures 7.1 and 7.2 show examples of poloidal time-averaged suprathermal ion current density

profiles, in the presence of a plasma, measured at different toroidal locations for E = 30 eV and

E = 70 eV from the experiments (left) and from numerical simulations (right). On top of the

unperturbed motion, consisting of the gyromotion and the vertical drift (see Section 3.4), a

broadening due to the interaction with the plasma turbulence is revealed. The broadening is

larger for 30 eV than for 70 eV and is apparent in both the simulations and the experiments.

Although the simulated profiles show some discrepancies with the measured ones, the main

features, such as the overall shape, position and radial broadening, are correctly reproduced

by the simulations.

The comparison between the measured and simulated evolution of the beam width as a

function of the toroidal distance is shown in Figs. 7.3 and 7.4 for the two energies. The radial

beam width is computed as the radial standard deviation of the suprathermal ion current

profiles (see Section 3.2). The toroidal distance between the source and the detectors is

computed with 1 cm precision. The statistical error arising from the averaging of the radial

standard deviation over the entire profile is also taken into account in the error bars, as detailed

in Section 3.3. The continuous bands are drawn from the synthetic diagnostic of numerical

simulations. The bottom and top lines defining the bands are computed from the numerical

simulations 1 and 2, from Table 7.2, for the 70 eV case and 3 and 4 for the 30 eV case. For the

simulations 1 and 3, 4×4mm2 tiles are used in the synthetic diagnostic and 8×8mm2 tiles

are used for the simulations 2 and 4.

The beam width oscillates due to the gyromotion of the ions. A slight discrepancy between

measurements and simulations in the phase and amplitude of these oscillations is visible. This

comes from the fact that they depend on the injection angle and energy, which can slightly

vary from one measurement to the other. Close to the source, the profiles have comparable

widths for the two energies (also shown in Figs. 7.1 and 7.2). As the distance from the source is

increased, the radial width of the 30 eV ion beam is observed to grow much faster than that

of the 70 eV ions. This indicates that the interaction with the plasma turbulence results in

a larger spreading for ions with lower energy and that the transport that they experience is

different. A good agreement between the experiments and the simulations is apparent.

The beam width evolution over the first 60 cm is shown in Figure 7.4. The oscillations of the

beam width due to the gyromotion of the ions are visible both in the experiment and in the

simulations. They are larger for 70 eV ions since their Larmor radii are larger than those of
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Figure 7.1 |Poloidal suprathermal ion current density profiles at different toroidal distances (from
top to bottom, d = 0.02 m, 0.23 m, 0.5 m and 1.8 m) for ions having an energy of E = 70eV . Experimental
measurements are displayed on the left in A/m2 and the results from numerical simulations (number 1
in Table 7.2) on the right (arbitrary units).
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Figure 7.2 |Poloidal suprathermal ion current density profiles at different toroidal distances (from
top to bottom, d = 0.02 m, 0.14 m, 0.37 m and 1.9 m) for ions having an energy of E = 30eV . Experi-
mental measurements are displayed on the left in A/m2 and the results from numerical simulations
(number 3 in Table 7.2) on the right (arbitrary units).
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Figure 7.3 |Radial width of suprathermal ion current profiles as a function of toroidal distance trav-
eled. Red squares and blue circles represent experimental measurements for ions emitted at 30 eV and
70 eV respectively. Continuous bands are drawn from a synthetic diagnostic of numerical simulations
for 30 eV (red) and 70 eV (blue) ions. The width of the bands is obtained by varying the simulations
input parameters within experimental uncertainties. On top of this oscillation, the beam spreads
due to the interaction of the ions with the turbulence. The different trends of the spreading indicate
different transport regimes. The ballistic phase, lasting approximately one gyroperiod (first three
measurements), is in good agreement with the simulations for both energies (see Fig. 7.4). Then, the
30 eV ion beam spreads strongly until a toroidal distance of ' 1m. The accumulated spreading of the
70 eV ion beam is less than the 30 eV beam. Error bars are computed by modeling the measurement
with a finite size detector inlet (4 mm radius) and 2 mm absolute positioning accuracy (see Section 3.3).

30 eV ions. The first three measurements are made in the ballistic phase of the transport (see

Section 5.2.1) and show good agreement with the numerical simulations.

7.4 Identification of the transport regimes

To compute the radial transport exponent, γR , the evolution of the variance of the ion radial

displacements as a function of time, σ2
R (t), is computed from the numerical simulations

reproducing the experimental conditions (Fig. 7.5). The ion transport is ballistic (σ2
R (t ) ∝ t 2)

during a first phase lasting approximately one gyroperiod. In this short initial phase, the ions

have not yet interacted with the plasma and are not yet magnetized [47, 163]. The ions enter a

second spreading phase as they start to interact with the plasma turbulence. In this phase,

different transport regimes are observed depending on the energy of the ions and the character
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Figure 7.4 |Same than Fig. 7.3 but showing only the first 60 cm of the toroidal distance traveled by the
ions. The first three measurements are made in the ballistic phase of the transport and show good
agreement with the numerical simulations.

of the turbulence (see Section 5.2.1). Fitting the temporal evolution of σ2
R (Fig. 7.5) to power

laws provides the values of the transport exponents in the different phases. To compute the

transport exponents in Fig. 7.5, local maxima of σ2
R (t ) during the gyromotion are fitted with

the equationσ2
R (t )−σ2

R (t0) ∝ (t − t0)γR , where t0 is chosen as the first maximum of each phase

(see Section 6.2). Maxima are chosen since they correspond to the points of the gyromotion

that are least affected by orbits effects (see Section 5.2.4). This procedure is applied to each

simulation in Table 7.2 used to draw the bands in Fig. 7.3, and the average is computed for

each phase.

In the interaction phase, an exponent γR = 0.51±0.01 is found for ions of 70 eV (E/Te ' 54)

and γR = 1.20±0.04 for ions of 30 eV (E/Te ' 23), indicating that the transport varies from

subdiffusive to superdiffusive as the energy of the ions is decreased. These results show, for the

first time, the existence of two different transport regimes, in the same background turbulence,

for suprathermal ions in TORPEX that are only differentiated by their energy. For ions of 30 eV,

after the superdiffusive phase, a phase where the transport is close to diffusive (γR = 0.92±0.04)

is visible in Fig. 7.3 after approximately 1 m and in Fig. 7.5 after six gyroperiods. This phase

appears when the size of the beam becomes sufficiently large that ions sample regions of

the plasma with different fluctuation amplitudes, originating an average transport close to

diffusive (see Section 5.2.1).
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Figure 7.5 |Variance of the ion radial positions as a function of time. Results obtained from the
numerical simulations reproducing the experimental data in Fig. 7.3, for ions at 70 eV (blue) (number 1
and 2 in Table 7.2) and 30 eV (red) (number 3 and 4 in Table 7.2). Fits of the different phases, shown in
dashed lines, provide the values of the transport exponent γR . A slope corresponding to γR = 2 is shown
next to the initial ballistic phase. For ions of 30 eV, the transport is then superdiffusive with a transport
exponent γR ' 1.20 during approximately 4 gyromotions and finally close to a diffusive process with
γR ' 0.92. For ions of 70 eV, the transport is subdiffusive with γR ' 0.51. Time is normalized to the ions
gyroperiod.

Applying the asymmetric fractional Lévy motion (afLm) analysis (Chapter 6) to the simulations

used here, we find that, in the interaction phase, for 30 eV the transport is non-Gaussian

(α= 1.88±0.04), persistent (β= 1.18±0.02) and asymmetric (θ = 0.1±0.2). For 70 eV ions, the

transport is almost Gaussian (α= 1.97±0.03) and anti-persistent (β= 0.55±0.4). The values

of the transport exponent computed from α and β are very close to the values computed

from the fits of the variance: for the 30 eV case, 2β/α = 1.26±0.03, and for the 70 eV case,

2β/α= 0.56±0.05.

7.5 Discussion

We have shown that experimental measurements of suprathermal ion transport in a turbu-

lent magnetized plasma are in agreement with validated numerical simulations for two ion

energies. Therefore, the transport of these ions is demonstrated to be consistent with the

non-diffusive transport theory that successfully describes the simulations (Section 5.2.1). The

measured and simulated transport is first ballistic for approximately one gyroperiod, after
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E [eV] γR ρL [cm] 2ρL/Lz vz /vR τR /τZ

70 0.51±0.01 0.8±0.2 0.6 5.5±0.8 7
30 1.21±0.04 0.5±0.1 0.3 1.5±0.5 2

Table 7.3 |Energy, radial transport exponent in the interaction phase, Larmor radii, ratio of the vertical
to the radial velocity, ratio of the Larmor orbit diameter to the vertical extend of the blobs and ratio
of the time required to cross a blob radially to the time required to cross it vertically. All the values
are computed from the simulations as the average over all particles and over time. The average from
simulations 1 and 2 in Table 7.2 is computed for the 70 eV case and the average from simulations 3
and 4 is computed for the 30 eV case. The uncertainties are given by the standard deviation of value
distribution for all particles. The Larmor radius is computed from the perpendicular velocity. The
vertical velocity is given by the average of the guiding center vertical velocities. The radial velocity is
given by the standard deviation of the guiding center radial velocities, since the averaged radial velocity
is almost equal to zero.

which the spreading of the beam strongly depends on the injection energy. Numerical sim-

ulations allow determining the radial transport exponents γR and reveal the basic physical

mechanisms leading to super- or subdiffusive behavior. Suprathermal ions with the lower

energy follow Lévy-type (non-Gaussian) superdiffusive transport trajectories as they are trans-

ported by the turbulent structures. In the same turbulent plasma, suprathermal ions with

larger energies average the turbulent electric field more significantly as larger Larmor radii and

faster vertical drift lead together to anti-correlated, non-Markovian, subdiffusive transport.

This work thus gives a proof of principle that the transport of suprathermal ions in turbulent

plasmas can exhibit various non-diffusive regimes.

The relative importance of gyroaveraging and drift-averaging is estimated from the numerical

simulations. Table 7.3 shows the Larmor radii, the ratio of the vertical to the radial velocity

of the ions and the parameters indicating the importance of gyroaveraging, 2ρL/Lz , and

drift-averaging, τR /τZ = LR vz /(Lz vR ) (Section 5.2.1). The radial extent of the blobs is taken

as the radial width of the interchange mode [86] LR '
√

Lp /k∆ ' 3.8cm and their vertical

extent as [67] Lz ' 1/k∆ ' 2.9cm. The conditions identified in the numerical investigation

(Section 5.2.1) [47, 67], for the gyroaveraging and drift-averaging to become effective are

2ρL/Lz = 2k∆ρL & 4 and τR /τZ & 5. (7.1)

In Table 7.3, the values of both ratios is higher for the 70 eV case than for 30 eV case indicating

the role of these mechanisms in the reduction of the transport. The drift-averaging condition

(Eq. (7.1)) is satisfied for the 70 eV case. On the other hand, the gyroaveraging condition

(Eq. (7.1)) is satisfied in neither case. While the estimate of the vertical size of blobs given by

Lz is in agreement with the value observed in the experiment using conditional sampling [95],

it does not take into account the complex structures that constitute a blob. Seeded blob

simulations show that, depending on their size, blobs are subject to secondary instabilities

[175, 176], such as Kelvin-Helmholtz or Rayleigh-Taylor instabilities, that develop in complex
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Figure 7.6 | Ion saturation current time traces of blobs detected on a tip of HEXTIP with the technique
of conditional average sampling (see Chapter 8). The traces in blue are the results of single blobs
crossing the tip and the trace in red is the result of the conditional average sampling method. The blobs
fine structures are visible on the individual Isat time traces but they are averaged out by the conditional
average sampling technique.

shapes with smaller scales than the blob size. These fine structures are not resolved by the

experimental conditionally averaged measurements. For example, Fig. 7.6 shows the Isat time

traces of blobs detected on a tip of HEXTIP with the technique of conditional average sampling

(see Chapter 8). The traces in blue are the results of single blobs crossing the tip and the trace

in red is the result of the conditional average sampling method. The blobs fine structures

are visible on the individual Isat time traces but they are averaged out by the conditional

average sampling technique. Moreover, different blob sizes are present in TORPEX [100],

and the smallest ones are probably not detected, due to the insufficient resolution of the

measurements. As the ion Larmor radii increase, the suprathermal ions gradually gyroaverage

fine structures and small blobs. Nevertheless, a thorough investigation of the blob size and

structure in TORPEX is still needed to fully characterize the effect of gyroaveraging.
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8 Time-resolved measurements

In fusion experiments and astrophysical plasmas, measurements are limited to a few posi-

tions by high-temperature and diagnostics accessibility. In these cases, it is not possible to

characterize the transport by the temporal evolution of the variance of displacements and

information about the transport has to be inferred from the time trace statistics [83, 138, 177].

In this Chapter, we present first time-resolved measurements of the cross-field transport of

suprathermal ions in a turbulent magnetized plasma [41].

In Chapter 7, by using three-dimensional time-averaged measurements of the width of a

suprathermal ion beam in combination with numerical simulations (an example is shown in

Fig. 8.1), we have shown that the transport of suprathermal ions varies from superdiffusive

to subdiffusive as their energy is increased [37, 40, 47, 67, 69, 145, 167]. Here, we consider the

same two cases than in Chapter 7, with suprathermal ion energies of 30 eV and 70 eV, for

which the transport was identified to be superdiffusive and subdiffusive, respectively [40, 69].

We show that the time traces of the suprathermal ion current show a clear difference in

the intermittency level. Using the technique of conditional average sampling (CAS) [70, 71],

we identify the effect of turbulent structures on the suprathermal ion beam confirming the

efficiency of gyroaveraging, depending on the ion energy, to decrease transport.

8.1 Experimental set-up for the time-resolved measurements

Figure 8.1 shows the setup used for this study. Similarly to the time-averaged measurements

(Chapter 7), the suprathermal ion source is positioned in the region dominated by blobs, at

X = 1.5 cm and Y =−4.3 cm, and injects suprathermal ions in the toroidal direction. At the

injection position the time-averaged electron temperature measured by a triple probe [85]

is Te ' 1.3 eV. Measurements at different poloidal locations are taken using a gridded energy

analyzer (GEA) [40] placed at a distance d = 41.2 cm along the toroidal axis. At this distance,

suprathermal ions have completed approximately two gyro-orbits and are in the interaction

phase (Section 7.3) [47, 69]. The GEA is used to selectively measure the current produced

by ions having an energy larger than 10 eV, repelling electrons (Section 2.2.2). The array of
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Chapter 8. Time-resolved measurements

Figure 8.1 |Experimental setup showing the TORPEX device. The suprathermal ion source and the
gridded energy analyzer are shown. The poloidal plane in red indicates the position of the reference
probes used for the CAS. A helical magnetic field line is shown in violet. The field lines crossing the
suprathermal ion beam between the source and the detector cross the reference probe plane twice.
Examples of computed suprathermal ion trajectories are shown in red along with a snapshot of the
electric potential fluctuations as simulated by the GBS code [69, 87].

LPs, HEXTIP, shown in red in Fig. 8.1, is used to detect blobs for the CAS technique. In these

experiments, synchronous detection is not used and the time traces of the GEA are directly

digitized at 250 kHz during discharges lasting ' 1.5s. This allows measuring the time-resolved

suprathermal ion current but, as a complete poloidal profile of the Isat fluctuations is recorded

with HEXTIP for each measurements, a longer time is required to measure a complete poloidal

profile than with the synchronous detection technique due to the time required by data

aquisition.

8.2 Suprathermal ion current times traces

Figure 8.2 shows two examples of suprathermal ion current time traces from the GEA for

ion energies of 30 eV and 70 eV. The bias voltage on the emitter is turned on and off at

∼ 30Hz, allowing to differentiate the fluctuations of the background noise from those of the

suprathermal ion current. During the on phase, the time trace for 30 eV ions shows a higher

intermittency (Fig. 8.2(a)) than the 70 eV case (Fig. 8.2(b)). This difference is reflected in the

PDFs for the current fluctuations of the two cases (Fig. 8.2 insets). The PDF for the 30 eV case

is positively skewed suggesting the fact that the suprathermal ions reach the detector in bursts,

while the PDF for the 70 eV ions does not show large fluctuations.
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8.3. Time-averaged, skewness and kurtosis profiles of the suprathermal ion current

Figure 8.2 |Suprathermal ion current time traces measured with the GEA positioned at the locations
indicated by the black crosses in Fig. 8.3. The suprathermal ion source is turned on (red) and off (blue)
periodically. The time trace of 30 eV ions (a) shows a high intermittency level contrary to the 70 eV ions
time trace (b). Insets show the PDFs of the suprathermal current fluctuations. The PDF for the 30 eV
case is strongly positively skewed, reflecting the intermittency of the signal, whereas the PDF for the
70 eV case is not.

8.3 Time-averaged, skewness and kurtosis profiles of the suprather-

mal ion current

We characterize the intermittency of the time traces by computing the skewness and kurtosis

(also called flatness) [82, 178] of their PDFs. The skewness is the normalized third order

moment of the PDF and is a measure of the asymmetry of the PDF. In our case, a positive

skewness indicates the presence of positive bursts in the signal. The kurtosis is the normalized

fourth order moment of the PDF and is a measure of the heaviness of the PDF tails. The

periods during which the source is not emitting are used to compute the position-dependent

background values of the mean (offset), skewness and kurtosis. These are removed from the

values computed during the on phases.

Figures 8.3(a) and (b) display two-dimensional profiles of the time-averaged suprathermal

ions current density for the two energies. Although the time-averaged profiles for the two

energies are relatively similar, when the profiles of the skewness and kurtosis of the time-traces

are reconstructed (Figs. 8.3(c),(d),(e) and (f)), a clear difference appears. While the skewness
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Chapter 8. Time-resolved measurements

Figure 8.3 |Poloidal profiles of the time-averaged suprathermal ion current density, in A/m2, for ions
at 30 eV (a) and 70 eV (b). The profile of the skewness, (c) and (d), and kurtosis, (e) and (f), of the time-
traces are also shown. The profiles of the skewness and kurtosis of the 30 eV ions ((c) and (e)) reveal
a crown of high skewness and high kurtosis around the peak of time-averaged profile. This indicates
that the broadening of the 30 eV suprathermal ion beam is due to intermittent bursts perturbing the
gyro-motion of the ions. This pattern is not visible on the skewness and kurtosis profiles for 70 eV ions
((d) and (f). Gray circles show the positions of measurements. The black crosses represent the position
of the detector corresponding to the time traces shown in Fig. 8.2.

and kurtosis profiles for the 70 eV ion beam are flat, the profiles for the 30 eV ions reveal

a region of high skewness and high kurtosis around the peak of maximum time-averaged

current. This implies that, in the peripheral regions of the profile, where the time traces have a

low time-averaged current compared to the center of the profile, the intermittency is more

important. In the following, we show that this intermittency is caused by the interaction of the
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8.4. Conditionally averaged suprathermal ion current profiles

suprathermal ions with blobs.

8.4 Conditionally averaged suprathermal ion current profiles

To identify the effect of blobs on the suprathermal ion beam we use the CAS over many blob

events. To detect blobs, we use the Langmuir probe array HEXTIP [92] (Section 2.1.2) situated

at a toroidal angle of 240◦ away from the detector (see Fig. 8.1). Blobs are defined as bursts

in the ion saturation current characterized by nσ< Ĩsat < mσ, where Ĩsat = Isat − Īsat is the ion

saturation current fluctuations, σ is the standard deviation of the ion saturation current signal

and, n and m are factors allowing to select the amplitude of events in a certain range. The

suprathermal ion current is averaged in a time window centered around each blob event. This

procedure is applied to the phase with and without suprathermal ions. The difference between

the two CAS shows the dynamic of the suprathermal ion beam when a blob is detected on a

given probe tip of HEXTIP.

Figure 8.4 shows the time evolution of the conditionally-averaged suprathermal ion current

profile for the 30 eV ions (see the supplementary material of [41] for a movie showing the same

data). The reference probe is positioned at X = 0 cm and Y = 12.1 cm and all events exceeding

a level corresponding to n = 3 are selected. Due to the helical magnetic configuration, blobs

detected on this tip are aligned to a magnetic field line that is located at X = 0 cm, Y =
−0.5 cm at the toroidal location of the detector, which is close to the maximum of the time-

averaged profiles (Figs. 8.3(a) and (b)). Figure 8.4 shows the CAS analysis from −64µs before

to 64µs after the detection of the blob. This time interval corresponds approximately to the

autocorrelation time of floating potential fluctuations in the blob region (τcorr,Vfl ' 42µs) and

of Isat fluctuations (τcorr,Isat ' 52µs). First, the beam is displaced to the top-left with respect to

its time-averaged profile (gray contours) (Figs. 8.4(a), (b) and (c)). Then, when the blob crosses

the probe (Figs. 8.4(d), (e) and (f)), the displacement changes from left to right. At later times

(Figs. 8.4(g), (h) and (i)), the beam is displaced to the bottom right of its averaged position.

The time scale of the beam displacement is comparable to the duration of the intermittent

bursts shown in Fig. 8.2(a). This is demonstrated by the value of the autocorrelation time

(τcorr ' 22µs) of the most intermittent suprathermal ions time traces (with a skewness above

2) which is comparable to the Isat autocorrelation time. Figure 8.5 show that as the same CAS

blob crosses the 70 eV ion beam, the displacement of the beam is extremely small compared

to the one of the 30 eV beam.

As the time of flight between the source and the detector is smaller for 70 eV ions (t f ,70eV '
9µs) than for 30 eV ions (t f ,30eV ' 13µs), a smaller perpendicular displacement is expected

for 70 eV ions. The maximum displacement of the center of mass of the 30 eV ion beam is

d⊥,30eV ' 0.8 cm and d⊥,70eV ' 0.3 cm for the 70 eV ion beam. Considering the simplified

picture of the effect of a blob as inducing a perpendicular displacement at a constant velocity

of the guiding center of the ions, the perpendicular displacement is given by d⊥ = v⊥t f , where

v⊥ = Ẽ/B and Ẽ is the electric field of the blob. Since the electric field is the same in both
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Chapter 8. Time-resolved measurements

Figure 8.4 |Conditionally averaged dynamics of the suprathermal ion current density [A/m2] for the
30 eV case at nine different times. Dashed gray contours represent time-averaged profiles (Fig. 8.3) and
the green contour represents the blob averaged Isat profile. The center of mass positions of the beam
and of the time-averaged profiles are indicated by blue and gray crosses, respectively.

cases, we should have d⊥,30eV

d⊥,70eV
= t f ,30eV

t f ,70eV
. Instead, we find d⊥,30eV

d⊥,70eV
' 2.7 > 1.4 ' t f ,30eV

t f ,70eV
. This indicates

a weaker interaction between suprathermal ions and blobs in the 70 eV case than in the 30 eV

case, consistent with the absence of intermittency in the current time traces in Fig. 8.2(b)

and Fig. 8.3(d) and with an increased effect of gyroaveraging for ions having larger Larmor

radii [47]. The value of the electric field estimated from the displacement of the 30 eV ion

beam is Ẽ ' 45 V/m, which is comparable to previously measured values [77, 95].
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8.5. Analysis of the suprathermal ion beam displacement

Figure 8.5 |Conditionally averaged dynamics of the suprathermal ion current density [A/m2] for the
70 eV case at nine different times. Dashed gray contours represent time-averaged profiles (Fig. 8.3) and
the green contour represents the blob averaged Isat profile. The center of mass positions of the beam
and of the time-averaged profiles are indicated by blue and gray crosses, respectively.

Figure 8.6 shows the same analysis, for both energies, but with a blob passing far away from

the ion beam (the reference probe position is X = 10.5 cm, Y = 0 cm). In this case the beam is

not perturbed.
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Chapter 8. Time-resolved measurements

Figure 8.6 |Conditionally averaged dynamics of the suprathermal ion current density [A/m2] for the
30 eV (left) and 70 eV (right) cases but with a blob passing far away from the beam. The reference
probe position is X = 10.5 cm, Y = 0 cm. In this case the beams are not perturbed. Note the X ,Y scale
difference with respect to Figs. 8.4 and 8.5.

8.5 Analysis of the suprathermal ion beam displacement

To investigate the mechanisms perturbing the trajectories of suprathermal ions, we study

the effect of blobs at different positions in the poloidal plane. Using probe tips at different
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8.5. Analysis of the suprathermal ion beam displacement

Figure 8.7 |Horizontal (top row) and vertical (bottom row) displacement of the suprathermal ion beam
due to large blobs (Ĩsat > 4σ) for 30 eV and 70 eV suprathermal ions. On all panels, the x-axis represents
the time relative to the detection of the blob on the reference probe and the y-axis represents the vertical
position of the reference probe. The crosses and the circles indicate the positions of the beam center,
when it reaches the detector, and of the source, respectively, projected along the helical magnetic field
lines on the poloidal plane of the reference probes (see Fig. 8.1). The measurement error is ±1 mm. The
vertical periodicity of the magnetic field is reflected in the pattern with a field line return distance of
∆' 18.8 cm.

vertical positions between the radial position 0cm ≤ X ≤ 1.7cm as reference probes for the

CAS, we compute the horizontal and vertical displacement of the beam center of mass as a

function of time. We separate the blobs in two classes, depending on the amplitude of their

Isat fluctuations: small blobs with 2σ< Ĩsat < 4σ and large blobs with Ĩsat > 4σ.

Figure 8.7 shows the horizontal and vertical displacement for 30 eV and 70 eV ions due to large

blobs. The circles represent the position of the suprathermal ion source projected along the

helical magnetic field lines on the poloidal plane of the reference probes. The crosses represent

the position of the beam center, when it reaches the detector, projected onto the same plane.

Thus, the vertical distance between the circles and the crosses show the vertical distance
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Chapter 8. Time-resolved measurements

Figure 8.8 |Horizontal (top row) and vertical (bottom row) displacement of the suprathermal ion beam
due to small blobs (2σ< Ĩsat < 4σ) for 30 eV and 70 eV suprathermal ions.

traveled by the ions between their emission and their detection due to the vertical drift. The

error on the displacement is estimated by simulating the measurements on prescribed profiles

and is ±1 mm. Figure 8.8 shows the horizontal and vertical displacement for 30 eV and 70 eV

ions due to small blobs. We observe that 30 eV ions are systematically more significantly

displaced by the blobs than 70 eV ions. Figures 8.7 and 8.8 reveal also that, depending on its

position relevant to that of the blob, the beam can be displaced inwards or outwards. We note

that, the beams are not displaced when a blob transits far away (for probes located at Y ' 0 cm).

We observe that blobs passing above the beam tend to move it outwards and that blobs passing

below it tend to move it inwards. The plasma potential associated with blobs in TORPEX has

been identified with a bipolar structure that results from the ∇B and curvature-induced charge

separation inside them [100]. The electric field and E×B velocity field associated with a blob

are schematically represented in Fig. 8.9. The observed suprathermal ion beam displacement

is consistent with the bipolar potential structure, taking into account that in the present

plasma conditions the blob motion can have a strong vertical component. Figure 8.8 shows

that lower amplitude blobs induce the same pattern of displacements with amplitudes smaller
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8.6. Conclusions

Figure 8.9 | simplified schematic of a blob showing the electric field and E×B velocity field associated
with the plasma potential dipole.

by about a factor two.

8.6 Conclusions

In summary, thanks to unprecedented time-resolved measurements, we show that suprather-

mal ions in TORPEX plasmas experiencing superdiffusive transport are associated with bursty

displacement events resulting in highly intermittent time traces. Suprathermal ions experi-

encing subdiffusive transport do not display such intermittency. The intermittency of the

time traces is quantified by the skewness and kurtosis of their fluctuations. For superdiffusive

ions, the skewness and kurtosis poloidal profiles reveal a crown around the peak of maxi-

mum current, where the fluctuations are the most intermittent. Using CAS measurements,

we prove that the intermittency in the superdiffusive ions is due to their higher sensitivity

to intermittent blobs, which move the ions through their electrical field both inwards and

outwards depending on their relative location. Larger blobs have a greater effect than smaller

blobs.

Our work links observations usually unaccessible in fusion devices and astrophysical plasmas,

namely energy-resolved three-dimensional time-averaged measurements (Chapter 7), with

Eulerian time-resolved measurements, which are often the only accessible measurements

in such experiments. The presence of large fluctuations in the time traces of superdiffusive

ions corroborates our previous theoretical study, where we showed that Lévy, heavy-tailed,

statistics govern this regime [145, 167] (Chapter 6).
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9 Conclusions

In magnetic fusion and space plasmas, the transport of suprathermal ions is determined

mainly by turbulence [47, 179] with Coulomb collisions playing only a minor role. In magnetic

fusion reactors, fusion-generated alpha particles regulate the burning plasma regime, in which

reactors will necessarily operate, providing the dominant fraction of the plasma heating [12].

Losses or internal redistribution of suprathermal ions need to be controlled as they can affect

the burn dynamics, degrade the fusion energy production and damage the reactor structure.

In space, superdiffusive transport is thought to play a role in the long-standing problem of

cosmic ray acceleration [51, 52, 57] and in the transport of solar energetic particles that can be

harmful to spacecraft functioning [42, 56, 58].

The transport of suprathermal ions in turbulence is a complex process that depends on the

interplay between the ion orbits and the turbulent structures. Investigating this phenomenon

requires detailed knowledge of the characteristics of the suprathermal ions trajectories and

of the turbulence. TORPEX, with its easy access for diagnostics and its well characterized

turbulent regimes, is an ideal testbed to carry out a systematic study of the suprathermal ion

transport. Curvature and gradient of the magnetic field, due to the toroidal configuration

of TORPEX, generate drifts of the suprathermal ions and a turbulence that is dominated

by intermittent field-elongated structures, features that are also characteristics of tokamak

plasmas. Detailed numerical simulations of the interaction of suprathermal ions with validated

simulations of turbulence are also necessary to precisely characterize the suprathermal ion

transport and to unveil the mechanisms responsible for it.

During this Thesis, the design of the suprathermal ion source initially developed in TORPEX

was modified. The new design improves the insulation of the electric parts, which increases

the source performance, and facilitates its assembly. An analog lock-in detector that allows one

to remove the capacitive noise due to the source voltage modulation was realized. A motorized

cart allowing to remotely move the source along the toroidal direction and a second GEA

detector were built. These ameliorations and additions to the suprathermal ion experimental

setup permitted us to considerably accelerate the numerous and long-lasting measurements

of the suprathermal ion current profiles.
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To characterize the transport of suprathermal ions, poloidal profiles of their current den-

sity were measured with the two GEA detectors at a number of toroidal locations along the

suprathermal ion beam allowing its 3D reconstruction. These measurements reveal the ver-

tical drift experienced by the suprathermal ions and the oscillations of the beam width due

to their gyromotion. Experiments were conducted with two different suprathermal ion in-

jection energies, 70 eV and 30 eV. A broadening of the suprathermal ion beam due to its

interaction with the turbulence was observed. The turbulent broadening is considerably more

important for the ions injected with the smaller energies, indicating that the transport regime

experienced by the ions depends on their energy.

Numerical simulations reproducing the experiments were conducted. Modeling of the back-

ground plasma turbulence with the fluid code GBS was performed to carefully match ex-

perimental measurements of the plasma potential profiles. Numerical simulations of the

suprathermal ion transport in the simulated turbulent fields were performed with initial pa-

rameters mimicking the experimental parameters. A comparison of the experimental and

numerical results was conducted by applying a synthetic diagnostic to the code output. The

comparison of the experimental radial beam width with the one from the synthetic diagnostic

shows a good agreement. The numerical simulations, in agreement with the experimental

measurements, allow us to precisely characterize the transport experienced by the suprather-

mal ions by computing the values of the radial transport exponent, γR , from the temporal

evolution of the variance of displacements. The transport is at first ballistic (γR = 2) during

approximately one gyroperiod. The ions enter then the interaction phase where the transport

is found to be superdiffusive (γR ' 1.2) for 30 eV ions and subdiffusive (γR ' 0.5) for 70 eV ions.

For 30 eV ions, a third phase, featuring a transport close to diffusive (γR ' 0.9) is found. It was

found that the mechanisms of gyroaveraging and drift-averaging were more important for

70 eV than for 30 eV, effectively reducing the transport.

A theoretical model based on a stochastic equation describing the trajectories of the particles

was developed. This model, the asymmetric fractional Lévy motion (afLm), generalizes the

classic Brownian motion to include long-range temporal correlations and heavy-tailed PDF of

step sizes that can be asymmetrically distributed. The corresponding macroscopic equation

for the temporal evolution of the radial particle density was derived. This equation uses

a fractional differential operator with non-zero skewness and a time dependent diffusivity.

The solutions of this equation fit very well the PDF of particle density from the numerical

simulations in subdiffusive and superdiffusive cases. This model provides the values of

the spatial transport exponent α, indicating the departure from Gaussianity, the temporal

transport exponent β, revealing the presence of positive or negative temporal correlations,

and the asymmetry parameter θ. These parameters gives an insight into the microscopic

processes at play that was not accessible before. The superdiffusive transport is found to

be characterized by heavy-tailed (Lévy) asymmetric PDFs and the subdiffusive transport is

characterized by anti-persistent, negatively correlated trajectories.

To identify the effect of blobs on the suprathermal ions, time-resolved measurements of the
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suprathermal ion current were performed in the interaction phase, for 70 eV and 30 eV ions. A

sharp difference was revealed in the intermittency of the time traces, characterized by their

skewness and kurtosis. A crown of high intermittent signals is observed in the surrounding of

the 30 eV indicating that, in this case, the ions reach the detector in bursts. This is not observed

for 70 eV ions. The technique of conditional average sampling allowed us to identify the role

of blobs. 30 eV ions are found to be more sensitive to the turbulent E×B fields associated with

the blobs. The intermittency observed in these Eulerian measurements for the 30 eV ions is

consistent with the Lagrangian descriptions depicted in the afLm, where Lévy PDFs are found

in the superdiffusive case.

While our findings cannot be directly extrapolated to fusion and astrophysical plasmas, they

advance the basic understanding of the turbulent transport of suprathermal ions and serve

as a proof-of-principle that suprathermal ion transport is generally non-diffusive and that it

depends on the energy of the ions.

Presently, most predictions of turbulent transport of energetic particles are based on a dif-

fusion model, in which ad-hoc “anomalous” diffusion coefficients are inserted, implying a

transport that is Gaussian and Markovian. This assumption can lead to false extrapolations

and misleading estimates of the importance of fundamental processes: in our case the orbit

averaging and effect of turbulent structures. Our observations of non-diffusive transport in

this simple magnetized torus support the importance of considering alternative descriptions

to canonical diffusion equations, such as fractional diffusion equations [122, 167] . Future

fusion reactors will rely on good confinement of energetic ions, the motion of which may

be non-diffusive in some cases. Moreover, in burning plasmas, strong intermittency in the

transport of suprathermal ions can be a concern, because of possible effects on the core

reactivity, and, more importantly on the heat load that the suprathermal ions may produce on

the reactor first wall even in situations of negligible average loss rates.

Studying suprathermal ions in field-elongated turbulent structures may also help explain

the transport of energetic particles in magnetic flux tubes of the solar wind. For example,

“dropouts” in the intensity of solar energetic particle fluxes were measured by spacecrafts [180]

and are still not well understood [42, 181–183].

The understanding of suprathermal ion transport in TORPEX could be further consolidated by

a number of future experiments. The turbulence characteristics could by varied by changing

the injection position, for example by injecting the ions in the mode region. Varying the

number N of magnetic field line turns would also change the value of the ideal-interchange

mode vertical wave-number that may affect the vertical size of the blobs. Using different gas

to create the plasma would also have an effect on the size and velocity of the blobs [100]. The

transport of suprathermal ions could also be studied in the resistive-interchange mode or

with the closed field line configurations. In the closed field line configuration, X-points can be

created and studying the transport across these could be of interest for fusion and astrophysical

plasmas where acceleration of particles is also observed during magnetic reconnection events.
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In this configuration, the interaction with Alfvén waves excited by the in-vessel toroidal

conductor could also be studied [74]. Numerical simulations solving the trajectories of the

suprathermal ions in 3D turbulence are already available and would need to be adapted to the

TORPEX geometry. Injecting ions with different masses, which would change their Larmor

radii and cyclotron frequencies, is also possible by using different emitters doped with other

alkali than lithium. The phenomenon of fast ion acceleration could also be studied in 3D

turbulence with detectors allowing to precisely measure the ion energy. The tools developed

for the study of suprathermal ion transport in the context of this Thesis, such as the numerical

simulations and the analysis technique could be applied to the study of fast electron transport

using, for example, an electron gun.

The theoretical model of the asymmetric fractional Lévy motion (afLm) could be refined with

the inclusion of tempered fractional derivatives [173] that could take into account the observed

cut-off of heavy tails and the transition from the interaction phase to the asymmetric phase.

Conditionally averaged measurements could be performed with the addition of the FRIPLE

probe, resolving the blob plasma potential structure, and the fast-framing camera, that could

resolve the blob with a greater resolution than the Lamgmuir probes, revealing the blob finer

structures. Time-resolved measurements could be taken simultaneously by several GEAs

to investigate the correlations existing between the blobs and the different ion trajectories

or between the ions themselves. The ballistic and the asymmetric phases could also be

investigated with time-resolved measurements. An interesting possibility would be to use the

technique of laser-induced fluorescence in combination with optical tagging to create and

detect test particles among the suprathermal ions.

Moreover, the characterization of the Eulerian time-trace intermittency started here could

be extended with techniques that can identify non-classical scalings, such as multifractal

analysis [83, 177], structure function scaling [184] or diffusion entropy analysis [138]. The

nature of the link between the Lagrangian characterization of the turbulent transport, provided

for example by the self-similarity (Hurst) exponent, H , which we computed here, and the

Eulerian characterization of the transport still represents an outstanding open question.
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A Stable distributions

We recall here the main properties of α-stable random variables and distributions (also called

Lévy α-stable distributions), although we refer the reader to reference [126] for a detailed

monograph. The generalized central limit theorem states that stable distributions are the

limiting distributions of normalized sums of independent, identically distributed random

variables. The Gaussian distribution is a particular case that corresponds to the case where

the random variables have a finite variance. Stable distributions are especially interesting

because, with the exception of the Gaussian distribution, they allow heavy-tails and non-zero

skewness. Their probability densities exist and are continuous, but their expressions in closed

form exist only for a few particular cases (Gaussian, Cauchy and Lévy distributions) and they

are usually described by their characteristic function, i.e. their Fourier transform.

A random variable X is said to be stable if for any A,B > 0 there is C > 0 and D ∈ R such

that [126]

AX +B X =C X +D. (A.1)

Moreover, for any stable random variable there is a number α ∈ (0,2] such that

Cα = Aα+Bα. (A.2)

The Gaussian distribution corresponds to the case α= 2.

Different parameterizations of their characteristic function are possible. We adopt here the

following parameterization for the stable distribution Lθα,σ,µ (close to parameterization C

in [185]):

F [Lθα,σ,µ(x)](k) = exp
{
−σα|k|αe i sign(k) θπ2 + i kµ

}
. (A.3)

Here α ∈ (0,2] is the index of stability or characteristic exponent, σ> 0 is the scale parameter, θ

is the asymmetry parameter (|θ| ≤ min(α,2−α)) and µ ∈R the shift parameter. For example,

the Gaussian distribution is found for α= 2 and has mean equal to µ and standard deviation
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Figure A.1 |Example of stable distributions on a lin-lin (left) and log-log scale (right). All the distribu-
tions have shift parameter µ= 0 and scale parameter σ= 10. A Gaussian distribution is shown in black
(α= 2), a distribution with α= 1.2 in blue and a one sided distribution (totally skewed to the right) in
red. The log-log scale shows the heavy tails of the distributions with α< 2, with exponent −(α+1).

equal to
p

2σ (the asymmetry parameter θ is equal to zero when α= 2). When µ= 0, the class

of distributions reduces to the strictly stable distribution Lθα,σ and when µ= θ = 0, the class of

distributions reduces to the symmetric α-stable distributions, Lα,σ.

When α < 2, stable distributions have the interesting property of having one tail, if their

skewness is maximum, or both tails that behave asymptotically as power laws (heavy-tail) [126],

Lθα,σ,µ(x) ∼ 1

|x|α+1 , when |x|→∞. (A.4)

As a result, they always have infinite variance when α< 2, which reflects their capability of

modeling processes with large fluctuations. For α< 1 they also have infinite first moments.

Stable distributions that have α< 1 and are totally skewed to the right or to the left (θ =±α)

are one sided. They are only defined for x > 0 if θ =−α and for x < 0 if θ =α.

For µ= 0 and θ =−α, their Laplace transform is given by [126]

L [Lα,σ(x)](s) = exp

{
− σα

cos πα2
sα

}
. (A.5)

Although no expression in closed form exists for the general stable distributions (they are

expressed with transcendental functions known as Mittag-Leffler functions [129]), numerical

algorithms allow to compute their probability distribution function with great accuracy and

very efficiently (see [186] for example).
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B Fractional differential operators

The idea of generalizing the differential operation to fractional order is as old as differential

calculus. Leibniz, Euler, Liouville, Riemann and Fourier are among the many great mathemati-

cians who developed fractional differential calculus. It is only more recently, in the second half

of the 20th century, that it began to be applied in physics and engineering, to problems such

as the modeling of viscoelasticity in materials [187] or dynamical processes in fractals [188].

Among the different definitions, one of the most famous is the Riemann-Liouville differential

operators that can be defined explicitly by means of the integral operators [141, 189]. The left

and right Riemann-Liouville fraction derivative of order α are

a Dα
x f (x) ≡ 1

Γ(m −α)

dm

dxm

[∫ x

a

f (x ′)
(x −x ′)α−m+1 dx

]
(B.1)

and

b Dα
x f (x) ≡ −1

Γ(m −α)

dm

d(−x)m

[∫ b

x

f (x ′)
(x −x ′)α−m+1 dx

]
, (B.2)

where Γ(t ) = ∫ ∞
0 x t−1e−x dx is the gamma function, m is the integer satisfying m −1 <α< m

and a and b are the start and end point of the operators. We immediately see from there

definitions that an important difference of the fractional version of the derivative of a function

at a point x is that it is not a local property. As a matter of fact they can depend on the value of

the function very far from x. In the cases in which the start point a or the end point b extend

all the way to infinity, the following notation is generally used

dα f

dxα
≡−∞ Dα

x f (x) and
dα f

d(−x)α
≡+∞ Dα

x f (x). (B.3)

The Fourier transform of these operators sheds light on their signification and their usage as

they appear as a natural generalization of the Fourier transform of the derivative operator

F

[
dα f

dxα

]
= (−i k)α f̂ (k) and F

[
dα f

d(−x)α

]
= (i k)α f̂ (k). (B.4)
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Appendix B. Fractional differential operators

A symmetrization of these operators leads to the Riesz fractional derivative operator [141,156]

dα f

d|x|α ≡− −1

2cos(πα/2)

(
dα f

dxα
+ dα f

d(−x)α

)
(B.5)

with the following Fourier transform

F

[
dα f

d|x|α
]
= |k|α f̂ (k). (B.6)

A different definition than the Riemann-Liouville is the Caputo fractional derivative operator

of order β [129, 187]

∗ Dβ
t f (t ) ≡ 1

Γ(m −β)

[∫ t

0

f (m)(t ′)
(t − t ′)β−m+1

d t

]
with m −1 <β< m. (B.7)

This definition of the fractional derivative is usually associated with derivatives in time because

of the practical form of its Laplace transform

L
[
∗ Dβ

t f (t )
]
= sβ f̂ (s)−

m−1∑
k=0

sβ−k−1 dk f

d t k
(0) (B.8)

which depends only on the initial values of f (t) and its integer derivatives. The Laplace

transform of the Riemann-Liouville derivative depends instead on the initial values of the

fractional derivatives of lower order than β, which makes is it not practical for real applications

[187].
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C GBS simulations

The plasmas studied here are dominated by an ideal-interchange mode characterized by a

wave-number parallel to the magnetic field lines k∥ ' 0 (see Section 2.1.3). The GBS simulation

used in this Thesis are thus run with the 2D version of the code, evolving the following equa-

tions for the line-integrated density, n(x, y, t ), electrostatic potential, φ(x, y, t ), and electron

temperature Te (x, y, t ) [67, 87]

∂n

∂t
= R0[φ,n]+2

(
n
∂Te

∂y
+Te

∂n

∂y
−n

∂φ

∂y

)
+Dn∇2n −σn

√
Te exp

(
Λ− eφ

Te

)
+Sn , (C.1)

∂∇2φ

∂t
= R0[φ,∇2φ]+2

(
Te

n

∂n

∂y
+ ∂Te

∂y

)
+Dω∇4φ+σ

√
Te

[
1−exp

(
Λ− φ

Te

)]
, (C.2)

∂Te

∂t
= R0[φ,Te ]+ 4

3

(
7

2
Te

∂Te

∂y
+ T 2

e

n

∂n

∂y
−Te

∂φ

∂y

)
+DT ∇2Te

−2

3
σ

√
T 3

e

[
1.71exp

(
Λ− φ

Te

)
−0.71

]
+ST ,

(C.3)

where x is in the radial direction and y in the vertical direction and [φ, f ] = ∂xφ∂y f − ∂yφ∂x f

is the Poisson bracket representing the convection of the quantity f by the E×B drift.

Simulation parameters reported in Table C.1 are chosen to match the experimental profiles

(Section 5.1.1). The density and temperature sources are modeled to mimic the EC and UH

resonances in TORPEX with the following form [89]

Sα(x) = SEC ,α exp
[−(x −xEC ,α)2/λ2

EC ,α

]+SU H ,α exp
[−(x −xU H ,α)2/λ2

U H ,α

]
, (C.4)

where α = n or T . Density, temperature and plasma potential are normalized to reference

values n0, Te0 = 2.1eV and φ0 = Te0/e. Distances are normalized to ρs = 2mm and time

to R0/cs0 where cs0 = p
Te0/mi [87]. Dirichlet boundary conditions are used for n, Te and
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Appendix C. GBS simulations

Table C.1 |GBS simulation parameters.

Quantity Symbol Value Information

nx 750 Number of radial grid points
ny 256 Number of vertical grid points
xmin 0 Minimum of radial coordinates
xmax 200ρs Maximum of radial coordinates
ymin 0 Minimum of vertical coordinates
ymax 90ρs Maximum of vertical coordinates
diff_theta Dn 1 Diffusion coefficient for density
diff_tempe DT 1 Diffusion coefficient for temperature
diff_omega Dω 1 Diffusion coefficient for vorticity
frict_theta ηn 0 Friction coefficient for density
frict_tempe ηT 0 Friction coefficient for temperature
frict_omega ηω 0 Friction coefficient for vorticity
rorho_s R/ρs 500
sigma σ 0.216 Parallel absorption
lambda Λ 3 Sheath potential
SEC_theta SEC ,n 0.9 Peak intensity of EC source for density
SUH_theta SU H ,n 1.35 Peak intensity of UH source for density
SEC_tempe SEC ,T 0.9 Peak intensity of EC source for temperature
SUH_tempe SU H ,T 1.35 Peak intensity of UH source for temperature
wEC_theta λEC ,n 2.5ρs Width of EC source for density
wUH_theta λU H ,n 5.0ρs Width of UH source for density
wEC_tempe λEC ,T 2.5ρs Width of EC source for temperature
wUH_tempe λU H ,T 5.0ρs Width of UH source for temperature
x0EC_theta xEC ,n 30ρs Position of EC source for temperature
x0UH_theta xU H ,n 40ρs Position of UH source for density
x0EC_tempe xEC ,T 30ρs Position of EC source for temperature
x0UH_tempe xU H ,T 40ρs Position of UH source for density

ω=∇⊥φ. In the 2D case, the parameter σ represents the importance of the parallel losses and

is usually set to R0/Lc . This parameter depends on the ratio of the density in the middle of

a field line to the density at the pre-sheath [161]. To match the experimental measurements

of the gradient of the profiles, the value of σ was increased compared to the usual value [67].

Three-dimensional simulations, where this parameter is not free but is set by the parallel

dynamics, show similar gradients than the ones we have in the 2D simulations, confirming

this choice for σ.
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D Suprathermal ion collision frequen-
cies

The collision frequency for transverse diffusion due to collisions with the thermal ions is [190]

νi = 1.8×10−7µ−1/2E(eV)−3/2ni (cm−3)λi i ′ ' 16Hz, (D.1)

where λi i ′ = lnΛi i ′ = ln( bmax
bmi n

) ' 13 is the Coulomb logarithm for collisions between suprather-

mal ions and thermal ions with bmax =λD,i =
√

ε0Ti
ni e and bmi n = q2

4πε0E . The mean free path for

collisions with the thermal ions is

λmfp,i =
v

νi
' 750km, (D.2)

which is much longer than the distance traveled by the ions in TORPEX (' 2m).

This is also the case for collisions with the neutral particles. The frequency of collisions and

the mean free path between collisions with neutrals are given by

νn = vnnσn =
√

2E

m
nnπ(rLi +a0)2 ' 6.2kHz and λmfp,n = v

νn
' 8m, (D.3)

where rLi = 152pm is the radius of lithium nucleus and a0 is Bohr radius.
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Acronyms

2D two-dimensional.

3D three-dimensional.

afLm asymmetric fractional Lévy motion.

CAS conditional average sampling.

CLT central limit theorem.

CTRW continuous time random walk.

EC electron cyclotron.

fBm fractional Brownian motion.

fGn fractional Gaussian noise.

fLm fractional Lévy motion.

FRIPLE five-tip triple probe.

GBS global Braginskii solver.

GEA gridded energy analyzer.

GLE generalized Langevin equation.

HEXTIP hexagonal turbulence imaging probe.

HFS high field side.

ICRH ion cyclotron resonance heating.

LAPD Large Plasma Device.

LFS low field side.

lhs left hand side.

LP Lamgmuir probe.

NBI neutral beam injection.

oBm ordinary Brownian motion.

PDF probability distribution function.

rhs right hand side.

SMT simple magnetized torus.

SOL scrape-off layer.

TORPEX TORoidal Plasma EXperiment.

UH upper hybrid.
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Acronyms

120



Repeatedly used symbols

R0 TORPEX major radius.

a TORPEX minor radius.

R Radial distance from the center of the torus.

X Horizontal coordinate in the poloidal plane, X = 0 on the torus toroidal axis.

Y Vertical coordinate in the poloidal plane, Y = 0 on the horizontal symmetry plane of

the torus.

∆ Field line return vertical distance.

N Number of toroidal field turns.

γR Radial transport exponent.

α Spatial transport exponent of the fractional Lévy motion.

β Temporal transport exponent of the fractional Lévy motion.

H Self-similarity exponent, also called Hurst exponent.

E Suprathermal ion energy.

Isat Ion saturation current.

λD Debye length.

Ln Density gradient scale length.

ne Electron density.

φ Plasma potential in the numerical simulations.

ρL Suprathermal ion Larmor radius.

Te Electron temperature.

Ti Ion temperature.

Vfl Plasma floating potential.

Vpl Plasma electric potential.
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