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Abstract

In recent years, the industrial sector has evolved towards its fourth revo-
lution. The quality control domain is particularly interested in advanced
machine learning for computer vision anomaly detection. Nevertheless,
several challenges have to be faced, including imbalanced datasets, the
image complexity, and the zero-false-negative (ZFN) constraint to guar-
antee the high-quality requirement. This paper illustrates a use case for
an industrial partner, where Printed Circuit Board Assembly (PCBA)
images are first reconstructed with a Vector Quantized Generative Adver-
sarial Network (VQGAN ) trained on normal products. Then, several
multi-level metrics are extracted on a few normal and abnormal images,
highlighting anomalies through reconstruction di↵erences. Finally, a clas-
sifier is trained to build a composite anomaly score thanks to the
metrics extracted. This three-step approach is performed on the public
MVTec-AD datasets and on the partner PCBA dataset, where it achieves
a regular accuracy of 95.69% and 87.93% under the ZFN constraint.

Keywords: Imbalanced Learning, Industry 4.0, Anomaly Detection, High
Resolution Images, Zero False Negative, Computer Vision, Real-World, PCBA
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2 Composite Anomaly Detection for Imbalanced Industrial Dataset

1 Introduction

Anomaly detection is a ubiquitous concern for industries ensuring robust man-
ufacturing quality control. Operation sites considering this challenge need, for
instance, high-resolution images of the product being manufactured so that an
anomaly detection method can be executed. Usually, an automatic inspection
process is devoted to perform this task. It takes several images of the same
product with di↵erent view angles and lighting conditions. Then, it asks an
operator to confirm or infirm a pseudo-error if a doubt on the product qual-
ity is raised. Negative samples are anomaly-free images, unlike positive ones
where a defect is observed on the product image. Severe test limits are neces-
sary to avoid missed detections (false negatives or type II errors), depending
on the quality strategy. This way, the defect is early detected, and the abnor-
mal product is not propagated towards the next production processes. The
drawback of this strategy is a high rate of false alarms (false positives or type
I errors) due to the product image complexity.

In practice, it causes fault investigation losses and product retests. More-
over, the human operator gets overflowed by the inspection process, often
incorrectly considering negative products as positive. The credibility of this
anomaly detection process is therefore reduced. This yields in some human
misjudgments, classifying positives, well detected by the inspection process, as
false negatives, because of the habit of invalidating the process pseudo-errors.
Should this happens, the product is stopped later on the production line, but
the repair or scrap costs are greater. If it can be repaired, the time needed to
access the defect area or component increases due to all the parts composing
the product. If the product has to be scrapped, the processes and the workers
time needed to manufacture it is lost, as well as the components placed after
this inspection process. Consequently, valuable time is wasted, repair costs are
increased, and quality risks are taken. A key challenge is therefore to reduce
the false alarms, keeping the requirement to avoid any missed detection.

This work is carried out with an industrial partner specialized in Printed
Circuit Board Assembly (PCBA) for the automotive industry. These PCBAs
are devoted to provide automatic car speed boxes after being sealed in a case,
forming an Automatic Transmission Electronic Control Unit (ATECU). The
production line is composed of 3 distinct blocks: the placement and soldering of
the electronic components on the blank circuit, the connector and case assem-
bly steps, and the final product test stage. All the processes are placed inline
to manufacture the product step by step, with quality inspections alongside.

It is commonly agreed that the earlier a defect is detected, the earlier it can
be contained. Based on this statement, the scope of this work is focused on the
optical inspection, the first visual test. Its main role is to take images of 100%
of the products to estimate the quality at the very first stages of the production
line, where electronic components are placed and soldered. This critical process
ensures an early reaction if needed, making it possible to countermeasure the
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eventual issues and avoid propagating the defect downstream. A telemetry-
based image processing algorithm is currently in charge of comparing the image
being treated with a golden sample image, to guarantee the anomaly detection.

Some image examples are shown in Figure 11 (presented in [1]), where
one can figure out the details in terms of objects, reflections, or texture.
The severe test limits imply a large number of false positives raised by the

Fig. 1 The left image presents a normal PCBA. On the other ones, the white frames
surround a large anomaly (middle image) and a small one (right image). Some parts of the
images have been anonymized (material under intellectual property).

algorithm, which slows down the throughput, and requires tedious labor for
human operators to make the final judgment. A standard acceptable operator
misjudgment rate in these conditions is 2% of the production [2] (true posi-
tives detected by the inspection process but incorrectly judged as negatives by
the human operator), which is far higher than the actual rate of our industrial
partner. However, this low human variability means that multiple e↵orts and
training costs are spent on reducing as possible these false negatives. The
initial claim is an average time loss of ±8s/PCBA due to the algorithm false-
positive rate, and around 83 parts per million abnormal PCBAs misjudged as
normal by the operator, due to process credibility reduction.

Recently, deep learning methods have attracted much interest in the con-
text of Industry 4.0, as they can help alleviate the problem of type I and type
II errors [3]. Thanks to a vast number of images, such an advanced method
can be performed to state whether a product is standard or not. Therefore,
these techniques can supplement or even replace traditional anomaly detection
systems. However, due to the imbalanced nature of the datasets at hand, it is
challenging to design a regular binary classifier. Indeed, the extreme rarity of
anomalies yields many more images with normal products and a few images
with anomalies. This lack of minority-class images leads industries to deal with
representation learning techniques, suitable for extracting an insightful feature
representation of the majority class. In a first step, a model learns the nor-
mal data distribution, and, in a second step, this model reconstructs a new

1Some parts of the images have been blurred to guarantee the intellectual property of our
industrial partner. The arguments described also apply to the hidden parts, where information
can be extrapolated.
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input image under test, based on this normal representation model. Finally,
a distance is computed between the input and the reconstructed images. This
anomaly score states how di↵erent both images are, and a threshold defines
the normality of the input image, under the assumption that the model will
recover the eventual abnormal set of pixels.

The reconstruction quality is a di�cult task for complex images, but the
di↵erence between normal and abnormal variability is another substantial dif-
ficulty. For images with many details, as is the case for the PCBAs, a macro
view does not reveal high variability. Nevertheless, in detail, the PCBAs are
showing many di↵erences. Therefore, one of our challenges is to distinguish
between a small defect and a slight normal variation. Figure 2 shows such nor-
mal and abnormal variations in 4 di↵erent zoomed areas of the images, where
one can appreciate the very small di↵erence in component shift for both cases.

Fig. 2 (Color online) Four blocks of zoomed areas (⇡ X10) for 4 di↵erent PCBA images.
For each block, the left green frame (3 first columns) shows normal variations unlike the red
frame one (last columns), where a small defect is observed. The challenge is to discriminate
normal and abnormal variations. These very small areas represent around 1cm ⇥ 1cm over
the 10cm⇥ 10cm surface of the entire product.

Based on the Vector Quantized Generative Adversarial Network (VQGAN )
[4] and the Generative Adversarial Network Anomaly Detection Through Inter-
mediate Patches (GanoDIP) [1] works, a methodology calledVQGanoDIP is
proposed. It is aimed to tackle the imbalance and complexity dimension of the
real-world industrial PCBA dataset, composed of high-resolution images with
a fine distinction between normal and abnormal variations. The main contri-
bution is (i) to associate these works to get the best representation possible
of the majority class, in addition (ii) to develop techniques (such as weight-
ing normal variations or multi-level distances collection) to localize estimated
defect areas, and (iii) to compute a composite anomaly score that characterizes
them through a binary classifier. The objective is to reduce the false-positive
rate while enforcing the zero-false-negative (ZFN) rate requirement.

First, a literature review on industrial anomaly detection and image syn-
thesis is proposed in Section 2. Afterward, Section 3 details the VQGanoDIP
methodology, stating how the three-step (reconstruction, metrics extraction,
and normal/abnormal classification) can achieve the objectives. Finally, the
method performance is qualitatively and quantitatively reported and discussed
in Section 4, on multiple datasets.
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2 Related Works

Computer vision anomaly detection presents a significant interest within mul-
tiple domains. Nowadays, several studies are dedicated to summarize these
methodologies. Xia et al. [3] reviewed various existing methods applying deep
learning algorithms such as CNNs and GANs applied to anomaly detection.
According to this study, these methods often depend on large training sam-
ples. Therefore, data imbalance is one of the main application limitations.
They state that GANs are one of the best solutions proposed in the literature
to deal with it, by learning representation features of the majority class, in
an unsupervised manner. Akçay et al. [5] introduced an approach using unsu-
pervised anomaly detection within a GAN training scheme. This approach is
based on an autoencoder with skip-connections, terminated by a GAN dis-
criminator that provides e↵ective training for the normal class. However, they
suggested to apply their method on higher resolution images as future work.
This identified limitation is indeed an obstacle when small defects detection is
a strong requirement, which is our case. Schlegl et al. [6] explored the encoded
latent vector thanks to a GAN generator learning the data distribution. First,
the authors trained a generator and a discriminator using images without
anomaly. Then, the pre-trained generator and discriminator are frozen, and a
latent vector mapping is performed. Despite the high performance reported, its
computational complexity remains expensive. In addition, the authors limited
their experiments to low-resolution images and applied them to a unique type
of images (retina optical coherence tomography scan), unlike the approach we
introduced where the genericity dimension is considered.

In our previous work [1], we proposed to use intermediate patches for
the inference step after a Wasserstein GAN (WGAN) training procedure.
Our objective was to make anomaly detection possible on real-world indus-
trial Printed Circuit Board Assembly (PCBA) images. This approach showed
that our previous technique can be used to support current industrial image
processing algorithms and avoid wasting time for industries using manual tech-
niques. However, real-world implementation is still challenging, due to the
high diversity of defects possible in a PCBA, particularly the very small ones,
undetectable below the megapixel resolution. Van Den Oord et al. [7] incorpo-
rated the concept of vector quantization (VQ-VAE ) in order to learn a discrete
latent representation. Following their methodology, the model is able to gener-
ate expressive images and speech data. Still the image resolution considered in
this work is not su�cient to be considered for our high-resolution constraint.
Razavi et al. [8] improved the Vector Quantized Variational AutoEncoder
(VQ-VAE2 ) models for large-scale image generation. They enhanced the auto-
regressive priors used in their architecture to produce synthetic samples of
higher coherence. One of their main contributions was to keep the encoder-
decoder architecture simple and lightweight. Regardless of the performance
demonstrated by the VAE architectures introduced by these two studies, Esser
et al. [4] showed that the VQ-VAE methods produced reconstructions yielding
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blurred details, being an issue to reconstruct our PCBA images with su�-
cient fidelity. They addressed this limitation by synthesizing realistic detailed
high-resolution images with a Vector Quantized Generative Adversarial Net-
work (VQGAN ). Their approach, based on VQ-VAE, consisted of representing
the images as a composition of coherent and rich details, adding a GAN
discriminator to improve the images realness, and considering a perceptual
loss.

In addition to the anomaly detection and image synthesis problems, our
business specificity requires to guarantee that no defect can be missed by the
algorithm. Some studies consider the classification as an optimization or a
cost-sensitive problem ([9],[10]), in order to prioritize the false positive mis-
classifications instead of the false negative ones. Although these works consider
the constraint in an end-to-end manner, the missed detections are minimized
without any guarantee on their absence. Roth et al. [11] proposed to adjust
a 100% recall threshold for predictions of a patch-features encoding anomaly
detection method, for industrial public dataset images. Their method exploits
a threshold that guarantees no false negatives, but operates at low resolution,
being an issue for our PCBA anomaly detection task.

Considering the above studies using quantized autoencoder with GAN
methodologies and showing promising results within the field of anomaly
detection, we propose a new approach exploiting adversarial quantized auto-
encoders to reconstruct an input image, collect metrics from this reconstruc-
tion, train a binary classifier on this metrics dataset, for high-resolution and
challenging real-world images. Such a method aims to discriminate between
anomalies that are not necessarily clear and patterned compared to the nor-
mal variation, and to guarantee that no missed detection is possible (frequent
requirement for the industrial or medical applications).

3 VQGanoDIP: VQGAN Anomaly Detection
through Intermediate Patches

This section details the proposed VQGanoDIP (VQGAN + GanoDIP)
methodology, designed to localize and quantify abnormal areas in the PCBA
and the MVTEC-AD 1024⇥1024 images [12], a set of di↵erent high-resolution
industrial images composed of products with and without anomalies. The first
step is based on VQGAN [4], in particular, the reconstruction part. Eventual
anomalies are expected to be recovered on a set of images of the two classes,
thanks to the model previously trained on normal the majority class, spot-
ting the di↵erences between the input and the reconstruction. Based on these
di↵erences, a highlighting technique inspired by our previous work [1] is per-
formed, where a patching method localizes anomalies in a reduced set of areas.
Then, the di↵erences are quantified with several metrics, image-wise, patch-
wise, and pixel-wise. Finally, these collected metrics on normal and abnormal
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images are used to train a binary classifier model that compute a compos-
ite anomaly score qualifying the product quality. To determine the product
quality, a threshold is adjusted to avoid missing any true positive.

3.1 First step: Image Reconstruction & Anomaly
Localization

The first step of the VQGanoDIP methodology is the image reconstruction
and the most abnormal sets of pixels localization.

3.1.1 VQGAN Reconstruction

The VQGAN method has been selected for its ability to e�ciently learn a
data representation and synthesize small details in an information-rich image.
The specificity of our PCBA dataset lies in the fact that the images are similar
in a global manner, with no significant variation in the component place-
ment, the circuit color, or the solder pads. However, it o↵ers a lot of small
local variations due to the placement and solder process windows. The CNNs
inductive bias that encourages the local interactions coming from this method
allows dealing with these small variations and can follow the data distribu-
tion locally and globally. Moreover, its “context-rich vocabulary learning of
the image constituents” [4] reduces the practical computational resources and
allows generation in the megapixel regime, which makes it possible to work in
a high-resolution space and thus capture very small defects.

VQGAN is a vector quantized autoencoder model augmented with a GAN.
On top of this method, image synthesis is achievable thanks to a transformer
architecture (out of our scope since the objective is only the reconstruction).
Figure 3 shows the framework of the VQGAN reconstruction model.

Fig. 3 (Color online) Figure inspired from [4] presenting the training strategy of VQGAN,
which is used as the first step of the proposed VQGanoDIP methodology.

The architecture is composed of 3 stages. First, the central part of the
framework is an autoencoder. The encoder E learns a mapping function to
transform the high-dimensional original image into a low-dimensional latent
representation. Afterward, a reconstructed high-dimensional image is decoded
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from the latent representation, thanks to the latent-image space mapping,
which is the decoder (or generator G).

The second stage is the vector quantized (VQ) part of this autoencoder. It
adds the advantage of transforming the learned latent representation ẑ into a
quantized representation zq, instead of a continuous one, yielding many pos-
sible values to be decoded (di�cult to learn). Therefore the model is able to
focus on a restricted number of latent vectors, which significantly helps model
convergence and avoids mode collapse (identified in our previous work [1],
ignoring the latent vector due to the decoder performance). The vector quan-
tization mechanism is based on an embedding matrix of a discrete number of
vectors to learn, resulting in a codebook Z. Its purpose is to provide vectors as
close as possible to the images constituents, represented in the overall latent
representations of the autoencoder. The encoded representation of the input
image is therefore replaced by the nearest neighbor from the spatial collection
of vectors learned, and is then decoded to a reconstructed image.

Finally, the reconstructed image is fed to the discriminator D of a patch-
GAN [13] (similar to a regular GAN but qualifying N ⇥ N patches, instead
of the entire image through a single scalar). The discriminator objective
is to collect a patch-wise reconstruction loss, giving information regarding
its realness, for the training procedure. This way, the decoder part of the
VQGAN architecture takes the role of the generator part of the patchGAN,
and the discriminator competes with it, stimulating the autoencoder and
the codebook to provide realistic images, by receiving both the original and
the reconstructed images. Its benefit is to provide images with high quality,
instead of blurred ones that the VQ-VAE su↵er from [4].

The end-to-end training procedure is guided by a combination of the
reconstruction loss, the vector quantization loss, and the GAN loss. The recon-
struction loss is a pixel-wise mean square error to capture detailed information,
and a perceptual loss to capture semantic one: the original and reconstructed
images are fed into a pre-trained VGG-16 network, and their last layer feature
vectors MSE is computed. The global loss to optimize is defined as:

Q⇤ = argmin
E,G,Z

max
D

E
xsp(x)

[LV Q(E,G,Z) + �LGAN ({E,G,Z}, D)], (1)
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8
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with sg being the stop-gradient operation, Lrec being the perceptual loss cap-
turing the di↵erences between x and G

⇣
Z
�
E(x)

�⌘
with the pre-trained VGG-16

network, rGL[.] the gradient of its inputs w.r.t the last L layer of the decoder
and � = 10�6 a small constant added for numerical stability [4].

3.1.2 GanoDIP Abnormal Candidates Isolation

Once the reconstruction model is trained, we reconstruct the test set images.
The GanoDIP inference step we developed in our previous work [1] is applied
by extracting the most di↵erent patches between the original and the recon-
structed image. In this work, instead of considering only the highest MSE
patch-wise, we first keep the p pixels showing the highest absolute di↵erences,
then we construct patches by zooming out and shifting around these p pixels.
Figure 4 gives an overview of this technique.

Fig. 4 (Color online) Overview of the zoom-out-and-shift technique. n ⇥ 9 patches are
created (here n = 4; enlarged factor ↵ = 4) to focus on the p most di↵erent pixels, at
di↵erent scales.

The zoom-out-and-shift method is repeated n times, enlarging the patches
of ↵ pixels each time, yielding di↵erent s⇥ s patch sizes. The shift step allows
constructing 8 more patches for each size in the neighborhood (top-left, top-
center, top-right, center-left, center-right, bottom-left, bottom-center, bottom-
right), covering an entire estimated abnormal set of pixels. According to the
industrial partner experts, this method imitates the natural way of a human
visual search, when an anomaly is expected in a small area. It assumes that,
if a defect occurs, several close pixels are concerned instead of a single one.
As reported in [14], the normal areas are considered as a white noise, and the
center–surround mechanism is applied to e�ciently search and appreciate the
defect.
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These n⇥9 (center + 8 neighbors) patches repeated on the pmost di↵erent
pixels are finally used to compute the Frechet Inception Distance [15] (FID)
between the original and the reconstructed images, considering their feature
vector di↵erence (generated with an Inception Resnet-V3 network, pre-trained
with ImageNet) . This metric helps getting perceptual di↵erences, pertinent
with our computer vision task, instead of pure pixel di↵erences, unrelated to
the visual similarity between two images.

From these p ⇥ n ⇥ 9 FID values, we keep the q highest as the esti-
mated abnormal candidates. At the end, we get q patches with di↵erent sizes,
containing the highest perceptual di↵erence between the original and the recon-
structed image. They will first localize the estimated abnormal areas in the
overall image and then be exploited for the second step of the methodology,
the metrics collection described in the next subsection.

3.2 Second step: Multi-level Di↵erence Metrics Collection

Recent anomaly detection methods ([1], [5], [6], [16]) design an anomaly score
directly with regular pixel-wise or patch-wise MSEs, and the losses yielding
from their neural network architecture. We aim to reproduce this strategy, in
addition to taking into account the computer vision dimension of the task.
Di↵erent type of distances between the input and the reconstruction will
therefore be used to design the anomaly score, giving the method the best
set of information on which to rely. Indeed, once the reconstruction has been
performed and the most di↵erent patches have been identified on the test set,
several multi-level metrics will be collected to characterize an anomaly present
in the image. These metrics will be associated with each image, expressing a
wide variety of information contained in the di↵erence between the original
and the reconstructed image.

Three di↵erent metric levels are considered. The first metric level describes
the reconstruction quality image-wise. This is the case for the whole image
pixel-wise MSE between the input and the reconstructed image (raw recon-
struction loss), the pre-trained VGG-16 last layer MSE between the input
and the reconstructed image features (raw perceptual loss), the MSE between
the encoded latent representation and its quantized version (raw quantization
loss), the patchGAN discriminator average loss for both the input and the
reconstructed image (raw GAN losses), the ORB image matching di↵erence
[17], or the aggregated values of all the pixels resulting from the input-
versus-reconstructed absolute di↵erence. These aggregated values are the sum,
maximum, minimum, mean, first quartile, second quartile (a.k.a. the median),
and third quartile.

The second metric level describes the reconstruction quality pixel-wise. In
this case, the goal is to retrieve information from the p highest pixel values
resulting from the input-versus-reconstructed absolute di↵erence. The same
aggregated values are considered to qualify this set of most di↵erent pixels.
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The third and last metric level describes the reconstruction quality patch-
wise. The methodology involves computing matrix distances on the q patches
selected via the p highest pixel values and the zoom-out-and-shift technique.
We append each of these patch distance values into a sequence and apply the
aggregated method to get a scalar that qualifies this set of patches. This is the
case for several established distances between two matrices (Frechet, SSIM,
Braycurtis, Canberra, Euclidian, Cosine, Wasserstein, Hamming, Minkowski,
Jensen–Shannon divergence, etc.), as well as for the FID (triggering the
selection). Figure 5 shows the architecture at the metric collection step.

Fig. 5 (Color online) Overview of the VQGanoDIP architecture, at the inference step. A
multi-level metric collection is extracted from the input and reconstructed images, containing
insightful information to determine whether an anomaly is present or not.

For a dataset with the same type of images and a fixed position (like
the PCBA one, where the same product model does not vary in rotation or
translation), the same set of metrics, weighted by the normal variation inside
the majority class, is computed. This technique brings business knowledge to
the method, making it possible to reduce the distances where many normal
variations are already observed in a normal class dataset. To do so, we isolatem
unseen normal images, compute and normalize the pixel-wise average di↵erence
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value between the input and the reconstructed images. We then obtain a mask
(after a flip operation) reflecting the average di�culty that the reconstruction
model encounters, due to the high normal variations. If a pixel varies a lot in
the normal images, the mask pixel value will be close to zero. Otherwise, it will
be close to one. These mask pixel values will be multiplied by the di↵erence
pixel values between a test input and reconstructed image, and will weight the
di↵erence computed (especially on high normal variation areas) with the help
of a part of the business knowledge. Then the FID zoom-out-and-shift and the
metrics collection are performed, based on these new p most di↵erent pixels.
That doubles the metrics number (with and without the weighting mask),
which will be used during the last step, detailed in the next subsection.

3.3 Third step: Composite Anomaly Score Creation

Associating an anomaly score to each test set image is the last step of the
methodology. At this stage, we will use the few abnormal images we have
at hand to create a classifier able to discriminate between the two classes.
Indeed, instead of only using the reconstruction and eventually the latent loss
as it is usually performed in anomaly detection techniques, we will feed a
dataset built upon the metrics collected (instances in rows, metric values in
columns) into a classifier, in order to let it build a new, composite, anomaly
score that best discriminates the classes.

The anomaly score is designed in 4 phases. A data processing first phase is
applied, removing features with a constant value. If several metrics are highly
correlated (more than 95%), only one of them is kept. Values are also scaled
into a [0 - 1] range.

Then, in a second phase, a randomized search for the hyperparameters opti-
mization, e�cient when the number of hyperparameters is large [18], is applied
to the entire dataset to achieve the best accuracy. If the dataset is imbal-
anced (this is the case for the MVTEC-AD datasets), we rely on the SMOTE
algorithm [19] to generate artificial positive samples (minority class) in the
cross-validation stage, keeping pertinent the accuracy metric to optimize.

The third phase is a Leave-One-Out Cross-Validation (LOOCV) procedure,
with the best-resulted hyperparameter set. This technique is computationally
heavy, but even if we have a dataset composed of twice the number of the
minority-class images (we take the number of normal images as the same we
have for the abnormal ones), it is worth training as many models as there
are instances, to get a reliable assessment. A stratified k-fold cross-validation
is performed on the classifier, splitting all the instances (except one) in a
training and validation set. A grid search procedure selects the best classifier
type between several binary classification ones, namely a decision tree (DT), a
random forest (RF), an extra trees classifier (ET), an adaptive boosting clas-
sifier (ADA), a light gradient boosting machine (LGBM), a gradient boosting
classifier (GBC), an extreme gradient boosting classifier (XGBoost), a logis-
tic regression (LR), a K nearest neighbor classifier (KNN), a gaussian naive
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bayes classifier (NB), a linear discriminant analysis (LDA) and a quadratic
discriminant analysis (QDA).

In the final phase, we set the threshold as the lowest prediction probability
that the classifiers associate to the abnormal test set. This way, we ensure that
all the abnormal images in the test set are predicted as it has to be, and we
can evaluate the classifier through the accuracy, being degraded only with the
normal images misclassification. Therefore, the prediction probability that the
classifier gives to a test image to be abnormal is the composite anomaly score.

4 Evaluation

To summarize the above section, the proposed methodology is composed of
three steps, which are a reconstruction model creation and anomalies local-
ization, a metrics collection based on the input and reconstructed images,
and a binary classifier training with the objective of building a composite
anomaly score. After having detailed the methodology, this section is devoted
to the experimental setup followed by the qualitative and quantitative model
evaluation, finally discussed.

4.1 Experimental Setup

For implementation purposes, several hyperparameters have to be tuned. In
practice, we observed that the following decisions are the best to deal with the
model performance and inference time. These following values are tailored for
the PCBA dataset, but also tested on the MVTec-AD datasets [12].

In order to capture a large amount of insightful information on the PCBA
dataset, we increased the default number of the codebook entries from 1024
to 2048 and its dimensionality from 256 to 512. This way, a large variety of
textures, reflections, orientations and shapes can be captured by the codebook,
and returned to the quantized latent representation.

For the PCBA dataset, 360 1024⇥1024 anomaly-free images are randomly
selected to create the first step reconstruction model. The imbalanced nature
of the dataset constrains us to work with only a few abnormal class images,
compared to many normal class ones at our disposal. We have 174 abnormal
images, so we randomly select 174 normal images (easily available, as it is
the majority class) to get a balanced dataset of 348 images for the last-step
composite anomaly score model creation. For the MVTec-AD datasets, half of
the normal images have been selected for the first step reconstruction model
training. The other half of the normal images and all the abnormal images
were selected for training and evaluation of the last step anomaly score model.

On these test images, we apply theGanoDIP inference step as we developed
in our previous work [1], keeping the p = 100 highest absolute di↵erence pixels.
The zoom-out-and-shift step is repeated n = 4 times, with an enlarged area
of ↵ = 4 pixels each time. We therefore get 36 patches of 4⇥ 4, 8⇥ 8, 12⇥ 12
and 16⇥ 16 sizes. We finally keep the q = 250 worst FID patches, between the
original and the reconstructed images, as the estimated abnormal candidates.
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To evaluate areas of high normal variability, the weighting mask is based
on m = 30 unseen random normal images and is only suitable for the PCBA
dataset. Indeed, in the MVTec-AD datasets, objects and textures are rotated
or translated, preventing the possibility of considering such a weighting mask.

The cross-validation to train the anomaly score classifier is a 5-fold strati-
fied one. The randomized search for the optimal hyperparameters is executed
for 500 iterations. The classifier selected is the one that gives the best accuracy
in these conditions.

All experiments have been undertaken with an Nvidia RTX A6000 GPU,
an Intel i7 CPU, using Python 3.8, Cuda 11.2 and Pytorch 1.10.

4.2 Qualitative Assessment

The proposed methodology is qualitatively assessed, through the reconstruc-
tion quality (Sections 4.2.1 for the private real-world PCBA dataset and 4.2.3
for the public MVTEC-AD datasets), and through a Visual Turing Test for
the PCBA in Section 4.2.2.

4.2.1 PCBA Reconstruction Quality

A first way to evaluate the anomaly detection method proposed is to visually
check how the original defects are recovered. Figure 6 shows several zoomed
area examples where PCBA images contain anomalies that are correctly recov-
ered, thanks to the VQGAN implementation. The reconstruction, di↵erence,

Fig. 6 (Color online) Two sets of original images (1st column) with the defect highlighted
(red frame), reconstructed images (2nd column) with the recovered pixels highlighted (green
frame), di↵erence images (3rd column) and patch images (4th column) for 10 di↵erent
zoomed areas (⇡ X10) of the PCBA dataset (placed in rows). The first row shows anomaly-
free areas unlike the four last rows, where a defect is observed. The left set shows component
defects, and the right set shows solder defects.
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and abnormal patches estimation images are presented. The left set of images
illustrates very small component shifts or absence, and the right set shows
slight solder defects. We can see that the defects are correctly recovered (2nd
column of each sets), proving the reconstruction e�ciency for such complex
data. The input data distribution is well followed for normal areas (first row
of the figure), yielding low pixel di↵erences (3rd column of each sets) after
reconstruction. This statement means that the reconstruction model does not
fall into the posterior collapse problem as it was the case in our previous
work [1]. The probable cause was a stronger generator that always generated
a quasi-identical image for any input image, whatever the latent representa-
tion variations. This limitation, which yielded a unique golden sample, is now
solved.

Another step forward is the possibility of reconstructing very small anoma-
lies, thanks to the 1024 ⇥ 1024 resolution. The VQGAN architecture makes
it possible to consider an entire high-resolution input image at once, instead
of patching it with a lower resolution, as it is the case for the f-AnoGAN
[16] method, for instance. Therefore, di�culties of a challenging dataset like
the PCBA one (small components in an information-rich global image) in the
industrial context (entire image needed to evaluate the method with confidence
before going into production) can be overcome.

Regarding the overall di↵erence images, we can state that some specific
zones are always noisy due to the normal variability of the dataset (marking
on the components, reflections on large solder pads, details on the 2D serial
number barcode that highly change, image by image). However, thanks to
the weighting method, these false-positive di↵erences are reduced, letting
the GanoDIP -like technique choose the true positives. Figure 7 shows the
relevance of this technique, which can only be applied with an adjusted posi-
tion pre-processing task (here thanks to fiducial reference centering). We can

Fig. 7 (Color online) Abnormal patches estimation with (left image) and without (right
image) the weighting technique. The abnormal patches estimation (false positives on the left
unblurred red-framed area) disappears with this technique, focusing on true positives (right
unblurred white framed area). Some parts of the images have been anonymized (material
under intellectual property).
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appreciate how the focus on abnormal areas is improved when the weighting
technique is applied, selecting the suitable p most di↵erent pixels (and thus
the right q highest FID patches), by reducing this di↵erence when a high nor-
mal variation has been previously observed. This improvement is important
when distance metrics will be used for the composite anomaly score (signal
noise ratio increased).

Despite these promising observations, some limitations remain. Figure 8
illustrates that for larger anomalies, the reconstruction is not as e�cient,
showing artifacts in the abnormal set of pixels. We can reasonably think that

Fig. 8 (Color online) Zoomed area (⇡ X10) of a normal product image (left-green-framed
1st image) and an abnormal product image (right-red-framed image). One can see in
the abnormal image that the input (2nd image) presents a pretty large defect (absence
components), reconstructed with artefacts (3rd image) but still well patched (4th image).

this comes from the latent representation dimensions, well fitted to deal with
smaller details. Indeed, the choice for the codebook entries of 2048 and its
dimensionality of 512 is particularly pertinent to catch the very small details
in the image (like solder bridges or little component shifts) and the fine texture
rendering (the PCBA silk or the solder pads reflects). This leads to di�culties
for larger defect reconstructions. However, the artifacts reconstructed present
all the same significant di↵erences compared to the original abnormal image,
and the GanoDIP -like patch isolation method can still focus on the right area.

The quality reconstruction is a key indicator, but it is not su�cient to
estimate the methodology performance. Another indicator is the location cor-
rectness of the abnormal estimated patches. The di�culty lies in the fact that
all the q patches will compete with each other to reveal the anomaly, and it
is useful to notify that the first condition is to get at least one patch on the
defect. For this concern, after the test set reconstruction, we observe that all
the defects of the PCBA dataset are covered by a patch, which will be used as
insightful information for the anomaly score creation.

4.2.2 PCBA Visual Turing Test

Another way to assess the methodology qualitatively is to make a Visual Tur-
ing Test (VTT) on a normal set of PCBA images. Indeed, to implement the
method in a real-world production line, domain experts need a high degree
of confidence. The VQGAN model is hardly explainable (due to the multiple
deep neural networks), but the VTT could reassure the experts on the recon-
struction quality, being the first important block of the entire methodology.
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Therefore, this test has been conducted with 5 experts with di↵erent expertise
levels, used to manipulate the PCBA images.

The protocol followed has been inspired by classical ones, reported in [20],
[21] or [16]. 50 original normal images and 50 other reconstructed ones are
randomly shu✏ed and shown to the experts. 16 seconds are given to the par-
ticipants to determine if the image shown is real (original from the production
line camera) or fake (reconstructed by the model). Between 2 images, 5 sec-
onds of a blank screen is displayed to reset the visual memory and encode the
judgment in a document. In the middle of the test (50th image), a 5 minutes
break is taken to keep them focused until the end. No discussion between them
is possible to avoid any eventual bias.

If the candidates cannot clearly state whether the images are artificial or
not, then we can conclude that the reconstruction model generates realistic
images, thanks to the architecture performance. This would be a good sign
that this first reconstruction block is satisfying and brings confidence in the
overall methodology. This procedure is a kind of human (expert) discrimina-
tor, like the one we have in the GAN part of the reconstruction model.

The results are presented in the Figure 9. The correct classification average

Fig. 9 Classification Rates for the 5 domain experts participating in the VTT.

rate of 59.8%, with a 13.9% standard deviation, proves the di�culty of a
domain expert distinguishing real images from fake ones. We can therefore
conclude that the model generates high-fidelity images, a key argument for the
users to adopt the algorithm.

An outlier stands out from the VTT results, with the highest score of
87%. The candidate with this score is a computer vision specialist responsible
for designing anomaly detection algorithms for another production process.
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We can therefore understand why his biased attention di↵ers from other par-
ticipants. After a debrief session with him, it appears that some areas were
insightful in judging the realness of the images. This is particularly the case
for the 2D serial number barcode area, as shown in Figure 10. Indeed, there

Fig. 10 Zoomed area (⇡ X20) of the 2D serial number barcode where the original image
(left image) gives a blurred reconstruction (middle image) with several pixel di↵erences
(right image).

are so many details and normal variations in this area that the model can-
not reconstruct the dots composing the barcode matrix clearly. This yields to
pixels that are smoothed, with a blurred e↵ect. Hopefully, this limitation is
not impactful for the anomaly detection because the weighting technique will
reduce the di↵erence pixel values. In addition, the defect opportunity in this
area is very low.

4.2.3 MVTEC-AD Reconstruction Quality

The quality reconstruction can also be assessed on the popular MVTEC-AD
datasets to figure out the genericity of the VQGanoDIP methodology. This
work focuses on the 1024⇥ 1024 images resolution. Therefore lower resolution
datasets were discarded.

Figure 11 shows the original, reconstruction, di↵erence, and patch images
for some examples of object and texture products, namely the screw, the hazel-
nut, the grid, and the carpet datasets. We can confirm that the small defects

Fig. 11 (Color online) One normal image (1st row) and four abnormal images (4 last rows)
of the screw (1st block), the hazelnut (2nd block), the grid (3rd block) and the carpet (4th
block) datasets. For each block, the original (1st column), the reconstruction (2nd column),
the di↵erence (3rd column) and the patch (4th column) images are shown.
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are better recovered than the larger ones from this figure. For instance, a screw
(1st block images) with a broken tail (2nd and 3rd rows) is more di�cult to
reconstruct than a scratch on the head (4th row) or the neck (5th and 6th
rows). This is also the case for the hazelnut (2nd block images), where a rough
crack (4th and 6th rows) is not well recovered, unlike a small cut (2nd row)
or hole (3rd row). Despite these reconstruction di�culties, the abnormal esti-
mated patches can still focus on the abnormal areas, even if the clustering
e↵ect is less observable.

Concerning the texture images, the same observation can be done (di�cult
reconstruction for rough defects but still estimated as abnormal), in addition to
a larger split of the patches in the overall image. This is due to the high normal
variations that o↵er the texture images (orientation, fibers, etc.), competing
with the true-positive areas. We can therefore conclude that object images
have better reconstruction performance than texture ones. This is due to the
predominance object dimension of the PCBA images (compared to the texture
dimension), which required hyperparameters selection adapted to this feature.

4.3 Quantitative Assessment

A second way to assess the anomaly detection methodology is to measure
established classification metrics, namely the accuracy, the precision, and the
false-positive rate. In the case of imbalanced datasets, precision is a more rel-
evant metric because it does not include true negatives (the majority class).
There is no interest in measuring other metrics like the sensitivity (also named
recall or true-positive rate), which will always be equal to 1 due to the absence
of false negatives under the zero-false-negative constraint, or the AUCROC, as
the only interesting threshold for our business case is the one able to detect all
abnormal instances. As this specific anomaly score threshold cancels the false
negatives, the confusion matrix is asymmetric, with the entire misclassified
instances being false positives, giving the accuracy directly. The classifica-
tion metrics are presented and discussed for the PCBA and the MVTEC-AD
datasets.

4.3.1 PCBA Classification Metrics

Table 1 summarizes the metrics under the zero-false-negative constraint (ZFN
columns), and, in a standard way, without this constraint (STD columns),
on the PCBA dataset. We can conclude that the Extra Tree Classifier o↵ers
the best classification metrics under the ZFN constraint, with an accuracy of
87.93% and 95.69% without this constraint (with a larger false-negative rate
than a false-positive rate in this case). Notice that the the false-negative rate
metric under the ZFN column is zero for all the classifiers, due to our qual-
ity exigence constraint. The linear and quadratic discriminant analysis (LDA,
QDA), K nearest neighbor (KNN), decision tree (DT) and gaussian naive
bayes (NB) classifiers raise 50% (the dataset imbalance rate value) of Accu-
racy and Precision, and 100% of false-positive rate, under the ZFN constraint.
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Table 1 VQGanoDIP classification metrics for several classifiers on the PCBA dataset,
considering the zero-false-negative constraint (ZFN columns) or not (STD). The " sign
means the highest the best, unlike the # sign means the lowest the best. Values are sorted
with the ZFN Accuracy column, and bold ones are the best of each column.

Accuracy(%)" Precision(%)" FPR(%)# FNR(%)#

Classifier STD ZFN STD ZFN STD ZFN STD ZFN

ET 95.69 87.93 98.18 80.56 1.72 24.14 6.9 0
XGBoost 91.67 83.05 89.19 74.68 11.49 33.91 5.17 0
RF 94.25 81.03 97.53 72.5 2.3 37.93 9.2 0
GBC 93.68 79.31 96.91 70.73 2.87 41.38 9.77 0
LGBM 93.1 75.57 95.18 67.18 4.6 48.85 9.2 0
ADA 93.39 73.28 95.21 65.17 4.6 53.45 8.62 0
LR 93.97 53.45 94.74 51.79 5.17 93.1 6.9 0
QDA 90.52 50 96.08 50 3.45 100 15.52 0
KNN 91.38 50 97.37 50 2.3 100 14.94 0
LDA 94.83 50 95.88 50 4.02 100 6.32 0
DT 89.94 50 93.17 50 6.32 100 13.79 0
NB 81.9 50 94.4 50 4.02 100 32.18 0

This situation happens because they encounter at least one challenging image
for which the training failed to capture the discriminating features. Therefore,
the lowest prediction probability for the positive class is zero, meaning that
the classifier judges at least one positive instance with a 0% confidence to be
positive. It yields an anomaly score threshold of zero, and all the instances will
be classified as positives. We can conclude that these classifiers are not pow-
erful enough to be used as our dataset anomaly score. The ensemble decision
trees family seem much well fitted to the task.

Figure 12 shows the anomaly score distributions for the normal and the
abnormal images of the PCBA dataset, built with the best classifier, raising a
87.93% accuracy. We can see the distributions are well separated (low anomaly

Fig. 12 (Color online) Anomaly score distributions of normal (solid-green line and bars)
and abnormal (dashed-red line and bars) images for the PCBA dataset, with the threshold
value (vertical dashed line in grey) that satisfies the ZFN constraint.
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score for the normal images and high anomaly score for the abnormal ones),
even if the threshold (ensuring no missed detection) prevents an optimal split
between them. It generates an overlap of the negative distribution, being the
false positives (normal images scored above the threshold).

The zoomed abnormal area of the image conditioning the adjusted thresh-
old (anomaly score of 0.1711) is presented in Figure 13. This figure shows

Fig. 13 Original (1st column), reconstructed (2nd column), and patch image (3rd column)
with a zoomed view (⇡ X10) of the PCBA most challenging image. Some parts of the images
have been anonymized (material under intellectual property)

how di�cult it is for the method to associate a high anomaly score with
this very small defect, with respect to a low score for small normal varia-
tions. Indeed the small solder defect (a few mm2 surface) in the input image
is correctly recovered and an abnormal patch highlights the area thanks to
the method. Nevertheless, this area competes with many other normal areas,
giving di�culties for the classifier to build its decision function.

It is also interesting to determine the most influent collected metrics
that impact the discrimination decision. Figure 14 shows the importance of
the GanoDIP -like zoom-out-and-shift FID patches (for the 10 most influent
metrics, 9 of them rely on these patches), as well as the weighting technique
( 4
10 most influent metrics) and the SSIM metric ( 5

10 most influent metrics).
We can also notice that the most e�cient aggregation technique is the sum

Fig. 14 10 most infuent collected metrics that impact the discrimination decision.
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of all the patch distances ( 5
10 most influent metrics). Finally, we can see

that the most influent metric is the sum of the Structural SIMilarity (SSIM)
values of all abnormal patches estimated, after applying the weighting mask
to reduce the normal variations influence. It demonstrates the importance of
considering the computer vision dimension in this task.

From a business point of view, each misclassification generated by the algo-
rithm requires an operator visual inspection. Also, human misjudgement risks
are proportional to the quantity to inspect. Therefore, an improvement on the
accuracy directly impacts the time waste and the quality risk for the industrial
partner. Here, thanks to the accuracy reached by the VQGanoDIP approach,
the average inspection time required is decreased from 8 seconds to 1.9 second,
and the operator misjudgment rate is divided by a factor of 4. This repre-
sents a significant improvement and is definitely promising to keep the partner
competitive.

4.3.2 MVTEC-AD Classification Metrics

The same study has been performed on the public MVTec-AD datasets, espe-
cially on the images at the 1024⇥1024 resolution. The final summary of all the
datasets, keeping the most accurate classifier under the ZFN constraint, is pre-
sented in Table 2. This table shows that, under the ZFN constraint, datasets

Table 2 VQGanoDIP classification metrics for the most accurate classifiers (indicated
into parenthesis) on the PCBA and the 1024⇥ 1024 MVTec-AD datasets, considering the
zero-false-negative constraint (ZFN columns) or not (STD). The " sign means the highest
the best, unlike the # sign means the lowest the best.

Accuracy(%)" Precision(%)" FPR(%)# FNR(%)#

Dataset (Classifier) STD ZFN STD ZFN STD ZFN STD ZFN

PCBA (ET) 95.69 87.93 98.18 80.56 1.72 24.14 6.9 0
Cable (XGBoost) 76.82 57.94 80.65 48.42 8.51 69.5 45.65 0
Carpet (LR) 85.6 50.21 80 42.38 11.69 78.57 19.1 0
Grid (LR) 95.98 85.43 94.55 66.28 2.11 20.42 8.77 0
Hazelnut (LGBM) 98.95 98.25 98.55 93.33 0.47 2.33 2.86 0
Leather (XGBoost) 92.17 90.43 91.11 80.7 5.8 15.94 10.87 0
Screw (ADA) 93 83.67 92.24 70.83 4.97 27.07 10.08 0
Transistor (LGBM) 88.7 49.15 81.25 30.77 4.38 65.69 35 0
Zipper (LGBM) 92.55 81.57 93.1 71.69 5.88 34.56 9.24 0

like Hazelnut, Leather, Grid or Screw show relatively low false-positive rates
(2.33%, 15.94%, 20.42% and 27.07% respectively), thanks to a correct anoma-
lies reconstruction and a clear distinction between small normal and abnormal
variations, inherent to the image complexity. Unlike these images, Figure 15
shows how the reconstruction model has di�culties in following with fidelity
the data distribution for the Carpet dataset, or recovering the large defects
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Fig. 15 Original (1st column) with the anomaly white-framed, reconstruction (2nd col-
umn), di↵erence (3rd column), and patch (4th column) images for Carpet (1st row) and
Cable (2nd row) image example. For the Carpet, we can see, on the di↵erence image, all the
small normal variations that the model could not well reconstruct. This yields, in the patch
image, in many small patches everywhere but not in the anomaly area. For the Cable, we
can see that the missing wires cannot be well recovered, which fools the patches focus.

of the Cable dataset. In these cases, the patching technique cannot e�ciently
focus on the anomalies, and is completely fooled by the small normal variations.

These observations prove that the reconstruction quality, the data distri-
bution fidelity, and the weighting mask are crucial elements for the anomaly
detection task under the zero-false-negative constraint. If we do not con-
sider the ZFN constraint, we can see that the method generates many more
false negatives than false positives for all the datasets. This proves the di�-
culty of capturing the anomaly features in the entire overcrowded information
contained in each image.

5 Conclusion

An anomaly detection methodology suited for a real-world industrial use case
is developed in this work. This is the continuation of a first work leading
the GanoDIP method. The poor number of abnormal images (18) was the
main limitation, thus yielding implementation di�culties due to the lack of
defect variability. The current dataset contains around 10 times more abnormal
images, with larger defect size, structure, and area variability. This amount is
better, although still very small compared to the majority class. The proposal
of this work is, therefore, to (i) be able to localize small defects, (ii) satisfy
the zero-false-negative constraint, and (iii) reach the lowest false-positives rate
possible. The VQGanoDIP methodology detailed in this paper reached the
objectives thanks to a three-step methodology. It takes advantage of the vast
amount of normal data, instead of a regular binary classifier. After a reduced
anomalies estimation technique, the few abnormal data are indeed kept for
further less-data-intensive processing.
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The first step takes advantage of the recent advances in terms of image
synthesis that make it possible to reconstruct an original image, following an
input data distribution being anomaly-free. The VQGAN method, placed in
an anomaly detection architecture, yields a strong representation of the nor-
mal class. It reconstructs very similar images to the original ones and, if any,
replaces an abnormal set of pixels with an estimated normal one. The technique
allows high-resolution reconstruction, fulfilling the business case constraint,
requiring to deal with small defects like solder bridges or electronic component
shifts. Furthermore, only the majority class is required to train the reconstruc-
tion model in an unsupervised manner. Therefore, the imbalanced learning
specificity is managed at this stage, and we save the few minority-class images
that we have for the next step and the test set.

The second step of the methodology is a comparison of the 1024 ⇥ 1024
original and reconstructed images. A significant number of appropriate metrics
are extracted from this comparison, including the di↵erent neural networks
losses, as well as the computer vision distances on the worst di↵erence patches,
following the GanoDIP method strategy. To do so, a zoom-out-and-shift tech-
nique is performed on the worst patches to focus the metrics extraction on the
highest Frechet Inception Distance areas. The objective is to make decisions
on perceptual di↵erence meanings instead of a regular absolute pixel di↵er-
ence. This step is applied to a balanced number of normal and abnormal class
images, this number being conditioned by the abnormal set of images at hand.

The last step is to train a classifier able to act as the anomaly score to
determine the image class. Its goal is to discriminate between normal and
abnormal images, thanks to the metrics collected previously. The zero-false-
negative constraint requires to set a low probability threshold on the classifier
prediction, generating more false positives as a regular accuracy setup. The
price to ensure the quality requirements is an accuracy decrease by 7.76%,
reaching 87.93% (instead of 95.69%).

For the business use case, the proposed methodology achieves a drop of
the current inspection time from 8 seconds to 1.9 second, and an esti-
mated operator misjudgment rate divided by 4, which is a very satisfying
achievement. The methodology developed can be used as a baseline for many
other use cases, where high-resolution images with small details and low vari-
ation between normal and abnormal areas are considered, especially under the
zero-false-negative constraint.

These promising results open new research questions for future works.
Specifically, it would be interesting to find a better strategy to let the clas-
sifier learn the decision function integrating the zero-false-negative constraint
directly, in an end-to-end manner. Another research direction could be to
develop a reconstruction model that performs well on any type of dataset,
whatever the normal variations characteristic or the anomaly sizes.
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for their insightful comments and discussions on this paper.



Composite Anomaly Detection for Imbalanced Industrial Dataset 25

Declarations

• Funding: Not Applicable
• Conflict of interest/Competing interests: The authors declare that they have
no competing or conflict of interests.

• Ethics approval: The authors declare that this work is original, is not
under consideration for publication elsewhere and has not been published
previously. The authors approve the manuscript enclosed.

• Consent to participate: Not Applicable
• Consent for publication: The authors consent to the publication of this work.
• Availability of data and materials: All public works and datasets have been
cited in reference.

• Code availability: Not Applicable
• Authors’ contributions: Arnaud Bougaham conceptualized the ideas,
designed the algorithm, carried out the experiments and wrote the
manuscript. Mohammed El Adoui, Isabelle Linden and Benôıt Frénay super-
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[16] Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.:
f-anogan: Fast unsupervised anomaly detection with generative adversar-
ial networks. Medical image analysis 54, 30–44 (2019)

[17] Karami, E., Prasad, S., Shehata, M.: Image matching using sift, surf, brief
and orb: Performance comparison for distorted images. arXiv e-prints,
1710 (2017)



Composite Anomaly Detection for Imbalanced Industrial Dataset 27

[18] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. Journal of machine learning research 13(2) (2012)

[19] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: syn-
thetic minority over-sampling technique. Journal of artificial intelligence
research 16, 321–357 (2002)

[20] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A.,
Chen, X.: Improved techniques for training gans. Advances in neural
information processing systems 29 (2016)

[21] Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu,
S., Furukawa, Y., Mauri, G., Nakayama, H.: Gan-based synthetic brain
mr image generation. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), pp. 734–738 (2018). IEEE


	Introduction
	Related Works
	VQGanoDIP: VQGAN Anomaly Detection through Intermediate Patches
	First step: Image Reconstruction & Anomaly Localization
	VQGAN Reconstruction
	GanoDIP Abnormal Candidates Isolation

	Second step: Multi-level Difference Metrics Collection
	Third step: Composite Anomaly Score Creation

	Evaluation
	Experimental Setup
	Qualitative Assessment 
	PCBA Reconstruction Quality
	PCBA Visual Turing Test
	MVTEC-AD Reconstruction Quality

	Quantitative Assessment
	PCBA Classification Metrics
	MVTEC-AD Classification Metrics


	Conclusion
	Acknowledgments


