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Towards pest outbreak predictions: Are models supported by field 
monitoring the new hope? 
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a Namur Digital Institute, University of Namur, 5000 Namur, Belgium 
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A B S T R A C T   

Physiologically-based models are the core of Decision Support Systems (DSS) for insect pest and disease control 
in cultivated fields. However, the large-scale use of DSS remains scarce and limited, despite the continuous 
update and formulation of new models by the literature. The main reason behind this lack of real-world use 
relates to the purely descriptive approach of these models, which are usually validated a posteriori. The major 
limiting factors that preclude the use of these tools for prediction purposes are their dependence on time zero and 
initial abundance to start the simulations. In this study, we present a theoretical framework that includes field 
monitoring data as an active part of a pest population density model simulation, which helps to overcome these 
obstacles. More specifically, we propose the application of an estimator scheme in the form of an Extended 
Kalman Filter (EKF) to a revised physiologically-based model from the literature. In the paper, we carry out a 
preliminary test of the theoretical framework applied to the case of Drosophila suzukii. This case study shows that 
the dependence of the simulations on the initial conditions and time zero is strongly reduced by using the EKF. 
Overall, the outcome of this research indicates that an estimator scheme is a necessary step to move from 
description to prediction in the pest population modelling field.   

1. Introduction 

The mathematical interpretation of biological phenomena is gaining 
popularity in many fields of research (Mesarovic et al., 2004). The po-
tential of reliable mathematical models, and the practical applications 
that these models may provide (Plant and Mangel, 1987; Sinclair and 
Seligman, 1996), is arousing interest among the scientific community 
working on the fields of biology and ecology. 

Decision Support Systems (DSS) are among the fastest growing ap-
plications of mathematical biology (Murray, 2012). Namely, in the field 
of ecology and agricultural sciences, the predictive potential of pest and 
disease models fits perfectly with the Precision Agriculture (PA) para-
digm (Rupnik et al., 2019). PA aims to optimize the human inputs in the 
management of cultivated fields (e.g., agrochemicals, water, fertilisers), 
so that they are provided only where and when they are needed (Srbi-
novska et al., 2015; Stafford, 2015). This reduction of resources 
employed provides obvious economic advantages and allows to 

safeguard the environment and the biodiversity of agroecosystems 
(Barrett and Rose, 2020), which is in line with the goals of many public 
institutions and government agencies worldwide. 

Insects pests are one of the main reasons for the extensive use of 
agrochemicals and pesticides, which are two important examples of the 
aforementioned field inputs in intensive cultivation (da Silva et al., 
2019). Additionally, the large spectrum of active ingredients applied 
seriously endangers the population of helpful and beneficial organisms, 
such as pollinators or predators and parasitoids of insect pests (da Silva 
et al., 2019). According to Integrated Pest Management (IPM) frame-
work, one way to reduce this side effect is by rotating the use of active 
ingredients, knowing which are the most infested portions of the field, 
and when the pests are the most susceptible. IPM guidelines suggest the 
use of less environmentally damaging control strategies. However, most 
of these strategies are only efficient during specific phases of the life 
cycle or up to a certain population density threshold. All these re-
quirements make the monitoring of the pests life cycle fundamental 
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(Bange et al., 2004; Rossi et al., 2019), and motivate the development of 
accurate monitoring and predictive tools. 

Regarding monitoring and predictive tools, physiologically-based 
models are gaining in importance in the description of insect pest pop-
ulation dynamics. The reason for their success lies on their mathematical 
description of insect populations developing over time and through life 
stages (Ponti et al., 2021), while considering the characteristic ecto-
therm behaviour of terrestrial arthropods (Gutierrez et al., 2017). The 
stage-maturation time of ectotherms strongly depends on environmental 
parameters (e.g., temperature, relative humidity) and physiologically- 
based models are accurately formulated to consider this aspect (Lessio 
and Alma, 2021). 

Even though some physiologically-based models in the existing 
literature have been successfully validated, we identify two main 
problems that still hinder their implementation in the DSS framework: i) 
it is difficult to identify a “time zero” to start the simulations (i.e., when 
the development of the population begins) and ii) it is difficult to esti-
mate the initial population abundance (i.e., how many individuals are 
into each stage). In other words, the estimation of the initial conditions 
is one of the crucial points of the model application, which is amplified 
by the high variability under which populations develop in cultivated 
fields. 

Given this precondition, the predictive potential and accuracy of 
physiologically-based models is heavily reduced if simulations are car-
ried out in “open loop” (i.e, model simulations with no field measure-
ment corrections) (Bono Rosselló et al., 2022). This problem does not 
come from the accuracy and precision of the models themselves, but 
from their dependence on a proper estimation of the initial conditions 
(Pasquali et al., 2019). This dependence, and the absence of field mea-
surement corrections, means that a wrong estimation of the initial 
conditions is never corrected in the prediction, leading to large inac-
curacies during the peak of individuals. 

Monitoring carried out through field measurements, instead, pro-
vides empirical assessments and predictions regarding pest infestation 
trends (Onufrieva and Onufriev, 2021; Rossini et al., 2022a). However, 
field monitoring is a highly time-consuming activity, and often relies on 
the experience of farmers and technicians. Accordingly, it is hard to have 
large series of data with a high sampling frequency (Rossini et al., 
2022a). Field measurement data provides a picture of the infestation 
from the past to date, and it is common to use them in open-loop sim-
ulations to validate models (e.g., (Bellocchi et al., 2011; Gilioli et al., 
2022; Pasquali et al., 2022; Rossini et al., 2020a; Rossini et al., 2020b; 
Rossini et al., 2020c; Rossini et al., 2020d; Rossini et al., 2021a)). 

Models and field measurements have complementary strengths and 
weaknesses. Accordingly, the next step is to include field measurements 
as an active part of the modelling process, contributing to improve the 
model predictions. This approach is common in many fields of engi-
neering, and, in this study, we suggest and demonstrate how the com-
bination of these two different sources of information improves the 
overall estimation of the pest population trend. 

This paper is inspired by analogous works in the agricultural field 
that already included measurements into mathematical models applied 
to agriculture. Early examples of application were presented by Liu et al. 
(Xiaoyun et al., 2023) and by Sorensen (Sorensen, 2002) in agricultural 
economics. These works were pioneers in the use of estimation methods 
outside the field of pure engineering. Other applications, closer to the 
engineering field, concern the use of GPS data to improve the posi-
tioning information of the machines, such as in the case of automated 
driving systems of tractors (Gomez-Gil et al., 2013). To the best of our 
knowledge, there are very few works using estimation methods applied 
to pest population dynamics, which is the main focus of this study. 

A recent theoretical work of Bono Rosselló et al. (Bono Rosselló et al., 
2022) showed how control system theory can be applied to pest popu-
lation models as well. This study aims to extend this theoretical frame-
work by improving the physiologically-based model recently introduced 
by Rossini et al. (Rossini et al., 2021b), and to present how different 

measurement techniques commonly applied to pest monitoring can be 
incorporated in the presented framework. The theoretical framework is 
then completed with a practical application example. This application 
combines trap measurements and model predictions, showing how the 
proposed method clearly improves the model accuracy by compen-
sating, through field measurements, the initial conditions uncertainty. 
For this purpose, we will use the same dataset published by Rossini et al. 
(Rossini et al., 2020e; Rossini et al., 2021b), providing a comparison 
between the open and closed loop simulations subject to initial condi-
tions uncertainty. The improvements presented by the proposed 
approach are manyfold: i) it accounts for the problem of estimating the 
insect population’s initial conditions, ii) it helps to include the possible 
migrations into the field during the season, and iii) it allows to combine 
sparse and different counting systems into the pest abundance estima-
tion framework. 

2. Materials and methods 

The theoretical framework we introduce in this study is organized in 
different logical steps. The starting point is the pest population density 
model describing the biology of most species of agricultural interest. 
This model should be capable of simulating the number of individuals 
that develop over time through the different life stages. These quantities 
are often measurable using conventional techniques that we will detail 
in the following sections. The idea is to combine the model with an 
iterative estimation scheme that improves the estimations based on the 
field measurements. However, to achieve this combination it is neces-
sary to modify the original model to consider the uncertainties of its 
parameters, often measured through laboratory experiments. Subse-
quently, field measurements are also considered as non-deterministic 
values affected by noise and measurement uncertainties. 

Based on that, the estimation algorithm will combine both sources of 
information given the uncertainties associated with both model and 
measurements, providing the optimal estimate. In what follows, we will 
detail all the steps we briefly described hereby, while considering the 
different kinds of information that various techniques of insect pest 
monitoring provide. 

2.1. The pest population density model 

As a starting point, let us consider the general physiologically-based 
model presented in (Rossini et al., 2021b), which has recently been 
extended to the spatial context (Rossini et al., 2022b). While referring 
the most interested readers to the cited literature for more detailed in-
formation, in this section we report only the essential features of the 
model. 

A population of insects or, more in general, of terrestrial arthropods 
that develops over time, and through discrete and well identified life 
stages, can be described through a compartmental scheme (Bellagamba 
et al., 1987; Borlino et al., 1990; Borlino et al., 1991; Cola and Gilioli, 
1996; Manetsch, 1976; Severini et al., 1990; Vansickle, 1977). Accord-
ingly, the life cycle is mathematically represented by a set of chained 
stages each of which corresponds to an “entomologically identifiable 
stage”. In other words, we consider single compartments for the egg 
stage e, for each preimaginal stage (larval instars of nymphal stages) L1,

L2,…,Ln, for adult males Am, and for adult females. The latter is in turn 
divided in two substages Af1 and Af2 to take into account, for instance, 
the different gonotrophic cycles, the subdivision between non-mated 
and mated females, or to consider cyclicity in reproduction. 

Each life stage i has an associated state xi(t) that describes the 
number of individuals that at time t populates the stage i, where i = e, L1,

…, Ln,Am,Af1 ,Af2 . Moreover, each life stage is described by an Ordinary 
Differential Equation (ODE) that considers the number of incoming in-
dividuals developing from the previous stage and the outgoing in-
dividuals due to maturation and death. Mortality is slightly different in 
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adult stages, given that after adults there are no further stages. In these 
stages, mortality functions are generally composed of a survival rate 
term indicating the ageing of adults, and of a second term involving any 
other type of mortality (if sub-models are available) (Rossini et al., 
2021b; Rossini et al., 2022a; Rossini et al., 2022b). Besides development 
and mortality, reproduction is defined as the number of offspring (eggs) 
that adult females produce. 

The incoming and outgoing flows of individuals among the stages are 
associated with specific transition rates, hereafter denoted as develop-
ment, mortality, and fertility rate functions. These transition rates are 
assumed to depend, in the most general case, on both population density 
and environmental parameters (Rossini et al., 2021b; Rossini et al., 
2022b). 

The previous assumptions lead to the following mathematical set of 
equations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

xe(t) = GAf1
(t)β1(t)xAf1

(t) + GAf2
(t)β2(t)xAf2

(t) − Ge(t)xe(t) − Me(t)xe(t)

d
dt

xL1 (t) = Ge(t)xe(t) − GL1 (t)xL1 (t) − ML1 (t)xL1 (t)

⋮ ⋮ ⋮ ⋮ ⋮

d
dt

xLn (t) = GLn− 1 (t)xLn− 1 (t) − GLn (t)xLn (t) − MLn (t)xLn (t)

d
dt

xAm (t) = (1 − SR(t) )⋅GLn (t)⋅xLn (t) − MAm (t)xAm (t)

d
dt

xAf1
(t) = SR(t)GLn (t)xLn (t) − G1→2(t)xAf1

(t) − MAf1
(t)xAf1

(t)+

+G1←2(t)xAf2
(t)

d
dt

xAf2
(t) = G1→2(t)xAf1

(t) − MAf2
(t)xAf2

(t) − G1←2(t)xAf2
(t).

(1) 

A detailed description of the functions and variables involved in the 
model (1) is provided in Table 1. Note that the number of ODEs depends 
on the number of preimaginal stages of the species under study, which 

can be defined once we know the biological traits of the species (Rossini 
et al., 2021b; Rossini et al., 2022b). 

A fundamental feature of this model concerning the theoretical 
framework presented in this paper refers to the fact that each state 
variable represents a single stage. This allows us to obtain a direct cor-
respondence between the quantity we simulate (i.e., the number of in-
dividuals over time in each life stage) and what we can potentially 
measure in the field (i.e., the number of individuals in one or more 
stages over time). 

The model (1) is hereby presented as an apparently linear model. 
However, it is worth pointing out that in general we may modify the rate 
functions involved to consider the density-dependence as well. For 
instance, let us briefly compare the case of a population of insects 
developing in a cultivated field and in a more natural environment. In 
the first case, the non-linearity of the model, such as the scarcity of food 
or the dependence of fertility on the population density of males, can be 
neglected. The main reason is that cultivated fields have, by definition, 
conditions that are suitable for the development of a given species, 
mainly if specialized for the cultivated host plant. On the other hand, in 
more natural environments such as forests there are several additional 
factors that affect the growth of the population, such as the presence of 
natural enemies or scarcity of food. Even though there might be non- 
linearities, the theoretical framework introduced is still valid. We refer 
the most interested reader to Rossini et al. (Rossini et al., 2021b) for 
further details about potential non-linearities of the general model (1). 

State observers and estimators are algorithms that provide an esti-
mate of the internal states of a given system (Anderson and Moore, 
1979), based on some measurements of the real phenomenon and the 
knowledge of the system dynamics. In this paper, the dynamics of the 
system are given by the mathematical model (1), and the measurements 
are associated with different field monitoring techniques, as we have 
already stated at the beginning of the current section. 

It must be noted that the sensors or techniques that measure the 
states of a real system (e.g., the number of individuals in a given stage 
over time) are, by definition, not perfect, but affected by noise and 
inaccuracies. This fact should be considered when estimating the current 
state of the system. Usually, the uncertainty associated with the mea-
surements is not deterministically known, and it needs to be statistically 
estimated. This estimated noise is thus introduced into the model of the 
system as a stochastic disturbance. 

Similarly, a dynamic mathematical model is often a simplified rep-
resentation of the natural phenomenon, as in (1). Accordingly, it has a 
certain degree of inaccuracy in its predictions. These uncertainties and 
other perturbations can also be incorporated into the system as sto-
chastic process noise. 

The following section introduces the modifications required to adapt 
the model (1) to the estimator’s scheme. Two steps are foreseen: i) 
modelling the uncertainties associated with the model dynamics, and ii) 
modelling the uncertainties associated with the field data. 

2.2. Stochastic model 

As previously mentioned, rate functions regulate the number of in-
dividuals entering or leaving the different life stages, and generally 
depend on environmental parameters (e.g., temperature or relative 
humidity). While the mathematical form of the rate functions is general, 
their parameters characterize the species, and their estimation requires 
ad hoc laboratory experiments (Damos and Savopoulou-Soultani, 2012; 
Quinn, 2017; Ratkowsky and Reddy, 2017; Shi et al., 2017). Accord-
ingly, the biological information included in the model is affected by the 
uncertainties associated with the estimation of the parameters (Belloc-
chi et al., 2011). These uncertainties are modelled as stochastic noise 
and included into the equations of the model (1). 

Besides the uncertainty introduced by the rate functions’ parameters, 
we should consider that simulations are based on field measurements of 
the environmental variables (e.g., temperature) subject to noise 

Table 1 
List of the variables and functions involved in the model (1) and (2).  

Function Description 

xe(t) Number of individuals in the egg stage at time t. 
xLi (t) Number of individuals in the ith larval stage at time t. 
xAm (t) Number of individuals in the adult male stage at time t. 
xAf1

(t) Number of individuals in the female adult substage 1 at time t. 
xAf2

(t) Number of individuals in the female adult substage 2 at time t. 
Me(t) Mortality rate of the eggs at time t. 
MLi (t) Mortality rate of the ith larval instar at time t. 
MAm (t) Mortality rate of adult males at time t. 
MAf1

(t) Mortality rate of adult females substage 1 at time t. 
MAf2

(t) Mortality rate of adult females substage 2 at time t. 
β1(t) Fertility rate of the adult females substage 1 at time t. 
β2(t) Fertility rate of the adult females substage 2 at time t. 
Ge(t) Development rate function of the egg stage. 
GLi (t) Development rate function of the ith larval stage at time t. 
GAf1

(t) Development rate function of the adult females substage 1 at time t. 
GAf2

(t) Development rate function of the adult females substage 2 at time t. 
SR(t) Sex ratio of the species: SR(t) for females, 1 − SR(t) for males. 
G1→2(t) Transition rate of adult females to substage 2  

from the substage 1 at time t. 
G1←2(t) Transition rate of adult females to return in the substage 1  

from the substage 2 at time t.  
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(Didham et al., 2023; Jactel et al., 2023). The uncertainty related to the 
computation of the rates is introduced in each ODE of (1) as an additive 
term wi,j(t), associated with the stage i = e, L1,…, Ln,Am,Af1 ,Af2 and the 
rate function j, that multiplies the state variable xi(t). Mathematically: 

wi,j(t) = w1
i,j(t)+w2

i,j(t),

with w1
i,j(t) ∼ N

(
0,Q1

i,j

)
the uncertainty related to parameters estimation 

and w2
i,j(t) ∼ N

(
0,Q2

i,j

)
the noise that the measurements of the envi-

ronmental parameters introduces. If we assume that both terms are 
Gaussian with zero means, it holds the following property for the ex-
pected values 

E
[
wi,j(t)

]
= E

[
w1

i,j(t)
]
+E

[
w2

i,j(t)
]
= 0,

and for the covariance 

Cov
(
wi,j(t)

)
= Q1

i,j +Q2
i,j = Qi,j,

with wi,j(t) ∼ N
(
0,Qi,j

)
.

By introducing these uncertainties into the model (1), we obtain the 
following mathematical description of insect populations developing 
under field conditions: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

xe(t) =
(

GAf1
(t)β1(t) + we,1(t)

)
xAf1

(t) +
(

GAf2
(t)β2(t)+

we,2(t)
)

xAf2
(t) −

(
Ge(t) + we,3(t)

)
xe(t)−

(
Me(t) + we,4(t)

)
xe(t)

d
dt

xL1 (t) =
(
Ge(t) + we,1(t)

)
xe(t) −

(
GL1 (t) + wL1 ,2(t)

)
xL1 (t)

−
(
ML1 (t) + wL1 ,3(t)

)
xL1 (t)

d
dt

xLn (t) =
(
GLn− 1 (t) + wLn ,1(t)

)
xn− 1(t) −

(
GLn (t) + wLn ,2(t)

)
xLn (t)

−
(
MLn (t) + wLn ,3(t)

)
xLn (t)

d
dt

xAm (t) = (1 − SR(t) )⋅
(
GLn− 1 (t) + wAm ,1(t)

)
⋅xLn− 1 (t)

−
(
MAm (t) + wAm ,2(t)

)
xAm (t)

d
dt

xAf1
(t) = SR(t)

(
GLn− 1 (t) + wAf1 ,1(t)

)
xLn− 1 (t) −

(
G1→2(t)

+wAf1 ,2(t)
)

xAf1
(t) −

(
MAf1

(t) + wAf1 ,2(t)
)

xAf1
(t)

d
dt

xAf2
(t) =

(
G1→2(t) + wAf2 ,1(t)

)
xAf1

(t) −
(

G2→1(t)

+wAf1 ,2(t)
)

xAf2
(t) −

(
MAf2

(t) + wAf2 ,2

)
xAf2

(t).

(2) 

In the general presentation of the model (1), Section 2.1, we assumed 
that in the case of cultivated fields the model can be considered as a 
linear system. However, the introduction of the uncertainty wi,j(t)
related to the estimation of the parameters introduces a non-linearity. In 
what follows, we will therefore consider the model as non-linear, with 
the advantage of having a more general theoretical framework that can 
also be applied to more complex versions of the model (1). 

The system (2) is an autonomous dynamical system where the rate 
functions are time dependent and there is no controlled input variable. 

Moreover, (2) is subject to stochastic process noise, and it can be rep-
resented in compact form as 

ẋ(t) = f (x(t) ,w(t) ), (3)  

with the state vector 

x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xe(t)
xL1 (t)

⋮
xAm(t)
xAf 1(t)
xAf 2(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the noise vector 

w(t) =

⎡

⎣
we,1(t)

⋮
wAf2 ,2(t)

⎤

⎦,

where w(t) ∼ N(0,Q) with Q ∈ ℝm×m. As previously stated in Section 
2.1, the number m varies according to the preimaginal stages considered 
in the model when applied to a particular case study. 

Field measurements are usually discrete in time, since field pest 
monitoring is carried out at regular (or irregular, in the case of random 
inspections) time ranges. By defining a constant sampling time Ts, we 
obtain the following discrete time system: 

xk+1 = g(xk,wk), (4)  

with xk = x(kTs). The sampling time Ts can take any value in the positive 
real numbers space, ℝ+, but for the sake of this study we set Ts = 1day, 
as it is the most recurrent time unit in the ecological literature. 

2.2.1. Sensing model 
The second step concerns the definition of a model that describes 

which information from the model (1) we can directly measure. In that 
model, we have also to represent the uncertainties associated with these 
measurements, as it was done for the parameters of the physiologically- 
based model. 

The state vector xk ∈ ℝm represents the number of individuals at 
each life stage at the time instant k. The measurement matrix C ∈ ℝl×m 

defines which of these quantities are measured and accessible at that 
time instant. This matrix maps the information from the states of the 
system (i.e., the life stages) that is provided by the measurements 
yk ∈ ℝl. This mapping is described by the following equation 

yk = Cxk. (5) 

We may assume that the state of the population can be measured at 
given time instants through different techniques. The insect monitoring 
technique is hence important since the shape of the matrix C will directly 
depend on the measurement technique. Generally speaking, the map-
ping can be defined as 

yk = Ckxk, (6)  

where at each time instant the time-variant measurement matrix Ck 
might change based on the technique used. 

The mathematical aspects we will develop in this section are general 
and can be adapted to any kind of monitoring carried out in entomology. 
To give some practical examples, we may consider classical techniques 
such as monitoring with traps, visual inspections, branch shaking, or 
more modern techniques such as automated traps or similar automated 
counting systems (Ebrahimi et al., 2017; Lippi et al., 2021; Zha et al., 
2021). We can generally say that most of the monitoring techniques 
track only certain life stages. The mathematical aspects that follow 
might be applied to the cases where we have information from all life 
stages, but for the sake of exposition we will consider the case of tracking 
only adults (Preti et al., 2021). 
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Depending on the measurement system used, the kind of information 
that can be obtained about the system is different. In the case of real- 
time vision counting systems or techniques like frappage (branch 
shaking), the number of insects that is obtained is proportional to the 
population at the measurement time instant. On the other hand, when 
using traps, the information obtained corresponds to the cumulative 
number of insects captured during the time period that the trap 
remained in the field. Thus, the sensing action is modelled in two 
different ways: instantaneous measurements, or cumulative captures. A 
second aspect to consider when measuring the number of insects con-
cerns the identifiability within the adult life stages, which might vary 
depending on the species and on the technique considered (Rossini et al., 
2020e). In other words, the fact of being able to count: i) how many 
females and males are present or, ii) only the total number of adults. Let 
us consider a very general example, just to fix the ideas. Traps lured with 
sexual pheromones have the feature to attract only a specific stage (only 
adult males or only adult females, for instance), while chromotropic 
traps attract both males and females. In the first case, we have the in-
formation on a specific stage, while in the second case it depends on how 
difficult the distinction is between males and females. If the discrimi-
nation between males and females is difficult, for example because there 
is no stereomicroscope to observe some specific morphological traits of 
the specimen trapped, the only possible action is to count all the in-
dividuals. The mathematical details of instantaneous and cumulative 
measurements, and the different identifiability aspects follow in the next 
paragraphs. 

Instantaneous measurements. This case considers measuring tech-
niques that provide an instantaneous value of the current population at 
the moment of the measurement action (e.g., branch shaking, visual 
inspections or automated counting systems). From a general point of 
view, it can be initially assumed that the 3 adult stages of the general 
model can be measured independently. This provides the following 
observation matrix 

C =

⎡

⎣
01×p κ1 0 0
01×p 0 κ2 0
01×p 0 0 κ3

⎤

⎦,

where p is the number of non-adult stages associated with the species 
under study and κi ∈ ℝ+∀i = 1, 2,3 are the estimated counting effi-
ciencies, providing the percentage of insects out of the whole population 
that can be counted at time k. 

It is worth remarking that the definition of measurable life stages will 
depend on the species, i.e., biological traits that allow their distinction, 
and the measurement devices available. To give a practical example, let 
us consider the case of frappage, where the individuals falling from the 
branch are subsequently caught. When the caught individuals are clas-
sified, they can be divided into males and females (mated plus not 
mated) or, in some cases, in males, non-mated females, and mated 
females. 

In other cases, we can measure a percentage of the whole adult 
population with no distinction between the adult substages. This case 
can be mathematically described as 

C = [ 01×p κ1 κ2 κ3 ].

Note that in other cases it may happen that κ1 = κ2 = 0, where only 
one adult stage can be measured. 

Sensing techniques are also subject to measurement noise and inac-
curacies associated with the estimated counting efficiency. Given the 
nature of the measurements (insect counting) and of the system itself (a 
positive system, as the number of individuals will always be greater or 
equal to zero) the measurements are always positive. Additionally, in 
the case of a larger amount of insects, the variance in the efficiency of 
the counting will vary. 

A simple way to formalize these aspects while keeping the assump-
tion of uncorrelated noise, E[xkνk] = 0, is by considering the measure-

ment noise primarily associated with the estimation of the capturing/ 
counting efficiency κi as 

yk = (C+ νk)xk,

where νk ∈ ℝl represents the stochastic sensor noise which is assumed 
ν ∼ N(0,R) with R ∈ ℝl×l the noise covariance matrix. Note that in the 
case of κ > Rii∀i = 1,…, l, where R is a diagonal matrix and Rii are its 
diagonal elements, it holds that with high probability the outcome yk 
will be non-negative. 

Cumulative measurements. This case refers mainly to the use of traps 
as measuring devices. Traps are deployed and remain in the field for a 
given amount of time, during which they are inspected and emptied at 
more or less regular intervals. Accordingly, their measurements consider 
the cumulative number of insects that were trapped during the period of 
time between two inspections. This can be formalized by adding extra 
states to the model that are associated with the life stages caught by the 
traps, obtaining the extended vector state 

x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xe(t)
xL1 (t)

⋮
xAf 2(t)

xtrap,Am (t)
xtrap,Af 1 (t)
xtrap,Af 2 (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where xtrap,Am (t), xtrap,Af1 (t) and xtrap,Af2 (t) describe the quantity of adult 
males, adult females in stage 1, and adults females in stage 2 that are 
caught by the trap at time t. The evolution of these 3 extra states can be 
mathematically represented as 
⎧
⎪⎪⎨

⎪⎪⎩

ẋtrap,Am (t) = Mtrap(t)xAm (t) − r(t)⋅xtrap,Am (t)
ẋtrap,Af 1 (t) = Mtrap(t)xAf 1 (t) − r(t)⋅xtrap,Af 1 (t)
ẋtrap,Af 2 (t) = Mtrap(t)xAf 2 (t) − r(t)⋅xtrap,Af 2 (t),

(7)  

where Mtrap(t) is the efficiency of the trap and the input action r(t)
represents the reset action of emptying or changing the trap. This action 
is modelled as a Dirac delta impulse such that 

r(t) = δ(t − ti) =

{
undefined if t = ti
0 if t ∕= ti,

which is constrained to satisfy the equality 
∫ +∞

− ∞
δ(t − ti)dt = 1  

and where ti represents the time instant where the trap is reset. 
Additionally, there is also an uncertainty associated with the effi-

ciency of the trap, that leads to the following set of stochastic equations 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋtrap,Am (t) =
(
Mtrap(t) + wtrap,1

)
xAm (t) − r(t)⋅xtrap,Am (t)

ẋtrap,Af 1 (t) =
(
Mtrap(t) + wtrap,2

)
xAf 1 (t) − r(t)⋅xtrap,Af 1 (t)

ẋi
trap,Af 2

(t) =
(
Mtrap(t) + wtrap,3

)
xAf 2 (t) − r(t)⋅xtrap,Af 2 (t),

(8)  

where wtrap(t) ∼ N(0,Q) with Q ∈ ℝ3×3. 
Then, assuming that the measurement provides the current value of 

the additional trap states, we obtain the following observation matrix 

C =

⎡

⎣
01×p+3 1 0 0
01×p+3 0 1 0
01×p+3 0 0 1

⎤

⎦,

where p is the number of preimaginal stages. 
Similarly to the case of instantaneous measurements, there might be 
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cases where the adult stages are trapped but the specimens are not 
distinguishable in the measurement process. This provide the following 
matrix 

C = [ 01×p+3 1 1 1 ].

The shape of the observation matrix is similar to the previous case 

yk = (C+ νk)xk,

where νk ∈ ℝl represents the stochastic sensor noise which is assumed 
ν ∼ N(0,R) with R ∈ ℝl×l the noise covariance matrix. 

An additional peculiarity of entomological measurements worthy of 
consideration is their intermittence. This is due to the amount of re-
sources, in terms of manpower and measurement tools, required in each 
counting action (Rossini et al., 2022b). This is a fundamental aspect to 
formalize, and for this purpose we introduce the binary variable γk ∈

(0, 1) which takes the value 1 if the measurement is carried out at time k, 
and 0 otherwise. 

Thus, the general measurement equation is finally defined as 

yk = γk(Cxk + νkxk),

so that the overall pest population dynamics can be compactly written as 
(

xk+1 = g(xk,wk)

yk = h(xk, νk, γk).
(9)  

2.3. Estimator: the Extended Kalman filter 

The estimation of the state of the population is carried out using an 
Extended Kalman Filter (EKF) (Ljung, 1979) with intermittent obser-
vations. The Kalman Filter (Kalman, 1960) provides a recursive scheme 
to compute the estimates of the internal states of a system based on the 
knowledge of its dynamics and noisy measurements. The Kalman Filter 
(KF) is an algorithm that uses the dynamic model of a system, e.g. (1), 
and a series of measurements observed over time, including statistical 
noise and other inaccuracies. This algorithm computes the population 
density more accurately than single measurements or single model 
predictions, as it combines this information at each instant. 

The KF is a two-steps algorithm, composed of a prediction and a 
correction step. In the prediction step, the KF produces estimates of the 

current state variables based on the dynamic model of the system. Once 
we obtain the outcome of the next measurement, the estimates are 
updated based on the uncertainty associated with the model and the 
measurements, respectively. The EKF is similar to its linear version, but 
in this case we linearize the system around the estimate of the state at 
each instant, see Fig. 1. 

To apply the estimation scheme, we assume to know the initial 
probability distribution of the system with p(x0) ∼ N(x0,P0). The initial 
estimate and the covariance of the EKF are denoted as 

x̂0|0 = x0 and P0|0 = P0,

respectively. 
The estimation scheme of the EKF can be mathematically formalized 

as follows. The prediction step is 

x̂k|k− 1 = g(xk− 1, 0) (10)  

Pk|k− 1 = Fk− 1Pk− 1|k− 1FT
k− 1 +Lk− 1QLT

k− 1, (11)  

which relies on the known dynamics of the system, and where 

Lk− 1 =
∂g
∂w

⃒
⃒
⃒
⃒

x̂k− 1|k− 1

, Fk− 1 =
∂g
∂x

⃒
⃒
⃒
⃒x̂k− 1|k− 1, (12)  

are the linearized dynamics around the previous estimate. 
The correction step, where the prediction is corrected based on the 

measurements, is defined as 

x̂k|k = x̂k|k− 1 + γkKk(yk − Cx̂k|k− 1) (13)  

Kk = Pk|k− 1CT ( CPk|k− 1CT + MkRMT
k

)− 1 (14)  

Pk|k = Pk|k− 1 − KkγkCPk|k− 1, (15)  

with 

Mk =
∂h
∂v

⃒
⃒
⃒
⃒

x̂k|k− 1

, (16)  

where x̂k|k is the estimated value of the state at time k given the infor-
mation available at time k, and Pk|k is the covariance matrix of the error 

Fig. 1. Example of the Extended Kalman Filter working scheme.  
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associated with the estimation at time k. 
It is worth remarking that when γk = 0, i.e., when there are no new 

measurements, the correction step does not modify the prediction step, 
relying uniquely on the estimate given by the model dynamics. Specif-
ically, 

x̂k+1|k+1 = x̂k+1|k
Pk+1|k+1 = Pk+1|k .

This is a relevant property that supports the choice of the EKF as 
estimation scheme for pest monitoring, since it can work even in the case 
of measurements carried out irregularly. This aspect is specially 
important given the high costs of entomological monitoring, which 
makes irregular sampling ranges very common in the case of monitoring 
carried out by farmers for pest management purposes. 

2.4. The case study of Drosophila suzukii 

2.4.1. General model and parameters 
The general model (1) can be applied to a case study only after the 

definition of a species and of its biological traits (Rossini et al., 2021b; 
Rossini et al., 2022b). For this purpose, we choose the spotted wing 
drosophila Drosophila suzukii (Matsumura) to assess the improvements 
that the methodology introduced in Section 2.3 brings to the theory. 
This pest is responsible for several yield losses in soft fruit cultivation 
worldwide (Asplen et al., 2015), which explains the large amount of 
information in the current literature that supports its model 
development. 

An open loop validation of the model (1) has already been carried out 
in (Rossini et al., 2021b). Accordingly, considering the same dataset 
makes it easier to highlight the improvements that the present study 
introduces. Hereafter, only the essential information about the biology 
of the species, of the model parameterization, and of the field experi-
mentation will be reported. 

The life cycle of D. suzukii is composed of an egg stage, xe(t), three 
larval instars, xL1 , xL2 , and xL3 , a pupa stage, xp(t), an adult male, xAm, 
and an adult female stages (Winkler et al., 2021). Adult females are 
divided in two substages that we identify as “non-mated females”, xAnmf , 
and “mated females”, xAmf . This subdivision leads to set β2(t) = 0 (Bono 
Rosselló et al., 2022; Rossini et al., 2021b; Rossini et al., 2022b). Ac-
cording to the existing literature, adult females mate only once in their 
life cycle (Emiljanowicz et al., 2014) that is, mathematically, G1→2(t) =

0. The transition rate between non mated and mated females, instead, 
can be roughly estimated considering that: i) in a cultivated field there 
are the optimal conditions in terms of food availability and habitat, and 
accordingly ii) there is a high probability that males and females will 
mate. In other words, all the non-mated females will become mated 
except for the portion that die, namely G1→2(t) = 1 − M[T(t) ]. The sex 
ratio, on the other hand, is a constant value of SR = 0.5 (1:1, males:fe-
males) (Emiljanowicz et al., 2014). In this study we consider that the 
development, mortality, and fertility rates depend exclusively on tem-
perature, already considered as the main driving variable in (Rossini 
et al., 2020e; Rossini et al., 2021b). Let us detail the functions involved. 

Regarding the development rate function, in (Rossini et al., 2020e; 
Rossini et al., 2021b) the authors proposed the use of the Briére equation 
(Briere et al., 1999): 

G[T(t) ] = aT(t)(T(t) − TL )(TM − T(t) )
1
m, (17)  

where a and m are empirical parameters, and TL and TM are the lower 
and upper temperature thresholds above and below which the devel-
opment is theoretically not possible. The parameter values were already 
estimated in (Rossini et al., 2020e; Rossini et al., 2021b) based on the life 
tables data provided by Tochen et al. (Tochen et al., 2014). It is worth 
reminding that the function (17) covers the egg-adult stage in the case of 
D. suzukii. In fact, given the literature information available (Ryan et al., 
2016; Tochen et al., 2014; Winkler et al., 2021), it is not possible to 

estimate the parameters of the Eq. (17) singularly for each life stage. 
Temperature-dependent mortality rates are defined by the so-called 

“bathtub function” of Wang et al. (Wang et al., 2002). The daily loss of 
individuals due to mortality is mathematically described by the 
following fourth-order polynomial function: 

M[T(t) ] = a1T(t)4 + b1T(t)3 + c1T(t)2 + d1T(t) + e1, (18)  

with a1, b1, c1, d1 and e1 empirical parameters with no biological 
meaning. As already stated for the development rate, the mortality 
function also covers the egg-adult stage, with no distinction among the 
life stages. 

At this point, it is worth clarifying how mortality is introduced in the 
adult stages. The concept of “development” is not completely suitable 
for adult stages, as there are no further stages to go in. This is the reason 
why in the last three equations of the model (1) we only consider the 
mortality rate function M(t). At the same time, M(t) can be considered as 
the combination of two terms, one describing the adult temperature- 
dependent longevity (identified by the Briére function (17)) and the 
temperature-dependent mortality (18). Accordingly, while mortality for 
the egg-pupa stages is only described by the Eq. (18), in the case of 
adults we have 
⎛

⎝
MAm[T(t) ] = G[T(t) ] + M[T(t) ]

MAnmf [T(t) ] = G[T(t) ] + M[T(t) ]
MAmf [T(t) ] = G[T(t) ] + M[T(t) ].

(19) 

Temperature-dependent fertility indicating the number of eggs per 
day produced by the adult females is described by the following 
Gaussian-like function (Ryan et al., 2016): 

β1[T(t) ] =

⎧
⎪⎨

⎪⎩

α
[

γ + 1
πλ2γ+2

(
λ2 −

(
[T(t) − τ ]2 + δ2 ) )γ

]

if Tmin < T(t) < Tmax

0 otherwise
(20)  

where the parameters α, γ, λ, δ and τ in Eq. (20) are empirical, while Tmin 
and Tmax are the lower and upper boundary below and above which egg 
production is not theoretically foreseen, respectively. 

All the parameters from Eqs. (17)–(20) specific for D. suzukii are 
listed in Table 2, together with their respective literature of reference. 

According to the previous assumptions, the model (1) applied to 
D. suzukii is the following: 

Table 2 
List of the parameters of the development, fertility and mortality rates specific 
for the case of Drosophila suzukii. The standard error (SE) is reported only if 
available from the cited literature.  

Rate 
function 

Parameter ±SE Reference  

a =

(1.20 ± 0.15)⋅10− 4  

Briére TL = 3 ± 2 (Rossini et al., 2020e; Rossini et al., 2021b;  
Tochen et al., 2014) 

(17) TM = 30 ± 1   
m = 6 ± 3   
a1 = ( − 5 ± 1)⋅10− 5  

Mortality b1 = (5 ± 8)⋅10− 4  

(18) c1 = 0.1 ± 0.2 (Ryan et al., 2016)  
d1 = (2.2 ± 0.3)⋅10− 5   

e1 = 1.3 ± 0.9   
α = 659.06   
γ = 88.53  

Fertility λ = 52.32 (Ryan et al., 2016) 
(20) δ = 6.06   

τ = 22.87   
Tmin = 5   
Tmax = 30   
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

xe(t) = G(t)β1(t)xAf2
(t) − G(t)xe(t) − M[T(t) ]xe(t)

d
dt

xL1 (t) = G(t)xe(t) − G(t)xL1 (t) − M[T(t) ]xL1 (t)

d
dt

xL2 (t) = G(t)xL1 (t) − G(t)xL2 (t) − M[T(t) ]xL2 (t)

d
dt

xL3 (t) = G(t)xL2 (t) − G(t)xL3 (t) − M[T(t) ]xL3 (t)

d
dt

xP(t) = G(t)xL3 (t) − G(t)xP(t) − M[T(t) ]xP(t)

d
dt

xAm (t) = (1 − SR(t) )⋅G(t)⋅xP(t) − [G(t) + M[T(t) ] ]xAm (t)

d
dt

xAf1
(t) = SR(t)G(t)xP(t) − xAf1

(t)

d
dt

xAf2
(t) = [1 − G(t) − M[T(t) ] ]xAf1

(t) − [G(t) + M[T(t) ] ]xAf2
(t).

(21)  

2.5. Field data, sensing model and parameters 

The model (1) was validated in open loop in (Rossini et al., 2021b) 
using data collected during a three-year survey (2017, 2018, and 2019) 
conducted at two experimental orchards located in the Sabina area 
(Lazio, Central Italy) (Rossini et al., 2020e; Rossini et al., 2023). For the 
sake of this study, we will consider only the year 2018 in our simula-
tions, as it is the year with the higher number of measurements. 

The 2018 field survey was carried out from 19th April to 15th 

December in two experimental organic orchards located in the munici-
pality of Monterotondo and Montelibretti (Lazio, Central Italy). The 
orchards received standard agronomical practices and no insecticide 
treatment was carried out during the duration of the survey. Referring 
the most interested readers to (Rossini et al., 2020e; Rossini et al., 
2021b; Rossini et al., 2023), each orchard was monitored through three 
Droso-Trap (Biobest, Waterloo Belgium) lured with Droskidrink 
(Azienda Agricola Prantil, Priò, Trento, Italy) (Grassi et al., 2015; 
Stacconi et al., 2019; Tait et al., 2018), and inspected weekly. Traps 
provided only the adult male population measurements, as they were 
easier to recognize thanks to the black spots on their wings (Hauser, 
2011; Ibouh et al., 2019). 

Daily average temperatures, calculated considering 48 measure-
ments per day, were provided by two meteorological stations respec-
tively close to the experimental fields, and managed by the ARSIAL 
agency (Regional Agency for the Development of Innovation and Agri-
culture in Lazio) (ARSIAL, 2022). 

Note that the model (21) needs to be adapted to the theoretical 
framework presented in this study. For this purpose, given that only the 
adult males are monitored (Rossini et al., 2020e; Rossini et al., 2023), a 
ninth state is added to the set of Eq. (21) 

ẋtrap,Am (t) =
(
ε(t)+wtrap,i(t)

)
xi

Am
(t) − ri(t)⋅xi

trap,Am
(t),

where ε(t) is the trap efficiency, and the additional mortality in the case 
of males is formalized as 

ẋAm (t) = (1 − SR(t) )⋅
(
GLn− 1 (t)+wAm ,1(t)

)
⋅xLn− 1 (t) −

(
MAm (t) +wAm ,2(t)

)
xAm (t),

where MAm (t) = MAm (t)+ Mtrap(t). 
Mortality and trap efficiency are not necessarily the same phenom-

enon, as some insects might be attracted but not caught by traps 
(Onufrieva and Onufriev, 2021). Therefore, it can be assumed that there 
is an additional mortality associated with the traps such that 
ε(t) > Mtrap(t), where ε(t) is the trap efficiency and Mtrap(t) the trap 
mortality. The term Mtrap(t) is commonly neglected if traps are sparse 
and used only for monitoring purposes. In other words, we are assuming 
that the portion of caught individuals is substantially lower than the 
total population on the whole field. This also might imply that the 

orchard under study is not a closed system, and that there is an exchange 
of individuals with the neighbouring orchards. 

There are two main situations that may occur when using traps. The 
first situation occurs when incoming and outgoing flows of individuals 
are in equilibrium. In this case, even though some individuals are 
trapped, this very low value is assumed to be balanced by individuals 
migrating from neighbouring orchards. The opposite case occurs when 
traps are used for mass trapping control actions. In that case, the mor-
tality associated with traps is no longer negligible and should be 
considered by the model. A lower value of Mtrap(t), if compared to ε(t), 
might imply that traps attract additional insects from outside the pop-
ulation of interest, missing the condition of equilibrium previously 
explained. 

Despite being fundamental pieces of information, the efficiency and 
the mortality rates associated with a single trap are usually unknown 
due to the lack of techniques to estimate these values (Onufrieva and 
Onufriev, 2021). For the sake of this study, we have roughly estimated 
the trap efficiency and mortality of the traps used in the field as ε(t) =
0.2 and Mtrap(t) = ε(t)⋅0.8, respectively. These values were tuned by 
using the field data available. Simulations carried out with different 
parameter values were compared with field data to assess their accuracy 
and influence. Traps were inspected weekly, so the measuring and reset 
periods for the traps is set to 7 days. The parameters involved in the 
sensing part of the model are summarized in Table 3. 

The use of traps and the monitoring of only adults males, described 
by the additional state xtrap,Am (t), provides the following observation 
matrix 

C = [ 01×8 1 ],

where all the individuals caught by the trap are measured, and the 
measurement equation 

yk = γk(Cxk + νkxk), (22)  

with yk ∈ ℝ and xk ∈ ℝ9. 

2.6. Numerical solutions 

The model (2) applied to the case of D. suzukii has been solved ac-
cording to the procedure already detailed in (Rossini et al., 2021b; 
Rossini et al., 2022b). The procedure has been encoded in a Matlab 
(vers. R2018b) script publicly available at the GitHub page https://gith 
ub.com/Niboros91/Ectotherms_estimation_field. 

2.7. Model validation: open versus closed loop and related issues 

The classical way of validating entomological models is the com-
parison between simulations and field data (Pasquali et al., 2019; Ros-
sini et al., 2020b; Rossini et al., 2022a). Different indices are usually 
considered to quantify the distance between the experimental and the 
simulated populations (Bellocchi et al., 2011; Ikemoto and Kiritani, 
2019; Ratkowsky and Reddy, 2017). The consideration of the noise 
associated with the field measurements and their active use in the 
estimator scheme does not allow us to validate the outcome of the 
simulations in such a way. Field data in ecology are often difficult to 
obtain and no accurate measurements exist that can be assumed as 

Table 3 
List of the model parameters used in the simulation.  

Parameter Value Description 

ε 20% Trap efficiency. 
Mtrap ε*0.8 Trap mortality. 
ttrap 7 days Time between two trap inspections. 
xini 106 Initial conditions. 
±σini 20% Perturbation of the initial conditions.  
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ground truth in this scenario. Therefore, the only data available is the 
sparse and noisy data from trap measurements. For the sake of this 
study, the validation of the estimation scheme focuses mainly on the 
improvement of the estimation of the adult male population based on 
the observed trends in the trap measurements, and the convergence of 
the estimation. 

The second aspect we evaluated in the simulations is related to the 
initial conditions. In ecology, open loop models tend to provide 
reasonable results under the strong assumption that the initial condi-
tions are well known. In real applications, however, this kind of infor-
mation is missing and has to be estimated. Unfortunately, very few 
works in the literature focus on the choice of the initial conditions of 
ecological models (Pasquali et al., 2019), which makes us suggest that 
this part of the modelling process needs to be further explored. The 
improvements introduced by the EKF help to overcome this common 
issue related to the initial conditions. Thus, to emphasize this aspect of 
the proposed scheme, we have carried out simulations by randomly 
perturbing the initial conditions estimate in 100 different simulations. 

The expected outcome from these simulations is a higher variability 
in the model response when simulations are carried out in an open loop 
with respect to the EKF scheme. This comparison should highlight how 
the EKF scheme presented in this study does not only improve the model 
estimation based on field measurements but also overcomes the problem 
of assigning accurate initial conditions to the system. Moreover, this part 
of the study will show how the implementation of the EKF scheme on the 
model (1) is necessary to effectively apply a “real time” monitoring and 
estimation scheme, instead of the classical simulations based on a pos-
teriori comparison between field data and model solutions. 

To summarize, we compare:  

- Estimation based on the open loop model and noisy temperature 
measurements (traditional approach).  

- Estimation based on the EKF using noisy counting measurements and 
noisy temperature measurements (presented approach). 

Note that given the absence of a ground truth regarding the adult 

male population, the evaluation remains at the qualitative level, but 
informative enough to understand how the theoretical framework per-
forms. One of the main aspects evaluated is the sensibility of the simu-
lations to the modification of the estimated initial conditions and how 
they converge to similar values besides these initial errors. 

3. Results and discussion 

As stated in the previous sections, we have carried out simulations 
using D. suzukii as case study. We will present the results related to the 
two orchards of interest during the 2018 growing season. In these sim-
ulations both scenarios, open loop and EKF, are subject to the same 
perturbations of the initial conditions. We will focus on two aspects of 
the male population trends: i) the dependence of the open loop and EKF 
scheme on the initial conditions in terms of variability of the simulation 
outcome, and ii) the capability of the EKF to better represent the field 
data compared to the open loop scheme. 

The Monterotondo field simulations using an open loop approach 
and using the EKF are depicted in Fig. 2 and Fig. 3, respectively. These 
simulations show a great disparity between the open loop and the EKF 
case. In the open loop case there are large differences between the 
simulations, highlighting the strong variability associated with the 
initial estimated values provided as input to the model (Fig. 2). It is 
worth pointing out that the differences between the simulations are 
higher as the population increases. As the population approaches its 
maxima, the differences between the simulations corresponding to 
various sets of initial conditions grow. This is mainly due to the error on 
the estimate, i.e., the difference between the model estimate and the 
actual state, which depends on the evolution of the system (21). When 
the system is stable, the differences are reduced, while when the system 
is unstable (around the peaks) the differences are larger. 

This high dependence on the initial conditions is not present in the 
EKF case (Fig. 3). This fact demonstrates that the estimation of the 
population is effectively corrected, step by step, by the measurements. 
Accordingly, the corrections carried out by the EKF scheme end up 
providing a similar evolution in the estimated values for the 100 

Fig. 2. Evolution of the number of adult males at the Monterotondo field in 2018 for the open loop simulation. Each line represents a simulation with different 
estimated initial conditions. Blue dots represent field measurements recorded during 2018. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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simulations, despite being initialized with different estimated initial 
conditions. In this sense, it is interesting to note that, in the case of the 
EKF simulations, there is more variability in the first peak of the pop-
ulation than in the second (and more abundant) peak. This situation can 
be explained by the quantity of measurements (field information) that 
are incorporated to the EKF scheme, which is higher as more field data is 

collected. Additionally, this behaviour allows us to qualitatively 
demonstrate the efficiency of the estimator scheme where, contrary to 
the open loop simulations, a higher population does not necessarily 
provide a higher variability. As expected, this result provides the very 
interesting conclusion that if the estimator is properly tuned, the prob-
lem of estimating the initial conditions can be heavily reduced. 

Fig. 3. Evolution of the number of adult males at the Monterotondo field in 2018 for the EKF simulation. Each line represents a simulation with different estimated 
initial conditions. Blue dots represent field measurements recorded during 2018. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Evolution of the number of adult males trapped at the Monterotondo field in 2018. The blue line represents the evolution of the additional state variable of 
the model describing trapped adult males while the red dots represent the filed measurements. For the sake of exposition only one of the simulations is depicted. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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By comparing Fig. 2 and Fig. 3 we can state that the introduction of 
the EKF scheme provides a better estimation of the field population of 
males than the open loop case. According to the results of the first or-
chard, we can claim that the EKF improves the description of the pop-
ulation trend and the robustness of the estimation, meant as the 
reduction of the dependence on the initial condition values. 

It is worth pointing out that a quantitative evaluation of the im-
provements introduced by the EKF scheme is still not possible at this 
stage, and that we need further investigations to formulate a more 
refined protocol of evaluation. Despite this fact, the theoretical frame-
work already showed its reliability in the case of Monterotondo orchard. 

An additional piece of information that supports the improvements 
introduced by the EKF scheme is provided in Fig. 4. This plot shows the 
only feasible comparison between the trap measurements and the esti-
mated trap values from the additional state (representing the catches). 
Fig. 4 shows that the EKF estimation follows quite accurately the trend 
in the measurements with the only difference at the high peak occurred 
in September. This difference may be due to uncontrolled effects related 
to the traps, or to the high variability of the conditions that usually affect 
open field experiments. 

The data from the Montelibretti orchard provided similar results, 
confirming the outcomes already observed in the Monterotondo dataset. 
The outcomes of these simulations are provided in Fig. 5 and Fig. 6. 

Also in this case, the first aspect to point out concerns the depen-
dence of the simulations on the initial conditions, which is even stronger 
than in the Monterotondo case previously shown in Fig. 2. Coherently, 
the variability of the simulations due to different set of initial conditions 
is higher as the population increases approaching to its maxima. On the 
other hand, simulations in Fig. 6 confirm that the EKF scheme correctly 
updates the estimations using field data, with a subsequent reduction of 
the variability under different sets of initial conditions. Also in this case, 
the highest difference between simulations depicted in Fig. 6 occurs at 
the first peak of population densities, and not at their maxima. These 
results confirm the first results obtained from the simulations in the 
Monterotondo field. 

The simulated trend of trapped individuals at the Montelibretti 

orchard is reported in Fig. 7. The measurements are well represented by 
the estimated value, except for the last three measured data points of the 
season. There are two possible explanations for this discrepancy. The 
first source of discrepancy can be the model parameterization. It is in 
fact possible that the rate functions considered to describe the biology of 
D. suzukii tend to overestimate both development and mortality in 
certain conditions. In low temperatures conditions, as in late autumn, 
the model possibly overestimates the population at the point that an 
observer scheme cannot correct anymore the model prediction. This 
discrepancy suggests the need for the improvement, in further studies, of 
the parameterization of the model and to better investigate its behaviour 
at low temperature conditions. 

A second possible explanation could be associated with the increase 
in efficiency of the traps during late autumn. D. suzukii was monitored 
through traps activated by a food-based lure (Grassi et al., 2015). Two 
main problems are associated with this kind of lure, even though not 
enough demonstrated by the scientific community. Firstly, the efficiency 
of the lure attracting individuals may depend on the environmental 
conditions, with a subsequent increase or decrease as the season goes on. 
Secondly, the efficiency of the traps may be conditioned by the presence 
of fruits in the orchard. When there are fruits on the trees or on the soil, 
the individuals are more attracted by the fruits than by the lure. This 
condition creates a competition between fruits and trap lures, with a 
possible decrease of trap efficiency. On the other hand, at the end of the 
growing season when there are no more fruits from cultivated nor wild 
plants, the trap lures are the only attractant. Based on this precondition, 
it might be possible that the model parameterization is still valid, but 
measured data are biased by the aforementioned uncontrolled effects. 

Overall, the results obtained show that, with a state prediction and 
correction scheme, we can provide a more accurate estimation of the 
population over time, given that the open loop approach strongly de-
pends on the initial conditions of the simulation. Accordingly, in open 
loop a wrong estimation of the initial conditions provides a not reliable 
overall estimation, leading the users of a DSS to wrong decisions, while 
an EKF approach can overcome this issue. Note that from an experi-
mental point of view two main problems make the estimation of the 

Fig. 5. Evolution of the number of adult males at the Montelibretti field in 2018 for the open loop simulation. Each line represents a simulation with different 
estimated initial conditions. Blue dots represent field measurements recorded during 2018. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

N. Bono Rosselló et al.                                                                                                                                                                                                                         



Ecological Informatics 78 (2023) 102310

12

initial conditions difficult: i) the knowledge of the initial distribution of 
the individuals into the different age classes, information that is prac-
tically impossible to accurately assess in natural environments, and ii) 
the time “zero” at which the simulation should start. 

While the former point has been already discussed, the latter de-
serves more attention. Most physiologically-based models present in the 

literature describe the development of terrestrial arthropods under 
“normal” conditions, namely when the environmental conditions are 
favourable for their development. However, it is known that when 
adverse environmental conditions occur (e.g., winter) the individuals 
activate diapause or dormancy mechanisms (Saunders, 2014). These 
mechanisms are not described by the model and small amount of 

Fig. 6. Evolution of the number of adult males at the Montelibretti field in 2018 for the EKF simulation. Each line represents a simulation with different estimated 
initial conditions. Blue dots represent field measurements recorded during 2018. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Evolution of the number of adult males trapped at the Montelibretti field in 2018. The blue line represents the evolution of the additional variable describing 
traps adult males while the red dots represent the filed measurements. For the sake of exposition only one of the simulations is depicted. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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information is available in the literature from the modelling point of 
view (Baumgärtner et al., 2012). This leads model scientists to empiri-
cally define a “day zero” to start simulations (Ponti et al., 2021), which is 
often based on rough field monitoring or on empirical daily average 
temperature thresholds. The conventional “day zero” is a concept that 
worked well for degree day accumulation models and it is commonly 
named “BioFix”, but it is not applicable to physiologically-based models. 
To the best of our knowledge, few authors (e.g., (Pasquali et al., 2019)) 
conducted detailed studies on the effect of the initial conditions in the 
outcome of the simulations. It is worth pointing out that we are not 
referring to stability analyses, a common mathematical practice carried 
out in theoretical papers (e.g. (Jensen et al., 2019; Pappalardo et al., 
2021; Singh and Emerick, 2021; Tang and Zhou, 2005; Zhang and Xiao, 
2016)). We are instead referring to the comparison of different simula-
tion outputs with the same model parameters when the initial values for 
the simulations vary. The EKF approach introduced in this study over-
comes this issue, since it reduces the dependence on the set of initial 
values, and it corrects the estimation as new measurements are 
available. 

The EKF approach overcomes an additional aspect commonly 
neglected by other mathematical models: the influence of immigration 
or emigration of individuals from and towards neighbouring fields. Most 
models, including (1), implicitly assume that the population is closed, i. 
e., there are no exchanges of individuals. However, this situation re-
sembles more to an equilibrium in the exchange of individuals, where 
the amount of insects that moves to the neighbouring fields is balanced 
by the same incoming flux. Even though this condition may be valid for 
homogeneous fields, it may cause disturbances in the normal process of 
open-loop validation and application. The EKF approach, instead, cor-
rects the model estimation based on field observations, so that even 
when the equilibrium between the incoming and outgoing flow of in-
dividuals is perturbed, the model updates accordingly. 

As we stated in the introduction of this study, the use of estimators is 
not totally new in agriculture. However, their application has been more 
related to the engineering and the economical aspects of agriculture 
than to the biological systems themselves. We believe that this study 
represents a significant step forward in agricultural management, thanks 
to the application of this theoretical scheme to a biological problem that 
can be further extended to more natural ecosystems. This study follows 
the direction of previously published studies that initially suggested to 
use KF for biological modelling purposes. 

An example of these applications can be found in the work of Ennola 
et al. (Ennola et al., 1998), where the KF was applied to improve the 
performance of a zooplankton population model. The authors showed 
that the KF was effective in reducing the measurement noise and in 
estimating the parameters of the model. Even though their application 
concerns a different biological system, their results are equivalent to the 
ones we observed with pest populations. Other examples of applications 
of KF to biological systems were presented by Gauthier et al. (Gauthier 
et al., 2007) in the case of populations of greater snow goose, and by 
Sullivan (Sullivan, 1992) in the case of fish populations. However, there 
are very few applications of KF to pest populations besides Bono Rossello 
et al. (Bono Rosselló et al., 2022). A pioneering study was conducted by 
Zavaleta and Dixon (Zavaleta and Dixon, 1982) on Cerotoma trifurcata 
(Forster), a Coleoptera Chrysomelidae that infests bean leaves. The au-
thors pointed out the potential that the application of KF could have in 
the monitoring of pest population, which was hereby confirmed by our 
improved theoretical framework. Thus, based on the cited literature and 
the encouraging results of the present study, we argue that the appli-
cation of estimators should be further improved and extended to other 
species of both agriculture and forest interest. 

4. Conclusion 

This work introduced a theoretical framework to update the esti-
mation of physiologically-based models using an Extended Kalman 

Filter approach. The theoretical development started from a population 
density model describing insect populations, which was adapted to the 
estimator scheme so to improve its estimation performance. 

We believe that the outcomes of this study can be of great support for 
the further development of DSS. To date, field data have been only used 
for validation purposes or to estimate model parameters, such as in the 
works of Pasquali et al. (Pasquali et al., 2022), Gilioli et al. (Gilioli and 
Pasquali, 2007) or Nance et al. (Nance et al., 2018). However, we 
believe that field data can also take an active part in the prediction ac-
tivities. To demonstrate their application in a case of agricultural in-
terest, we have focused on two main scenarios of data acquisition. First, 
the use of traps where the cumulative values obtained are commonly a 
source of bias, which showed promising results in the case of D. suzukii. 
Second, we theoretically showed how the presented framework can also 
be used in the case of instantaneous measurements, thus covering the 
largest part of the monitoring techniques in ecology. 

Our study confirms that open loop simulations are purely valid as 
descriptive field populations studies, not as real-time monitoring and 
predictive tools. Also, we show that an empirical estimation of the initial 
conditions does not ensure the best starting point for simulations, as it 
can greatly affect the outcome of the simulation. The EKF method, 
instead, provides an indirect solution to this problem, as it presents a 
more robust approach that fits better DSS systems paradigm. 

It must be noted that open loop validation is still a necessary step for 
model development. The open loop model validation has a well-defined 
protocol of application that allows to quantify the goodness of fit of a 
given model by comparing recorded field data and simulation. Several 
authors proposed indices to quantify this goodness of fit, as for instance 
in (Bellocchi et al., 2011; Ikemoto and Kiritani, 2019; Ratkowsky and 
Reddy, 2017; Rossini et al., 2020c). In this sense, a mathematical model 
that describes well a given phenomenon is a good starting point for 
building a predictive system to include in DSS (Grimm et al., 2020). 
Once a model is validated, and its capability of describing the natural 
phenomena under study is assessed, it can be included in the EKF 
scheme for decision support activities. 

Moreover, it is worth mentioning that the quality of the estimation 
depends on the quality of the data, which points to an additional aspect 
that should be considered in future works. The current state of the art 
presents several techniques to monitor the insect population abundance 
over time. However, more rigorous information on their efficiency and 
on the degree of uncertainty of the values measured (measurement 
noise) should be provided. Specific studies on this aspect would be 
beneficial to define standards in field data acquisition and to increase 
their overall quality, with a subsequent increase of the quality of the 
model validation and estimation. 

To conclude, we may say that this work makes a great step forward 
towards a proper inclusion of physiologically-based models in the DSS 
framework, while further research will be focused on the EKF approach 
strengths and weaknesses in the entomological field. The case study of 
D. suzukii is certainly a good starting point, but future works will focus 
on two main aspects. First, the theoretical scheme should be applied to 
more monitoring campaigns of D. suzukii and other species of agricul-
tural interest. Second, the theory should be applied to practical cases of 
the same species but considering additional monitoring techniques so to 
observe any difference in performance. 
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grape and grapevine moth (Lobesia botrana) in the palearctic region. Agric. For. 
Entomol. https://doi.org/10.1111/afe.12256, 8.  

Hauser, M., 2011. A historic account of the invasion of Drosophila suzukii (matsumura) 
(diptera: Drosophilidae) in the continental United States, with remarks on their 
identification. Pest Manag. Sci. 67, 1352–1357. https://doi.org/10.1002/ps.2265. 

Ibouh, K., Oreste, M., Bubici, G., Tarasco, E., Stacconi, M.V.R., Ioriatti, C., Verrastro, V., 
Anfora, G., Baser, N., 2019. Biological control of Drosophila suzukii: efficacy of 
parasitoids, entomopathogenic fungi, nematodes and deterrents of oviposition in 
laboratory assays. Crop Prot. 125, 104897. https://doi.org/10.1016/j. 
cropro.2019.104897. 

Ikemoto, T., Kiritani, K., 2019. Novel method of specifying low and high threshold 
temperatures using thermodynamic ssi model of insect development. Environ. 
Entomol. 48, 479–488. https://doi.org/10.1093/ee/nvz031. 

Jactel, H., Bonifacio, L., van Halder, I., Vétillard, F., Robinet, C., David, G., 2023. 
A novel, easy method for estimating pheromone trap attraction range: application to 
the pine sawyer beetle Monochamus galloprovincialis. Agric. For. Entomol. 21, 8–14. 
https://doi.org/10.1111/afe.12298. 

Jensen, G.G., Uekermann, F., Sneppen, K., 2019. Multi stability and global bifurcations in 
epidemic model with distributed delay sirns-model. Eur. Phys. J. B 92, 28. https:// 
doi.org/10.1140/epjb/e2018-90562-1. 

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. J. Basic 
Eng. 82 (1), 35–45. https://doi.org/10.1115/1.3662552. 

Lessio, F., Alma, A., 2021. Models applied to grapevine pests: a review. Insects 12, 169. 
https://doi.org/10.3390/insects12020169. 

Lippi, M., Bonucci, N., Carpio, R.F., Contarini, M., Speranza, S., Gasparri, A., 2021. 
A YOLO-based pest detection system for precision agriculture. In: 2021 29th 
Mediterranean Conference on Control and Automation (MED), pp. 342–347. https:// 
doi.org/10.1109/MED51440.2021.9480344. 

Ljung, L., 1979. Asymptotic behavior of the extended Kalman filter as a parameter 
estimator for linear systems. IEEE Trans. Autom. Control 24 (1), 36–50. https://doi. 
org/10.1109/TAC.1979.1101943. 

Manetsch, T.J., 1976. Time-varying distributed delays and their use in aggregative 
models of large systems. IEEE Trans. Syst. Man Cybern. SMC-6, 547–553. https:// 
doi.org/10.1109/TSMC.1976.4309549. 

Mesarovic, M.D., Sreenath, S.N., Keene, J.D., 2004. Search for organising principles: 
understanding in systems biology. Syst. Biol. 1, 19–27. https://doi.org/10.1049/sb: 
20045010. 

Murray, J.D., 2012. Vignettes from the field of mathematical biology: the application of 
mathematics to biology and medicine. Interface Focus 2, 397–406. https://doi.org/ 
10.1098/rsfs.2011.0102. 

Nance, J., Fryxell, R.T., Lenhart, S., 2018. Modeling a single season of Aedes albopictus 
populations based on host-seeking data in response to temperature and precipitation 
in eastern Tennessee. J. Vector Ecol. 43, 138–147. https://doi.org/10.1111/ 
jvec.12293. 

Onufrieva, K.S., Onufriev, A.V., 2021. How to count bugs: a method to estimate the most 
probable absolute population density and its statistical bounds from a single trap 
catch. Insects 12, 932. https://doi.org/10.3390/insects12100932. 

Pappalardo, S., Villa, M., Santos, S.A., Benhadi-Marín, J., Pereira, J.A., Venturino, E., 
2021. A tritrophic interaction model for an olive tree pest, the olive moth — Prays 
oleae (Bernard). Ecol. Model. 462, 109776. https://doi.org/10.1016/j. 
ecolmodel.2021.109776. 

Pasquali, S., Soresina, C., Gilioli, G., 2019. The effects of fecundity, mortality and 
distribution of the initial condition in phenological models. Ecol. Model. 402, 45–58. 
https://doi.org/10.1016/j.ecolmodel.2019.03.019. 

Pasquali, S., Soresina, C., Marchesini, E., 2022. Mortality estimate driven by population 
abundance field data in a stage-structured demographic model. the case of Lobesia 
botrana. Ecol. Model. 464, 109842. https://doi.org/10.1016/j. 
ecolmodel.2021.109842. 

Plant, R.E., Mangel, M., 1987. Modeling and simulation in agricultural pest management. 
SIAM Rev. 29, 235–261. 

Ponti, L., Gutierrez, A.P., de Campos, M.R., Desneux, N., Biondi, A., Neteler, M., 2021. 
Biological invasion risk assessment of Tuta absoluta: mechanistic versus correlative 
methods. Biol. Invasions 5. https://doi.org/10.1007/s10530-021-02613-5, 8.  

Preti, M., Verheggen, F., Angeli, S., 2021. Insect pest monitoring with camera-equipped 
traps: strengths and limitations. J. Pest. Sci. 94 (2), 203–217. https://doi.org/ 
10.1007/s10340-020-01309-4. 

Quinn, B.K., 2017. A critical review of the use and performance of different function 
types for modeling temperature-dependent development of arthropod larvae. 
J. Therm. Biol. 63, 65–77. https://doi.org/10.1016/j.jtherbio.2016.11.013. 

Ratkowsky, D.A., Reddy, G.V.P., 2017. Empirical model with excellent statistical 
properties for describing temperature-dependent developmental rates of insects and 
mites. Ann. Entomol. Soc. Am. 110, 302–309. https://doi.org/10.1093/aesa/ 
saw098. 

Rossi, V., Sperandio, G., Caffi, T., Simonetto, A., Gilioli, G., 2019. Critical success factors 
for the adoption of decision tools in ipm. Agronomy 9, 710. https://doi.org/ 
10.3390/agronomy9110710. 
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