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Résumé 

SMET Sarah (2018). Soil Structure Exploration and Measurement of its 

Macroscopic Behavior for a Better Understanding of the Soil 

Hydropedodynamic Functionalities (PhD Thesis). Gembloux Agro-Bio Tech, 

Université de Liège, Gembloux, Belgium. 136 p., 16 tables, 45 figures. 
La perméabilité à l’eau et à l’air du sol sont des propriétés physiques 

fondamentales dans le rôle d’interface environnementale joué par le sol. À ce jour, 

les courbes des perméabilités à l’eau K(θ) et à l’air ka(ɛ)  du sol en fonction de sa 

teneur en eau ne peuvent être connues que de manière discrète et ne sont jamais 

observées sur toute la gamme de teneur en eau. Pour pallier ce manque 

d’information, des modèles de prédiction de K(θ) et ka(ɛ)  ont vu le jour, ceux-ci 

considérant la structure même de l’espace poral du sol comme paramètre 

d’optimisation alors que nous savons que K(θ) et  ka(ɛ) en dépendent fortement. 

Cela, ajouté au caractère unique de la relation entre un réseau poral et ses propriétés 

de transfert, fait que de nouvelles voies d’étude des relations K(θ) et  ka(ɛ) doivent 

être explorées.  

L’observation de la structure de l’espace poral du sol par microtomographie à 

rayon X (RX) est une option prometteuse qui pourrait permettre de résoudre des 

questions ouvertes dans la communauté scientifique des physiciens du sol. Cette 

technique permet l’acquisition d’images 3D d’objets à densités contrastées. Dans le 

cas d’un milieu poreux naturel tel que le sol, une bonne interprétation des images 

nécessite un traitement préliminaire de celles-ci, traitement qui doit être choisi de 

manière éclairée. Une question de recherche transversale de cette thèse, mais 

néanmoins préliminaire à toute autre manipulation, est dès lors de comparer 

statistiquement les effets de divers traitements d’images sur les données finales de 

caractérisation des images RX. En utilisant des images simulées, nous avons pu 

choisir la meilleure approche pour le traitement de nos images RX de sol. 

L’objectif général de la thèse vise à établir des relations entre les caractéristiques 

structurelles microscopiques du sol (le volume du plus petit pore visible étant de 

0,0004 mm³) et des paramètres de fonctionnalités tels que la perméabilité. Plus 

spécifiquement, nous avons confirmé que l’utilisation d’images 3D RX permet de 

mieux appréhender la courbe de rétention du sol proche de la saturation via 

l’identification des plus gros pores du sol qui sont souvent ignorés, suite à divers 

artefacts, lors des mesures de rétention par plaques céramiques sous pression. Nous 

avons aussi identifié des paramètres microscopiques morphologiques du réseau poral 

du sol expliquant la conductivité hydraulique à saturation du sol, et des paramètres 

microscopiques de distribution de la porosité expliquant la perméabilité à l’air du 

sol.  

La quantification finale des caractéristiques des images RX dépend du traitement 

d’images appliqué, mais également de la résolution des images. Nous avons conclu 

que travailler à une plus haute résolution n’apportait pas assurément un plus haut 

degré de connaissance du réseau poral observé car la résolution va de pair avec la 



 

taille de l’échantillon étudié. De plus, il est également possible que la distribution 

des tailles de pores d’un sol étudié soit suffisamment quantifiable à basse résolution. 

Nous avons néanmoins observé que la connectivité morphologique et topologique 

du réseau poral d’un sol augmente avec la résolution. Enfin, nous avons souligné les 

imperfections de la théorie capillaire appliquée aux sols en scannant les mêmes 

échantillons de sol à diverses teneurs en eau. Tel que supposé, la connectivité du 

réseau poral du sol joue un rôle important dans l’accessibilité des pores au drainage. 

Après avoir exploré les effets de la structure microscopique d’un réseau poral sur 

les propriétés hydrodynamiques du sol, nous avons évalué les incidences du taux de 

matière organique et de formes libres de fer (formation d’associations organo-

minérales) sur cette même structure microscopique de sol.  

Cette dissertation débat donc des avantages et limitations de la technique 

microtomographique à RX appliquée aux sols pour une compréhension plus réaliste 

des processus hydropédodynamiques se produisant dans le sol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

SMET Sarah (2018). Soil Structure Exploration and Measurement of its 

Macroscopic Behavior for a Better Understanding of the Soil 

Hydropedodynamic Functionalities (PhD Thesis). Gembloux Agro-Bio Tech, 

Université de Liège, Gembloux, Belgium. 136 p., 16 tables, 45 figures. 
Air permeability and water conductivity are fundamental physical properties when 

it comes to the soil functions across the environment. The water conductivity and the 

air permeability as functions of the soil’s degree of saturation (K(θ) and  ka(ɛ), 

respectively) are only discretely measurable, and the use of models is necessary to 

obtain continuous expressions of these functions. Most models however consider the 

soil pore network structure as a fitting parameter although it is public knowledge 

that K(θ) and  ka(ɛ) depend mostly on the soil microstructure, which is, none the 

less, unique between samples with homogeneous texture. New ways of studying 

K(θ) and  ka(ɛ) are needed. 

The direct soil pore space visualization is a promising avenue to lead us to 

objectifying soil physics. The X-ray microtomographic technique (X-ray µCT) is 

now widely used by soil scientists and delivers 3D grayscale images of objects 

composed by materials of different densities. When dealing with a porous medium 

such as the natural soil, the X-ray µCT images need to be cautiously and expertly 

processed to obtain realistic feature quantification. A parallel, but however 

perquisite, objective of this dissertation is to statistically compare the effects of 

various image processing on the final X-ray µCT image features quantification.  We 

simulated grayscale images to be processed to conclude about the image processing 

methodology we applied in our research. 

The overall objective of this dissertation is to explore the relationships between 

one microscopic soil structure (the volume of the smallest visible pore is 0.0004 

mm³) and its macroscopic functionalities, such as its water conductivity and air 

permeability. More specifically, we confirmed that the use of 3D X-ray µCT data 

enables a better estimation of the soil water retention curve near saturation through 

the identification of the largest soil pores. These are indeed often by-passed with 

pressure plate’s laboratory measurements because of various artefacts. We also 

identified microscopic pore space morphological parameters that explained the soil 

saturated hydraulic conductivity, and microscopic porosity distribution measures 

that explained the soil air permeability.  

The final X-ray µCT image features quantification depends on the applied image 

processing, as stated, but also, clearly, on the image resolution. We concluded that 

working with a higher resolution would not necessarily lead to a higher degree of 

knowledge because resolution is sample-size dependent, and one pore size 

distribution could moreover be sufficiently visible at low resolution. We however 

observed that the pore network morphological and topological connectivity increases 

with resolution. Finally, we highlighted the imperfections of the capillary theory 

applied to soil through scanning the same soil samples at various water contents. As 



 

hypothesized, the pore network connectivity seems to play an important role in the 

pore accessibility to draining. 

After having studied the effects of the soil pore network structure on the soil 

hydrodynamic properties, we turned the question around and evaluated the effects of 

the chemical soil composition (organic carbon and free forms of iron) on the very 

same soil pore network structure.   

This dissertation therefore discusses the advantages and limitations of the use of 

X-ray microtomography to study soils for a more realistic understanding of the soil 

hydropedodynamic processes. 
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POST2 Post-segmentation median filter with a radius of two 

pixels 

PP    Pressure plates 

PRE0    No pre-segmentation median filter 



 

x 

PRE1 Pre-segmentation median filter with a radius of one 

pixel 

PRE2 Pre-segmentation median filter with a radius of two 

pixels 

r    Pore radius [L] 

RE_g    Relative error on the conductance value [-] 

RE_K   Relative error on the global conductance value [-] 

RRMSE   Relative root mean square error [-] 

RT    Reduced tillage 

SOM    Soil organic matter 

SWRC   Soil water retention curve 

TH    Threshold 

TOC    Total organic carbon [MM
-1

] 

θ    Water content [L
3
L

-3
] 

 

Please refer to Table 3 for an extensive review of the microscopic variables.  
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It is no surprise the FAO proclaimed 2015 as the year of the soil: this thin 

continuum layer linking plants and atmosphere plays fundamentals roles in almost 

all environmental processes. Besides providing the land to food production or the 

resources for construction or industrial materials, the soil is an invisible and silent 

machine permanently working in providing the ground for (micro-) organisms, 

nutrients cycles, water filtration and storage… The numerous functions that the soil 

holds make it essential in regulating natural events or global climate, and place it at 

the heart of countless agricultural or industrial applications: the soil functions 

therefore need to be predictable. Predictability of the soil functions comes through 

the adequate simulation of the soil processes which, in particular, require a detailed 

characterization of the soil physical properties. The soil physical properties are 

traditionally approached by the texture, bulk density, retention curve, and air and 

water permeability. Soil field descriptions are based on averaging procedure by 

statistically choosing sampling points across the field, although heterogeneity is the 

rule at every scale (e.g., Baveye and Laba, 2015). Moreover, it is also cumbersome 

and delicate to characterize the soil in its unsaturated state, where convective fluxes 

of air and water are dependent on the degree of saturation. A complete and 

continuous characterization of the soil physical properties is however needed for the 

resolution, for example, of physical equations that predict the air and water fluxes 

across the soil. The use of models producing expression of the hydraulic 

conductivity as a function of the soil water content [K(θ)], or of the air permeability 

as a function of the soil air content [ka(ε)], is therefore unavoidable.   

Oldest ka(ε) models were based on power-law functions with one discrete measure 

of ka(ε) and an empirical exponent that represented the soil pore space structure 

(Buckingham, 1904; Millington and Quirk, 1961). These were modified to take into 

account the soil density (Deepagoda et al., 2011), the pore size distribution (Moldrup 

et al., 2001, Moldrup et al., 2003), or the particle size distribution (Arthur et al., 

2012; Hamamoto et al., 2009). As well, it exists multiple conductivity functions that 

produce simple analytical expression of K(θ) from the saturated hydraulic 

conductivity (Ks) value and a pore size distribution model, where pores are assumed 

to be capillaries, such as the ones from Burdine (1953) or Mualem (1956). We can 

cite the model of van Genuchten et al. (1980) which is widely used. Dane et al. 

(2011) also proposed a model of K(θ) where the pore size distribution was extracted 

from discrete measures of ka(ε). It is indeed tempting to link air and water 

permeability measurements (Blackwell et al., 1990; Loll et al., 1999), although no 

perfect match between water conductivity and air permeability should be expected 

since water present more affinity to soil particles than air (Loll et al., 1999). 

It is the usual norm to use the quoted models, but these have a major drawback: 

they are not physically interpretable (Hunt et al., 2013). After having considered the 

pore as capillaries for decades, the trend is now to objectify the fundamentals behind 

an observed hydrodynamic behavior. The pore space is rather seen as a collection of 

pore chambers connected to each other by pore throats of smaller section, or as a 

continuum across the soil that should not be partitioned. The direct visualization of 
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the pore space was an incredible step forward to that purpose. For example, Vogel 

(1997) postulated that the discrepancy between pore size distributions extracted 

from soil water retention curve measurements and from serial section images was 

likely due to the pore space connectivity expressed by the Euler characteristic. Serial 

sectioning was indeed firstly used by the soil community (e.g. Cousin et al., 1996) 

but the samples preparation is time-consuming and requires a skilled experimenter. 

Considering the resolution, X-ray microcomputed tomography (X-ray µCT) is an 

equivalent technique with the advantage of being non-destructive and less time-

consuming because no sample preparation is needed (such as the resin impregnation 

with serial sectioning). X-ray µCT technique is now widely used in soil science. 

Landis and Keane (2010) propose a full description of the technology, and Taina et 

al. (2007) and Wildenschild and Sheppard (2013) discuss the use of X-ray µCT to 

study the vadose zone. In soil science, the technique has been used at both the core 

(e.g., Jassogne et al., 2007; Elliot et al., 2010; Luo et al., 2010a.; Larsbo et al., 2014; 

Katuwal et al., 2015b), and aggregate scale (e.g., Peth et al., 2008; Papadopoulos et 

al., 2009; Kravchenko et al., 2011) for describing the microscopic pore space 

morphological and topological structure and studying the impact of land use and 

agricultural management on soil structure (e.g., Jassogne et al., 2007; Peth et al., 

2008; Papadopoulos et al., 2009; Luo et al., 2010a.; Kravchenko et al., 2011) as well 

as for analyzing the relationships between soil pore space structure and soil physical 

properties (e.g., Elliot et al., 2010; Larsbo et al., 2014; Katuwal et al., 2015b). As 

already stated, the heterogeneity is the rule at every scale, and each soil sample 

presents a unique pore space size distribution and morphological or topological 

connectivity. Studying the link between the microscopic pore space structure of a 

sample and its specific fluid transport properties is therefore a step forward in our 

understanding of how the microscopic soil structure affects the soil functions. On 

one hand, experimentally visualized infiltration studies shed light on the effective 

conducting pore space which represents only a small portion of the total pore space 

(Luo et al., 2008; Koestel and Larsbo, 2014; Sammartino et al., 2015). The 

procedures developed in these studies are promising, but restricted, as stated in their 

objectives, to the analysis of large macropores because of the trade-off between 

resolution and acquisition time. On the other hand, numerical simulations performed 

on pore space grid are used to predict conductivity. Many studies focus on idealized 

porous structures (e.g., Vogel et al., 2005; Schaap et al., 2007) and a few deals with 

actual soil (Elliot et al., 2010; Dal Ferro et al., 2015, Tracy et al., 2015). The latter 

show encouraging results, but restricted to a defined resolution and/or sample size 

(Baveye et al., 2017). Indeed, the direct approach of linking one microscopic pore 

space structure to one soil function is limited by the difficulty in analyzing the 

structure in a representative way, so that the soil would be adequately characterized 

(Vogel et al., 2010). The description of soil pore space structure via global 

characteristics could encompass that challenge and comparisons of one soil sample 

microscopic structure to its own sample-scale properties have indeed gained 

attention.  
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Several studies reported that the global µCT extracted macroporosity explained the 

sample-scale saturated hydraulic conductivity (Luo et al., 2010b; Paradelo et al., 

2016; Mossadeghi-Björklund et al., 2016) or air permeability (Naveed et al., 2012; 

Katuwal et al., 2015b, Paradelo et al., 2016). Other microscopic measurements 

calculated on the X-ray µCT images were found to influence the fluid transport, 

such as the number of independent macropore or macropore hydraulic radius (Luo et 

al., 2010b), the number of pores (Lamandé et al., 2013, Anderson et al., 2014), and 

the fractal dimension (Anderson et al., 2014). Naveed et al. (2016) also suggested 

that biopore-dominated and matrix-dominated flow soil cores should be 

distinguished before analyzing relationships between microscopic and macroscopic 

soil properties.  These observed relationships between flow parameters and µCT 

global characteristics are intuitive, but depend on image resolution, water matric 

potential and soil type.  Moreover, the µCT porosity, number of pores, average pore 

radius, surface area and pore network connectivity and tortuosity all depend on the 

minimal visible pore size, in other words, on the resolution of the binary X-ray µCT 

images used to obtain the pore network (Houston et al., 2013b; Peng et al., 2014; 

Shah et al., 2016). The quoted studies worked with voxel size in average a thousand 

times larger in volumes than the one we work with, knowing useful information 

about conducting pores is lost with increased voxel size. For example, Sandin et al. 

(2017) worked at a smaller voxel size (120³ µm³) and observed significant 

correlations between Ks and a global measure of the pore network connectivity 

(from the percolation theory) which had, to our knowledge, never been observed. 

Pore network connectivity and tortuosity are important indicators of flow capacities 

(Perret et al., 1999; Vogel, 2000), but there is still a lack of information on the links 

between global pore network connectivity indicators and flow parameters. The first 

objective of our dissertation is therefore to unravel the relationships between 

macroscopic sample-scale soil properties and microscopic soil structure, 

working with a smaller voxel size (43³µm³) than other studies. Unprecedented, 

Bayesian statistics are used to explore the relationships between micro- and 

macroscopic soil data so the uncertainty inherent to the collected and processed 

µCT data is taken into account. The identification of the key global indicators 

that induce soil hydrodynamic functions would be of major interest for the 

generation of phenomenological pore network models.  

An adjacent question although arises: would the observed relationships remain if 

we had worked with an even higher X-ray µCT resolution? Baveye et al. (2017) 

recently reviewed the studies that investigated ways to take into account the sub-

resolution porosity, such as the use of gray scale images to perform Lattice-

Boltzmann water and solutes fluxes simulations, or to consider that the solid phase 

in binary images is partially permeable. They however pointed out that the X-ray 

µCT images quality and processing prevent from obtaining meaningful grayscale 

values, and that we are far to evaluate practically the “penetrability of the voxels”. 

When reliable estimation of any voxels permeability would be obtained, we would 

still need to hypothesize about the connectivity of the sub-resolution porosity to the 

visible pores. To provide reflection areas, and for one soil sample, we extrapolate 
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the X-ray µCT parameters to a lower voxel size on one hand, and we analyze 

the same X-ray µCT image at its original voxel size (21.5³µm³) on the other 

hand.  In the continuity, we also scan a soil aggregate from the same soil sample 

at a voxel size of 8.99³ µm³ and measure its water adsorption-desorption curve 

to extract a physical pore size distribution. The second objective of this 

dissertation is therefore to evaluate the evolution of the X-ray µCT extracted 

parameters with image resolution. 

Vogel (1997) or Parvin et al. (2017) postulated that the pore network connectivity 

influences the soil retention of water. Capillary theory in soil science, although 

being used for decades, might therefore not be representative of the occurring 

hydrodynamic processes. Working on the same soil samples for the microscopic 

pore space and macroscopic hydrodynamic properties characterization, we 

confirmed these hypothesis and we also reported that the pore network connectivity 

influences the flow of water and air. The next objective of this dissertation is 

therefore to explain, from a microscopic structural point of view, the 

inadequacy of the capillary law applied to soil. To that purpose, we visualize, 

quantify, and compare the air-filled pore space of twenty soil samples at five 

water matric potentials. 

The stated objectives of this dissertation assume that the pore space description 

generated from the image processing accurately represents the physical reality of the 

sample microstructure, but the choice of X-ray µCT image processing methodology 

has a visible impact on the resulting structure. Figure 1 shows an example of the 

processing steps from sample acquisition to a binary image. Each step involves 

choosing the appropriate method and parameters, which are numerous and can have 

a profound effect on the resulting structure. These choices ultimately depend on the 

experience of the operator, and between soil science research papers, the applied 

methodology and used software differ profoundly. What is important here is, 

however, not only the diversity of these choices, but also the fact that they are often 

inadequately described or justified. Segmentation is the essential step when pixels 

are assigned to either the solid or porous phase. There are numerous segmentation 

methods; a review of those used in soil science can be found in Tuller et al. (2013). 

We here differentiate global and local thresholding methods. The aim of a 

thresholding method is to select a grayscale value, manually or automatically, that 

separates the image gray levels into two groups: greater than or equal to the 

threshold (TH); and less than TH. In soil science, these two groups are often defined 

as the solid phase (soil matrix) and the void phase (pore space). With global 

thresholding, a constant TH is chosen for the entire image, whereas with local 

thresholding the value is computed for every pixel, based on the local neighborhood 

(Tuller et al., 2013). Segmentation precision depends on the initial quality of the 

grayscale images. Enhancing the projections before reconstruction and the 

reconstructed images before segmentation is the typical approach, and an efficient 

method for improving image quality is to apply noise reduction filters (Kaestner et 

al., 2008; Wildenschild and Sheppard, 2013). Pre-segmentation processing are more 
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efficient at handling image degradation than post-segmentation ones: a general rule 

(for more than just image analysis) is that the more upstream a problem is corrected, 

the easier is it to process the data downstream. 

 

Figure 1. X-ray µCT image processing steps from acquisition to binary image. Some sources 

of variability are written in lower-case and imaged examples are on the right side. 
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Some authors have shown (Peth et al., 2008; Tarquis et al., 2009; Lamandé et al., 

2013; Beckers et al., 2014b; Peng et al., 2014) that, in most practical cases, the 

choice of segmentation method plays a crucial role in the resulting pore structure, 

but no standards have yet been proposed. Several studies sought to classify 

thresholding techniques based on information available from the resulting binary 

images (Baveye et al. 2010; Houston et al., 2013b; Iassonov et al., 2009; Schlüter 

al., 2014). So far as we know, only Wang et al. (2011) have used synthetic soil 

aggregate images, from which ground-truth information was available, to compare 

thresholding methods. Even these studies were based on image-by-image analyses 

and did not provide a tool with which to properly evaluate the processing 

methodologies. Within this context, a transversal objective of this dissertation is 

to provide a statistical analysis of the segmentation processing effects on the 

resulting data. By evaluating Otsu’s global method (Otsu, 1979), the local 

adaptive-window indicator kriging (IK) method (Houston et al., 2013a) and the 

porosity-based (PBA) global method (Beckers et al., 2014b) on 2D simulated 

soil images from which ground-truth information is available, we are able to 

objectively support existing reviews and be confident with the used image 

processing methodology. 
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Materials & Methods: the methodological 

experiment 
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2.1. Introduction 

We first present a simple example which points out the difficulties in image 

processing decisions when no ground-truth information is available. For example, a 

beam hardening correction
1
 of 25%, which is a common procedure in X-ray µCT 

image processing, implies a smaller averaged pore surface area which came from a 

higher amount of small pores, as a consequence of the extra-noise generated by the 

beam hardening correction (Fig. 2). However, the gray values histogram shows a 

slight right-hand shift (pores in black, not shown) in histogram peaks with the 25% 

beam hardening correction, and this is consistent with the observations of an 

increasing porosity and a higher visual contrast. This could make the segmentation 

step more straightforward and could be used in combination to a noise reduction 

filter to remove the additional small noise. The correction, however, modifies the 

visible porosity, and therefore the structure, in an unknown way as also 

demonstrated by Beckers et al. (2014b). 

 

  

Figure 2. Slice of a binary 3D images of the soil samples. Left-hand: a 25% beam hardening 

correction was applied during reconstruction. Right-hand: no beam hardening correction was 

applied. 

We also briefly investigated the effects of noise reduction filter on the final 

resulting binary images. As expected, the number of small pores decreased with the 

level of pre-segmentation noise reduction, as the visual contrast increased. A higher 

level of pre-segmentation lead to more uniform phases (Fig. 3) which induces less 

                                                      
1
 The beam hardening artefact is due to the polychromatic nature of the X-ray 

beam implying that the Beer’s Law no longer holds. The images present a radial 

grayscale intensity variation from the edges to the center. 
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noisy binary image. Higher the median filtering is, the more information is however 

lost.  

Answering the methodological objective was therefore a perquisite to any real soil 

image analysis, and we firstly present the developed procedure to that purpose and 

its ensuing research question which is “what segmentation method and what noise 

filtering level should we apply?” The methodological experiment was performed on 

simulated images so ground-truth information would be available for reliable 

evaluation of the image processing effects on the final binary image features 

quantification.  

 

  

Figure 3. Portion of a slice from a soil sample 3D grayscale image. Left-hand: no pre-

segmentation filter was applied. Right-hand: a pre-segmentation median filter with a radius 

of two pixels was applied. 

2.2. Simulated images 

Our Paper I presents the extensive procedure of the images construction. The 

general frame was based on the methodology from Wang et al. (2011), which 

consists in superimposing a realistic binary pore image to an image representing 

partial volume effects
2
 and then adding Gaussian noise (Fig. 4). We have created 15 

simulated images from the combination of 15 selected real soil binary images (from 

Beckers et al., 2014b) to 15 different generated partial volume effect images. The 

tested thresholding methods should identify the pore region from the original real 

soil image.  

                                                      
2
 Due to a pixel size higher than the smallest pore, the partial volume effect 

implies that voxels can contain more than one phase which causes the difficulty of 

the segmentation step. 
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Figure 4. Detailed illustration of the simulated images construction. 

The partial volume effect images were generated through the overlaying of 

decreasing resolution images as proposed by Wang et al. (2011). We did not use real 

soil images of multiples resolutions as Wang et al. (2011) did, we instead produced 

fractal images of decreasing resolution with a fractal generator based on the pore-

solid fractal approach (Perrier et al., 1999). Many studies reported that the fractal 

concept provides a good description of the soil microstructure complexity (e.g. 

Kravchenko et al., 2011). Those images were then combined to form one partial 

volume effect image; Fig. 5 displays two examples of final simulated images.  

 

  

Figure 5. Examples of two simulated images. 
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2.3. Tested image processing and image features 

characterization 

The complexity of segmentation is tied to the noise, artefacts and partial volume 

effects found in the grayscale images. Other sources of image degradation include 

ring artefacts, streak artefacts, high-frequency noise, scattered photons and 

distortions (Baruchel et al., 2000). We therefore firstly tested the effects of a pre-

segmentation median filter on the segmentation quality. Median filters assign the 

median value of the neighboring pixels to the center pixel. These filters are less 

sensitive to extreme values and no grayscale value is created near the object 

boundary implying that the object edges are better preserved (Tuller et al., 2013). 

The use of a median filter before segmentation seems to be a common step within 

the field of soil X-ray CT images processing.  Three levels were tested: no filter, 

filter with a radius of one pixel, filter with a radius of two pixels. After enhancing 

the image quality, choosing the right segmentation method is crucial.  We tested 

three segmentation methods from the literature and adapted one. After all, a post-

segmentation median filter was also tested on the simulated images (no filter or filter 

with a radius of two pixels). A post-processing clean-up was applied by removing 

the pore strictly smaller than 5 pixels in area, and the pore quantification was 

performed with the “Analyze Particles” tool available in the public domain image 

processing ImageJ (Schneider et al., 2012). 

2.3.1. Global segmentation methods  

The global thresholding method from Otsu (Otsu, 1979) was tested since it 

provides acceptable results according to Iassonov et al. (2009). Despite its potential 

non-reliability and the existence of more recent and more efficient methods, it is still 

a widely used method in the case of soil images, probably for its fast and easy-to-use 

implementation. This method automatically chooses a threshold based on the 

minimization of the intra-class variance between two intensity classes of pixels. It 

was performed with Matlab R2015a (MathWorks, UK). 

As we have ground-truth information available, threshold that should be applied 

can be estimated. Through an iterative loop, the threshold that minimizes the 

difference between calculated porosity and ground truth porosity is selected and the 

value will serve as a benchmark. This procedure is based on the method from 

Beckers et al. (2014b). The Matlab R2015a (MathWorks, UK) code was provided by 

the authors.  

2.3.2. Local segmentation method 

The indicator kriging method (Oh and Lindquist, 1999) has provided good results 

in various studies (Peth et al., 2008; Iassonov et al., 2009; Wang et al., 2011; 

Houston et al., 2013b). Its variation “window-adaptive indicator kriging method” 

(Houston et al., 2013a) is however chosen because Houston et al. (2013a) concluded 

that the adaptive method requires less computational resources than the fixed one 

while providing very similar results. The indicator kriging concept relies on the 

selection of a threshold interval, TH1-TH2. All grayscale values below TH1 are set 
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to 0 and all values above TH2 are set to 1. The values between TH1 and TH2 are 

assigned to a specific color, namely a phase, depending on their grayscale value and 

their classified neighboring pixels. The adaptive-window indicator kriging method 

adapts this neighboring area on the information locally available to cut the 

computational cost when possible. The method was applied with the author’s 

software “AWIK”. The choice of TH1 and TH2 was based on the edge detection 

using gradient masks method (Schlüter et al., 2010), option available within the 

AWIK software. From now on, we will refer to it as IK/GM.  

The PBA method has shown to be satisfactory albeit revealing a lower 

performance than IK/GM (Beckers et al., 2014b). The weakness in IK/GM is the 

choice of the interval TH1-TH2. Schlüter et al. (2010) have proposed an improved 

automatic TH interval selection method, although it remains sensitive to noise. 

Therefore we wish to combine the physical robustness of the PBA method to the 

assumed precision of the IK method.  The aim is to select a TH interval based on the 

global PBA threshold and then compute the IK method. This method was tested on 

the simulated images. We remind that the PBA method was used as a benchmark 

since we knew the exact porosity of the ground-truth image to be processed. From 

now on, we will refer to it as IK/PBA. 

2.4. Results analysis 

2.4.1. Performance indicators 

We used the ground-truth information available to compute the misclassification 

error (ME), whose value is included between 0 and 1. It gives the proportion of pixel 

wrongly assigned to a phase. The value 0 reflects a perfect segmentation and the 

value 1 the opposite (Sezgin and Sankur, 2004): 

 

00

00
1

SP

SSPP
ME

TT




                [Eq.1] 

Where P0 is the number of pore pixel in the ground-truth image; PT is the number 

of pore pixel in the tested image; S0 is the number of solid pixel in the ground-truth 

image; ST is the number of solid pixel in the tested image.  We have chosen this 

simple indicator for its obvious interpretation and for the possibility of comparison 

with other studies (Wang et al., 2011; Schlüter et al., 2014). Similarly, we used the 

relative error on the calculated porosity as a performance indicator (RE_P). The 

calculated porosity is the ratio of black pixels (pores) over the total number of 

pixels. 

Region non-uniformity (NU) is usually calculated to evaluate the segmentation 

quality without using ground-truth information (Wang et al., 2011). High intra-

region uniformity is related to a suitable segmentation method because there is a 

similarity of property in the region element; the variance of that property is then 

adequate in expressing the uniformity (Zhang, 1996): 
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𝑁𝑈 =  
𝑃.𝜎𝑝

2

𝑇.𝜎2                  [Eq.2] 

 

Where P is the number of pore pixel; T is the total number of pixel; σp² is the gray 

values variance of the pore pixels in the original grayscale simulated image; σ² is the 

total gray values variance in the original grayscale simulated image. NU is a natural 

choice given the uniformity that the pore space should possess, although shows 

lower performance compared to ground-truth information based indicator (Zhang, 

1996). 

For each pore, we computed its shape factor as defined by Mason and Morrow 

(1990) (Eq. 3) where A is the surface area (pixel²) and P is the perimeter (pixel): 

 

𝐺 =  
𝐴

𝑃²
                  [Eq.3] 

 

Depending on the G value, we calculated the specific dimensionless conductance 

of each pore (Patzek and Silin, 2001, Table 1). The dimensionless conductance g~  

multiplied by the squared cross-section surface area (A²) and divided by the fluid 

viscosity (µ), gives the conductance g (L
5
TM

-1
):  

 

𝑔 =  
𝑔̃𝐴²

𝜇
                  [Eq.4] 

 

The volumetric flow rate through one pore is obtained by multiplying the 

conductance (g) by the fluid displacement driving force. In analogy with an electric 

circuit where resistances are summed in series, conductances are summed in parallel. 

We therefore multiplied each pore dimensionless conductance (𝑔̃) by their squared 

surface area (A²) in order to sum all the conductances (g) for each image which 

resulted in a global conductance. The relative error of the global conductance to the 

ground truth image was calculated for each image (RE_K). In addition, we 

calculated the dimensionless conductance (𝑔̃) relative error of each pore (RE_g). 

RE_K and RE_g indicators were studied in absolute values. 

Table 1. Dimensionless conductance (g) calculation depending on shape factor values (G). 

G value 

 

G > 1/16 (3
1/2

)/36 < G <1/16 G < (3
1/2

)/36 

Associated shape 

 

Circle Square Triangle 

Conductance 𝑔̃ = 3/5. 𝐺 𝑔̃ = 0.5236. 𝐺 𝑔̃ = 1/2. 𝐺 
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2.4.2. The methodological research question 

To assess whether the quality of a segmentation method is altered by noise 

reduction, three-way ANOVA were implemented to test for significant differences 

in ME, NU, RE_P and RE_K for the various levels of noise reductions and the three 

different segmentation methods. Randomized complete block design was applied, 

the simulated images being the random blocks. In case of significant fixed 

interaction, two-way ANOVA were conducted for each segmentation method to test 

for significant impact of noise reduction on segmentation results. Tukey’s post-hoc 

test was performed in case of significant effect (p<0.05). 

Then to determine which combination of segmentation method and noise 

reduction performs the most accurately and whether IK/PBA brings improvement,  

four two-way ANOVA were implemented to test for significant difference in ME, 

NU, RE_P, RE_K between the combinations of segmentation method and noise 

reduction (10 levels). In case of significance (p<0.05), a post-hoc Dunnett test was 

conducted with IK/PBA as the control.  

In each case, similar analyses of RE_g were conducted. However, since each pore 

has its own shape factor, all the 229 pores (for all 15 images combined) were each 

considered as a random block.  

  



 

 

 

 

 

3 
Materials & Methods: the field 

experiment   
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3.1. Introduction 

The field experiment consisted in the measurements of sample-scale 

hydrodynamic properties and microscopic X-ray µCT extracted parameters on 

undisturbed soil samples of 35 cm³. The length ratio between sample size (3 cm in 

diameter) and scanner voxel size (21.5³ µm³) was around 1400, or 700 when the 

µCT images were resampled to a voxel size of 43³ µm³. This is a typical ratio value 

which allows the identification of most of X-ray µCT image characteristics (Vogel 

et al., 2010). The image characteristics were the soil pore space morphological and 

topological features, expressed in terms of “microscopic parameters”. All of the 

visible soil porosity (the smallest visible pores were about 0.0004 mm³) was 

characterized and analyzed without distinction of origins (structural or biological) 

since hydrodynamic properties measurements were performed on the samples as a 

whole. The three research questions previously introduced are: 

- Research question #1: Which microscopic parameters explain the best the soil 

hydrodynamic properties measured at the sample scale? 

- Research question #2: How do the microscopic parameters evolve with 

resolution? 

- Research question #3: How does the air-filled porosity vary with water matric 

potential? 

Eventually, we also address a fourth research question regarding the likely origins 

of soil structure: 

- Research question #4: How is the soil structure explained by organic carbon 

and iron content? At the origin of structure. 

3.2. Soil sampling  

The studied soil samples were taken from an agricultural field in Gembloux 

(Belgium) classified as a Cutanic Luvisol (WRB soil system, 2006) with the 

following averaged particle distribution: 14.3 % of clay, 78.3% of silt and 7.4% of 

sand. Sampling was performed within the summer 2015 (10 samples) and summer 

2016 (14 samples) within four plots of a tillage-residue experiment (Fig. 6).  

The tillage-residue experiment was conducted by Hiel et al. (2018) and the cultural 

practices between summer 2013 and summer 2016 are displayed in Table 2. Each 

sampling year, half of the samples were taken from the “conventional tillage” 

experiment, the other half from the “reduced-tillage” experiment. The objective was 

to observe a maximum variability of pore network structure between the samples 

and not to compare the experiment effects on the pore network. We therefore 

randomly named the samples according to a logical suite, going from #1 to #24. 

After removing the vegetation, we manually drove the ertalon (plastic) cylinders 

(3 cm in diameter and 5 cm in height) into the soil until the top of the cylinder was at 

the surface level (Fig. 7) and we also manually excavated the cylinders to minimize 

the structure disturbance.  
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Figure 6. Aerial photography of the sampling field (50°56’N, 4°71’E). 

  

Figure 7. Photographs illustrating the sampling. Cylinder dimensions are 3 x 5 cm. 
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Table 2. Performed cultural practices between 2013 and 2016 on the sampling field. 

Date Operation 
Depth 

[cm] 
CT RT Date Operation 

Depth 

[cm] 
CT RT 

4/09/2013 harvesting 
  

x x 20/04/2015 
nitrogen 

fertilization   
x x 

25/11/2013 ploughing -25 x 
 

22/04/2015 sowing -10 x x 

25/11/2013 sowing -7 x x 28/05/2015 weeding 

 

x x 

11/03/2014 
nitrogen 

fertilization 

 

x x 27/07/2015 sampling 
-5 

  x 

1/04/2014 weeding 

 

x x 25/09/2015 sampling -5 x   

15/04/2014 
nitrogen 

fertilization 

 

x x 13/11/2015 harvesting 

 

x x 

15/04/2014 
growth 

regulator 

 

x x 7/12/2015 
stubble 

breaking -10 
x x 

25/04/2014 weeding 

 

x x 7/12/2015 ploughing -25 x x 

27/04/2014 fungicide 

 

x x 7/12/2015 sowing 

 

x x 

12/05/2014 
nitrogen 

fertilization 

 

x x 22/03/2016 weeding 

 

x x 

16/05/2014 weeding 

 

x x 2/04/2016 
nitrogen 

fertilization 

 

x x 

6/06/2014 fungicide 

 

x x 22/04/2016 
nitrogen 

fertilization 

 

x x 

4/09/2014 harvesting 

 

x x 17/05/2016 fungicide 

 

x x 

12/09/2014 
stubble 

breaking -10 
x x 19/05/2016 

nitrogen 

fertilization 

 

x x 

16/09/2014 
cover crop 

sowing 

 

x x 8/06/2016 fungicide 

 

x x 

6/01/2015 ploughing -25 x 
 

26/07/2016 sampling -5 x x 

17/03/2015 weeding   x x           

 

3.3. Macroscopic measurements 

Figure 8 presents the general frame applied to all the soil samples except for four 

of these which were only scanned at a water matric potential (h) of -70 kPa. The 

saturation was performed with distilled water and the characteristic soil water 

retention curves (SRWC) were measured using pressure plates (Richards, 1948 and 

DIN ISO 11274, 2012). After being weighed at the specified h, the air permeability 

of the samples was measured by applying an air flow across the sample and 

measuring the resulting inner-pressure with an Eijkelkamp air permeameter 08.65 

(Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands). As recommended 

by the constructor, each measure was repeated five times and kept as short as 

possible. Corey’s law was then applied to calculate the air permeability [ka, L²] 
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(Corey, 1986 in Olson, 2001). The samples were also scanned at various steps of the 

SWRC; the X-ray microcomputed tomography procedure is developed in the next 

section. After reaching -1500 kPa, the soil samples were saturated once again and 

the saturated hydraulic conductivity (Ks [LT
-1

]) was measured using a constant head 

device (Rowell, 1994) and applying Darcy’s law. Finally, the soil samples were 

oven-dried at 105° for five days in order to obtain their dry weight. Porosity [L³L
-3

] 

was calculated as the ratio between the volume of water within the saturated soil 

sample and its total volume (McKenzie et al., 2002). From McKenzie et al. (2002), 

the bulk density (BD) [ML
-3

] was deduced from the porosity value assuming a 

particle density of 2.65 g/cm³. Soil organic matter content was approached by the 

measure of the soil organic C content through the Walkley-Black (1934) method, 

and the mineral constituents of the soil phase were approached by measuring the Fe 

content because it was shown Fe was one of the most important substrate for the 

formation of organo-mineral associations (Eusterhues et al., 2005). The different 

forms of free Fe were extracted with 1) pyrophosphate of Na to provide the quantity 

of complexed Fe (Bascomb, 1984); 2) Oxalate NH4 to provide the quantity of 

complex and amorphous Fe (Blackmore et al., 1981); and 3) dithionite-citrate 

system buffered with bicarbonate (Mehra and Jackson, 1960) to provide the quantity 

of any free forms of Fe: complex, amorphous and crystalline Fe.  

 

 

Figure 8. Macroscopic measurements applied to the soil samples. 
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3.3.1. Fractal dimension from the pore size distribution 

The SWRC is usually used to extract the pore size distribution of the studied soil 

(Nimmo, 2004) by using the capillary theory which is the physical law linking a 

pore radius to a liquid potential: 

 

𝑟 =
2.𝜎.cos(𝛼)

𝜌.𝑔.ℎ
                  [Eq. 5] 

 

Where r is the pore radius (L), h is the water matric potential (L), σ is the liquid 

surface tension (MT²), α is the contact angle between the liquid and the soil, ρ is the 

liquid density (M L
-3

) and g is the gravitational acceleration (L T
-2

).  That equation 

can be simplified when the liquid is water: 

 

𝑟 =
30

2.ℎ
                   [Eq.6] 

 

Where r is the pore radius (µm), and h is the water matric potential (m). 

We then calculated the fractal dimension (Lab_FD) for each pore size distributions 

to characterize each sample SWRC with one value. The fractal dimension is a single 

value that is used to characterize the fractal geometry of objects. Fractal geometry 

states that an object has comparable features at different scales. The fractal 

dimension (FD) is power-law dependent (Mandelbrot, 1983) and Fig. 9 illustrates 

the following equation: 

 

𝐹𝐷 =  
log (𝑁)

log (1 /𝑟)
                   [Eq.7] 

 

Where N is the constant number of transformed element at each iterations (from 

Eq. 7, N=2 in Fig. 9); r is the ratio between the dimension of the parent-element and 

the dimension of the transformed element (from Eq. 7, r=1/3 in Fig. 9). Figure 9 is a 

1D fractal object (a line) and the FD should be included between 0 and 1 (FD = 

0.631 in Fig. 9). 

 

Figure 9. Cantor set (Source: Mandelbrot, 1983). 
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Since power-law dependencies are observed in soil science, researchers have 

applied the fractal geometry to study the soil behavior (Pachepsky et al., 2000). For 

example, Russell and Buzzi (2012) successfully derived a SWRC from the pore-size 

distribution FD of a silt loam soil. We obtained the Lab_FD from the slope of the 

linear relationship between the logarithmic radius r and the logarithmic cumulative 

volume of pores having a radius inferior to r (Xu, 2004). Because the soil samples 

are 3D objects, Lab_FD was obtained by subtracting the slope to 3. 

3.4. Microscopic measurements: image acquisition, processing, 

soil features characterization 

The soil samples were scanned using a Skyscan-1172 desktop micro-CT system 

(Bruker microCT, Kontich, Belgium).  We refer to our Paper II for more 

information about the scanning parameters and general image processing 

information, that latter was conducted from the results obtained in our Paper I. In 

the end, the 3D soil X-ray µCT images had a voxel size of 21.5³ µm³, however 

resampled to 43³ µm³ for computational savings. From the result of our Paper I, we 

applied the global porosity-based segmentation method developed by Beckers et al. 

(2014b). The obtained porosity on the X-ray µCT images was compared to the 

estimated soil sample visible porosity, which was the air-filled porosity at a water 

matric potential (h) of -1 kPa (Lab_PO, equivalent radius of 150 µm according to 

capillary law) and was calculated from the voxel size information (43³ µm³). A 

visual inspection was performed to evaluate the segmentation quality and, in case 

the porosity-based segmentation method failed, Otsu’s segmentation was used 

(method previously described). A post-segmentation clean-up was applied by 

removing any pores smaller than five voxels. To quantify the pore network topology 

and the pores morphology, we used the Avizo® 9.2 software, where codes 

developed by Plougonven (2009) are integrated, and the free ImageJ software 

(Schneider et al., 2012) where the MorphoLib plugin (Legland et al., 2016) was used 

to perform a five voxels post-segmentation clean-up followed by the BoneJ plugin 

(Doube et al., 2010) for parameters calculation. Table 3 presents the calculated 

microscopic parameters that are commonly studied in soil science researches using 

X-ray µCT, which however often work with voxel sizes a thousand times bigger in 

volume than the one from this dissertation. We therefore also calculated the large 

porosity (Large_PO) to be comparable to those results. In addition, we calculated the 

average pore size of the smallest and biggest pores (Avg_Svol and Avg_Bvol). The 

limit between the smallest and biggest pores was invariant between samples: 10% of 

the number of pores accounted for 90% of the total pore volume. These biggest 

pores were mainly large macropores and fractures that have likely contributed the 

most to water and air fluxes. 

The microscopic parameters presented in Table 3 were calculated for all soil 

samples scanned at h = -70 kPa, the parameters with a star were calculated for all 

soil samples scanned at various h. For 16 pore size classes distributed between 30 

and 1500 µm in radius, we calculated several microscopic parameters for the pores 
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enclosed within the classes (written in italic in Table 3). We therefore had 17 values 

of those selected microscopic parameters (16 classes + 1 global). Figure 10 displays 

a 2D schematic view of a pore network to represent the coordination number (Z), the 

redundant connections concept (Euler number), an isolated pore, and the pore 

chambers and throats and associated names from ImageJ. In the end, we applied the 

capillary theory (Eq. 6) to the pore-size distribution extracted from the X-ray µCT 

images, assuming the pores were elliptic (Beckers et al., 2014a) and calculated the 

SWRC from X-ray µCT data by adjusting the pore volumes to the total laboratory 

porosity.  

 

Figure 10. 2D schematic view of a pore network with several microscopic parameters 

represented. 
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Table 3. PartI. Calculated microscopic parameters on the X-ray µCT images and their 

definition. Only the parameters with a star were calculated for all soil samples at various 

water matric potentials. The parameters with an italic font were calculated by pore size 

range. 

  

Microscopic 

parameter                  

(abbreviation, metric) 

Definition 

A
v

iz
o

 

Porosity*  

(µCT_PO, %) 

Ratio of pore voxels over the total amount of voxels 

Large porosity 

(Large_PO, %) 

Part of the porosity composed by pores of at least 1000 

voxels 

Number of pores (NP, -) Total number of pores 

Averaged pore volume* 

(Avg_vol, mm³) 

Ratio of the total volume of pores over the number of 

pores  

Averaged pore volume 

of the biggest pores* 

(Avg_Bvol, mm³) 

The biggest pores are the ones that account for 90% of the 

pores volumes by only representing 10% of the number of 

pores 

Averaged pore volume 

of the smallest pores* 

(Avg_Svol, mm³) 

The smallest pores are the ones that account for 10% of 

the pores volumes by representing 90% of the number of 

pores 

Proportion of isolated 

pores (IP, %) 

Ratio of the number of pores that have no connection over 

the total number of pores 

Proportion of isolated 

porosity* (IPO, %) 

Ratio of the isolated porosity over the total porosity  

Averaged coordination 

number* (Avg_Z, -) 

The average of Z which is the number of connections at 

one point (Perret et al., 1999) 

Averaged surface 

connectivity* (SC, L
-1

) 

The average of sc which is  sc = Nc * Ac / Vp, where Nc 

is the number of connections, Ac the mean surface area of 

the connections (L²) and Vp the pore volume (L³) 

Total connected surface 

(Con_surf, mm²) 

The sum of each pore's connected surface 

Specific surface*  

(SS, m
-1

) 

Sum of the specific surface of each pore which is the ratio 

of the pore surface area over its volume. 

A
v

i.
 z

o
+

 I
J

 Global connectivity * 

(Γ, -) 

The sum of each pore's volume squared divided by the 

total volume of pores. It measures the probability that two 

pores voxel are part of the same pore (Renard et Allard, 

2013). 
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Table 3. Part II. Calculated microscopic parameters on the X-ray µCT images and their 

definition Only the parameters with a star were calculated for all soil samples at various 

water matric potentials. The parameters with an italic font were calculated by pore size 

range. 

  

Microscopic parameter                  

(abbreviation, metric) 
Definition 

Im
a

g
e 

J
 

Total length of the pore 

network* (L, m) 

After skeletonization, it is the sum of all the branches 

length 

Total number of branches   

(B, -) 

After skeletonization 

Total number of junctions   

(J, -) 

After skeletonization 

Degree of connectivity     

(N/J, -) 

Ratio of the number of branches over the number of 

junctions. As negative is the ratio, as connected is the 

medium 

Global tortuosity* (τ, mm
-1

) The geometric tortuosity between two points is the 

ratio between the effective pore path and the shortest 

distance between the two extreme points (Perret et al., 

1999). We calculated the global tortuosity (τ) of the 

pore network as the average of the tortuosity of each 

branch 

Fractal dimension* (FD, -) FD was calculated with a box-counting algorithm 

(Perret et al., 2003).  

Degree of anisotropy* (DA, -) The value of DA is between 0 and 1, 0 for an isotropic 

medium. DA was calculated with the mean intercept 

length method (Harrigan and Mann, 1984) 

Euler number* (ε, -) The Euler number is a quantification of the 

connectivity. Originaly calculated as ε=N-L+O, where 

N is the number of isolated objects; L is the number of 

redundant connections and O the number of cavities or 

holes (Vogel et al., 2010). As negative is the Euler 

number, as connected is the medium 

Lowest Euler number 

(Min_ε, -) 

The Euler number of the largest connected component 

of the pore network 
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3.4.1. Degree of anisotropy 

We briefly present the degree of anisotropy (DA) that is a little trickier to 

apprehend. DA is quantified with the mean intercept length (MIL) method. The 

point is to calculate the MIL for a large number of vectors of equal length 

originating from a random point within the studied volume; interceptions were 

counted when the vector hit a boundary between foreground and background. A 

cloud of MIL-points is built up; an ellipsoid is fitted to the cloud; the anisotropy 

tensor is constructed and its subsequent eigendecomposition results in eigenvalues 

which are characteristics of the orientation of the ellipsoid.  The smallest eigenvalue 

come from the longest MIL which mean that the vectors going in that direction 

didn’t hit a lot of boundaries between the two phases. Therefore, a long MIL in one 

direction could be interpreted as a small amount of pores in that direction, or as the 

direction of the preferential orientation of one large pore. A long MIL could also be 

understood as the consequence of the pores directions but calculating one principal 

direction is not straightforward. Figure 11 shows an example of the 3D visualization 

of MIL vector cloud for one sample, and the 3D representation of the pore space 

sample aligned to the anisotropy tensor. Instead of being parallel to the Z-axis, the 

3D representation of the sample is slightly inclined along the x-axis although, for 

this sample (#13) the main direction of the smallest eigenvalue was along the z-axis 

(Results section). 

 

 

Figure 11. Left-hand: 3D visualization of the mean intercept length vector for one sample. 

Right-hand: 3D representation of the same sample air-filled pore space aligned to the 

anisotropy vector. 
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3.5. Results analyses 

For clarity, we divided this section in paragraphs regarding the performed analyses 

to answer each of the research questions presented in the introduction. 

3.5.1. Research question #1 

Our first research question deals with the relationships between the microscopic 

parameters extracted from the X-ray µCT images and the macroscopic laboratory 

measurements. The microscopic parameters values and their interconnections were 

also extensively studied. To these purposes, the data set was split into a calibration 

set (samples #1 to #18) and a validation set (samples #19 to # 24). Basic descriptive 

statistics were firstly performed on the macroscopic and microscopic data.  The 

correlation coefficients (ρ) between the different microscopic parameters of the 

calibration data set were then calculated using Bayesian statistics to account for data 

uncertainty. The advantage of using Bayesian statistics is that the credibility 

(“significance” in frequentist statistics) of the test is based on the data value and not 

on the number of observations which implies that a “statistically small” number of 

observations can be representative of the population. Another advantage of Bayesian 

statistics is the possibility to quantify the evidence for the null hypothesis whereas a 

“non-significant” test in frequentist statistics could also come from a noisy data set.  

The Materials & Methods section of our Paper II reports more information about 

the use of Bayesian statistics. The correlation coefficients were calculated with an 

associated Bayes factor (BF) which quantifies the credibility of the correlation. 

Adapted from Jeffreys (1961) in Wetzels and Wagenmakers (2012), BF’s larger than 

100 are interpreted as decisive evidence for a non-null correlation coefficient; BF’s 

between 30 and 100 as a very strong evidence, BF’s between 10 and 30 as a strong 

evidence, BF’s between 3 and 10 as a substantial evidence and BF’s below 3 as an 

anecdotal evidence.  The evidences for a null correlation coefficient are quantified 

through BF’s value inferior to one (1/100; 1/30; 1/10; 1/3). In addition, we 

performed a principal component analysis (PCA) with all the microscopic 

parameters as variables, and the samples as individuals. We then evaluated the 

relationships between the micro-and macroscopic measurements by calculating 

Bayesian ρ for the calibration data set. We afterwards established a Bayesian linear 

regression design to extract relationships between micro- and macroscopic 

measurements. All combinations between Y and X1 + X2 were tested and regression 

models were compared against the same models without the explaining variable 

(ratio) which resulted in a BF value. In Bayesian statistics, the starting point is not to 

identify the best regression equation but rather evaluate the unknown values of the 

equation explaining variables and intercept. We did it through the quantification of 

the 25 and 75% quantiles. Afterwards, we aimed at predicting the validation data 

points through the use of the slopes and intercepts posterior 50% quantile.  
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The relative root mean square errors (RRMSE) were calculated as follows: 

 

𝑅𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (

𝑑𝑖−𝐷𝑖

𝐷𝑖
)

2
𝑛
𝑖=1                [Eq. 8] 

 

Where n is the number of data points, di is the predicted data point and Di the 

observed data point.  

3.5.2. Research question #2 

As stated in the introduction, the results of the image features characterization 

ultimately depends on the scanning parameters, the image processing (Paper I), the 

image feature characterization software (Paper II), but also on the resolution at 

which the soil is visualized and studied. We explored different options to 

characterize the soil with a higher resolution and to compare the resulting extracted 

microscopic parameters. The obtained results were compared to the main results 

from our Paper II. One sample was concerned, sample #12. 

3.5.2.1. Exploration of the pore size dependency 

The extrapolation of the microscopic parameters to smaller voxel size than the 

scanned voxel size is at high computational cost but could provide endless 

possibilities. The concept relies on the hypothesis that the microscopic parameters 

would vary similarly if measured with larger or smaller voxel sizes.  

To simulate a higher scanning resolution, we calculated several microscopic 

parameters described in Table 3 for the X-ray µCT image of the sample #12 by 

gradually not taking into account the smallest pores. Figure 12 displays a schematic 

pore space view with growing minimal pore size, from a. to d.  The next step was to 

evaluate the relationship between the microscopic parameters values and the 

minimal pore volume taken into account to, afterwards, use the equation to estimate 

the microscopic parameters for an infinitely small pore volume. The minimal pore 

sizes were 10 to 610 voxels by steps of 100. These steps were chosen from a 

sensitivity analyses. We previously introduced the separation of the pore size 

distribution into two categories: the small pores and the big pores, and the limit 

between the categories for sample #12 was a volume of 610 voxels. Only porosity 

indicators (µCT porosity, the fractal dimension, the pore network length, the number 

of pores and the average pore volume) were extrapolated from the relationships 

between microscopic value and minimal voxel size. We did not try to fit a model of 

the µCT porosity versus the minimal pore volume to reach the total laboratory 

porosity because we are interested in the structural porosity which is conductive as 

opposed to the textural porosity (Nimmo, 2004). We did not extrapolate connectivity 

indicators because the number of connections drastically decreases with small pores. 

On one hand, the connections are smaller than the pores and are therefore invisible, 

on the other hand, the larger is a pore, the more connected it is. That would lead us 

to either fit a model from observed data and ending with an almost null connectivity, 
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or to fit a model from only the largest pores connectivity which is far from the 

extrapolation region. 

The fitted models between minimal volume and parameters were empirically 

tested and we eventually used a flexible power-law model.  The residuals presented 

a U-shape but their values were between 1% to 0.1% of the fitted values, we 

therefore considered that extrapolation, from this model and for this specific 

example, could work. Extrapolation relies on untestable assumptions about the 

behavior of data and we should keep in mind the stated hypotheses and case study.  

 

 

Figure 12. Schematic visible pore network with a growing visible minimal pore size (from a 

to d). 

3.5.2.2. Analysis of X-ray images at 21.5³ µm³ voxel size 

All the microscopic measurements previously described were performed on the X-

ray µCT images scanned at a voxel size of 21.5³ µm³ and rescaled to 43³ µm³ for 

computational savings. Microscopic features characterization was therefore also 

done at the original resolution for the sample #12. The same image processing was 

applied, besides the resampling and the pre-segmentation median filter. To have 

similar noise levels on both X-ray µCT images, we applied a 4 pixels radius 3D 

median filter instead to a 2 pixels radius 3D median filter as for the 43³ µm³ voxel 

sizes X-ray µCT images, Fig. 13 presents a theoretical explanation. Houston et al. 

(2013b) also observed that using finer resolution images increased the visible noise. 

Extra attention should be brought to the segmentation step since reliable 

comparisons of binary images depend on that specific procedure (Houston et al., 

2013b; Shah et al., 2016). We applied the same porosity-based segmentation method 

with the same physically-based porosity (Lab_PO) value to reach. The microscopic 
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parameters as described in Table 3 were calculated except the ones that were 

concluded irrelevant from the results of our Paper II. 

 

 

Figure 13. Representation of the pixels distribution of two images with different voxel size. 

3.5.2.3. Analysis of an aggregate: X-ray microtomography 

We extracted an aggregate from the sample #12 (methodology from Gao et al., 

2017) which was scanned at the highest possible resolution; scanning time was not 

an issue since only one aggregate was scanned for exploratory purpose. The X-ray 

source was set at 100kV and 100µA and an aluminum-copper filter was used to 

reduce the beam hardening artefacts in the reconstruction. The rotation step was set 

at 0.15° over 360° and, to improve the signal-to-noise ratio, the average of 5 

projections was recorded at each rotation step. The exposure time was 600 ms. We 

adjusted the detector configuration (16-bit X-ray camera with 4 × 4 binning, creating 

1000 x 666 pixel radiograms) and the distance between the camera and the soil 

sample to obtain radiographs with a pixel size of 8.99 µm. The image was also 

reconstructed using the NRecon® software, freely provided by Bruker without the 

misalignment compensation and with a ring artefact correction of 7. The global Otsu 

method was applied to binarize the 3D image and the same parameters as presented 

in Table 3 were calculated. 

3.5.2.4. Analysis of an aggregate: Desorption Vapor Sorption 

After the X-ray µCT scanning, the desorption-sorption curve of the soil aggregate 

was measured using a Desorption Vapor Sorption apparatus (DVS). The concept is 

to place the studied material (the soil aggregate) in an atmosphere-controlled 

chamber where the relative humidity is gradually increased and afterwards gradually 

decreased. Temperature can be controlled too and we performed an isotherm 
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experiment. The studied material is weighted at specified time-steps (5 min in our 

case) to evaluate if the equilibrium between the materials and the atmosphere is 

reached. The studied soil aggregate initial weight was 69.41 mg and about 5 mm 

long. The results were mass variations versus atmosphere relative humidity which 

can be transformed to calculate the material saturation according relative humidity. 

To extract a pore size distribution, we applied the Kelvin-Laplace’s law, which 

relies on the capillary theory, to link a pore radius to a water potential (relative 

humidity of the atmosphere): 

 

𝑟 = −
4𝛾.𝑀

2𝑅.𝑇.𝜌.ln (𝑅𝐻)
                   [Eq.9 ] 

 

Where R is the perfect gas constant [IN
-1

θ
-1

], T the absolute temperature [θ], ρ the 

volumic mass of water [ML
-3

], M the molar mass of water [MN
-1

], ϒ the superficial 

tension [MT
-2

], RH the relative humidity [MM
-1

], and r the pore radius [L].  

3.5.2.5. Result analyses 

On one hand, we compared the pore repartition versus the pore radius for the 

following data obtained from the sample #12 (Table 4). 

Table 4. Enumeration of the available data to evaluate the resolution effects on the 

calculated microscopic parameters. 

Sample scale Aggregate scale 

X-ray µCT images at 43³ µm³ X-ray µCT images at 8.99³ µm³ 

X-ray µCT images at 21.5³ µm³  

Retention curve with pressure plates Desorption curve with DVS 

For comparisons between measurement methods, we calculated the function of the 

logarithmic desaturated pore radius r
i
 at the i-th step of desaturation according the 

following equations, adapted to pore radius from Rougelot et al. (2009): 

 

𝑝𝑟(𝑟𝑖+1) =
𝑆𝑤(𝑟𝑖)−𝑆𝑤(𝑟𝑖+1) 

log(𝑟𝑖)−log (𝑟𝑖+1)
              [Eq.10]  

 

Where pr is the pore repartition, Sw is the saturation in water at radius r
i
. The pore 

radius at 100% of relative humidity is 371 µm for the desorption curve, and 1534 

µm for the retention curve obtained from the X-ray µCT measurements of the soil 

aggregate and soil sample, respectively. 

On the other hand, we compared the resulting microscopic parameters extracted 

from the sample X-ray µCT images at a voxel size of 43³ µm³ (previous section), 

and of 21.5³ µm³ to the extrapolated microscopic parameters and to the microscopic 
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parameters from the aggregate X-ray µCT image. For non-relative parameters, such 

as the number of pores or the total network length, we multiplied the value obtained 

for the aggregate by the ratio of the sample volume over the aggregate volume in 

order to be comparable. Then, we computed the value of the extrapolated parameters 

for a minimal volume of 49692 µm³ (minimum five voxels at a resolution of 21.5 

³µm³); 3633 µm³ (minimum five voxels at a resolution of 8.99³ µm³); 8000 µm³ 

(minimum one voxel at a resolution of 20³ µm³); and 1 µm³. The value of 8000 µm³ 

was chosen as the limit defined by Nimmo (2004) to characterize conducting 

porosity. 

3.5.3. Research question #3 

For our third research question, we hypothesize that more than the pore volume, is 

the pore space accessibility relevant for the pore space draining. To that purpose, we 

scanned the same soil samples at various water matric potentials (h, from -4 kPa to -

70 kPa). From the voxel size of our images (43³ µm³ and minimum 5 voxels for a 

pore to be taken into account) and the capillary theory (at -4 kPa, pores with radius 

of 75 µm should have drained), we shouldn’t see any differences between these X-

ray µCT images. We although analyzed the variations in pore space from a global 

point of view by comparing global microscopic parameters between the X-ray µCT 

images of the same samples scanned at various h. We also calculated microscopic 

parameters for pores included between two sizes boundaries. The aim was to 

identify whether pores of a particular size were more prompt to morphological 

changes with h. 

3.5.3.1. Global parameters 

The same parameters as Table 3 were calculated (with a star). To answer the 

question whether the global parameters differ for the same sample at various h, we 

performed two-way ANOVA for each global parameters and post-hoc Tukey tests in 

cases of significance. Two-way ANCOVA were afterwards performed to evaluate 

the effects of the hydrodynamics parameters (Ks, ka, and Lab_FD) on the 

significance of the previously performed ANOVA. The microscopic parameters 

were then also used as covariates. The ANCOVA relative efficiency (ratio of 

residual squared means) was calculated in cases where the addition of a covariate 

adjusted the means in a way that led to non-significant differences between h. 

Afterwards, a PCA was conducted to identify similarities between individuals (one 

individual is one sample scanned at one h), as well as a K-clustering analysis to 

quantitatively validate the spatial results obtained from the PCA. 

3.5.3.2. Local parameters 

The local parameters are the several microscopic parameters (in italic in Table 3) 

calculated for a specified portion of pores, between a minimal and a maximal radius. 

To assess whether the local microscopic parameters by pore size ranges are different 

between h, we conducted three-way ANOVA followed by two-way ANOVA for 

each pore size range in case of significance. Post-hoc Tukey tests were afterwards 

performed. 
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3.5.4. Research question #4 

Shortly, the organo-mineral associations stabilize the soil organic matter by 

protecting it from decomposition and are the main forming soil structure agents 

through the formation of soil aggregates (Oades, 1988; Kleber al., 2015). This 

dissertation aims at unraveling the relationships between soil structure and soil 

hydrodynamic properties, these sub-section deals with the origin of the soil 

structure: how the microstructure could be explained by the organic carbon and iron 

soil content. We therefore firstly investigated the relationships between the soil total 

organic carbon (TOC) content and the amorphous and crystalline Fe oxyhydroxydes 

estimated by oxalate and DCB extractions, respectively, with Bayesian correlations. 

We further compared the TOC and Fe contents to the microscopic parameters 

measured on the X-ray µCT images (Table 3). The soil organic and mineral phases 

are spatially and temporally variable; the performed analyses aimed solely at 

providing first insight within this subject.  

  



 

 

 

 

 

4 
Results & Discussions: the methodological 

experiment 
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The extensive result analysis is presented in our Paper I; we here recall the main 

findings of this experiment which consisted in statistically comparing noise 

reduction filters and segmentation methods effects on the final resulting binary 

images. Three pre-segmentation noise reductions were tested through the 

application, or not (PRE0), of a median filter of radius of one pixel (PRE1) or two 

pixels (PRE2). Two post-segmentation noise reductions were tested with the 

application, or not (POST0), of a two pixels radius median filter (POST2). 

4.1. Pre-segmentation noise reduction 

Figure 14 shows an example of a. a grayscale image to be segmented, and the 

same image, segmented with b. Otsu method, c. PBA method, and d. IK/GM 

method. There was no application of median filter (PRE0 and POST0). We 

observed, not all the images are shown, that Otsu and IK/GM methods, without pre-

segmentation filter, performed well for some images but poorly for others, and the 

PBA method always performed well with misclassification error indicators (ME) 

below 1% and non-uniformity region indicators (NU) below 5%. In this case, where 

the exact porosity to reach was known, noise reduction did not improve the PBA 

method. This is consistent with the working principle of PBA and with our 

experimental conditions. Figure 15 shows the ME, NU and relative error on porosity 

(RE_P) averaged for the 15 simulated images. With the Otsu and IK/GM methods, 

the PRE1 noise reduction filter improved the segmentation accuracy because a 

decrease in indicator value meant an increase in segmentation accuracy. Compared 

with the results obtained by Hapca et al. (2011), Wang et al. (2011) and Schlüter et 

al. (2014), the ME and NU values for PRE1 and PRE2 were satisfactory.  Statistical 

analyses confirmed that the PRE1 filter significantly improved segmentation 

accuracy with the Otsu and IK/GM methods in terms of ME. With regards to NU, 

there was a significant difference between the three Otsu method results (PRE0-

PRE1-PRE2), but post-Tukey’s test was not able to determine the source of the 

difference. Similarly, PRE0 to PRE1 and PRE0 to PRE2 were significantly different 

for IK/GM methods, but, in contrast, RE_P significantly differentiated PRE0 to 

PRE1 and PRE0 to PRE2 for Otsu method, but not for IK/GM method. These 

contrasting results illustrate the variability in indicator definitions and reflect the 

working principles of the global and local methods. Otsu segmentation method 

results in different porosity values by identifying porosity within the soil matrix 

where grayscale values are low (porosity is represented by black pixels). This leads 

to porosity without physical meaning, as noted by Hapca et al. (2011). IK/GM 

identifies the right pore-region, but the limits might not be accurate. Therefore, 

despite a high grayscale value, some pixels were taken into account, which increased 

grayscale value variance and subsequently NU.  
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Figure 14. Image #10 at various steps: (a) simulated image 10; (b) Otsu segmentation; (c) 

PBA segmentation and (d) IK/GM segmentation. There was no application of a pre-

segmentation filter. 

 

Figure 15. Averaged misclassification error (ME), region non-uniformity (NU) and porosity 

relative error (RE_P) for all segmentation methods (Otsu, PBA, IK/GM) and for all pre-

segmentation noise reductions (PRE0, PRE1, PRE2) 
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Statistical analyses did not report significant differences between the two levels of 

pre-segmentation noise reduction filters (PRE1 and PRE2). We however observed 

that neither Otsu nor IK/GM associated to a PRE2 level of noise reduction provided 

the best performances. The added noise on our simulated images is uncorrelated and 

PRE2 noise reduction seemed to be disproportionate and destroyed true information. 

Figure 16 shows the resulting images after the Otsu and IK/GM segmentation for 

both noise reductions. Black pixels represent the pores that match the ground-truth 

information, the blue pixels represent pixels that are allocated to soil matrix but 

should have been allocated to pore and the red pixels are the one allocated to pore 

but shouldn’t have been.  With the Otsu method, from PRE1 to PRE2, small features 

are removed (blue pixels) and bigger pores have growing edges (red pixels). The 

differences between PRE1 and PRE2 for IK/GM method are less striking albeit the 

histogram bimodality is sharpened. This is however consistent with the study 

reported by Houston et al. (2013b), where they found that Otsu method gave a 

greater mean difference between two noise reduction levels than IK. 

 

 

Figure 16. Resulting Image #10 after the OTSU and the IK/GM segmentation methods for 

two level of pre-segmentation noise reduction (PRE1, PRE2). Black pixels represent the 

pores that match the ground-truth information, the blue pixels represent pixels that are 

allocated to soil matrix but should have been allocated to pore and the red pixels are the one 

allocated to pore but should not have been. 
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4.2. Post-segmentation noise reduction 

Post-segmentation noise reduction always alters the pores edges and we conducted 

our analyses through the use of performance indicators based on the pores 

conductance (RE_K) and shapes (RE_g). No matter the pre-segmentation noise 

reduction applied, RE_K was indeed always higher with a post-segmentation noise 

reduction than without. Statistical analyses of RE_K confirmed that  applying a post-

segmentation noise reduction without any pre-segmentation noise reduction 

(combination PRE0-POST2) lead to a significant higher averaged relative error 

when compared to any combination of pre-segmentation noise reduction (PRE0-

PRE1-PRE2) without post-segmentation noise reduction (POST0). The left plots of 

Fig. 17 display the main effects plots for RE_K. 

 

  

  

Figure 17. Left-hand: Main effect plots for the conductance relative error (RE_K). Right 

hand: Main effect plots for the shape factor relative error (RE_g). The upper graphs display 

the pre-segmentation (PRE0, PRE1, PRE2) and post-segmentation (POST0, POST2) noise 

reductions combinations as variables. The lower graphs display the segmentation methods as 

variables (PBA, Otsu, IK/GM). 

In contrast to RE_K, there were no significant differences among segmentation 

methods or the noise reduction levels in RE_g values. The right plots of Fig. 17 

display the tendency between noise reduction levels and segmentation methods with 

regards to RE_g. We did not compute the PRE0 results because some pores had 

merged with OTSU and IK/GM and relative errors would increase without meaning.  
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4.3. Segmentation methods 

Pre-segmentation noise reduction affects the grayscale histogram shape and 

therefore the global and interval TH values, as illustrated with Fig. 18. The global 

TH obtained with Otsu method firstly decreased from PRE0 to PRE1 and then 

increased from PRE1 to PRE2. There was indeed a right-hand shift in the lower-part 

of the soil matrix peak (Fig. 18). At noise reduction PRE1, the Otsu and PBA 

methods even had an identical TH. This could therefore be seen as a satisfactory 

noise reduction for global methods since these two methods were then equivalent. 

Figure 14 however previously showed that the PBA segmentation method was not 

perfect, highlighting the main disadvantage of the selection of one threshold value 

for an entire 2D (or 3D) image. The lower plots of Fig. 17 also show that the Otsu 

and PBA methods had almost the same mean because global TH variation would 

lead to porosity variation within the soil matrix, but less around the pore region 

edges.  

 

Figure 18. Image #14 grayscale histograms with different pre-segmentation noise 

reductions. Left to right: PRE0, PRE1, and PRE2. The dotted line represents the global 

threshold obtained with PBA segmentation method; the plain bold line represents the upper 

threshold obtained with IK/GM segmentation. 

Local segmentation methods have the benefit of usually not identifying pore 

regions where there is none but the pore boundaries might not be accurately 

identified, as stated earlier. In terms of RE_K values, IK/GM method was indeed 

significantly different from the PBA method which was used as a benchmark. 

Moreover, IK/GM method never performed the best in terms of absolute values of 

performance indicators. Local segmentation methods are totally dependent on the 

initial choice of TH interval which in turn, for the gradient mask method, is 

dependent of the histogram shapes. Figure 18 shows that the TH interval boundaries 

tended to decrease from PRE0 to PRE1 and PRE2. The IK/GM method performed 

better with pre-segmentation noise reduction and, in these cases, the TH interval 

included the global TH from OTSU and PBA. From these observations, we 

investigated the choice of a TH interval around the global TH computed by PBA 

(IK/PBA method) to combine the precision of a local method to the robustness of 

the global PBA method. 
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4.4. Testing the relevance of IK/PBA 

To perform a sensitivity analysis of the TH interval impact on the indicator kriging 

(IK) method, the TH interval around the global TH selected with PBA ranged from 

+/-10 to +/-50%. We found that the ME indicator remained unchanged for the 

intervals +/-10, +/-20 and +/-30%. After that, ME increased constantly, reaching 

about 25% of the initial ME value at the +/-50% interval. For the following 

operations, we present only the segmentation results with a +/-10% TH interval. 

First, the ME, NU, RE_P and RE_K values were all in the same range as those from 

PBA or OTSU_PRE1.  The statistical analyses confirmed this trend by showing only 

OTSU_PRE0 and IK/GM_PRE0 (which were no good performers) as significantly 

different from IK/PBA in terms of ME, NU and RE_P. When including post-

segmentation noise reduction, RE_K analysis showed that post-segmentation noise 

reduction did not produce a significantly different result with IK/PBA. According to 

RE_g, IK/PBA gave the best results and differed significantly from any other 

combination of method and noise reduction. IK/PBA therefore produced the correct 

binary images without the use of a noise reduction process (as opposed to 

OTSU_PRE1) and without knowing the real characteristics of the real soil image 

used to construct the simulated images (as opposed to PBA). This is consistent with 

the recommendation made by Iassonov et al. (2009) and Iassonov and Tuller (2010) 

that a local method could be used as an alternative to pre-segmentation processing. 

As noted earlier, the choice of the TH interval is of prime importance when using 

IK. With the two-peak histogram simulated image, the interval around the global 

PBA TH produced far better results than the interval calculated through the gradient 

masks method (Schlüter et al., 2010) and this made the original idea of IK/PBA 

attractive. 

4.5. Practical conclusion and discussion 

From ME, NU and RE_P analyses and according to the experimental conditions, 

we showed that the Otsu and IK/GM segmentation methods were more accurate 

with a PRE1 noise reduction and that OTSU_PRE1 and IK/GM_PRE1 were not 

statistically different. Post-segmentation noise reduction unnecessarily destroy 

useful information from the pores edges and its best asset of removing small features 

wrongly assigned to porosity could equally be performed with a post-segmentation 

clean-up when features are small enough. The analyses were performed on 2D 

images although we subsequently work with 3D images. In their image by image 

study, Wang et al. (2011) reported similar segmentation results between their one 

3D image and eight 2D images. Although we cannot statistically confirm our 2D 

observed results in 3D, we are therefore confident in using our 2D conclusions for 

our subsequent 3D work. The adopted scheme for our field experiment was therefore 

the application of a pre-segmentation 3D median filter with 2 pixels radius and the 

use of the global PBA segmentation method. 

The use of multiple performance indicators to assess noise reduction and 

segmentation methods effects on the final binary images was necessary, which is 
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consistent with Wang et al. (2011) findings. When dealing with real soil images, 

only the NU indicator could be use because it does not require ground-truth 

information. That indicator provided comparable results to the other indicators when 

dealing with pre and post-segmentation noise reduction for the Otsu’s method. 

Results were a little trickier with the adaptive-window IK method. Comparisons to 

physical laboratory measurements are possible ways to tackle the ground-truth issue 

as applied by Beckers et al. (2014a). In the end, we suggest anyway that comparing 

the binary images to the grayscale images is a subjective necessary first step to 

evaluate the segmentation quality. 
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5.1. Macroscopic measurements 

5.1.1. Soil physical properties 

The agricultural soil we studied showed large variations between samples with 

porosity values ranging from 43.09 % to 57.70 % (mean of 49.73% +/-1.57%) and 

density from 1.12 to 1.51 g/cm³ (mean of 1.33 g/cm³ +/- 0.04 g/cm³). Table 5 

presents the maximum, minimum, and average values as well as the associated 

standard deviations of the logarithmic Ks (cm/d) and ka (µm²). As expected, the 

range of Ks and ka values is large due to the singular nature of pore network 

organization and the resulting transfer properties. Figure 19 displays the power-law 

type relationship between ka and the associated air-filled porosity, measured from 

the SWRC, as also observed by Ball and Schjønning (2002). There was, however, no 

linear relationship between log(Ks) and log(ka) as opposed to what has been shown 

in other studies (e.g. Loll et al., 1999, Mossadeghi-Björklund et al. 2016). The 

SWRC of four samples were not measured due to equipment failure and Table 6 

presents the air-filled porosity of the twenty remaining soil samples. That value is 

latter use as a target to reach for the segmentation of the grayscale X-ray µCT 

images. Table 6 also presents the Lab_FD, latter used to characterize each SWRC by 

one value. 

 

 

Figure 19. Logarithmic laboratory measured air permeability [ka, µm²] versus logarithmic 

laboratory measured air-filled porosity for all soil samples at all water matric potentials. 

 

 



Results & Discussions: the field experiment 

45 

Table 5. Logarithmic saturated hydraulic conductivities (Ks, cm/day) and air permeability 

(ka, µm²) measured  of -4 kPa, -7 kPa, -10 kPa, -30 kPa and -70 kPa (minimum values [Min], 

maximum values [Max], mean values [Mean] and standard deviation [St dev]) 

 
[cm/day] log [µm²] 

  log(Ks) ka(-4 kPa) ka(-7 kPa) ka(-10 kPa) ka(- 30 kPa) ka(-70 kPa) 

Calibration data set 

Max 1.591 2.920 3.076 2.992 3.235 3.231 

Min 0.443 0.059 0.017 0.095 0.418 0.936 

Mean 1.015 1.681 1.735 1.916 2.164 2.318 

St dev 0.149 0.505 0.478 0.478 0.603 0.400 

Validation data set 

Max 1.709 1.773 2.532 2.718 2.837 3.217 

Min 0.352 0.395 -0.051 0.581 1.077 0.402 

Mean 1.149 1.132 1.018 1.601 1.852 1.885 

St dev 0.400 0.801 1.028 1.013 0.893 0.891 

All data 

Max 1.709 2.920 3.076 2.992 3.235 3.231 

Min 0.352 0.059 -0.051 0.095 0.418 0.402 

Mean 1.049 1.584 1.572 1.853 2.086 2.220 

St dev 0.147 0.443 0.445 0.424 0.496 0.376 

 

 

 

 

 

 

 

 

 

 



Soil hydrodynamic properties: comparison of microscopic and macroscopic measurements 

46 

Table 6. Laboratory measured air-filled porosity at a water matric potential of -1 kPa 

(Lab_PO) and the fractal dimension extracted from the laboratory measured soil water 

retention curve (Lab_FD) for all soil samples. 

  Lab_PO Lab_FD Lab_PO  Lab_FD 

#1 7.91 2.873 #13 nd nd 

#2 13.51 2.909 #14 6.94 2.8547 

#3 13.46 2.890 #15 11.10 2.8847 

#4 10.47 2.901 #16 nd nd 

#5 9.81 2.882 #17 nd nd 

#6 6.67 2.884 #18 5.69 2.7961 

#7 13.36 2.896 #19 13.80 2.9021 

#8 7.94 2.888 #20 17.18 2.8733 

#9 9.29 2.842 #21 4.60 2.8329 

#10 nd nd #22 3.64 2.8578 

#11 4.61 2.835 #23 4.34 2.8561 

#12 4.77 2.855 #24 12.63 2.8354 

 

5.1.2. Soil chemical properties 

Figure 20 presents the relative content of the total organic carbon (TOC), and of 

the iron extracted from the three previously quoted techniques. Quick ANOVA 

confirmed the visual trend that TOC was highly significantly different according 

cultural practices (CT, conventional tillage; or RT, reduced tillage), as well as was 

the complex form of Fe (Fe_pyrophosphate). It has often been observed that reduced 

tillage practices induce an accumulation of soil organic matter (SOM) by decreasing 

the SOM decomposition (e.g. Six et al., 2000). At the aggregate scale, Gao et al. 

(2017) also observed significant differences in SOM between the same fields we 

studied (CT and RT). The Fe forms extracted with DCB and oxalate were highly 

significantly different according to tillage but also according to the year of sampling. 

We did not have the objective to compare cultural practices or sampling year but 

these results should be kept in mind for the following comparisons to microscopic 

parameters from X-ray µCT images.  
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When all the samples were taken into account, TOC was negatively correlated to 

all the free forms of iron (Fe_DCB) and positively to the complex form of iron 

(FE_pyrophosphate). Crytalline Fe oxide (Fe_DCB) was also negatively correlated 

to amorphous Fe oxide (Fe_oxalate). These correlations were credible because of the 

presence of two opposite groups (Fig. 21), yet these were logical because, first, the 

complex forms of iron (Fe_pyrophosphate) play an important role in the stabilization 

process of the SOM through electrical bridges (e.g. Kleber et al., 2015 ; Oades, 

1988; Wagai and Mayer, 2007), and, second, the amorphous forms of iron 

(Fe_oxalate) that are crystallized become crystal iron (which are identified with a 

DCB extraction) and as more TOC there is, the less crystallization occurs (Oades, 

1988). Any sub-correlations reported within groups of samples (according sampling 

year or tillage) confirmed these observations (Fig. 22 and 23). 

 

 

 

Figure 21. Upper graph: Iron content extracted with oxalate (Fe_Oxalate) versus iron 

extracted with DCB (Fe_DCB) for all soil samples. Lower graph: Total organic carbon 

(TOC) versus iron extracted with pyrophosphate (Fe_Pyrophosphate) for all soil samples. 
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Figure 22. Total organic carbon (TOC) versus iron extracted with DCB (Fe_DCB) for both 

sampling year. 
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Figure 23. Upper graph: Iron content extracted with oxalate (Fe_Oxalate) versus iron 

extracted with DCB (Fe_DCB) for the samples from the conventional tillage experiment. 

Lower graph: Total organic carbon (TOC) versus iron extracted with DCB (Fe_DCB) for the 

samples from the reduced tillage experiment. 

5.2. Microscopic measurements 

This section deals with the features (pores) characterization of the X-ray µCT 

images. In priority, the segmentation quality must be assessed to ensure consistent 

pore identification. The pores characteristics quantification was then performed on 

the X-ray µCT images taken at a water matric potential (h) of -70 kPa where we 

assumed all the potential visible porosity was air-filled. A following research 

question evaluates the changes in microscopic parameters values with resolution and 

h.  

5.2.1. Evaluation of the segmentation quality 

As demonstrated above, the segmentation has a great impact on the visible 

porosity calculated on the X-ray µCT image and on the extracted microscopic 
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measurements (Lamandé et al., 2013, Paper I). We, therefore, visually verified the 

accuracy of the global segmentation on each of the 104 X-ray µCT images by 

superimposing the binary images on the grayscale images. For the 24 samples 

scanned at h = –70 kPa, it appeared that the porosity-based (PBA) global 

segmentation method  did not provide satisfactory results for two soil X-ray µCT 

images (#2 and #7 from the calibration set and #20 from the validation set). These 

samples had a large air-filled porosity at h =-1 kPa (Lab_PO); the PBA 

segmentation method therefore increased the TH (increased µCT_PO) to obtain a 

µCT_PO as close as possible to Lab_PO (resulting threshold of 94 [0-255]). Otsu’s 

method was, therefore, applied to these three samples and the global TH values for 

samples #2, #7 and #20 were 67, 69 and 69 (0-255), respectively. The comparison to 

the TH values obtained with the PBA method for the other samples supported this 

processing choice (Table 7). Paper II exposes the plausible physical explanations 

that lead to use the Otsu’s segmentation rather than the PBA method for samples #2, 

#7, and #20. 

Table 7. Global threshold (TH) values for all soil samples scanned at a water matric 

potential of -70 kPa 

Sample 
TH  

(0-255) 
Sample 

TH  

(0-255) 
Sample 

TH  

(0-255) 
Sample 

TH  

(0-255) 

#1 70 #7 94 #13 57 #19 78 

#2 94 #8 69 #14 60 #20 94 

#3 71 #9 60 #15 61 #21 58 

#4 68 #10 58 #16 60 #22 60 

#5 71 #11 58 #17 61 #23 58 

#6 69 #12 58 #18 61 #24 61 

 

Finally, the samples #10, #13, #16 and #17 were segmented using the Otsu’s 

method because their SWRC were not measured. The resulting X-ray µCT images 

taken at other h than - 70 kPa were segmented using the Otsu’s method because the 

Lab_PO used to segment the X-ray µCT images taken at -70 kPa could not 

rationally be used as a target for the segmentation of the X-ray µCT images taken at 

other h. Moreover, the Otsu’s and PBA have provided all along very close threshold 

values and Otsu’s method was proven quite equivalent to PBA when histogram 

peaks were quite distinct (Paper I and Fig. 24); even if the PBA method has the 

advantage of providing a physical background to the segmentation process. 
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Figure 24. Grayscale histogram of the sample #1 3D image scanned at a water matric 

potential of -10 kPa. 

5.2.2. Microscopic parameters values at full potential visible air-filled 

porosity  

We hypothesize that the X-ray µCT images scanned at h = - 70 kPa are the images 

where all the potential visible porosity is air-filled and we illustrate that latter. The 

detailed results are presented in Paper II. Major findings were that the calculated 

µCT porosities, taking into account pores of at least five voxels, were only slightly 

higher than those calculated taking into account pores of at least 1000 voxels. The 

differences between µCT porosities represented +/- 90% of the number of pores and 

the pores having a volume between five and 1000 voxels turned out to be the small 

pores as defined in Table 3. The average pore volumes of the small (Avg_Svol) and 

big (Avg_Bvol) pores were also highly correlated, although these parameters were 

calculated on strictly different pores. This suggests there is a dependency between 

pores of different sizes. 

As stated earlier, the pore network skeleton, and the resulting pore identification 

and characterization, is highly sensitive to the scanning equipment and procedure, 

the image processing, and the skeletonization process. Houston et al. (2017) have 

recently assessed that the used software for features characterization, and the 

decomposition method that goes with it, influence the final pore size distribution. 

Compared to others studies (e.g., Garbout et al., 2013 or Katuwal et al., 2015b), we 

indeed observed a larger amount of pores that might as well come from the 

resolution we worked with, or the pore identification method. We therefore 

calculated a connectivity indicator derived from the percolation theory (the global 

connectivity parameters, Γ) from the pore size distribution obtained with the 

algorithm of Plougonven (2009) implemented in Avizo®, and from the cluster size 

distribution obtained with the BoneJ plugin (Doube et al., 2010) available in ImageJ 

(Schneider et al., 2012). We observed drastically different Γ values from the two 
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methods of computation. The very low values of Γ from Avizo came from the large 

amount of pores and the smaller volume (by two orders of magnitude) of the largest 

component than the one identified in BoneJ. In the following, we used the Γ value 

computed from the BoneJ’s cluster size distribution to be comparable to Sandin et 

al. (2017) who found a link between log(Ks) and Γ.  Regarding the others indicators 

of connectivity, we observed that AvgZ was correlated to the degree of connectivity 

(B/J) but not to the Euler number (ε) or to the surface connectivity (SC) while B/J 

was correlated to ε and not to SC, and SC was correlated to ε. These connectivity 

indicators did not carry the exact same information and should, therefore, be used 

for their potential explanatory power, as pointed out by Renard and Allard (2013) 

and Katuwal et al. (2015a).  

 

 

 

Figure 25. First, second and third dimensions of the variables principal components. 
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In addition to our Paper II, we performed a principal component analysis to 

validate the observed correlations. Figure 25 represents, on one hand the first and 

second dimension, and on the other hand the second and third dimension of the 

performed PCA. The combination of the second and third axis is the best 

representation of the projected variables (sum of the cos²). The degree of anisotropy 

(DA) and the tortuosity (τ) were not well projected on any axis, and indeed, these 

variables were not correlated to any microscopic parameters (for DA), or correlated 

without physical meaning (for τ). The average volume of all the pores, the smallest 

pores and the biggest pores contribute mostly to the construction of the first axis in 

combination to AvgZ. It indeed appeared that larger pores tended to be more 

connected. We also observed that the specific surface (SS), the total pore network 

length (L), the number of branches (B), of junctions (J) and of pores (NP) were all 

highly correlated as confirmed by the PCA with, however, different contributions to 

the first and second axis for L and NP compared to B, J, and SS. We although 

decided to work with all these parameters (instead than with a factorial component) 

for the subsequent analyses to hold to the physical meaning behind the microscopic 

parameters. 

5.3. Research question #1: Which microscopic parameters 

explain the best the soil hydrodynamic properties measured at 

the sample scale? 

That research question was extensively presented in our Paper II and we here 

review the main findings. 

5.3.1. Measured, calculated and predicted soil water retention curves  

As previously stated, samples #10, #13, #16 and #17 were not included in this 

section because their SWRC were not measured; the calibration data set for these 

sub-section included 14 samples instead of 18. First, the poor fit between µCT_PO 

(13.95%) and Lab_PO (7.91%) for sample #1 is likely due an under-evaluation of 

the saturated sample weight leading to a smaller Lab_PO measurement. Figure 26 

indeed shows that a large macropore is connected to the bottom of the sample. Then, 

all the others samples that were segmented with the PBA segmentation method 

showed similar values of µCT_PO and Lab_PO since that latter was used as a target 

during the segmentation process. Elliot et al. (2010) also found congruent air-filled 

porosity values measured by X-ray µCT (voxel size of 45³µm³) and by weight 

determination. The difference between µCT_PO and Lab_PO increased with 

Lab_PO but wasn’t correlated to any microscopic parameters. We although presume 

that the pore network real connectivity would explain the imperfect applicability of 

the capillary law as Parvin et al. (2017) observed it.  
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Figure 26. Vertical slice in the middle of sample #1. 

Although it is imperfect, the capillary theory was applied to the pore-size 

distribution extracted from the X-ray µCT images and the resulting calculated air-

filled porosities were adjusted to the total laboratory porosity. This lead to the 

calculation of a SWRC including µCT data and pressure plate’s data (µCT+PP), 

which were afterwards fitted with the bimodal version (Durner et al., 1994) of the 

van Genuchten (1980) model, and compared to the fitted SWRC measured with 

pressure plates only (PP). In the end, mainly the fitted parts of the SWRC close to 

saturation were different between the two methods since only large pores were 

visible. That procedure was inspired from Beckers et al. (2014a) and successfully 

applied in Parvin et al. (2017). We obtained similar results than these two studies 

where volumetric water content (θ) close to saturation was higher when predicted 

with µCT+PP data than with PP data. RRMSE values were better for SWRC fitted 

from µCT+PP than only with PP data (except for sample #1 again since the total 

porosity and the θ are both dependent of the sample saturated weight). Lamandé et 

al. (2013) also found that X-ray µCT measurements (voxel size of 600³ µm³) 

allowed a more complete description of the pore space than classical laboratory 

measurements, and Rab et al. (2014) have concluded that X-ray µCT was likely a 

better method than laboratory SWRC measurements for determining air-filled 

macroporosity (pores larger than 300 µm in diameter). Although the connectivity of 

the pore network was not taken into account with the X-ray µCT SWRC calculation, 

the use of microscopic information improved the prediction of continuous SWRC 

with the bimodal version (Durner, 1994) of the van Genuchten model (1980). The 

determination of SWRC through pressure plate measurements are likely more 

representative of the in-situ soil hydrodynamic, but those are not free of artifacts (air 

entrapment, incomplete saturation), as observed with sample #1. 
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5.3.1.1. Water content along the soil water retention curve 

We analyzed the relationships between θ measured at various h and the 

microscopic measurements. We found that θ measured at h = -500 kPa and h = -

1500 kPa were positively correlated to log(Avg_vol) (ρ = 0.68, BF = 16 and ρ = 

0.70, BF = 25), as well as to log(Avg_Bvol) (ρ = 0.72, BF = 34 and ρ = 0.72, BF = 

33), and log(Avg_Svol) (ρ = 0.63, BF = 7 and ρ = 0.65, BF = 10). Figure 27 shows 

the logarithmic relationship between the average volume of the biggest pores and θ. 

Tested regression models showed that the logarithmic values of the averages pore 

volumes were the best predicators. 

 

 

Figure 27. Laboratory measured volumetric water content at a water matric potential of -

1500 kPa versus the microscopic average volume of the biggest pores (Avg_Bvol). 

The retained soil water at h = -500 kPa and h = -1500 kPa is in the pores that are 

not visible on the X-ray µCT images because of their small sizes. These regression 

models therefore suggest that the average volume of the visible pores (i.e. the largest 

pores) influences the dry end of the retention curve. To our knowledge, this 

observation was never reported. For example, we recall the often-used van 

Genuchten formulation of the continuous expression of θ(h) : 

 

𝜃(ℎ) = 𝜃𝑟 +
(𝜃𝑠−𝜃𝑟)

[1+(𝛼ℎ)𝑛]𝑚                            [Eq.11] 

   

Where θ(r) is the residual water content, θ(s) is the water content at saturation, h is 

the water matric potential and α, n and m are fitting parameters (van Genuchten, 

1980).  
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Mainly adsorptive forces govern at high negative water matric potentials (Fig. 28 

from Daly et al., 2018), another proposition would rather be that pore sizes are 

connected across scales, as previously seen with the high correlation between the 

average pore volume of the small and big visible pores. 

 

 

Figure 28. 3D representation of an artificial soil pore network with solid phase in brown, 

water phase in blue and air phase in white. The red dot on the soil water retention curve 

indicates the water matrix potentials at which the snapshot was taken (Source: Daly et al., 

2018). 
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5.3.2. Saturated hydraulic conductivity and soil porous structure  

Log (Ks) measured on the 24 samples was positively correlated to the global 

connectivity indicator (Γ) computed from the BoneJ cluster size distribution 

(ρ=0.59, BF=10) as observed in Sandin et al. (2017). Figure 29 shows the 

observations of the calibration data (black circles), the observations of the validation 

data (white circles), the predicted validation points with the 50% quantiles of the 

regression model (crosses) and the 25% and 75% quantiles of the regression models 

(dotted lines). The 50% quantiles of the regression models provided a RRMSE of 

0.492 for the validation data and the predicted data points were, in most cases, 

underestimated. The reported regression models that included two explaining 

variables reported light credible evidence only in the cases where Γ was one of the 

explaining variables. We did not observe relationships between µCT_PO and 

log(Ks), despite what the literature reported (Luo et al., 2010b; Kim et al., 2010; 

Mossadeghi-Björklund et al., 2016 or Naveed et al., 2016). The measured Ks from 

those studies were, however, higher by several orders of magnitude.  

 

 

Figure 29. Logarithmic saturated hydraulic conductivity (Ks) versus global connectivity (Γ) 

calculated from the cluster size distribution extracted from BoneJ. 

We did observe a positive correlation between log(Ks) and FD when the 

calibration samples were separated in two groups according to their Ks values 

(Fig.30, black circles). By using the Ks value as a boundary, the validation data were 

visually assigned to a group (Fig. 30, white circles). The global RRMSE calculated 

on the predicted points was 0.260, which is a rather good performance (Fig. 30, 



Results & Discussions: the field experiment 

59 

crosses). The 25 and 75% regression model quantiles were highly dispersed (Fig. 30, 

dotted lines) inducing uncertainty about the regression model.  

 

 

Figure 30. Logarithmic saturated hydraulic conductivity (Ks) versus the fractal dimension 

measured on X-ray µCT images (FD). 

The fractal geometry measures the ability of the studied object to fill the Euclidian 

space within which it is integrated and, the larger the FD, the closer to a real fractal 

the object gets, meaning that its shape is similar at different scales. Although 

Pachepsky et al. (2000) reported that soils are far from being real fractal, Perret et al. 

(2003) and Kravchenko et al. (2011) pointed out that FD can be used as a global 

measure of the pore network complexity. For example, FD was found to vary with 

depth or soil treatment (Rachmann et al., 2005; Udawatta and Anderson, 2008; Kim 

et al., 2010). Anderson et al. (2014) also observed a positive correlation between 

log(Ks) and FD. By applying the regression equations, log(Ks) of group 1 equaled 

log(Ks) of group 2 when FD = 2.935, which was close to the upper limit of the 

possible FD values of a 3D object (Fig. 31). At FD=3, the object (the porosity) 

occupies each point of 3D Euclidian space, but that also meant that log(Ks) was 

limited to 128 cm/day. Would more groups be created with increasing conductivity 
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and would the slopes of the relationships decrease? Would the solutions of the 

regression equations be identical when the fractal dimension equals three? 

 

 

Figure 31. Application of the group 1 and group 2 regression models. 

Although no microscopic measurements explained the separation of the samples in 

two groups, we noticed that some of the less conductive samples presented one or 

two large macropores (not necessarily vertically oriented nor connected from top to 

bottom) while some of the more conductive samples had more dispersed pore 

networks, and we observed a negative trend (not credible) between FD and the 

degree of anisotropy (DA) for group 2, but not for group 1. This suggested that the 

porosity arrangement led to the composition of two groups for the relationship 

between FD and log(Ks).  

Anisotropy indeed impacts the soil conductivity (Ursino et al., 2000; Raats et al., 

2004; Zhang, 2013). After removing two outliers from the calibration data set (#9 

and #10), we obtained a correlation coefficient of 0.74 (BF = 125.3), which presents 

a convincing link that has, to our knowledge, not been seen before. Figure 32 plots 

log(Ks) as a function of DA (black circles for the observations of the calibration 

data). Applying the regression model to the validation data gave variable quality 

results due to the presence of outliers within the validation data set. It appeared that 

the relationship between DA and log(Ks) may not be suitable for highly conductive 

soil sample presenting isotropic-like porosity distribution.  

Such a positive correlation could be interpreted as a consequence of preferential 

flow through large macropores. For example, Dal Ferro et al. (2013) have found that 
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anisotropy was scale-dependent by showing higher average DA in soil cores than in 

soil aggregate, they hypothesized that as a possible consequence of biological and 

mechanical macropores. This was later confirmed by a second study where they 

showed that only the macropores in the range of 250-500 µm were correlated to the 

global DA (Dal Ferro et al., 2013).  

 

 

Figure 32. Logarithmic saturated hydraulic conductivity (Ks) versus the soil degree of 

anisotropy measured on X-ray µCT images (DA). 

As explained in the Materials and Methods section, calculating a global direction 

of anisotropy is not straightforward. Table 8 provides, for each soil sample, the 

smallest eigenvalue of the ellipsoid and its associated eigenvector, the principal 

direction is in bold. For four samples, the fitted ellipsoid had equal eigenvalues (due 

to a display algorithm failure) and the smallest one could not be determined (nd). Ks 

was measured along the z-axis (vertically) but the main direction of the longest MIL 

(or smallest eigenvalue) was not systematically in that direction. Therefore, the 

positive correlation between DA and log(Ks) was not necessarily a result of 

preferential pore networks paths. Moreover, the directions of the pores connections 

(Table 8) showed that a majority of the pores junctions were horizontal (x- and y-

axis). The repartition was almost always the same between samples, 60% of 

horizontal and 40% of vertical connections.  
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Table 8. Logarithmic saturated hydraulic conductivity (Ks), degree of anisotropy 

calculated on X-ray µCT images (DA), and corresponding characteristics for the calibration 

data set samples. 

 

We reported here that the porosity arrangement described by the global 

connectivity, the fractal dimension and degree of anisotropy had an impact on the 

soil conductivity, the combination of those indicators provides information that 

could be used across scales and to eventually better estimate Ks. No other 

relationships between log(Ks) or Ks and the other microscopic measurements were 

reported. 

5.3.3. Air permeability variations explained by microscopic structure 

Macroscopic measurements showed, as expected, that the air permeability 

increased with air-filled porosity. We also observed positive credible Bayesian ρ 

between log(ka) measured at various h and microscopic indicators of the porosity, 

although only log(ka,-70 kPa) was positively correlated to µCT_PO. Given the X-

ray µCT image resolution, µCT_PO should be representative of the air-filled PO 
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measured at h = -1 kPa although the soil samples were scanned at h = -70 kPa. The 

choice to scan soil samples at h = -70 kPa was a compromise between the fact that 

all the potential visible porosity should be air-filled and avoiding cracks due to 

drying, and this particular correlation suggests that all the potential visible porosity 

was indeed air-filled. In their study, Katuwal et al. (2015b) and Naveed et al. (2016) 

both observed a power-law function between, respectively, ka(-2 kPa) or ka(-3 kPa) 

and µCT_PO. The µCT_PO calculated on their images is equivalent to the 

Large_PO on our images as previously stated, and we also reported positive 

correlations between Large_PO and log(ka). Therefore, the difference between 

µCT_PO and Large_PO might be the part of the PO that should have drained at low 

negative potential (from the capillary law), but was actually drained at higher 

negative potential (due to unusable pathways). We refer to Hunt et al. (2013) to 

name that part of porosity, the inaccessible porosity. This assumption was confirmed 

by the credible correlations between the inaccessible PO and several microscopic 

parameters that express a notion of pore network complexity. We previously pointed 

out that drawback when calculating SWRC from the X-ray µCT data: the 

connectivity was not taken into account. We here confirmed that the pore network 

connectivity play a role in the desorption process.  

The best regression models calculated on the calibration data (BF) and applied on 

the validation data reported that the best explaining variable for all measures of 

log(ka) (RRMSE) was the average pore volume of the smallest pores (Avg_Svol). 

That parameter might be seen as a limiting factor, and this suggests that ka was more 

related to pores size distribution than porosity. Figure 33 displays log(ka, -70kPa) as 

a function of Avg_Svol and the distribution of the 25 and 75% regression model 

quantiles are rather narrow. The RRMSE equaled 1.256; or 0.0649 when the two 

worst predicted validation data points were not taken into account. The RRMSE for 

log(ka, -30kPa) and log(ka, -10kPa) were around 0.800 with one bad validation data 

point, and the RRMSE for log(ka, -7kPa) was very high (8.154) with three badly 

predicted data points out of five. The combination of Avg_Svol and average pore 

volume of all pores (Avg_Vol) performed slightly better in some cases, and slightly 

worse in others. Figure 33 shows the predicted log(ka) from Avg_Svol and Avg_Vol 

versus the observed log(ka) values. Although the RRMSE were acceptable, the 

regression model distributions (the error bars represent the 75% regression models 

quantiles) were high which inducing large uncertainty. That combination of two 

explaining variables was, in all cases, the best regression model of two explaining 

variables models. Other important explaining variables were the average 

coordination number (Avg_Z), the proportion of isolated porosity (IPO), the average 

pore volume of the biggest pores (Avg_Bvol) and the combination of µCT_PO and 

Large_PO.  
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Figure 33. Upper graph: logarithmic air permeability measured at a water matric potential of 

-70kPa (ka) versus the average pore volume of the smallest pores (Avg_Svol). Lower graph: 

the predicted logarithmic air permeability (ka) from the average pore volume of the smallest 

pores (Avg_Svol) and all pores (Avg_Vol) versus the observed logarithmic air permeability. 

Error bars represent the 75% regression model quantiles. 
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5.3.4. Practical conclusion and discussion 

Studying the soil with X-ray µCT is widespread, but studying it with a small voxel 

size (43³ µm³) is not. First, a pertinent observed link was the positive relationship 

between the average volume of the biggest pores and that of the smallest ones, 

suggesting dependence between pores of different volumes.  

Then, on one hand, we confirmed previously observed results, such as the better 

prediction of SWRC near saturation from X-ray µCT derived pore size distribution, 

although the pore network connectivity was not taken into account. The 

determination of SWRC through pressure plate measurements are likely more 

representative of the in-situ soil hydrodynamic, but these are not free of artefacts; for 

example, air entrapment might result in uncomplete saturation leading to inaccurate 

estimation of the air-filled macroporosity. We also confirmed that the microscopic 

global connectivity explained the saturated hydraulic conductivity. On the other 

hand, we observed unprecedented relationships, such as the degree of anisotropy and 

fractal dimension also explaining the saturated hydraulic conductivity (with some 

limitations). It is therefore tempting to combine these three indicators to generate 

information that could be used across scales and to eventually better estimate Ks. 

That value is indeed important when it comes to the prediction of the hydraulic 

conductivity curve (Vogel and Roth, 1998). We also observed that the average 

volume of the smallest pores (between 4 x 10
5
 and +/- 8 x 10

7
 µm³) best explained 

the air permeability; we eventually suggested that parameter works as a limiting 

factor.  

Identifying global parameters that convey the complexity of the pore network is a 

motivating goal to reach. For example, these parameters could be used for the 

generation of phenomenological pore network models (e.g. Vogel and Roth, 1998; 

Köhne et al., 2011), which in turn could be used for the simulation of fresh 

equations linking physics and biology to explain water and air fluxes within the soil 

(Hunt et al., 2013). The accurate characterization of the SWRC is important for the 

study of life in soil (e.g. microbial development being water content-dependent in 

Davidson and Janssens, 2006; soil fungal growth in Falconer et al., 2012), as well is 

the accurate characterization of the soil air permeability (e.g. plant growth in Ben-

Noah and Friedman, 2018). Conversely, soil life affects the soil hydrodynamic 

properties. For example, besides physically modifying the soil structure or the water 

dynamic by uptake, the root system influences the soil water retention capacities and 

transport properties by modifying the spatial liquid phase configuration through the 

physical properties of mucilage (Daly et al., 2017; Pascal et al., 2018). Or as well, 

microbial biofilms could affect the pores sections and the resulting soil fluid 

velocities (Kerboas et al., 2018). Soil structure and functions form a single whole, 

and a comprehensive understanding of the soil water and air dynamic could be 

achieved when physical and biochemical processes will be coupled and simulated 

together. 
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5.4. Research question #2: How do the microscopic parameters 

evolve with resolution? 

5.4.1. Pore repartition 

Figure 34 presents the pore repartitions as a function of the pore radius for the 

µCT measurements on the soil sample and aggregate, as well as retention curve 

measured with pressure plates (PP), and desorption curve measured with DVS. As 

mentioned previously, the X-ray µCT image of the sample at h = -70 kPa identifies a 

greater number of large pores than the macroscopic measurement of the sample 

retention curve. As well, the DVS measurement did not identify the large pores 

constituting the largest part of the aggregate porosity. This is likely due to the fact 

that the largest pores were connected with the atmosphere and could not retain 

water. Figure 36 presents a 3D view of the aggregate. DVS measurements although 

identifies pores smaller than the X-ray µCT resolution as reported by Dal Ferro et al. 

(2012) who compared results from µCT and mercury intrusion porosimetry. 

Figure 35 presents pore repartition of others soil samples scanned at h = -70 kPa 

which confirms that curves are different between samples scanned at the same 

resolution. Interestingly, the µCT pore repartitions of the aggregate and sample 

show similar curve shapes with a scaling factor of six. The scaling factor between 

the X-ray µCT voxel sizes was 4.78 and the scaling factors between the scanned 

volumes was 5.38. This suggests that the pore repartition between scales could be 

similar. We previously observed that the average pore volume of the small pores 

(volume between 5 and +/- 1000 voxels) was highly correlated to the average pore 

volume of the biggest pore (volume between +/- 1000 voxels and the largest pore), 

implying a possible relationship between pore of different sizes. The sample 

analyzed at 21.5³ µm³ does not however present the concavity between the two 

picks, as observed for the coarsened resolution or for the µCT image of the 

aggregate. Comparing the sample scanned at 21.5³ µm³ and coarsened to 43³ µm³, it 

appeared that the former present a pore repartition with more large pores then 

medium size pores. The highest resolution made visible the connections that were 

invisible at 43³ µm³. These likely connected the medium size pores together to form 

larger pores. Then, the pore repartition of the sample at 21.5³µm³ and the soil 

aggregate are shifted in different directions. The large pores observed within the 

sample are likely inter-aggregate pores. The pick around a radius of 100 µm for the 

X-ray µCT soil aggregate image is about pores that were likely not visible at the 

sample scale since we counted at least 5 voxels in volume for a pore to be 

considered. The combination of the aggregate and sample scans could therefore 

provide a more complete description of the soil pore size distribution. 
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Figure 34. Pore repartition measured by pressure plates (green line), desorption-sorption 

vapor (blue line), on X-ray µCT images of the soil aggregate (red line), and on X-ray µCT 

image of the soil sample at a voxel size of 43³ µm³ (black line) and 21.5³µm³ (yellow line). 

 

Figure 35. Pore repartition measured on X-ray µCT images (43³ µm³) of several soil 

samples. 
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Figure 36. 3D representation of the soil aggregate (left) and the soil sample #12 (right). 

5.4.2. Microscopic parameters 

5.4.2.1. Porosity indicators 

The aggregate porosity (µCT_PO) was larger than any of the other measures 

although its fractal dimension (FD), total pore network length (L) and number of 

pores (NP) were smaller (Table 9). This should come from pores larger relatively to 

its total size (Fig. 36). The comparison of the aggregate porosity indicators to the 

extrapolated ones (8.99³ µm³) for the same voxel size was not conclusive. It is likely 

that the hypothesis about the regular and continuous changes in µCT porosity and 

pore geometries across scales was not valid. As well, the comparison between the 

sample µCT porosity indicators and the extrapolated ones (21.5³ µm³) was not 

conclusive. The extrapolated µCT_PO is 150% higher while the number of pores 

(NP) is overestimated by 400%, the smaller average pore volume counteracts that 

effects. The hypothesis was that the µCT_PO would increase with resolution, 

however, the µCT_PO, NP (and therefore L and FD) decreased from the coarsened 

resolution (43³ µm³) to the original resolution (21.5³ µm³). The pores were likely not 

30 mm 

5 mm 



Results & Discussions: the field experiment 

69 

distributed in the range made visible by the higher resolution (as shown in Fig. 34). 

Peng et al. (2014) and Shah et al. (2016) observed higher porosity and number of 

pores with higher resolution but also noticed that the resolution effects on X-ray 

µCT images were certainly dependent on the soil type. In our case, the 

skeletonization process could have altered the pore decomposition leading to less 

identified porosity. The comparison of the images from the two resolutions is 

therefore uncertain. Houston et al. (2013b) also observed that an increase in 

resolution would increase the amount of noise, and Shah et al. (2016) reported that 

the partial volume effect artefact increases with resolution. Extra attention should 

therefore be brought to the image processing. Figure 37 presents the grayscale 

images with the identified pore space superimposed in white color. The 

segmentation process with the porosity-based method clearly identified less porosity 

on the X-ray µCT images at 21.5³ µm³, but we also see that some pores merged as 

previously (red circle, lower row of Fig. 37). 

Table 9. Porosity indicators of the scanned sample (43³ and 21.5³ µm³) and aggregate 

(8.99³µm³), and from the extrapolation equations. 

 

The degree of anisotropy (DA) increased between resolutions, as FD decreased. 

We also observed in our Paper II a negative trend between DA and FD. This is 

inconsistent with Dal Ferro et al. (2013) who observed higher DA in soil cores than 

in soil aggregates. The extrapolated FD however increased with resolution due to the 

larger extrapolated porosity and number of pores. Regarding the sample with a 21.5³ 

µm³ voxel size, the porosity and number of pores decreased, so did FD. Regarding 

the aggregate, porosity increased but NP decreased as well as FD. The calculation of 

FD is dependent on the porosity but also on the number of boxes of the smallest size 

(Halley et al. 2004). 
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Figure 37. Upper row: Grayscale X-ray µCT images with the identified pore space in white. 

Lower row: Zoom-in of the binary X-ray µCT images. The original resolution (21.5³ µm³) is 

on the left-hand side and the coarsened resolution (43³ µm³) on the right-hand side. 

5.4.2.2. Connectivity indicators 

From the coarsened resolution (43³ µm³) to the original one (21.5³ µm³), the 

proportion of isolated porosity (IPO) and the Euler number (ε) decreased, the 

number of coordination (Avg_Z) increased as well as the global connectivity (Γ) and 

the total surface of connections (Con_Surf), see Table 10. This is consistent with our 

previous observations (Fig. 34) where we hypothesized that medium sizes pore 

probably merged to form larger pores. The value of Γ reflects that almost all pores 

were connected to each other. Houston et al. (2013b), comparing soils at 26 and 54³ 

µm³, did not observe a clear pattern of ε’s evolution. Shah et al. (2016) observed that 

Avg_Z remained identical for some of their studied rock samples. Again, resolution 

effects are highly soil-type dependent. The smaller tortuosity with resolution is also 

consistent with the observed increased pore network connectivity and the fairly 
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constant L (Table 9). Regarding the soil aggregate, IPO also decreased, and Avg_Z 

and Γ also increased with resolution, although not proportionally to the resolution. 

Again, inter-aggregate pores were contributors to the high connectivity observed at 

the sample scale and voxel size of 21.5³ µm³. Con_Surf and ε did not however 

increase (or decrease for ε) with resolution. This is likely due to the proportionally 

smaller number of pores (Table 9). The decrease in tortuosity is however consistent.  

Table 10. Connectivity indicators of the scanned sample (43³ and 21.5³ µm³) and 

aggregate (8.99³ µm³). 

  43³ µm³ 21.5³µm³ 8.99³ µm³ 

IPO [%] 8.491 4.939 7.609 

Avg_Z [-] 3.742 5.607 4.906 

SC [voxel
-1

] 0.283 0.209 0.172 

Con_surf [mm²] 4420 93141 4377 

Γ/IJ [-] 0.714 0.998 0.828 

ε [-] 7226 6018 7559 

τ [-] 1.280 1.253 1.205 

 

5.4.2.3. Hydrodynamic predicators 

Using the microscopic values from the X-ray µCT images at the original 

resolution (21.5³ µm³) to predict log(Ks) and log(ka) led to reasonable results 

between the 25- 50% quantiles of the regression models, in comparison to the 50-

75% for the X-ray µCT images at the coarsened results (43³ µm³), see Table 11. As 

well, Shah et al. (2016) and Peng et al. (2014) concluded that coarsening the µCT 

images was sufficient to resolve Lattice-Boltzmann or Kozeny-Carman equations to 

evaluate sample permeability. 
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Table 11. Observed and predicted logarithmic values of the saturated hydraulic 

conductivity (Ks) and air permeability measured at a water matric potential of -70 kPa (ka) 

for sample #12. Predictions performed from the microscopic parameters extracted from the 

original resolution X–ray µCT images (21.5³ µm³) and coarsened resolution (43³ µm³) X-ray 

µCT images. 

    
log(Ks) [cm/d] 

log(ka) -70kPa 

[µm²] 

Laboratory measurements 1.062 1.802 

Predicted from  Γ [-] DA [-] FD [-] Avg_Svol [mm³] 

  25% -0.319 0.743 -3.265 1.391 

43³ µm³ 50% 0.617 0.986 -0.347 1.8320 

 

75% 1.564 1.224 2.418 2.260 

  25% 0.201 1.020 -3.585 1.115 

21.5³ µm³ 50% 1.329 1.325 -0.782 1.504 

  75% 2.470 1.622 1.878 1.883 

 

5.4.3. Practical conclusion and discussion 

Studying X-ray µCT images at various resolutions leads to various identified pore 

spaces and various microscopic parameters values. Comparisons between 

resolutions are highly dependent on the image processing and the pore network 

decomposition, and the working resolution should ultimately depend on the final 

research purpose. As also observed by other researchers (for their case studies), it 

appeared that scanning at the highest possible resolution and then coarsening the X-

ray µCT image provide good results for our case study: due to the use of Bayesian 

statistics, which take into account the uncertainty inherent to the data, the 

microscopic parameters from the original, or the coarsened, resolution X-ray µCT 

images were both reasonable predicators of the sample-scale hydrodynamic 

properties.  

Increasing the resolution led to the apparition of yet invisible connections, the soil 

pore network is indeed a continuum across space. We however observed that the 

pore distribution of the studied soil is not necessarily better approached with a 

smaller minimal pore volume. Moreover, the visible minimal volume is limited by 

the sample size, and finer details about the pore network would therefore come with 

a loss of information due to the required smaller sample size (Vogel et al., 2010). 

After all, we hypothesize that rather than pore volume continuous scale-dependency 

(as initially proposed); the pore volumes distributions between specified pore sizes 

could be similar across scales.  That statement is similar to theories that postulate 

about the multifractal behavior of the SWRC (e.g. De Bartolo et al., 2018). 

 



Results & Discussions: the field experiment 

73 

5.5. Research question #3: How does the air-filled porosity 

vary with water matric potential? 

We first present a 3D visualization of identified pore space superimposed on the 

grayscale image of sample #20 scanned at -30 kPa. The volume in green is the 

identified pore space at -30 kPa that was not identified at -4 kPa. Some pores 

appeared and others got bigger with the increasing negative water matric potential 

(h). 

 

  

Figure 38. Upper row: X-ray µCT grayscale image of sample #20 scanned at -30 kPa with 

the green volume of the difference in identified pore space between -30 kPa and -4 kPa. 

Lower row: One slice of the X-ray µCT grayscale image of sample #20 scanned at -4 kPa 

(left-hand) and at -30 kPa (right-hand). 
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5.5.1. Global parameters 

Table 12 presents the significant differences of the global parameters on the 3D 

images from the same soil samples scanned at various h. As a reminder, the visible 

pore space on the 3D images is the air-filled pore space and we expect the pore 

space to grow with a higher negative h. Many global parameters evolutions were 

logical: 

- µCT porosity (µCT_PO) increased with increasing negative h, as did the fractal 

dimension (FD).  

- Euler number (ε) was smaller at smaller negative h coming from the smaller 

amount of isolated pores, although the ratio of isolated porosity (IPO) was not 

different between -4 kPa and -10, -30, or -70 kPa.  IPO was just larger at -10 kPa 

than at the other h. Figure 39 present the IPO values according h and samples.  

- Tortuosity (τ) decreased with increasing negative h, more pore pathways should 

be available, indeed, total pore network length (L) increased with h. 

- The averaged coordination (AvgZ) increased with increasing negative h except 

between -4 and -7 kPa where AvgZ decreased (from 3.81 to 3.68) but not 

significantly. Differences between -4 and -7 kPa are likely due to image 

processing and not from the soil sample drainage.   

- The average volume of the small pores (Avg_Svol) decreased between -4 and -

10 kPa, likely due to the apparition of smaller pores. 

- The global connectivity (Γ) increased with increasing negative h. 

The degree of anisotropy varied erratically between h (Figure 40) which is 

understandable since a growing pore space shouldn’t make the pore space more 

isotropic or anisotropic. Some pores appeared and others grew dependent on their 

volume but also mostly on their accessibility. 
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Figure 39. Proportion of isolated porosity (IPO, %) values by samples and water matric 

potential (h). 

 

Figure 40. Degree of anisotropy (DA, -) values by samples and water matric potential (h). 
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Table 12. ANOVA results for the global parameters between water matric potentials 

(expressed in absolute values). Refer to Table 3 for the definitions of the microscopic 

parameters. 

  

comparison between scans at water matric potential [kPa] of 

4-7 4-10 4-30 4-70 7-10 7-30 7-70 10-30 10-70 30-70 

µCT_PO * * * *     * * *   

ε 

  

* *       

  

  

FD  

 

* * *     * 

  

  

DA  

    

*     * *   

τ  * * * *       

  

  

L  

  

* *     * 

  

  

Avg_Z  

  

* * * * * 

  

  

SC  

    

      

  

  

IPO  

 

* 

  

      

 

*   

Avg_vol  

    

      

  

  

Avg_Bvol 

    

      

  

  

Avg_Svol  

 

* 

  

      

  

  

SS  

 

* ** **       

  

  

Γ/IJ      * *     *   *   

* 0.05 or ** 0.01 probability levels 

 

When including a covariate within the ANOVA model (ANCOVA analysis), it 

appeared that the hydrodynamic properties of the soil (Ks, ka measured at the 

specified h, and Lab_FD) influenced the significance of many tested global 

parameters. This means that the observed significant differences came from the 

particular hydrodynamic properties of the soil samples and not from purely 

processing variations of the X-ray µCT images quantification. In other words, we 

can be confident that the observed differences between 3D images of one soil 

sample scanned at various h, came from the inner hydrodynamic properties of the 

soil sample: how it drained in reaction to a specified negative h. Table 13 presents 

the relative efficiency of the ANCOVA over the ANOVA in cases where the 

covariate (left column) significantly changed the ANOVA outcome. Mainly the Ks 

and Lab_FD changed the ANOVA results to a higher test power.  
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We also performed ANCOVA analyses with the other microscopic parameters 

used as the covariate. On one hand, only ε and Avg_Svol ANOVA significance were 

changed but without a higher power (relative efficiencies between 0 and 1, except 

for the ε by FD), and on the other hand, results might be trickier to interpret since 

measurements were performed on the same data: these were not a priori or a 

posteriori bias. The soil connectivity expressed by the Euler number is not 

significantly different between images of the same soil samples scanned at various h 

when other microscopic parameters are taken into account. 

A principal component analysis between the samples scanned at various h as the 

individuals and the microscopic parameters as the variables, revealed that, although 

presenting varying global parameters with h, the combination of all the 

morphological and topological characteristics of the samples remained similar 

between h, in other words, the coordinates of the first four dimensions of the PCA 

remained similar between h (Fig. 41 and Fig. 42 for the first two dimensions). We 

quantitatively confirmed this with a K-clustering analysis which revealed various 

cases (Table 14): 

- case1: all samples from various h were included in the same cluster of 

coordinates (for samples #5, #9, #18, #20, #23); 

- case 2: all samples from various h were included in the same cluster but 

different than the initial one (for sample #24); 

- case 3: all samples from various h were included in the same cluster except the 

sample scanned at -70 kPa which was the initial (for samples #11, #22); 

- case 4: the samples scanned at -4 kPa had different coordinate than the 

samples scanned at the others h (for samples #1, #2, #6, #7, #8); 

- case 5: all the samples scanned at various h were close to the others samples 

scanned at various h (for samples #3, #4, #12, #14, #15, #19, #21). 

 

In cases where a sample at various h (individuals) was part of different clusters 

(case 3-5), the main differences between individuals came from the second 

dimension coordinates which was mostly constructed by the following well-

projected variables (cos²>0.5): the Euler number, the fractal dimension, and the 

tortuosity. 
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Table 14. K-clustering analysis from the fourth principal component analysis dimensions. 

The cluster numbers are identical to the sample numbers. 

  Water matric potential [kPa]   Water matric potential [kPa] 

Sample -70 -30 -10 -7 -4 Sample -70 -30 -10 -7 -4 

#1 1 1 1 1 24 #12 12 12 12 9 12 

#2 2 2 2 2 12 #14 14 14 11 11 18 

#3 3 3 4 4 24 #15 15 11 2 2 2 

#4 4 4 8 2 11 #18 18 18 18 18 18 

#5 5 5 5 5 5 #19 19 7 2 2 11 

#6 6 6 6 6 23 #20 20 20 20 20 20 

#7 7 7 7 7 20 #21 21 21 9 9 9 

#8 8 8 6 8 20 #22 22 21 21 21 21 

#9 9 9 9 9 9 #23 23 23 23 23 23 

#11 11 18 18 18 18 #24 22 22 22 22 22 

 

 

Figure 41. First and second dimensions of the individuals principal components for ten 

samples. One color per sample. 
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Figure 42. First and second dimensions of the variables principal components. The variables 

are the X-ray µCT global parameters. Refer to Table 3 for the definitions of the microscopic 

parameters. 

5.5.2. Local parameters 

The parameters evolutions between pore size ranges were logical with increasing 

connectivity and decreasing isolated porosity and averaged specific surface with 

growing pore size ranges. The conducted three-way ANOVA  firstly revealed 

differences between several parameters calculated on specified pore size ranges 

(Table 15), but the performed post-hoc Tukey’s test did not identify the significant 

differences between h. The mean squares of the following two-way ANOVA for the 

fixed parameters were indeed lower than the mean squares of the random interaction 

from the three-way ANOVA (higher sum of square). Neither Avg_Z nor the pore 

size distributions (f(r)) were different between h at any pore size ranges although 

Avg_Z was different between the lowest and highest negative h from a global point 

of view. The pore size distributions did not show any pattern between h, as 

illustrated by Fig. 43 for few samples. It then appeared that only the averaged 

specific surfaces (Avg_SS) of the smallest and biggest pores were affected by h. It is 

an opposite scheme for the surface connectivity (SC), the ratio of isolated porosity 

(IPO) and the average pore volume (Avg_Vol).  
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Table 15. Significant differences in local parameters between all water matric potentials. 

Refer to Table 3 for the definitions of the microscopic parameters. 

Min radius (µm) f(r) SS SC Avg_Z IPO Avg_Vol 

30   *         

37,5 

  

* 

   50 

 

*** 

    75 

 

*** ** 

   150 

 

*** ** 

   167 

  

*** 

 

** 

 187 

  

*** 

 

*** 

 215 

  

*** 

 

** ** 

250 

  

** 

 

** ** 

300 

 

* *** 

 

* 

 375 

 

*** ** 

   500 

 

*** ** 

 

** 

 600 

 

* ** 

   750 

     

* 

1000 

 

* 

    1500     *       

* 0.05, ** 0.01, or ***0.001 probability levels 
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Figure 43. Pore size distribution at various water matric potential for three samples.  



Results & Discussions: the field experiment 

83 

5.5.3. Practical conclusion and discussion 

From the capillary theory, the X-ray µCT images voxel size (43³ µm³), and the 

water matric potentials at which the samples were scanned, no visible (quantifiable) 

differences between X-ray µCT images of the same sample should have appeared. 

We although observed significant differences in global microscopic parameters 

between the lowest and highest h at which the samples were scanned and significant 

differences in pores specific surfaces, connectivity and average pore volumes 

calculated on specific pore size ranges. We therefore quantitatively confirmed that 

the capillary theory applied to soil fluxes is an approximation. Retention curve data 

are usually converted into an available volume of pore with a specific size 

characterized in terms of radius from the capillary law. It is likely that retention 

curves data should rather be approached in term of accessible volume of pores, 

volume that should be characterized with microscopic parameters representing the 

connectivity and arrangement of the pore space. 

5.6. Research question #4: How is the soil structure explained 

by organic carbon and iron content? At the origin of structure 

Table 16 presents the credible observed correlations between the contents of 

organic carbon and iron within the studied soil samples and the microscopic 

parameters measured on the X-ray µCT images from Table 3. Only the forms of iron 

extracted with DCB (Fe_DCB) and oxalate (Fe_oxalate) were correlated to either 

the soil porosity, either measures of connectivity, highlighting the ability of 

crystalline and amorphous Fe oxides to affect these microscopic parameters values 

(Fig. 44 for an example). Their correlations to microscopic measurements were in 

opposite direction as suggested by the previously reported negative correlation 

between Fe_DCB and Fe_oxalate. When only considering the soil samples from the 

CT experiment, the same correlations as in Table 9 were observed, with however a 

higher degree of credibility (Fig. 45, lower graph) due to the contrasted values of 

Fe_DCB and Fe_oxalate. TOC was however not correlated to any microscopic 

parameters due to its high dependence on tillage practices, neither were the complex 

forms of Fe (Fe_pyrophosphate). Figure 45 (upper graph) displays the Euler number 

versus the TOC content for all samples with a visual distinction of CT (black circles) 

or RT experiment (white circles). When only considering the soil samples from the 

RT experiment, TOC was positively correlated to the pore network tortuosity (τ, 

ρ=0.61, BF=3.91) and surface connectivity (SC, ρ=0.60, BF=3.28), and negatively 

correlated to the Euler number (ε, ρ=-0.65, BF=6.36). Six et al. (2000) showed that 

the macroaggregate turnover is twice as fast in CT than in RT and the formation of 

microaggregate within macroaggregate is reduced by a factor 2 in CT than in RT, in 

other words, there is more sequestration of organic carbon in RT than in CT. 

However, the same value of ε was observed in RT or CT experiment, and from a 

microscopic characterization point of view, we did not observe any differences 

between the tillage experiments. We therefore turn the question around: would the 

accumulation of organic carbon and resulting associations to free forms of Fe have 
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shaped the pore network and increased the connectivity and tortuosity? The 

monitoring of soil sample microscopic structure after incubation of Fe and organic 

matter could be an interesting option to evaluate the effects of organo-mineral 

associations on the evolution of the pre network complexity. For example, Schlüter 

and Vogel (2016) proposed an approach to track changes in soil structure with small 

incorporated garnet particles. 

Table 16. Correlations between Fe_DCB, or Fe_oxalate, and several microscopic 

parameters. Refer to Table 3 for the definitions of the microscopic parameters. 

  Fe_DCB Fe_Oxalate 

µCT_PO 0.48 -0.47 

Large_PO 0.48 -0.47 

Avg_Z 

 

-0.53 

ε 0.56 

 τ -0.61 0.52 

Con_Surf 

 

-0.51 

SC -0.57 0.48 

3>BF<10 in green; 10<BF<30 in yellow 

 

 

Figure 44. Tortuosity measured on the X-ray µCT images (τ) versus Fe extracted with DCB 

(Fe_DCB) for all soil samples. 
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Figure 45. Upper-graph: The Euler number calculated on the X-ray µCT images (ε) versus 

the total organic carbon content (TOC) for all samples. Lower-graph: Tortuosity calculated 

on the X-ray µCT images (τ) versus the Fe extracted with DCB (Fe_DCB) for the samples 

from the CT experiment. 
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The use of soil X-ray µCT images goes hand in hand with an appropriate image 

processing scheme. To be confident with the applied image processing 

methodology, a transversal objective of this dissertation was the evaluation of 

several segmentation methods and pre- and post-segmentation median filtering 

effects on the extracted data of the resulting binary images. To that purpose, we 

generated artificial 2D grayscale “simulated images” to be processed. We 

hypothesized the statistical outcomes would be transposable to 3D real soil grayscale 

X-ray µCT images. 3D processing should indeed be promoted instead of the 2D 

processing of 3D stacks, otherwise unrealistic pore space geometry could be 

generated (Kaestner et al., 2008; Tuller et al., 2013). We admit the generated 

grayscale histograms presented more distinct peaks than the ones from the real soil 

X-ray µCT images, we were however confident in the transposability of our research 

conclusions because the real soil X-ray µCT images histograms also showed two 

peaks (representing the air and “solid+liquid” phases), which is required for the 

proper use of the selected global segmentation method. Possible ways to improve the 

generation of grayscale simulated images are to evaluate the effects on the grayscale 

histogram of 1) the ratio of the pores sizes over the image size, and 2) the applied 

noise to the original binary phase. A critical analysis would also point out that local 

segmentation is more appropriate for 3D processing because scanner source 

inhomogeneity could occur and alter the phase’s identification across the sample 

height. In our case study, however, the X-ray microtomograph was equipped with a 

stabilized electron source and no density variations were observed. Moreover, local 

thresholding is more computationally demanding and the algorithms are usually not 

even written for large data set (e.g., greater than 8 Go). After all, beside the median 

filter, which is widely used, there are other edge-preserving filters in the literature 

that should/could also worth a test. The image processing methodologies applied in 

research papers are often not enough substantiated, and the generation of artificial 

images from which ground-truth information (the original binary phases) is available 

is the option we have chosen to justify the image processing methodology we 

applied. 

Because the multiple image processing steps can all have a profound impact on the 

binary images, it is less straightforward to compare studies and data. The open 

access to grayscale data would be an opportunity for more scientific outcomes and 

encouraging scientific collaboration and networking. We don’t argue in favor of 

image processing standardization because it is highly dependent on the raw 

grayscale image quality and subjective controls of the applied process should be 

performed. Standardization of pore decomposition methods could although be 

homogenized. A recent initiative by Koestel (2018) was the uploading of a user-

friendly ImageJ plugin specifically designed for the quantification of soil X-ray µCT 

images features. We have not tested it and we do not favor one method more than 

other, yet, more assessments of quantification algorithms, such as the review 

recently published by Houston et al. (2017), are necessary.  
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Last but not least, quantifying and weighing the uncertainty of the processed X-ray 

µCT images could as well bring improvement into the appropriate use of X-ray µCT 

information.  We did it within this dissertation through the use of Bayesian statistics 

when we analyzed the relationships of our X-ray µCT images to our laboratory 

measurements. Uncertainty could also be taken into account immediately from the 

segmentation step, for example, Kulkarni et al. (2011) proposed a Bayesian Markov 

random field framework to segment multiphase grayscale images. Another option 

would be to “classically” segment grayscale images and associate the resulting 3D 

binary images to a 3D uncertainty propagation map that would be associated to any 

quantification performed on the binary image. 

The experimental decisions we needed to take also concerned the samples 

preparation and the hydrodynamic measurements. For example, we scanned the 

samples at a water matric potential of -70 kPa so most of the potential visible 

porosity would be air-filled. This led to the apparition of drying cracks, which was 

not, after all, a major issue since the hydrodynamic measurements were performed 

on the very same samples. This is also the reason why we measured the saturated 

hydraulic conductivity (Ks) at the end of the retention curve, so the X-ray µCT 

visible cracks would affect the measured conductivities, although bearing in mind 

that the sample re-saturation could also have modified the structure and affect the 

measured conductivities. In their study, Elliot et al. (2010) observed different Ks 

values when measured before or after scanning (and therefore draining) and 

emphasized the fact that there is no way to determine the “real” Ks value. They 

mentioned a “real” Ks value because they predicted Ks directly from the X-ray µCT 

visible observed pore size distribution through the use of physical equations. Within 

that context, it is indeed impossible to argue in favor of one or another Ks 

measurement time. From these considerations, we argue in favor of unified 

measurements techniques and “time of measures” that would rather lead us to define 

soil X-ray µCT global characteristics that could afterwards be used for the 

generation of phenomenological models, for example.  

Still regarding the experimental choices, it is worth noticing that we calculated the 

soil samples density from the standard quartz density value although is it possible to 

measure the real soil density with a pycnometer or to adjust that value according the 

organic matter content (Rawls, 1983). Within this research project, these last values 

were however available only after our second paper was published. In terms of 

density (and therefore porosity), we also observed large variations between samples 

that were, in the end, taken from an area of 1 m². Soil structure is indeed unique and 

we emphasize on the importance of analyzing the same soil samples at the micro- 

and macroscopic scales. 

As just stated, the structure was different between samples, as well was the origins 

of the observed pore network structure: biological, structural, with or without drying 

cracks (as mentioned above). Methodologies exist to distinguish biopores from non-

biopores, for example by visual identification (Naveed et al., 2016), or under 

successive geometrical hypotheses (Zhang et al., 2018). We did not consider the 
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structural or biological origins of pores within this research project because on one 

hand, both types of pore could contribute to air and water fluxes and on the other 

hand, distinguishing the type of pores is still subjective. Again, we aimed at 

describing the soil pore network from a global perspective. The simpler it is, the 

more reproducible would it be. In the end, we indeed succeeded at explaining the 

soil saturated hydraulic conductivity by three global pore network characteristics 

and the soil air permeability by the average volume of the smallest pore. Moreover, 

we highlighted the drawbacks of using the capillary law to extract pore size 

distribution from soil water retention curve measurements, and showed several times 

that there was likely a scaling relationship between groups of pores of similar 

volumes. From these findings, we propose that the available volume of porosity for 

water or air transport as a function of water matric potential could be converted into 

an accessible (word borrowed from Hunt et al., 2013) volume of porosity that should 

be characterized, not by a minimal and maximal circular section, but by a global 

microscopic attribute. When scaling relationships between groups of pores will be 

well identified, the pores only accessible at high negative potential (and invisible 

even with the highest X-ray µCT resolution) could also be characterized by global 

structural microscopic characteristics derived from the ones of the visible pores. To 

reach these goals, we encourage experiments and analyses in a way where massive 

substantiated data resources could be shared. 

Multiplying data would also enable the generation of pore network representation 

grid from microscopic global characteristics. This type of representation would be 

useful for the simulation of water of air fluxes from equations that would couple 

biochemical processes to fluid mechanics, for example. We indeed previously 

pointed out that soil physics and soil biochemistry are inextricably linked and 

interdependent. Moreover, the biochemical processes occurring within the soil 

affect, or control, the exchange of gases with the atmosphere and the storing of 

organic carbon through its stabilization or decomposition, both are of major 

importance when it comes to the prediction of global climate. Chenu et al. (2018) 

recently reviewed several studies showing that the localizations of microorganisms 

or chemical elements is not random and depend on pore size or undecomposed 

organic matter proximity, for example, and that the biochemical processes occurring 

at nano- or micro-scale affect the soil functions at the field scale. For example, 

Cornelis et al. (2018) recently confirmed the occurrence of micro-spots where the 

physico-chemical conditions promote, or not, the formation of organo-mineral 

associations. We also showed, within this dissertation, that several global 

microscopic structural parameters were correlated to the soil organic matter and iron 

contents. More experiments are needed to draw firm relationships, as proposed in 

the conclusion of that chapter. It either way points out the potential of using of X-ray 

microtomography to study the soil biochemistry. 

We believe there are two stages to that end. It is first essential to understand how 

the pore network geometry (and the resulting physico-chemical conditions, or micro-

organisms distributions) influences the soil biochemical processes. Afterwards, the 
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use of simplified pore network representation grids becomes most important to 

evaluate the equations that would resolve physico-biochemical interactions. To 

understand processes, combining X-ray microtomography to other visualization 

technique is an interesting option. X-ray microtomography is the most efficient 

technique when it comes to the identification of physical phases at high resolution.  

Regarding the chemical composition of samples, there are visualization techniques 

that identify the chemicals distributions on, however, smaller two-dimensional 

samples. The technique choice ultimately depends on the desired resolution and final 

information (bulk, interfaces, surfaces, sub-surfaces, buried layers, atomic scale 

information). The sample nature and its stability, its preparation and destructive 

possibilities are points to evaluate before selecting a measurement technique.  

Moreover, it is not straightforward to combine visualization outcomes from two 

techniques (Hapca et al., 2015). After all, precious care should be brought to the 

visualization representation potential risks (T. Morineau, personal communication). 

User could consider a representation as valid although the study area and/ or the 

technical measure are inappropriate. An appropriate representation should be 

connected to a well-understood study area and performed with a technique that 

enables that representation. Otherwise, there are many risks of performing induction 

rather than abductive reasoning, but that statement is valuable in any scientific field. 

The use of X-ray microtomography in soil science has the potential to bring the 

study of the soil hydrodynamic to an upper level; it must however come with an 

appropriate use of the technique and a well-defined experimental environment.  
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X-ray Micro-CT: How Soil Pore 
Space Description Can Be 
Altered by Image Processing
Sarah Smet,* Erwan Plougonven, Angélique Leonard, 
Aurore Degré, and Eléonore Beckers
A physically accurate conversion of the X-ray tomographic reconstructions of 
soil into pore networks requires a certain number of image processing steps. 
An important and much discussed issue in this field relates to segmentation, 
or distinguishing the pores from the solid, but pre- and post-segmentation 
noise reduction also affects the pore networks that are extracted. We used 
15 two-dimensional simulated grayscale images to quantify the perfor-
mance of three segmentation algorithms. These simulated images made 
ground-truth information available and a quantitative study feasible. The 
analyses were based on five performance indicators: misclassification error, 
non-region uniformity, and relative errors in porosity, conductance, and 
pore shape. Three levels of pre-segmentation noise reduction were tested, 
as well as two levels of post-segmentation noise reduction. Three segmenta-
tion methods were tested (two global and one local). For the local method, 
the threshold intervals were selected from two concepts: one based on the 
histogram shape and the other on the image visible-porosity value. The 
results indicate that pre-segmentation noise reduction significantly (p < 
0.05) improves segmentation quality, but post-segmentation noise reduc-
tion is detrimental. The results also suggest that global and local methods 
perform in a similar way when noise reduction is applied. The local method, 
however, depends on the choice of threshold interval.

Abbreviations: CT, computed tomography; GM, gradient masks; IK, indicator kriging; ME, 
misclassification error; NU, non-uniformity; PBA, porosity-based; RE_g, relative error in the 
pore shape; RE_K, relative error in conductance; RE_P, relative error in calculated poros-
ity; RS, real soil; TH, threshold.

Characterizing the soil’s physical properties and understanding the result-
ing functions of the soil is of major importance for many agricultural and environmental 
issues. The soil is at the interface of most physical, chemical, and biological processes. In 
this regard, there is increasing interest in the use of noninvasive X-ray microtomography 
to obtain a microscopic three-dimensional view of the inner soil pore space (for a full 
description of the technology, see Landis and Keane, 2010).

Several reviews (Taina et al., 2008; Helliwell et al., 2013; Wildenschild and Sheppard, 2013) 
have discussed the use of X-ray microtomography in soil and hydrological sciences. In these 
fields, the technique has been used at both the core scale (e.g., Gantzer and Anderson, 2002; 
Jassogne et al., 2007; Elliot et al., 2010; Luo et al., 2010; Piñuela et al., 2010; Capowiez et al., 
2011; Köhne et al., 2011; Garbout et al., 2013; Larsbo et al., 2014; Katuwal et al., 2015) and 
the aggregate scale (e.g., Nunan et al., 2006; Peth et al., 2008; Papadopoulos et al., 2009; 
Kravchenko et al., 2011; Zhou et al., 2013) for describing the pore space and studying the 
impact of land use and agricultural management on soil structure (Gantzer and Anderson, 
2002; Nunan et al., 2006; Jassogne et al., 2007; Peth et al., 2008; Papadopoulos et al., 2009; 
Luo et al., 2010; Capowiez et al., 2011; Kravchenko et al., 2011; Garbout et al., 2013; Zhou et 
al., 2013), as well as for analyzing the relationships between soil pore networks and soil physi-
cal properties (Elliot et al., 2010; Köhne et al., 2011; Larsbo et al., 2014; Katuwal et al., 2015). 
Flow simulations in observed pore networks (Dal Ferro et al., 2015) or a similar constructed 

Core Ideas
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•	Local and global thresholding 

perform similarly when prior noise 
reduction is applied.

•	The local threshold interval choice 
determines the local segmentation 
quality.

S. Smet, A. Degré, and E. Beckers, Univ. 
of Liège, Gembloux Agro-Bio Tech, 
BIOSE, Soil–Water–Plant Exchanges, 
2 Passage des Déportés, 5030, 
Gembloux, Belgium; E. Plougonven and  
A. Léonard, Univ. of Liège, Products, 
Environment, Processes (PEPs), 
Chemical Engineering, Sart Tilman, 
4000, Liège, Belgium. *Corresponding 
author (sarah.smet@ulg.ac.be).

Received 8 June 2016.
Accepted 2 Jan. 2017.

Citation: Smet, S., E. Plougonven, A. 
Leonard, A. Degré, and E. Beckers. 
2018. X-ray micro-CT: How soil pore 
space description can be altered by 
image processing. Vadose Zone J.  
17:160049. doi:10.2136/vzj2016.06.0049

Special Section: Noninvasive 
Imaging of Processes in 
Natural Porous Media

© Soil Science Society of America. This is 
an open access article distributed under 
the CC BY-NC-ND license  (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

Published online March 29, 2018

mailto:sarah.smet@ulg.ac.be
10.2136/vzj
http://creativecommons.org/licenses/by
http://creativecommons.org/licenses/by


VZJ | Advancing Critical Zone Science� p. 2 of 14

pore network (Vogel et al., 2005) have also been conducted. These 
analyses assumed that the pore space description generated from 
the image processing accurately represents the physical reality of the 
sample microstructure, but the choice of X-ray computed tomog-
raphy (CT) image processing methodology has a visible impact on 
the resulting structure. Figure 1 shows an example of the processing 
steps from sample acquisition to binary image. Each step involves 
choosing the appropriate method and parameters, which are numer-
ous and can have a profound effect on the resulting structure. These 
choices ultimately depend on the experience of the operator.

What is important here is not only the diversity of these choices but 
also the fact that they are often inadequately described or justified. 
Table 1 shows an example of the diversity of methodologies used in 

a selection of soil science research papers (selection based on number 
of citations and diversity of research teams). Within Table 1, the 
pre-segmentation and post-segmentation steps are differentiated. 
Pre-segmentation steps are varied and are more efficient at handling 
image degradation than post-segmentation processing; a general 
rule (for more than just image analysis) is that the more upstream a 
problem is corrected, the easier is it to process the data downstream. 
Segmentation is the essential step when pixels are assigned to either 
the solid or porous phase. There are numerous segmentation meth-
ods; a review of those used in soil science was provided by Tuller et 
al. (2013). In this study, we differentiated global and local thresh-
olding methods. The aim of a thresholding method is to select a 
grayscale value, manually or automatically, that separates the image 
gray levels into two groups: greater than or equal to the threshold 
(TH) and less than the TH. In soil science, these two groups are 
often defined as the solid phase (soil matrix) and the void phase 
(pore space). With global thresholding, a constant TH is chosen 
for the entire image, whereas with local thresholding, the value is 
computed for every pixel based on the local neighborhood (Tuller et 
al., 2013). Segmentation precision depends on the initial quality of 
the grayscale images. Enhancing the projections before reconstruc-
tion and the reconstructed images before segmentation is the typical 
approach, but each research team has its own procedures (see Table 
1). An efficient method for enhancing image quality is to apply noise 
reduction filters (Kaestner et al., 2008; Wildenschild and Sheppard, 
2013) as mentioned in six of the 15 studies listed in Table 1.

Some researchers have shown (Beckers et al., 2014b; Lamandé et 
al., 2013; Peth et al., 2008; Peng et al., 2014; Tarquis et al., 2009) 
that, in most practical cases, the choice of segmentation method 
plays a crucial role in the resulting pore structure, but no standards 
have yet been proposed. Several studies have sought to classify 
thresholding techniques based on information available from the 
resulting binary images (Baveye et al., 2010; Houston et al., 2013b; 
Iassonov et al., 2009; Schlüter al., 2014). So far as we know, only 
Wang et al. (2011) have used synthetic soil aggregate images, from 
which ground-truth information was available, to compare thresh-
olding methods. Even these studies were based on image-by-image 
analyses and did not provide a tool with which to properly evaluate 
the processing methodologies.

Within this context, our study sought to provide a statistical analy-
sis of the segmentation processing effects on the resulting data. By 
evaluating Otsu’s global method (Otsu, 1979), the local adaptive-
window indicator kriging (IK) method (Houston et al., 2013a), and 
the porosity-based (PBA) global method (Beckers et al., 2014b) on 
two-dimensional simulated soil images from which ground-truth 
information was available, we could also objectively support existing 
reviews. The first objective of our study was to quantify the effects 
of pre-segmentation noise reduction on the accuracy of the thresh-
olding method based on the performance indicators. The second 
objective was to evaluate the impact of post-segmentation process-
ing on pore functionalities. The third objective was to propose an 

Fig. 1. Processing steps from sample to binary image. Some sources of 
variability are written in lowercase.
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approach for calculating the initial TH interval necessary using the 
local IK method based on the global TH calculated using the PBA 
method (Beckers et al., 2014b), considering that IK is sensitive to 
the initial choice of TH interval (Iassonov et al., 2009; Schlüter et 
al., 2010; Wang et al., 2011; Houston et al., 2013a).

66Materials and Methods
Here we focus initially on the construction of our simulated images. 
The general framework was based on the methodology described 
by Wang et al. (2011). It involved superimposing a realistic binary 
pore image (real soil [RS] images) on an image representing partial 
volume effects and then adding Gaussian noise (see Fig. 2 for a 
detailed illustration). We created 15 simulated images from the 
combination of 15 selected RS binary images and 15 generated par-
tial volume effect images using a method based on fractals and the 
method of Wang et al. (2011). The thresholding methods tested 
should identify the pore region from the original RS image.

Real Soil Images
The RS images were derived from the Beckers et al. (2014a) study. 
We selected 15 two-dimensional images from silt loam soil. Details 
about the materials, sampling, and X-ray acquisition parameters can 
be found in Beckers et al. (2014a). Reconstructions were performed 
using NRecon software provided free of charge by Brucker micro-
CT. This software provides tomographic artifact correction methods, 
which were not tested in this study. Automatic misalignment com-
pensation was used, along with a Level 7 (out of 20) ring artifact 
correction. The RS images were not subjected to a beam hardening 
correction. In X-ray microtomography, the most commonly cited arti-
fact is beam hardening due to the polychromatic nature of the X-ray 
beam, implying a deviation from the Beer Lambert law. For cylindri-
cal objects, it results in a radial grayscale intensity variation from the 
edges to the center. The beam hardening effect is barely distinguish-
able from the circular compaction that occurs when sampling soil, 
and removing beam hardening effects might create noise. Finally, an 
intensity rescaling was applied to increase contrast (Tuller et al., 2013).

Partial Volume Effect Images
The partial volume effect images were generated through the overlay-
ing of decreasing resolution images, as proposed by Wang et al. (2011). 
Our addition to Wang’s method was to produce decreasing resolution 
fractal images with a fractal dimension calculated from the RS images’ 
fractal dimension (Steps A and B). Those images were then combined 
to form one partial volume effect image (Step C).

Fractal Geometry
Fractal geometry states that a fractal object has comparable fea-
tures at different scales and can be described by a so-called fractal 
dimension, D, which is power-law dependent (Mandelbrot, 1983):

( )
( )

log
log 1

N
D

r
=  	 [1]

where N is the constant number of transformed elements at each 
iteration and r is the ratio between the dimension of the parent 
element and the dimension of the transformed element.

Because power-law dependencies have been observed in soil science, 
researchers have applied fractal geometry to the study of soil behav-
ior (Pachepsky et al., 2000). For example, Russell and Buzzi (2012) 
successfully derived a soil-water retention curve from the pore-size 
distribution fractal dimension of a silt loam soil. Many studies 
have reported that this concept provides a good description of the 
complexity of soil microstructure (e.g., Kravchenko et al., 2011).

The Fractal Generator: Steps A and B
We generated two-dimensional fractal images with a fractal gen-
erator using the pore–solid fractal approach (Perrier et al., 1999), 
which works as follows. The first action is the division of an initia-
tor into n2 elements. Within these elements, a proportion of x/n2 
is allocated to pore pixels and a proportion of y/n2 is allocated to 
solid pixels. The remaining pixels (z/n2) are available for the next 
iteration, which involves their division by n. This is a recursive 
process. Equation [1] then becomes

( )
( )

log
log

z
D d

n
= +  	 [2]

where d is the Euclidian dimension.

To construct partial volume effect images, we first generated decreas-
ing resolution fractal images. This process was based on two main 
steps (A and B), each consisting of three fractal iterations. Step A 
involved generating fractal images to be used as the background of 
the final constructed partial volume effect image and represented by 
white pixels in Fig. 3c. These pixels could not be further modified 
during the rest of the process. Step B involved allocating smaller 
pixels to the solid and pore phases; the black pixels of Fig. 3c were 
the pixels subjected to further fractal divisions.

The fractal dimension in the Step A iterations was set as follows:

1.	 The fractal dimension of the associated RS image (Dobs in Table 2) 
was calculated using the Fractal Box Counting tool available in the 
public domain image processing ImageJ (Version 1.47c, National 

Fig. 2. Detailed illustration of the simulated image construction.
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Institutes of Health, http://rsb.info.nih.gov/ij). The number of 
diminishing size boxes containing pore pixels was counted.

2.	 The variable z of the RS image was calculated using Eq. [2] (zobs 
in Table 2), considering that n = 6.

3.	 The variable z of the simulated image (zsim in Table 2) was cal-
culated to represent the complement of zobs. It was calculated 
based on the fractal generator theory (see above), and therefore

2
obs sim sim simz n z x y= - = + 	 [3]

4.	 The fractal dimension of the simulated image (Dsim in Table 2) 
was then calculated from zsim and n = 6 (Eq. [2]).

As noted above, Step B involved allocating smaller pixels to the 
solid and pore phases, and the black pixels in Fig. 3c are the pixels 
subjected to further fractal divisions. The three iterations of Step 
B (see Fig. 4) were produced with z = 2, n = 2, and D = 1:

ʶʶ n = 2 because those images were used to construct the partial 
volume effect within a 2 by 2 pixels averaging process (see below).

ʶʶ z = 2 because this was the only way of having at least one pore 
pixel and one solid pixel with at least two elements remaining 
for the next step.

Partial Volume Effect Image 
Construction: Step C
The partial volume effect construction following the method of 
Wang et al. (2011) was applied to the generated fractal images 
(from Step B), and Fig. 4c shows the first image to be processed. 
From a size of 1728 by 1728, the image was scaled down into an 
864 by 864 image by calculating the average of 2 by 2 squares. The 
down-scaled image (Fig. 4c) was then overlaid on Fig. 4b, which 
had also been down-scaled from 1728 by 1728 to 864 by 864, by 
adding the corresponding pixel color to fully represent the effect of 
all sizes of pores. This newly created image (not shown) was scaled 
down to 432 by 432 using the same averaging process, overlaid on 
Fig. 4a, and the resulting image was then scaled down to 216 by 
216 by averaging. The result is shown in Fig. 5. Figure 6 illustrates 
the impact of the averaging process between Fig. 4c and Fig. 5.

Simulated Image Construction
The next step involved the overlaying of Fig. 5 on the correspond-
ing RS image derived from Beckers et al. (2014a). We then added 
random normal noise to the pure white and pure black pixels, and 
variance and means were calculated from our scanner noise by scan-
ning the empty chamber (within [0; 255]: mean = 222 and variance 
= 15.9). The final step was to add Gaussian noise (mean = 0; variance 
= 0.01) to the whole image to represent high-frequency noise (Fig. 7).

Pre-Segmentation Processing
Adhering to an algebraic comparison in its strictest sense, the effect 
of a pre-segmentation median filter (PRE0, none; PRE1, radius one 
pixel; PRE2, radius two pixels) was tested on the segmentation qual-
ity of the simulated images. Median filters assign the median value of 
the neighboring pixels to the center pixel. These filters are less sensi-
tive to extreme values and no grayscale value is created near the object 
boundary, resulting in the object edges being better preserved (Tuller 

Fig. 3. Step A in the generation of decreasing resolution fractal images for Image no. 1, sorted by iteration from left to right: construction of the partial 
volume effect background. The white pixels represent the soil matrix.

Table 2. Calculation of the fractal dimension (Dsim) for the simulated 
images, using the fractal dimension observed on the real soil image 
(Dobs), the observed number of fractals (zobs), and the simulated num-
ber of fractals (zsim).

Image Dobs zobs zsim Dsim

1 1.20 9 27 1.85

2 1.43 13 23 1.75

3 1.53 15 21 1.69

4 1.52 15 21 1.70

5 1.21 9 27 1.84

6 1.30 10 26 1.81

7 1.14 8 28 1.86

8 1.72 22 14 1.48

9 1.31 10 26 1.81

10 1.38 12 24 1.78

11 1.61 18 18 1.62

12 1.58 17 19 1.65

13 1.61 18 18 1.61

14 1.48 14 22 1.72

15 1.45 13 23 1.74

http://rsb.info.nih.gov/ij
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et al., 2013). The use of a median filter before segmentation seems 
to be a common step in the field of soil X-ray CT image processing.

Tested Segmentation Methods
The complexity of segmentation is linked to the noise, artifacts, 
and partial volume effects in the grayscale images. Other sources 
of image degradation include ring artifacts, streak artifacts, high-
frequency noise, scattered photons, and distortions (Baruchel et 
al., 2000). Therefore, besides enhancing image quality, choosing 
the right segmentation method is crucial.

Global Methods
The global thresholding method described by Otsu (Otsu, 1979) 
was tested because it provides acceptable results (Iassonov et al., 
2009) and can be used in preference to the IK method where there 
are poorly distinguishable histogram peaks (Wang et al., 2011). 
Despite its non-reliability and the existence of more recent and 
more efficient methods, it is still a widely used method for soil 
images, probably because it is rapid and easy to use. It automati-
cally chooses a TH based on the minimization of the intraclass 
variance between two intensity classes of pixels. In our study, it was 
performed with MATLAB R2015a (The MathWorks).

As we had ground-truth information available, the TH that should 
be applied could be estimated. Through an iterative loop, the TH 

that minimized the difference between calculated porosity and 
ground-truth porosity was selected, and this value served as a bench-
mark. This procedure was based on the method described by Beckers 
et al. (2014b). The MATLAB R2015a code was provided by the 
authors. Hereafter, we refer to the method as the PBA method.

Local Method
The IK method (Oh and Lindquist, 1999) has provided good results 
in various studies (Houston et al., 2013a, 2013b; Peth et al., 2008; 
Iassonov et al., 2009; Wang et al., 2011). Its variation, the adaptive-
window indicator kriging method (Houston et al., 2013a), was 
chosen because Houston et al. (2013a) concluded that the adaptive 
method required fewer computational resources than the fixed one 
while providing very similar results. The IK concept relies on the 
selection of a TH interval, T1 to T2. All grayscale values below T1 
are set at 0 and all values above T2 are set at 1. The values between 
T1 and T2 are assigned to a specific color, namely a phase, depend-
ing on their grayscale value and their already classified neighboring 
pixels. The adaptive-window IK method modifies this neighboring 
area based on locally available information to reduce the computa-
tional costs when possible. The method was applied using the authors’ 
software, AWIK. The choice of T1 and T2 was based on edge detec-
tion using the gradient masks (GM) method (Schlüter et al., 2010), 
an option available within AWIK software. Hereafter, we refer to 
the method as IK/GM.

Fig. 4. Step B in the generation of decreasing resolution fractal images for Image no. 1, sorted by iteration from left to right. The black pixels represent pores.

Fig. 5. Final partial volume effect constructed by the fractal generator 
for Image no. 1.

Fig. 6. The left-hand image is an enlargement of Fig. 4c (black rounded 
square in the upper right corner). The right-hand image is an enlarge-
ment of a portion of Fig. 5 (black rounded square in the upper right 
corner).
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Hybrid Method
The PBA method was shown to be satisfactory, although its perfor-
mance was poorer than that of IK/GM (Beckers et al., 2014b). The 
weakness in IK is the choice of the T1 to T2 interval. Schlüter et 
al. (2010) proposed an improved automatic TH interval selection 
method, although it remained sensitive to noise. We therefore sought 
to combine the physical robustness of the PBA method with the edge-
preserving IK method. The aim was to select a TH interval based 
on the global PBA threshold and then compute the IK method. The 
TH intervals tested were ±10, ±20, ±30, ±40, and ±50% of the 
global TH value. For example, if the PBA TH was 94 (on a 0–255 
grayscale), the ±10% IK–PBA interval would be 85 to 103, the ±20% 
interval would be 75 to 113, and so on. Commonly, histogram percen-
tiles would have been tested. We have, however, chosen this approach 
because the final objective would be to apply the IK–PBA to real soil 
images from which the porosity would be estimated with laboratory 
measurements. Because this porosity value would be uncertain, the 
global TH obtained with the original PBA method would also be 
uncertain. Therefore, the priority was that the interval include the 
supposedly “true” global TH value, corresponding to the “true” soil 
sample porosity. Hereafter, we will refer to the method as IK–PBA.

Post-Segmentation Processing
For a functional comparison, a post-segmentation median filter 
(POST0, none; POST2, radius two pixels) was also tested on the 
simulated images. A post-processing cleanup was also applied by 
removing the pores smaller than five pixels in area. The pore char-
acterization was performed using the Analyze Particles tool that is 
available in the public domain image processing ImageJ (Version 
1.47c, National Institutes of Health, http://rsb.info.nih.gov/ij).

66Results Analysis
Performance Indicators
We used the ground-truth information available to compute the 
misclassification error (ME), whose value is between 0 and 1. It 
gives the proportion of pixels wrongly assigned to a phase. The 

value 0 reflects perfect segmentation and the value 1 the opposite 
(Sezgin and Sankur, 2004):

0 T 0 T

0 0
ME 1

P P S S
P S

Ç + Ç
= -

+
 	 [4]

where P0 is the number of pore pixels in the ground-truth image, 
PT is the number of pore pixels in the tested image, S0 is the 
number of solid pixels in the ground-truth image, and ST is the 
number of solid pixels in the tested image. We chose this simple 
indicator for its clear interpretation and because it offered the 
possibility of comparison with other studies (Wang et al., 2011; 
Schlüter et al., 2014).

Similarly, we used the relative error in the calculated porosity 
(RE_P) as a performance indicator. Calculated porosity is the ratio 
of black pixels (pores) to the total number of pixels.

Region non-uniformity (NU) was calculated to evaluate segmen-
tation quality without using ground-truth information (Wang et 
al., 2011). High intra-region uniformity is achieved with a suitable 
segmentation method because there is a similarity of property in 
the region element; the variance in that property is then adequate 
for expressing the uniformity (Zhang, 1996):

2
p
2NU

P

T

s
=

s
	 [5]

where P is the number of pore pixels, T is the total number of pixels, 
sp

2 is the grayscale value variance in the pore pixels in the original 
grayscale simulated image, and s2 is the total grayscale value vari-
ance in the original grayscale simulated image. Non-uniformity 
is a natural choice given the uniformity that a pore space should 
have, although it gives a poorer performance than the ground-
truth information based indicator (Zhang, 1996).

Physical Performance
The physical evaluation of the segmentation methods was based on 
the pore network modeling concept, which is effective, for exam-
ple, in computing soil-water retention curves (Vogel et al., 2005). 
Because we were dealing with two-dimensional images, we could 
focus only on the effects of segmentation on the two-dimensional 
pore network characteristics, such as pore geometry. More spe-
cifically, we focused on the irregular pore shapes, which, despite 
their name, tend to be the norm rather than the exception in real 
soils. In addition to the empty–filled dynamic within pores, the 
wetting film plays an important role in fluid displacement (Celia 
et al., 1995). Irregular pore shapes have corners where there might 
be an accumulation of wetting fluid.

For each pore, we computed its shape factor as defined by Mason 
and Morrow (1991): 

2
AG

P
= 	 [6]

Fig. 7. Final simulated grayscale image for Image no. 1.

http://rsb.info.nih.gov/ij
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where A is the surface area (pixel2) and P is the perimeter (pixel). 
Depending on the G value, we calculated the specific dimension-
less conductance of each pore (Patzek and Silin (2001) (see Table 
3). The dimensionless conductance g



 multiplied by the squared 
cross-section surface area (A2) and divided by the fluid viscosity 
(m), gives the conductance g (L5 T M−1):

2gA
g =

m
  	 [7]

The volumetric flow rate through one pore was obtained by multi-
plying the conductance (g) by the fluid displacement driving force. 
As in an electric circuit, where resistances are summed in series, con-
ductance values were summed in parallel. We therefore multiplied 
each pore’s dimensionless conductance ( g



) by its squared surface 
area (A2) to sum all the conductance values (g) for each image, which 
resulted in a global conductance value. The relative error in conduc-
tance (RE_K) was calculated for each image. We also calculated the 
dimensionless conductance ( g



) relative error of each pore (RE_g).

For the physical analysis, we then had two types of parameters: 
RE_K, reflecting the global conductance of the image, and RE_g, 
describing the pore shape accuracy. The RE_K and RE_g indica-
tors were studied as absolute values.

Statistical Analysis
To assess whether or not the quality of the segmentation methods 
was altered by noise reduction, a three-way ANOVA was conducted 
to test for significant differences in the ME, NU, RE_P, and RE_K 
indicators for the various levels of noise reduction and the three 
segmentation methods. A randomized complete block design was 
applied, the simulated images being the random blocks. For the sig-
nificant fixed interaction, three two-way ANOVAs were conducted 
(one per segmentation method) to test for a significant impact of 
noise reduction on the segmentation results. Tukey’s post-hoc test 
was performed in cases of a significant effect (p < 0.05).

To determine which segmentation method and noise reduction 
combination performed most accurately and to see if the IK–
PBA method brought improvement, four two-way ANOVAs 
were conducted to test for significant differences in the ME, NU, 
RE_P, and RE_K values between the segmentation method and 
noise reduction combinations (10 levels). In cases of significance 
(p < 0.05), a post-hoc Dunnett test was conducted, with IK–PBA 
as the control.

In each case, similar analyses of RE_g were conducted. Because 
each pore had its own shape factor, each one of the 229 pores (for 
all 15 images combined) was considered as a random block.

66Results and Discussion
From a Structural Analysis
Figure 8 shows the ME, NU, and RE_P averaged for the 15 simu-
lated images. With OTSU and IK/GM, PRE1 noise reduction 
filtering improved the segmentation accuracy because a decrease 
in indicator value meant an increase in segmentation accuracy. 
Compared with the results obtained by Hapca et al. (2013), Wang 
et al. (2011), and Schlüter et al. (2014), the ME and NU values 
for PRE1 and PRE2 were satisfactory. Without noise reduc-
tion (PRE0), the ME value for OTSU was 60% lower than that 
obtained by Schlüter et al. (2014) but 34% higher for IK/GM. 
These high differences probably arose because we considered aver-
aged ME values with high standard errors. The OTSU_PRE0 and 
IK/GM_PRE0 performed very well for some images but poorly 
for others, with some porosity relative error values about 315% for 
OTSU and 500% for IK/GM. The PBA method performed well, 
with ME indicators below 0.01 and NU indicators below 0.05. In 
this case, where the exact porosity to reach was known, noise reduc-
tion did not improve the PBA method. This is consistent with the 
working principle of PBA and with our experimental conditions. 
The segmentation was not perfect, however, highlighting the main 
disadvantage of the selection of one threshold value for an entire 
two- (or three-) dimensional image.

Table 4 presents the relative variations in performance indicator 
values between two noise reduction levels for each segmentation 
method. First, the variations among the indicators were not com-
parable. Therefore, to characterize the effect of one noise reduction, 

Table 3. Dimensionless conductance ( g


) calculation depending on 
shape factor values (G) (Patzek and Silin, 2001).

G value Associated shape Conductance

G > 1/16 circle g


 » (3/5)G

(31/2)/36 < G < 1/16 square g


 » 0.5236G

G < (31/2)/36 triangle g


 » (1/2)G

Fig. 8. Averaged misclassification error (ME), region non-uniformity (NU), 
and porosity relative error (RE_P) for all segmentation methods (OTSU, 
porosity-based [PBA], and adaptive indicator kriging + gradient masks 
[IK/GM]) and for all pre-segmentation noise reductions (PRE0, PRE1, 
and PRE2).
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it is advisable to use multiple and various performance indicators. 
Then, the variations from a PRE1 to a PRE2 noise reduction were 
greater for the global segmentation methods (OTSU and PBA) 
than for the local IK/GM method albeit the histogram bimodal-
ity was sharpened. This is, however, consistent with the study of 
Houston et al. (2013b), who found that OTSU gave a greater mean 
difference between two noise reduction levels than IK. Figure 9 
shows the resulting images after OTSU and IK/GM segmentation 
for both noise reduction levels. Black pixels represent the pores 
that match the ground-truth information, the blue pixels represent 
pixels that are allocated to the soil matrix but should have been 
allocated to pores, and the red pixels are those allocated to pores 
but shouldn’t have been. With OTSU, from PRE1 to PRE2, small 
features are removed (blue pixels) and bigger pores have growing 
edges (red pixels). The differences between PRE1 and PRE2 for 
IK/GM are less striking.

With regard to the occurrence of the lowest ME, PBA_PRE0 
provided the lowest indicator 12 times; together, PBA_PRE1 and 
OTSU_PRE1 provided the lowest one three times and almost 
always had the same ME value (13 times out of 15). In terms of NU, 
PBA_PRE0 always provided the lowest indicator value and, if its 
performance had not been taken into account, OTSU_PRE1 would 
always have provided the lowest ME and NU values. With regard to 
RE_P, OTSU_PRE1 and PBA_PRE1 provided the identical clos-
est value to real porosity for 13 images. The IK/GM_PRE1 twice 
provided the lowest RE_P. This is not consistent with the findings 
reported by Wang et al. (2011), who concluded that IK performed 
better than OTSU in the case of clear bimodal histograms, which 
was the case with the simulated images. The difference between the 
two studies was probably due to the TH interval choice when using 
IK. The gradient masks method (Schlüter et al., 2010) for calculat-
ing the TH interval was developed for unimodal images. We discuss 
this point further below. At no point did OTSU_PRE2 or IK/
GM_PRE2 give the best performance. Because the added noise on 
our simulated images is uncorrelated, PRE2 noise reduction seems 
to be disproportionate and destroys true information.

Statistical analyses confirmed that the PRE1 filter significantly 
improved segmentation accuracy with OTSU and IK/GM in 
terms of ME. With regard to NU, there was a significant difference 
between the three OTSU values (PRE0–PRE1–PRE2), but post-
Tukey’s test was not able to determine the source of the difference. 
Similarly, PRE0 to PRE1 and PRE0 to PRE2 were significantly 
different for IK/GM, but in contrast RE_P significantly differen-
tiated PRE0 to PRE1 and PRE0 to PRE2 for OTSU but not for 
IK/GM. These contrasting results illustrate the variability in indi-
cator definitions and reflect the working principles of the global 
and local methods. The OTSU method gives different porosities 
by identifying porosity within the soil matrix where grayscale 
values are low (porosity is represented by black pixels). This leads 
to porosity without physical meaning, as noted by Hapca et al. 
(2013). The IK/GM method identifies the right pore region, but 
the limits might not be accurate. Therefore, despite a high gray-
scale value, some pixels were taken into account, which increased 
the grayscale value variance and subsequently the NU. Wang et al. 
(2011) concluded that the use of NU is not enough for character-
izing segmentation quality but provided acceptable results in the 
absence of ground-truth information. They observed that selecting 
the best segmentation method based on both ME and NU agreed 
for most images. Again, the use of multiple indicators allowed us 
to better characterize the accuracy of the segmentation methods. 
From ME, NU, and RE_P analyses and according to the experi-
mental conditions, we showed that OTSU and IK/GM were more 
accurate with a PRE1 noise reduction and that OTSU_PRE1 and 
IK/GM_PRE1 were not statistically different.

Table 4. Misclassification error (ME), region non-uniformity (NU), 
porosity relative error (RE_P), and conductance relative error (RE_K) 
relative variations among the noise reductions (PRE0, PRE1, and 
PRE2) for the segmentation methods (Otsu, 1979 [OTSU], porosity-
based [PBA], and adaptive indicator kriging + gradient masks [IK/
GM]).

Processing Relative variations

Noise reduction Segmentation ME NU RE_P RE_K

————————— % —————————

From PRE0 to PRE1 OTSU −96 −71 −99 −49

PBA 39 29 −14 152

IK/GM −92 −74 −97 −20

From PRE1 to PRE2 OTSU 131 27 132 66

PBA 129 42 28 80

IK/GM 62 8 −29 28

Fig. 9. Resulting Image no. 10 after the OTSU and the adaptive indi-
cator kriging + gradient masks (IK/GM) segmentation methods for 
two level of pre-segmentation noise reduction (PRE1, PRE2). Black 
pixels represent the pores that match the ground-truth information, 
the blue pixels represent pixels that are allocated to soil matrix but 
should have been allocated to pore and the red pixels are the one allo-
cated to pore but shouldn’t have been.
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From a Functional Analysis
With regard to the global conductance results (RE_K), Fig. 10 
depicts the averaged relative error for RE_K for all 15 images. 
Post-segmentation noise reduction always provided higher aver-
aged RE_K with high standard errors. Indeed, post-segmentation 
noise reduction alters the pores edges and has influenced the pore 
conductance values (Fig. 11). However, post-segmentation has the 
advantage of removing small features wrongly assigned to porosity, 
albeit a post-segmentation cleanup could also do the job if those 
features are small enough.

Table 5 presents the variations in RE_K between OTSU or IK/
GM and PBA. As noted above, PBA is here based on the images’ 
ground-truth information and should therefore perform well. The 
two global methods performed in a similar way when a PRE1 noise 
reduction was applied (low relative variations), which is consistent 
with previously discussed results. In this case, where we compared 
one segmentation method to a supposedly accurate segmentation 
method (PBA), the relative variations of RE_K were fairly similar 
to NU values. This is an interesting point because the NU indica-
tor is calculated without ground-truth information, while RE_K is.

The statistical analyses concluded that the segmentation method and 
combination of noise reduction factors separately had a significant 
impact on RE_K. Figure 12 shows the main factor effect plot for these 
factors. It shows that applying a post-segmentation noise reduction 
without any pre-segmentation noise reduction (combination PRE0–
POST2) led to a significantly higher averaged relative error when 
compared with any combination of pre-segmentation noise reduction 
(PRE0–PRE1–PRE2) without post-segmentation noise reduction 
(POST0). In particular, a Tukey post-hoc test concluded that the com-
parison of PRE0–POST0 (or PRE1–POST0) and PRE0–POST2 
was highly significant (p < 0.01), and the comparison between PRE2–
POST0 and PRE0–POST2 was significant (p < 0.05). Post-hoc tests 
also concluded that there was a significant difference between the 

PBA and IK/GM methods but none between OTSU and IK/GM 
or between OTSU and PBA, as also illustrated in Fig. 13.

Figure 14 shows the tendency between noise reduction levels and 
segmentation methods with regard to RE_g (the relative error 
across the shape factor). We did not compute the PRE0 results 
because some pores had merged with OTSU and IK/GM and 
relative errors would increase without meaning. The OTSU and 
PBA methods had almost the same mean. This is consistent with 
the fact that global TH variation would lead to porosity variation 
within the soil matrix but less so around the pore region edges (also 
illustrated in Fig. 13). Post-segmentation noise reduction led to 
higher relative errors, which was consistent with the RE_K results. 
Some small pores were removed and pore edges were smoothed 
when POST2 was applied. There was no significant difference, 
however, among segmentation methods or the noise reduction 
levels, which was in contrast with the statistical results of RE_K.

Fig. 10. Averaged conductance relative error (RE_K) for all segmen-
tation methods (Otsu, 1979 [OTSU], porosity-based [PBA], and 
adaptive indicator kriging + gradient masks [IK/GM]), for all pre-
segmentation noise reductions (PRE0, PRE1, and PRE2), and for 
both post-segmentation noise reductions (POST0 and POST2).

Fig. 11. Resulting Image no. 6 after the OTSU (Otsu, 1979) seg-
mentation method. The left-hand image was obtained without a 
pre- or post-segmentation noise reduction. The right-hand image was 
obtained without a pre-segmentation noise reduction and with a two-
level post-segmentation noise reduction. Black pixels represent the 
pores that match the ground-truth information, the blue pixels rep-
resent pixels that are allocated to the soil matrix but should have been 
allocated to pores, and the red pixels are those allocated to pores but 
shouldn’t have been.

Table 5. Misclassification error (ME), non-region uniformity (NU), 
porosity relative error (RE_P), and conductance relative error (RE_K) 
variations among the segmentation methods (Otsu, 1979 [OTSU], 
porosity-based [PBA], and adaptive indicator kriging + gradient masks 
[IK/GM]) for an identical pre-segmentation noise reduction (PRE0, 
PRE1, or PRE2).

Processing Relative variations

Segmentation Noise reduction ME NU RE_P RE_K

———————— % ————————

From OTSU to PBA PRE0 −97 −77 −99 −79

PRE1 8 0 −16 2

PRE2 7 11 −54 11

From IK/GM to PBA PRE0 −96 −85 −99 −83

PRE1 −38 −28 −64 −45

PRE2 −12 −5 −35 −23
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From a Threshold Analysis
Table 6 shows the TH median values for the segmentation meth-
ods and associated noise reduction. For IK/GM, the TH interval 
boundaries tended to decrease from PRE0 to PRE1 and PRE2. For 
OTSU, this was also the case from PRE0 to PRE1. The TH then 

increased, however, from PRE1 to PRE2. There was indeed a right-
hand shift in the lower part of the soil matrix peak (see Fig. 15). At 
noise reduction PRE1, OTSU and PBA even had an identical TH. 
This could therefore be seen as a satisfactory noise reduction for 
the global method. As noted above, IK/GM performed better with 
pre-segmentation noise reduction. In those cases, the TH interval 
included the global TH from OTSU and PBA. With increasing 
noise reduction, the IK/GM TH interval increased. The TH2 
was selected as the pore–solid boundary intensity level, and this 
one moved to a lower value with noise reduction (see Fig. 15). The 
TH1 selection was based on the TH2 value and the mode value. 
On the basis of these findings, we investigated the choice of a TH 
interval around the global TH computed by PBA.

Testing the Relevance of the IK–PBA Method
The IK–PBA method tended to combine the precision of the local 
IK method with the robustness of the global PBA method by select-
ing the initial local TH interval around the global TH calculated by 
PBA. To perform a sensitivity analysis of the TH interval impact on 
the IK method, the TH interval around the global TH selected with 

Fig. 12. Main effect plots for the conductance relative error (RE_K). 
The upper graph displays the pre-segmentation (PRE0, PRE1, and 
PRE2) and post-segmentation (POST0 and POST2) noise reduction 
combinations as variables. The lower graph displays the segmentation 
methods (porosity-based [PBA]; Otsu, 1979 [OTSU]; and adaptive 
indicator kriging + gradient masks [IK/GM]) as variables.

Fig. 13. Image no. 10 at various steps: (a) simulated image; (b) image 
after a PRE0 pre-segmentation noise reduction and OTSU segmen-
tation (Otsu, 1979); (c) image after a PRE0 pre-segmentation noise 
reduction and the porosity-based segmentation (PBA); and (d) image 
after a PRE0 pre-segmentation noise reduction and the adaptive indi-
cator kriging + gradient masks segmentation (IK/GM).

Fig. 14. Main effect plots for the shape factor relative error (RE_g). 
The upper graph displays the pre-segmentation (PRE0, PRE1, and 
PRE2) and post-segmentation (POST0 and POST2) noise reduction 
combinations as variables. The lower graph displays the segmentation 
methods (porosity-based [PBA]; Otsu, 1979 [OTSU]; and adaptive 
indicator kriging + gradient masks [IK/GM]) as variables.

Table 6. Median threshold values according to segmentation methods 
(Otsu, 1979 [OTSU], porosity-based [PBA], and adaptive indica-
tor kriging + gradient masks [IK/GM]) and pre-segmentation noise 
reductions (PRE0, PRE1, and PRE2); TH1 and TH2 represent the 
threshold interval for the local method.

Noise reduction

Segmentation method

OTSU PBA IK/GM TH1 IK/GM TH2

PRE0 125 102 147 180

PRE1 121 121 114 162

PRE2 123 135 96 151
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PBA ranged from ±10 to ±50%. We found that the ME indicator 
remained unchanged for the intervals ±10, ±20, and ±30%. After 
that, ME increased constantly, reaching about 25% of the initial ME 
value at the ±50% interval. For the following operations, we present 
only the segmentation results with a ±10% TH interval. First, the 
averaged ME (0.0023), NU (0.0217), RE_P (0.0096), and RE_K 
(0.064) values for IK–PBA were all in the same range as those from 
PBA or OTSU_PRE1. For ME, IK–PBA had the best performance 
twice, but for NU, RE_P, or RE_K it never had the best perfor-
mance. The statistical analyses confirmed this trend by showing 
only OTSU_PRE0 and IK/GM_PRE0 as significantly different 
from IK–PBA in terms of ME, NU, and RE_P. When including 
post-segmentation noise reduction, RE_K analyses showed that 
post-segmentation noise reduction did not produce a significantly 
different result with IK–PBA. The IK–PBA method provided a 
significant improvement, however, compared with IK/GM_PRE0_
POST2, which was consistent with previous findings. The RE_g 
again gave contrasting results. According to this indicator, IK–PBA 
gave the best results and differed significantly from any other com-
bination of method and noise reduction. The IK–PBA method 
therefore produced the correct binary images without the use of a 
noise reduction process (as opposed to OTSU_PRE1) and without 
knowing the real characteristics of the RS image used to construct 
the simulated images (as opposed to PBA). This is consistent with 

the recommendation made by Iassonov et al. (2009) and Iassonov 
and Tuller (2010) that a local method could be used as an alterna-
tive to pre-segmentation processing. As noted above, the choice of 
the TH interval is of prime importance when using IK. With the 
two-peak histogram simulated image, the interval around the global 
PBA TH produced far better results than the interval calculated by 
the gradient masks method (Schlüter et al., 2010), and this made the 
original idea of IK–PBA attractive.

66Conclusion
X-ray computed tomography is widely used in soil and hydrological 
sciences. To be able to apply it to many situations, the prior con-
cern is to have an accurate and correct pore space description. This 
comes with suitable choices of image processing that will modify the 
information initially available on grayscale images. The conscious 
and relevant processing decisions are therefore of great importance. 
Within this context, various noise reduction and segmentation 
method combinations were tested on multiple simulated grayscale 
images to perform statistical analyses on five types of indicators.

It was shown that pre-segmentation noise reduction through a 
median filter led to a significant improvement in segmentation accu-
racy for the global segmentation method introduced by Otsu (1979) 
and for the local adaptive-window indicator kriging (Houston et al., 
2013a) segmentation method whose threshold interval was calculated 
with the gradient masks method (Schlüter et al., 2010). Moreover, 
the statistical analyses did not significantly differentiate those two 
methods when a pre-segmentation median filter was applied.

The PBA method calculated the global threshold value that 
should be applied; however, the global segmentation wasn’t per-
fect. Therefore, a pre-segmentation noise reduction filter seems to 
be a necessity with global thresholding. Post-segmentation noise 
reduction was shown to be detrimental to segmentation quality by 
altering the pore shapes.

The threshold interval choice with the IK method is of major 
importance. Adapting the calculating method to the type of image 
histogram is advised. Our approach (IK–PBA) based on the global 
threshold value calculated with the PBA method performed well 
by providing indicator values that were similar to those generated 
by PBA, but IK–PBA had the advantage of using neither ground-
truth information nor noise reduction filters.
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For decades, the development of new visualization techniques has brought incredible

insights into our understanding of how soil structure affects soil function. X-ray

microtomography is a technique often used by soil scientists but challenges remain

with the implementation of the procedure, including how well the samples represent

the uniqueness of the pore network and structure and the systemic compromise

between sample size and resolution. We, therefore, chose to study soil samples

from two perspectives: a macroscopic scale with hydrodynamic characterization

and a microscopic scale with structural characterization through the use of X-ray

microtomography (X-ray µCT) at a voxel size of 21.53 µm3 (resampled at 433 µm3). The

objective of this paper is to unravel the relationships between macroscopic soil properties

and microscopic soil structure. The 24 samples came from an agricultural field (Cutanic

Luvisol) and themacroscopic hydrodynamic properties were determined using laboratory

measurements of the saturated hydraulic conductivity (Ks), air permeability (ka), and

retention curves (SWRC). The X-ray µCT images were segmented using a global method

and multiple microscopic measurements were calculated. We used Bayesian statistics

to report the credible correlation coefficients and linear regressions models between

macro- and microscopic measurements. Due to the small voxel size, we observed

unprecedented relationships, such as positive correlations between log(Ks) and a µCT

global connectivity indicator, the fractal dimension of the µCT images or the µCT degree

of anisotropy. The air permeability measured at a water matric potential of −70 kPa was

correlated to the average coordination number and the X-ray µCT porosity, but was best

explained by the average pore volume of the smallest pores. Continuous SWRC were

better predicted near saturation when the pore-size distributions calculated on the X-ray

µCT images were used as model input. We also showed a link between pores of different

sizes. Identifying the key geometrical indicators that induce soil hydrodynamic behavior

is of major interest for the generation of phenomenological pore network models. These

models are useful to test physical equations of fluid transport that ultimately depend on

a multitude of processes, and induce numerous biological processes.

Keywords: soil, X-ray micro-computed tomography, saturated hydraulic conductivity, soil water retention curve,

air permeability, Bayesian statistics
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INTRODUCTION

The development of visualization techniques has played a major
role in fully describing soil functions. Serial sectioning, a well-
established method (Cousin et al., 1996), has been replaced
by replaced by 3D non-destructive visualization techniques are
becoming more easily available, with added benefit of less time-
consuming procedures that provide higher resolution images
(Grevers et al., 1989). However, Roose et al. (2016) have wisely
said, “Technological advances alone are not sufficient. Real
advances in our understanding will only be achieved if these
data can be integrated, correlated, and used to parameterize and
validate image based and mechanistic models.” X-ray micro-
computed tomography (X-ray µCT) has been widely used in
soil science making comparisons between studies possible. (Taina
et al., 2008) and Wildenschild and Sheppard (2013) discuss the
use of X-ray µCT to study the vadose zone. We also will mention
the visual analysis of the air and water distributions within pore
spaces, which are both important physical variables for activity
of soil biota (e.g., Young et al., 1998; Or et al., 2007; Falconer
et al., 2012; Monga et al., 2014; Vogel et al., 2015). One approach
is to visualize the soil at high resolution to identify hot-spots of
microbial activity (e.g., Gutiérrez Castorena et al., 2016), simulate
air-water interfaces within the pore network (e.g., Pot et al., 2015)
or quantify the impact of the pore network architecture on the
microorganism’s activity (e.g., Kravchenko and Guber, 2017).
Another approach is to provide a more specific description of
the fluid transport capacities (Vogel et al., 2015) which could
ultimately improve field-scale models of microbial activity and
biochemical processes (Blagodatsky and Smith, 2012). De facto,
when dealing with agricultural and environmental properties of
the soil, an accurate description and prediction of its transport
capacities in the unsaturated state is the overarching goal.

It is well-known that, due to natural or anthropogenic actions,
there is quite a range in the variability in fluid transport
parameters [e.g., saturated hydraulic conductivity (Ks) or air
permeability (ka)] between samples with homogenous textures
(Baveye and Laba, 2015; Naveed et al., 2016), due to the
uniqueness of the porosity distribution and the connectivity
within a sample. Studies have, therefore, focused on the
link between the inner pore space structure of a sample
and its specific fluid transport properties. On one hand,
experimentally visualized infiltration studies shed light on the
effective conducting pore network which represents only a small
portion of the total network (Luo et al., 2008; Koestel and Larsbo,
2014; Sammartino et al., 2015). The procedures developed in
these studies are promising, but restricted to the analysis of
large macropores because of the trade-off between resolution and
acquisition time. On the other hand, numerical simulations based
on pore space are used to predict conductivity. Many studies
focused on idealized porous structures (e.g., Vogel et al., 2005;
Schaap et al., 2007) and a few deal with actual soil (Elliot et al.,

Abbreviations: h, water matric potential; θ, water content; SWRC, soil water
retention curve; Ks, saturated hydraulic conductivity; ka, air permeability; LabPO,
laboratory measured air-filled porosity at a water matrix potential of 1 kPa; BF,
Bayes factor. The rest of the uncommon abbreviations are defined in Table 1.

2010; Dal Ferro et al., 2015; Tracy et al., 2015). The latter show
encouraging results, but are restricted to a defined resolution
and/or sample size (Baveye et al., 2017). Indeed, the direct
approach of linking one structure to one function is limited by
the difficulty in analyzing the structure in a representative way, so
that the soil is adequately characterized (Vogel et al., 2010). The
description of soil microscopic structure via global characteristics
could encompass that challenge and comparisons of one soil
microscopic structure to its own macroscopic properties have
indeed gained attention.

Luo et al. (2010) were among the first to measure Ks and
the break through curve characteristics on soil samples that
were also scanned with X-ray µCT and analyzed in 3D (16 soil
cores of 5 × 6 cm and 10.2 × 35 cm and voxel sizes ranging
from 250² × 1,000 µm3 to 1² × 10 mm3). They found that
µCT macroporosity, the number of independent macropore,
macropore hydraulic radius and angle were identified as the most
important microscopic characteristics to explain fluid transport.
From 18 soils cores (10 × 9 cm) scanned at a voxel size of 1863

µm3 and 17 soil cores (19 × 20 cm) scanned at 430² × 600
µm3, respectively, Naveed et al. (2012) and Katuwal et al. (2015b)
found that the lowest µCT macroporosity value for any quarter
length of sample height adequately explained air permeability
(ka) measured at a water matric potential (h) of −3 or −2 kPa,
respectively. Paradelo et al. (2016) showed that the minimum
value of macroporosity along a sample depth was most correlated
to Ks and ka (45 soil cores of 20× 20 cm and voxel size of 430²×
600µm3). Mossadeghi-Björklund et al. (2016) also demonstrated
that Ks was significantly correlated toµCTmacroporosity within
a compaction experiment (32 soils cores of 20 × 20 cm and
voxels size of 430² × 600µm). Eventually, Naveed et al. (2016)
suggested that biopore-dominated and matrix-dominated flow
soil cores should be distinguished before analyzing relationships
between microscopic and macroscopic soil properties. They
indeed found distinct significant power regressions between Ks
or ka (measured at h=−3 and−0 kPa) and µCTmacroporosity
for the two categories of the 65 soil cores (6 × 3.5 cm and voxel
size of 1293 µm3). These observed relationships between flow
parameters and µCT porosity are actually intuitive, but they
depend on image resolution, water matric potential and soil type.
For example, Lamandé et al. (2013) did not find the expected
relationship between µCT porosity and ka measured at h =

−10 kPa, but rather a linear positive relationship between the
number of pores and ka (32 soil cores of 19 × 20 cm and voxel
size of 6003 µm3). Finally, Anderson (2014) found that Ks could
reasonably be estimated from the µCT number of pores and the
µCT macroporosity fractal dimension (336 soil cores of 7.62 ×

7.62 cm and voxel size of 0.19²× 0.5 µm3).
The µCT porosity, number of pores, average pore radius,

surface area, and pore network connectivity and tortuosity all
depend on the minimal visible pore size, in other words, on the
resolution of the binary X-ray µCT images used to obtain the
pore network (Houston et al., 2013; Peng et al., 2014; Shah et al.,
2016), additionnaly, useful information about conducting pores
is lost with increased voxel size. One strategy to minimize this
limitation is to use grayscale information. Crestana et al. (1985)
demonstrated a linear dependence between the gray value of the
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soil matrix in Hounsfield unit (HU) and the soil water content.
More recently, Katuwal et al. (2015a) found the CT number of the
soil matrix (average grayscale value in HU) as a useful descriptor
for determining the magnitude of preferential flow, and Paradelo
et al. (2016) showed that global macroporosity values combined
with the CT-matrix number best explained the variation in air
and water transport parameters. Another strategy would be to
scan soil samples at higher resolutions. For example, Sandin
et al. (2017) worked at a voxel size of 1203 µm3 and observed
significant correlations between Ks and a global measure of the
pore network connectivity (from the percolation theory) which
had, to our knowledge, never been observed (20 soil samples
of 6.8 × 10 cm). Pore network connectivity and tortuosity are
important indicators of flow capacities (Perret et al., 1999; Vogel,
2000). There is still a lack of information on the links between
global pore network complexity indicators and flow parameters.
It is indeed challenging to identify and describe the part of the
conducting pore network that dominates flow. We, however,
hypothesize that it might come from the resolution at which
previous studies were performed.

Within that context, the objectives of this study are to:
(i) characterize the microscopic structure of twenty-four soil
samples at a resolution of 21.5µm resampled to 43µm; and (ii)
explore the relationships between soil microscopic characteristics
and its saturated hydraulic conductivity, air permeability and
retention capacities using Bayesian statistics.

MATERIALS AND METHODS

Soil Sampling
Twenty-four vertical undisturbed soil samples (3 cm in diameter
and 5 cm in height) were taken at the surface of an agricultural
soil in Gembloux, Belgium (50◦33′N, 4◦42′E). According to the
WRB soil system (2006), this soil is classified as a Cutanic Luvisol
with an average of 14.3% of clay, 78.3% of silt and 7.4% of
sand. This type of soil is representative of the intensive central
agricultural area in Belgium. Sampling was performed 24 to 48 h
after a rain. In order to minimize sampling disturbance, the
plastic cylinders were manually driven into the soil until the
top of the cylinder was at the surface level and then manually
excavated.

Macroscopic Measurements
Soil samples were first upward saturated with distilled water.
Their characteristic soil water retention curve (SRWC) was
then measured using pressure plates (Richards, 1948; DIN
ISO 11274, 2012). After being weighed at a water matric
potential of −7, −10, −30 and −70 kPa, the air permeability
of the samples was measured by applying an air flow across
the sample and measuring the resulting inner-pressure with
an Eijkelkamp air permeameter 08.65 (Eijkelkamp Agrisearch
Equipment, Giesbeek, The Netherlands). As recommended by
the constructor, each measure was repeated five times and kept
as short as possible. Corey’s law was then applied to calculate
the air permeability [L²] (Corey, 1986 in Olson et al., 2001).
At −70 kPa, the soil samples were scanned using an X-ray
microtomograph (see next section) before the end of their SWRC

was measured (water matric potential of−100,−500, and−1500
kPa). After reaching −1,500 kPa, the soil samples were saturated
once again and the saturated hydraulic conductivity (Ks [LT−1])
was measured using a constant head device (Rowell, 1994) and
applying Darcy’s law. Finally, the soil samples were oven-dried at
105◦ for 7 days to obtain their dry weight. Porosity [L3L−3] was
calculated as the ratio between the volume of water within the
saturated soil sample and its total volume (McKenzie et al., 2002).
From McKenzie et al. (2002), the bulk density (BD) [ML−3] was
deduced from the porosity value (PO) assuming a particle density
of 2.65 g/cm3.

Microscopic Measurements
Image Acquisition
After reaching a water matric potential of −70 kPa, the soil
samples were scanned using a Skyscan-1172 desktop micro-
CT system (Bruker microCT, Kontich, Belgium). The choice of
scanning parameters (filters, number of projections, 180 or 360◦,
projection averaging) was made by evaluating reconstruction
quality over acquisition time. The X-ray source was set at 100 kV
and 100 µA and an aluminum-copper filter was used to reduce
the beam hardening artifacts in the reconstruction. The rotation
step was set at 0.3◦ over 180◦ and, to improve the signal-to-noise
ratio, the average of 2 projections was recorded at each rotation
step. The exposure time was 600ms. The field of view was 21
× 14mm and, to cover the entire sample, a 2 × 4 grid of sub-
regions were scanned (in the Skyscan software this corresponds
to using both the “wide image” mode and “oversize scan” mode).
Given these parameters, the total acquisition time was ∼4 h. We
adjusted the detector configuration (16-bit X-ray camera with
4 × 4 binning, creating 1000 × 666 pixel radiograms) and the
distance between the camera and the soil sample in order to
obtain radiographs with a pixel size of 21.5µm.

Image Processing
Tomographic reconstruction was performed with the NRecon R©

software, freely provided by Brüker. Automatic misalignment
compensation was used along with a level 7 (out of 20) ring
artifact correction. No beam hardening post-corrections were
applied. The lower limit for the histogram grayscale range was
set at zero, as recommended by Tarplee and Corps (2008). The
upper limit, the same for all samples, was the maximum value
between the automatically generated upper limit for each sample.
After reconstructions, the 3D images were cropped to only select
the volume within the sampling cylinders (radius of 700 pixels)
and the image’s contrast was improved in Matlab (MathWorks,
UK).

Prior to segmentation, a 3D median filter with a radius of
2 pixels was applied to the images to decrease noise (Smet
et al., 2017). Because of computational cost, sub-sampling was
performed and the final voxel size was 43µm in all directions.
This process follows recommendation fromHouston et al. (2013)
and Shah et al. (2016), which is to scan a sample at the highest
possible resolution even if a post-scan coarsening is necessary.
We then applied the global porosity-based segmentation method
developed by Beckers et al. (2014b). To that purpose, we firstly
calculated the potential maximal visible pore size from capillary
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law and voxel size information (433µm3). Then, from the
laboratory SWRC data, the potential visible porosity for each
soil samples was obtained; it was the air-filled porosity at h
= −1 kPa (equivalent radius of 150µm). The porosity-based
segmentation method selects an initial global threshold with
Otsu’s method (Otsu, 1979), and then compares the porosity of
the resulting binary image (ratio of pore voxels over the total
amount of voxels) to the estimated soil sample visible porosity.
Through an iterative loop, the threshold is then adjusted to
minimize the difference between this calculated porosity and
the estimated soil sample visible-porosity. This method has been
proven satisfactory (Beckers et al., 2014b; Smet et al., 2017)
and the Matlab R2015a (MathWorks, UK) code was provided
by the authors. Finally, a visual inspection was performed to
evaluate the segmentation quality and, in case the porosity-based
segmentation method failed, Otsu’s segmentation was used. A
post-segmentation cleanup was applied to remove any pores
smaller than five voxels.

Quantification of Soil Microscopic Features
After segmentation, the images were imported into Avizo where
codes developed by Plougonven (2009) were used. Those codes
provide a 3D morphological quantification of the pores based
on the skeleton where a pore is defined as “part of the
pore space, homotopic to a ball, bounded by the solid, and
connected to other pores by throats of minimal surface area”
(Plougonven, 2009), the pore boundaries are demarcated by
the local geometry. The resulting 3D quantification information
regarding pores chambers connected by pores throats included
pore localization, volumes, specific surface, connected surfaces,
number of connections, deformation and inertia tensor. From
those data, we calculated several microscopic parameters
(Table 1) as well as the pore-size distribution with radius
calculated from the assumption that pores were elliptic cylinders
(Beckers et al., 2014a). After morphological processing in Avizo,
we imported the binary images in ImageJ (Schneider et al., 2012)
where the BoneJ plugin (Doube et al., 2010) functionalities were
used; all the measurements into ImageJ were performed in 3D.
The skeletonisation tool was used to find the pore’s centerline
and extract a skeleton made of branches that are connected
by junctions. It was achieved by external erosion with a 3D
medial axis thinning algorithm. All the calculated microscopic
parameters presented in Table 1 are commonly used in studies
regarding the use of X-ray in soil science. We calculated the large
porosity (Large_PO) in order to be comparable to the results
discussed in the introduction of this paper where the voxel size
was∼10 times larger.

3D Visualization
In order to obtain clear 3D representations, all 24 soil X-ray µCT
images were subjected to the following process: any pore that was
not part of the largest connected component was removed using
theMorphoLib plugin (Legland et al., 2016) in ImageJ (Schneider
et al., 2012), a cylindrical region of interest of 295 pixels in radius
was then used to remove the edge effects caused by sampling with
the initial height going unchanged. Visualization was performed

using the 3DViewer plugin (Schmid et al., 2010) in ImageJ
(Schneider et al., 2012).

Results Analysis
Basic descriptive statistics were performed on the macroscopic
and microscopic data. The correlation coefficients (ρ) between
the different microscopic parameters were then calculated
using Bayesian statistics (see next section) to account for
data uncertainty. Then, Bayesian correlation coefficients were
calculated between relevant microscopic and macroscopic
measurements as well as Bayesian linear regression models.
Before implementation, the data were randomly split into
calibration (18 soil samples) and validation (6 soil samples) sets.
To that purpose, a number was assigned to each of the 24 soil
samples and six numbers were randomly picked. Therefore, the
soil samples have a sequential numbering. The calibration set
includes samples from #1 to #18 and the validation set from #19
to #24.

Bayesian Statistics for Correlation and Linear

Regression
When a linear relationship was visually assumed between two
variables, the correlation coefficient between those two variables
was calculated using Bayesian statistics. In Bayesian statistics a
probability is assigned to a model [P(observations|model)] rather
than to an observation, as in frequentist statistics. From the
observations, the models (the prior) are updated to posterior
distributions [P(model|observations)] and the uncertainty of
the statistic description is expressed in a probabilistic way
through the posterior distributions parameters. We refer to
Marin and Robert (2007) for more information about Bayesian
statistics. In this study, we used the package “BayesMed” (Nuijten
et al., 2015) in R (R Core Team, 2015), which computes a
Bayesian correlation test, the null hypothesis (H0) being that the
correlation coefficient is null. The correlation test is based on a
linear regression between two variables with a Jeffreys-Zellner-
Siow (JZS) prior as a mixture of g-priors (Liang et al., 2008;
Wetzels and Wagenmakers, 2012). The correlation coefficient is
extracted from the posterior variance matrix. We computed the
test without expectation about the direction of the correlation
effect (Wagenmakers et al., 2016). The credibility of the test is
assumed by comparing the marginal likelihoods of the regression
model to the same regression model without the explaining
variable (Bayes Factor, BF), which quantify the evidence for one
or the other hypothesis. Another advantage of using the Bayesian
approach is the possibility of quantifying the evidence for the null
hypothesis (Wetzels and Wagenmakers, 2012). Non-significant
tests in frequentist statistics are interpreted in favor of the null
hypothesis although the result could be induced by a noisy data
set. Therefore, because the posterior distributions are updated
from the observations, the conclusion of the test will not depend
on the number of observations and it is possible to recalculate BF
as the observations are logged-in and stop the collect when the
evidence is compelling. Adapted from Jeffreys (1961) in Wetzels
and Wagenmakers (2012), BF’s larger than 100 were interpreted
as decisive evidence for H1; BF’s between 30 and 100 as a very
strong evidence for H1, BF’s between 10 and 30 as a strong
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TABLE 1 | Calculated microscopic parameters on the X-ray µCT images and their definition.

Microscopic parameter (abbreviation, metric) Definition

Avizo Porosity (µCT_PO, %) Ratio of pore voxels over the total amount of voxels

Large porosity (Macro_PO,%) Part of the porosity composed by pores of at least 1,000 voxels

Number of pores (NP, –) Total number of pores

Averaged pore volume (Avg_vol, mm3 ) Ratio of the total volume of pores over the number of pores

Averaged pore volume of the biggest pores

(Avg_Bvol, mm3 )

The biggest pores are the ones that account for 90% of the pores volumes by only representing 10% of

the number of pores

Averaged pore volume of the smallest pores

(Avg_Svol, mm3 )

The smallest pores are the ones that account for 10% of the pores volumes by representing 90% of the

number of pores

Proportion of isolated pores (IP, %) Ratio of the number of pores that have no connection over the total number of pores

Proportion of isolated porosity (IPO, %) Ratio of the isolated porosity over the total porosity

Averaged coordination number(Avg_Z, –) The average of Z, which is the number of connections at one point (Perret et al., 1999), of the connected

pores

Averaged surface connectivity (SC, L−1) The average of sc which is sc = Nc * Ac / Vp, where Nc is the number of connections, Ac the mean

surface area of the connections (L²) and Vp the pore volume (L3)

Total surface connected (Con_surf, mm²) The sum of each pore’s connected surface

Specific surface (SS, m−1) Sum of the specific surface of each pore which is the ratio of the pore surface area over its volume

Av. + IJ Global connectivity (Ŵ, –) The sum of each pore’s volume squared divided by the total volume of pores. It measures the probability

that two pores voxel are part of the same pore (Renard and Allard, 2013).

Image J Total length of the pore network (L, m) After skeletonization, it is the sum of all the branches length

Total nomber of branches (B, –) After skeletonization

Total number of junctions (J, –) After skeletonization

Degree of connectivity (B/J, –) Ratio of the number of branches over the number of junctions. As negative is the ratio, as connected

should be the medium

Global tortuosity (τ , m−1) The geometric tortuosity between two points is the ratio between the effective pore path and the

shortest distance between the two extreme points (Perret et al., 1999). We calculated the global

tortuosity (τ ) of the pore network as the average of the tortuosity of each branch

Fractal dimension (FD, –) FD was calculated with a box-counting algorithm (Perret et al., 2003)

Degree of anisotropy (DA, –) The value of DA is between 0 and 1, 0 for an isotropic medium. DA was calculated with the mean

intercept length method (Harrigan and Mann, 1984)

Euler number (ε, –) The Euler number is a quantification of the connectivity. Originaly calculated as ε =N-L+O, where N is

the number of isolated objects; L is the number of redundant connections and O the number of cavities

or holes (Vogel et al., 2010). As negative is the Euler number, as connected is the medium

Lowest Euler number (Min_ε, –) The Euler number of the largest connected component of the pore network

evidence for H1, BF’s between 3 and 10 as a substantial evidence
for H1 and BF’s below 3 as an anecdotal evidence for H1. The
values of BF’s that were inferior to one (1/100; 1/30; 1/10; 1/3)
were interpreted in the same way as the BF values superior to
one, the evidence going for H0.

We also established a Bayesian linear regression design
to extract relationships between micro- and macroscopic
measurements. All combinations between Y and X1 + X2 were
tested and regression models were compared against the same
models without the explaining variable (BF). The variables
priors were JZS prior as a mixture of g-priors (Liang et al.,
2008). We used the “BayesFactor” package (Morey and Rouder,
2015) in R (R Core Team, 2015), the autocorrelation and the
convergence were verified. In Bayesian statistics, the starting
point is not to identify the best regression equation but rather
evaluate the unknown values of the equation explaining variables
and intercept. We did it through the quantification of the 2.5
and 97.5% quantiles. The regression equations are reported in
the Supplementary Materials section. Afterwards, we aimed at

predicting the validation data points through the use of the slopes
and intercepts posterior mean. The relative root mean square
errors (RRMSE) were calculated as follows:

RRMSE =

√

√

√

√

1

n

n
∑

i=1

(

di − Di

Di

)2

(1)

Where n is the number of data points, di is the predicted data
point and Di the observed data point.

RESULTS AND DISCUSSIONS

Macroscopic Measurements
The agricultural soil we studied showed large variations between
samples with porosity values ranging from 43.09 to 57.70% and
density from 1.12 to 1.51 g/cm3. Table 2 presents the maximum,
minimum, and average values as well as the associated standard
deviations of the logarithmic saturated hydraulic conductivities
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TABLE 2 | Logarithmic saturated hydraulic conductivities (Ks, cm/day) and air

permeability (ka, µm²) measured after applying a draining pressure of −4, −7,

−10, −30, and −70 kPa for the calibration and validation data sets [minimum

values (Min), maximum values (Max), mean values (Mean), and standard deviation

(St dev)].

[cm/d] log [µm²]

log(Ks) ka(−4 kPa) ka(−7 kPa) ka(−10 kPa) ka(– 30 kPa) ka(−70 kPa)

CALIBRATION DATA SET

Max 1.591 2.920 3.076 2.992 3.235 3.231

Min 0.443 0.059 0.017 0.095 0.418 0.936

Mean 1.015 1.681 1.735 1.916 2.164 2.318

St error 0.149 0.505 0.478 0.478 0.603 0.400

VALIDATION DATA SET

Max 1.709 1.773 2.532 2.718 2.837 3.217

Min 0.352 0.395 −0.051 0.581 1.077 0.402

Mean 1.149 1.132 1.018 1.601 1.852 1.885

St error 0.400 0.801 1.028 1.013 0.893 0.891

ALL DATA

Max 1.709 2.920 3.076 2.992 3.235 3.231

Min 0.352 0.059 −0.051 0.095 0.418 0.402

Mean 1.049 1.584 1.572 1.853 2.086 2.220

St error 0.147 0.443 0.445 0.424 0.496 0.376

[Ks (cm/day)] and air permeabilitys [ka (µm²)]. As expected,
the range of Ks and ka values is large due to the singular
nature of pore network organization and the resulting transfer
properties. For all studied soil samples, we observed a power-law
type relationship between ka and the associated air-filled porosity
measured from the SWRC (e.g., Ball and Schjønning, 2002).
There was, however, no linear relationship between log(Ks) and
log(ka) as opposed to what has been shown in other studies
(e.g., Loll et al., 1999; Mossadeghi-Björklund et al., 2016). Those
transport properties, as well as the water content at variousmatric
potentials, were compared to the microscopic measurements
made on the X-ray images.

X-ray µCT Images Analysis
The segmentation step, within the image processing scheme, has
a great impact on the visible porosity calculated on the X-ray
µCT image and on the extracted microscopic measurements
(Lamandé et al., 2013; Smet et al., 2017). We, therefore, visually
verified the accuracy of the global segmentation on each of the
24 X-ray µCT images by superimposing the grayscale images
on the binary images. It appears that the porosity-based global
segmentation method did not provide satisfactory results for two
soil X-ray µCT images (#6 from the calibration set and #20 from
the validation set). Those samples had a large air-filled porosity
at h = −1 kPa (Lab_PO); the porosity-based segmentation
method increased the threshold (increased µCT_PO) in order
to obtain a µCT_PO as close as possible to Lab_PO [resulting
threshold of 94 (0–255)]. In addition, the algorithm did not
converge for one soil sample (#2), which had a large Lab_PO.
Otsu’s method was, therefore, applied to those three samples
and the global threshold values for samples #2, #6, and #20
were 67, 69, and 69 (0–255), respectively. The threshold values

comparisons obtained with the porosity-based method for the
other samples supported this processing choice; the averaged
threshold value was 63 (± 0.75). Finally, the samples #10, #13, #16
and #17 were segmented using the Otsu’s method because their
soil water retention curves (SWRC) were not measured. Figure 1
presents a 3D visualization of each soil sample (calibration and
validation sets) followed by a 2D vertical slice from the middle
of the soil sample. We will refer to this figure within the Results
section.

Microscopic Measurements
Table 3 presents the data ranges, averages and associated
standard deviations for all the previously introducedmicroscopic
measurements made on the X-ray µCT soil images (Table 1).
The calculated µCT porosities, taking into account pores of at
least five voxels, were only slightly higher than those calculated
taking into account pores of at least 1,000 voxels. The differences
represented ± 90% of the number of pores (the pores having
a volume between five and 1,000 voxels happened to be the
“small pores” as defined in Table 1). There was no surprise
that we observed longer pore networks (L), higher numbers
of pore branches (B) and junctions (J) than Katuwal et al.
(2015b) or Garbout et al. (2013) who both worked with larger
voxel sizes. Consequently to the high number of pores (NP),
the observed Euler numbers (ε) were frequently highly positive
and the differences between the percentage of isolated pore (IP)
and isolated porosity (IPO) was large. Comparisons to others
studies are however tricky because the pore network skeleton
is highly sensitive to the scanning equipment and procedure,
the image processing, the skeletonisation process and the pore
identification.

Table 4 provides the credible (BF > 3) Bayesian correlation
coefficients between each of the microscopic measurements.
The coefficients were initially calculated for the calibration
data and then the validation data were included. In Bayesian
statistics, the number of observations does not count for
the credibility of a hypothesis, so when a BF was improved
with the addition of the validation data, it meant that the
correlation was more credible thanks to the observation
values. The BF were highlighted with colors according to the
classes described in the Materials and Methods section. We
did not compute the Bayesian regression equations between
microscopic measurements since it was not in the scope
of this paper. We did not observe any substantial evidence
for the null hypothesis between any of the microscopic
measurements.

As Perret et al. (1999) observed, µCT_PO and NP were
not correlated; NP cannot be a measure of porosity, but rather
expresses a notion of pore density and distribution through the
soil sample. The positive correlation between µCT_PO and the
fractal dimension (FD) has often been observed in the literature
(Rachman et al., 2005; Larsbo et al., 2014) and its dependence
on µCT_PO is actually the main drawback of being used as an
indicator of pore network heterogeneity and complexity. FD was
also correlated to the specific surface area (SS), L, B, J, and NP,
which is consistent with studies from Kravchenko et al. (2011)
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FIGURE 1 | 3D and 2D representations of the 24 studied soil samples.

and Anderson (2014). Those five parameters were all highly
correlated to each other but selecting one to represent the other
could distort the analysis.

The correlation between µCT_PO and average pore volumes
(Avg_vol, Avg_Bvol, and Avg_Svol) also made sense since the
average pore volumes were not negatively correlated to NP. The
average pore volumes were all slightly correlated to Avg_Z; we
observed that larger pores tended to be more connected; Avg_Z
and Large_PO were also correlated. This is consistent with the
results from Luo et al. (2010); Larsbo et al. (2014); Katuwal et al.
(2015a,b). Regarding the other connectivity indicators [degree of
connectivity (B/J), the Euler number [ε], and the average surface
connectivity (SC)], we observed that AvgZ was correlated to B/J
but not to ε or to SC while B/J was correlated to ε and not to
SC, and SC was correlated to ε. Those connectivity indicators
did not carry the exact same information and should, therefore,
be used for their potential explanatory power, as pointed out by
Renard and Allard (2013) and Katuwal et al. (2015a), Jarvis et al.
(2017), and Sandin et al. (2017) have focused on connectivity
indicators based on the percolation theory, and they found
that four indicators of connectivity were interchangeable and
dependent on soil porosity. We calculated the global connectivity
(Ŵ) indicator from the pore size distribution extracted fromAvizo
and, from the cluster distribution extracted from BoneJ to be
comparable to Jarvis et al. (2017) and Sandin et al. (2017). We
observed drastically different Ŵ values from the two methods of
computation. As Houston et al. (2017) assessed it, the software,
and the decomposition method that goes with it, influence the
final pore size distribution. The very low values of Ŵ from
Avizo came from the decomposition of the pore space into a
large amount of connected (or not) pores and the resulting
smaller (by two orders of magnitude) largest component than
the one identified in BoneJ, where cluster of connected pores are
quantified. In the following, to be comparable to Sandin et al.
(2017), we used the Ŵ value computed from the BoneJ’s cluster
size distribution.

Relationships Between the Microscopic
and Macroscopic Measurements
Measured, Calculated, and Predicted Soil Water

Retention Curves
In the following section, samples #10, #13, #16, and #17 were not
included because SWRC were not measured; the calibration data
set included 14 samples instead of 18.

Air-filled porosity at h=−1 kPa
In the calibration data set, the relationship between µCT_PO
and Lab_PO was neither linear nor credible because of three
outliers (#1, #2, #7, Figure 2). As discussed above, samples
#2 and #7 were segmented with Otsu’s method. In the case
of sample #7, Lab_PO was too large for the porosity-based
method, introducing unrealistic porosity that would explain the
deviations. Lab_PO was calculated by weighing the soil samples
after draining. If the pore surfaces were rough or loose, water
films could have covered up the pores surface by adsorption and
pores could appear smaller than they are. Difference between
adsorption and desorption curves, also known as the hysteresis
effect, can indeed be substantial close to saturation (McKenzie
et al., 2002). A physical explanation for sample #1 could be that
it had large pores which drained just before being weighed at
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TABLE 3 | Microscopic measurements on µCT X-ray images for the calibration and validation data set [minimum values (Min), maximum values (Max), mean values

(Mean), and standard deviation (St dev)].

Microscopic measurements Calibration data set Validation data set

Min Max Mean St dev Min Max Mean St dev

µCT_PO [%] 3.71 14.23 7.66 2.69 2.76 12.77 8.55 4.06

Macro_PO [%] 2.87 13.22 6.69 2.68 1.97 11.86 7.54 3.93

NP [–] 31,770 79,749 46,649 12,957 32,197 66,192 44,478 12,346

Avg_vol [mm3] 0.0260 0.1110 0.0567 0.0223 0.0260 0.1010 0.0620 0.0294

Avg_Bvol [mm3] 0.1350 1.3450 0.5958 0.3656 0.1210 2.0190 0.7795 0.7191

Avg_Svol [mm3] 3.000E-03 1.200E-02 6.278E-03 2.372E-03 3.000E-03 1.100E-02 7.000E-03 3.162E-03

IP [%] 66.29 87.32 76.58 5.97 64.28 83.76 75.51 7.31

IPO [%] 3.10 12.76 8.44 2.62 4.16 12.88 7.93 3.02

Avg_Z [–] 3.07 5.40 4.29 0.83 3.58 5.24 4.36 0.59

SC [voxel−1] 0.206 0.304 0.250 0.029 0.209 0.315 0.258 0.036

Con_surf [mm²] 2553 7921 4722 1321 2696 5984 4703 1282

SS [m−1] 2.040E-03 5.078E-03 2.991E-03 8.484E-04 2.027E-03 4.008E-03 2.843E-03 7.034E-04

Ŵ [–] / Avizo 9.200E-04 4.817E-02 5.152E-03 1.080E-02 1.400E-03 4.100E-02 1.307E-02 1.601E-02

Ŵ [–] / BoneJ 0.8613 0.5356 0.7386 0.0820 0.8286 0.6724 0.7365 0.0649

L [m] 28.22 71.58 43.83 10.95 30.97 57.57 43.63 12.17

B[–] 77,776 22,3143 126,510 36,757 81,850 158,219 124,115 30,407

J [–] 28,480 94,542 51,812 16,524 32,605 65,150 51,595 13,053

B/J [–] 2.230 2.930 2.529 0.183 2.280 2.740 2.443 0.166

Tortuosity [mm−1] 1.240 1.280 1.257 0.014 1.240 1.276 1.258 0.013

FD [–] 2.405 2.642 2.527 0.072 2.313 2.653 2.507 0.118

DA [–] 0.112 0.384 0.206 0.080 0.104 0.352 0.252 0.092

ε [–] −14,125 27,434 8,761 10,969 −9,897 30,112 6,534 13,836

Min_ε [–] −39,624 −7,196 −20,034 9,141 −2,7461 −9,747 −19,667 6410

The abbreviations of the microscopic measurements are listed in Table 1.

saturation. Therefore, the volume of water used to calculate the
total laboratory porosity could have been under-evaluated. This
is most likely since one gram of water can change the Lab_PO
from 8.02 to 14.21%. The 3D visualization of sample #1 shows
that a large part of its porosity was connected from top to
bottom (Figure 1). The validation data were in agreement with
the calibration data except for sample #20, which was segmented
with Otsu for the same reasons as sample #7, and sample #22,
which showed a behavior similar to sample #1.

Eventually, the samples that were segmented with the
porosity-based method displayed similar Lab_PO and µCT_PO
values. Lab_PO was used as a target during the segmentation
process. Elliot et al. (2010) also found congruent air-filled
porosity values measured by X-ray µCT (voxel size of 453µm3)
and by weight determination. The slope of the relationship
between Lab_PO andµCT_POwas higher than one and Lab_PO
was indeed positively correlated to the difference between
Lab_PO and µCT_PO. The applied capillary theory to calculate
Lab_PO and µCT_PO simplifies the pore network to capillaries.
We, therefore, suggest that the difference between Lab_PO and
µCT_PO reflected the systematic error produced by considering
pores as capillaries, and increasing the volume of data to
which the theory was applied (PO) had increased the error
(the difference). The difference between Lab_PO and µCT_PO,
whether in absolute value or not, could, however, not be

correlated to any microscopic measurements. We presumed that
the pore network real connectivity would explain the imperfect
applicability of the capillary law. For example, Parvin et al.
(2017) reported that the percentage of isolated pores explained
the difference in volumetric water content (between laboratory
evaporation measurements and X-ray µCT calculation) at a
water matric potential ranging from −0.35 to −0.4 kPa by only
considering pores larger than 350µm (pores that should drain at
a matric potential of −0.42 kPa from capillary law). The isolated
pores were actually connected to others by throats smaller than
the voxel size and may not have drained at the required potential
calculated from capillary law.

From discrete to continuous data
Beckers et al. (2014a) and Parvin et al. (2017) applied nearly
the same methodology to compare predicted SWRC with the
bimodal version (Durner, 1994) of the van Genuchten (1980)
model. On one hand, they only used macroscopic input data
[from pressure plates weighting procedure for Beckers et al.
(2014a) and from the evaporation method for Parvin et al.
(2017)], and on the other hand, they used those macroscopic data
in combination with microscopic data (pore-size distribution
extracted fromX-rayµCT images) as input. They both found that
using the X-ray µCT data allows a better prediction of SWRC
close to saturation in terms of RRMSE. We noted, however,
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FIGURE 2 | Air-filled porosity measured in the laboratory at a water matric

potential of −1 kPa (Lab_PO) vs. the visible porosity measured on X-ray

images (µCT_PO) for the calibration data set (black circles) and the validation

data set (white circles).

that those studies used macroscopic data from one set of soil
samples and microscopic data from another set of soil samples.
We aimed at validating the results by using the same samples for
both types of measurements. To that purpose, capillary theory
was applied to the pore-size distribution extracted from the X-
ray µCT images and the calculated SWRC were adjusted to
the total laboratory porosity. Figure 3 illustrates the SWRC for
three samples and shows that for all samples, except #1, the
volumetric water content (θ) close to saturation was higher when
predicted with the combination of X-ray µCT data and pressure
plates data (µCT+PP) than with only the pressure plates data
(PP), confirming previous results from Beckers et al. (2014a)
to Parvin et al. (2017). We also observed that according to the
RRMSE values, prediction with µCT+PP data were better than
with only the PP data (Table 5), except for sample #1. Lamandé
et al. (2013) also found that X-ray µCT measurements (voxel
size of 6003 µm3) allowed a more complete description of the
pore space than classical laboratory measurements, and Rab et al.
(2014) have concluded that X-rayµCTwas likely a better method
than laboratory SWRC measurements for determining air-filled
macroporosity (pores larger than 300µm in diameter). The poor
performance from sample #1 came from the fact that Lab_POwas
lower thanµCT_PO, as discussed in Figure 2. Apart from sample
#1, the use of microscopic information undeniably improved
the prediction of continuous SWRC with the bimodal version
(Durner, 1994) of the van Genuchten model (1980).

Altogether
The determination of SWRC through pressure plate
measurements are likely more representative of the in-situ
soil hydrodynamic, but those are not free of artifacts; for

FIGURE 3 | Measured and predicted soil-water retention curves for three

samples. Unlike the samples, the SWRC for #1 predicted with the pressure

plates data alone (plain line, Pred_PP_DP) performed better than with X-ray

µCT data (dotted line, Pred_PP+µCT_DP). Black circles represent the X-ray

µCT data and white circles the pressure plate measurements.

example, air entrapment might result in incomplete saturation
leading to inaccurate estimation of the air-filled macroporosity.
And, although the connectivity of the pore network was not
taken into account with the X-ray µCT SWRC calculation, we
still observed that the combination of laboratory measurements
and X-ray µCT data improved the SRWC prediction close
to saturation. The accurate characterization of the air-filled
macroporosity is important for the study of microorganism
development (e.g., soil fungal growth in Falconer et al., 2012).

Saturated Hydraulic Conductivity and Soil Porous

Structure
The saturated hydraulic conductivity was positively correlated
to the global connectivity indicator (Ŵ) computed from the
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TABLE 5 | Relative root mean squared error (RRMSE, %) for the predicted soil

water retention curves with the pressure plates data (PP) or the µCT data plus the

pressure plates data (µCT + PP) for the calibration data set samples.

Sample RRMSE

PP µCT+PP

#1 3.445 0.0538

#2 1.816 0.0157

#3 2.867 0.0201

#4 3.617 0.0254

#5 3.711 0.0300

#6 2.311 0.0165

#7 1.727 0.0134

#8 2.906 0.0216

#9 6.526 0.0474

#11 2.427 0.0232

#12 6.135 0.0556

#14 2.734 0.0223

#15 3.840 0.0275

#18 4.781 0.0385

BoneJ cluster size distribution (Figure 4A, ρ = 0.593, BF = 9.5)
as observed in Sandin et al. (2017), unlike that study, we did
not observe a credible correlation, but a positive trend between
µCT_PO and Ŵ/BoneJ. It is worth noticing again that Sandin
et al. (2017) worked with a resolution close to our but with a
different textural soil. Pöhlitz et al. (2018) also reported similar
trend of Ks and connectivity values (and µCT_PO) between
cultural practices. They worked with a voxel size of 603µm3

on different samples for the Ks and microscopic measurements,
with although a large number of repetitions. Figure 4A shows
the observations of the calibration data (black circles), the
observations of the validation data (white circles), the predicted
validation points with the 50% quantiles of the regression
model (crosses) and the 25 and 75% quantiles of the regression
models (dotted lines). The 50% quantiles of the regression
models provided a RRMSE of 0.492 for the validation data and
the predicted data points were, in most cases, underestimated.
The reported regression models that included two explaining
variables reported light credible evidence in the cases where
Ŵ was one of the explaining variables. We did not observe
relationships between µCT_PO and log(Ks), despite what the
literature reported (Kim et al., 2010; Luo et al., 2010;Mossadeghi-
Björklund et al., 2016; Naveed et al., 2016). The measured Ks
from those studies were, however, higher by several orders
of magnitude. We did observe a positive correlation between
log(Ks) and FD when the calibration samples were visually
separated in two groups according to their Ks value (Figure 4B,
black circles). Samples #1, #2, #3, #4, #7, #11, #12, #14, #15, #16,
#18 were part of group 1 and samples #5, #6, #8, #9, #10, #13, #17
were part of group 2. No microscopic measurements explained
that separation and it was difficult to visually distinguish a
pore distribution trend within the pore space (Figure 1). We
noticed that some of the less conductive samples presented
one or two large macropores (not necessarily vertically oriented

FIGURE 4 | Logarithmic saturated hydraulic conductivity (Ks) vs. (A) global

connectivity calculated from the pore size distribution extracted from BoneJ,

(B) the fractal dimension measured on X-ray µCT images, and (C) the soil

degree of anisotropy measured on X-ray µCT images. Black and white circles

represent the observations from the calibration and validation data sets,

respectively. Crosses represent predicted validation data points and dotted

lines represent the 25 and 75% regression model quantiles.

nor connected from top to bottom) while some of the more
conductive samples had more dispersed pore networks, and we
observed a negative trend (not credible) between FD and the
degree of anisotropy (DA) for group 2, but not for group 1. This
suggested that the porosity arrangement led to the composition
of two groups for the relationship between FD and log(Ks).
By using the Ks value as a boundary, the validation data were
assigned to a group (Figure 4B, white circles). FD measures the
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ability of the studied object to fill the Euclidian space within
which it is integrated and, the larger the FD, the closer to a
real fractal the object gets, meaning that its shape is similar at
different scales. Although Pachepsky et al. (2000) reported that
soils are far from being real fractal, Perret et al. (2003) and
Kravchenko et al. (2011) pointed out that FD can be used as a
global measure of the pore network complexity. For example,
FD was found to vary with depth or soil treatment (Rachman
et al., 2005; Udawatta and Anderson, 2008; Kim et al., 2010).
Anderson (2014) also observed a positive correlation between
log(Ks) and FD. By applying the regression equations, log(Ks)
of group 1 equal to log(Ks) of group 2, when FD = 3.03, which
was close to the upper limit of the possible FD values of a 3D
object. At FD= 3, the object (the porosity) occupies each point of
3D Euclidian space, but that also meant that log(Ks) was limited
to 128 cm/day. It is reasonable to ask if more groups would
be created with increasing conductivity and if the slopes of the
relationships would decrease, or if the solutions of the regression
equations would be identical when the fractal dimension equals
three, which is the fractal dimension upper limit for an Euclidian
3D object. The global RRMSE was 0.260, which is a rather good
performance (Figure 4B, crosses). The 25 and 75% regression
model quantiles were highly dispersed (Figure 4B, dotted lines)
inducing uncertainty about the regression model.

Anisotropy has been shown to impact soil conductivity
(Ursino et al., 2000; Raats et al., 2004; Zhang, 2014). Figure 4C
plots log(Ks) as a function of DA (black circles for the
observations of the calibration data) and by removing two
outliers from the calibration data set (#9 and #10), we obtained
a correlation coefficient of 0.74 (BF = 125.3), which presents
a convincing link that has, to our knowledge, not been seen
before. Such a positive correlation could be interpreted as a
consequence of preferential flow through large macropores. For
example, Dal Ferro et al. (2013) have found that anisotropy was
scale-dependent by showing higher average DA in soil cores
(DA of 0.32 and voxel size of 40µm) than in soil aggregates
(DA of 0.14 and voxel size of 6.25µm), they hypothesized
that as a possible consequence of biological and mechanical
macropores. This was later confirmed by a second study where
they showed that only the macropores in the range of 250–
500µm were correlated to the global DA (Dal Ferro et al., 2014).
From the DA calculation decomposition (in the Supplementary
Materials section), it was possible, but not straightforwardly,
to evaluate the main direction of the anisotropy which could
be represented by a small amount of pores in that direction,
or as the direction of the preferential orientation of one large
pore. Ks was measured along the z-axis (vertically) but the main
direction of anisotropy was not systematically in that direction.
Therefore, the positive correlation between DA and log(Ks) was
not necessarily a result of preferential pore networks paths.
Moreover, the directions of the pore connections showed that a
majority of the pores junction were horizontal (x- and y-axis).
The repartition was practically the same between samples, 60%
horizontal and 40% vertical connections. Applying the regression
model to the validation data gave consistent results for four
samples with a RRMSE for those of 0.414 (Figure 4C, crosses).
Sample #21 gave poor results with a predicted log(Ks) of 1.03

cm/day instead of an observed log(Ks) of 0.35 cm/day and a
resulting RSE of 3.742. As well, sample #22 gave a RSE of 0.433,
its low DA and large log(Ks) made it similar to the two outliers
of the calibration data (#9 and #10). The relationship between
DA and log(Ks) may not be suitable for highly conductive soil
sample presenting isotropic-like porosity distribution (Samples
#9, #10, #22, Figure 1). Subjective comparisons between 3D
representations andDAneed to bemade cautiously.We observed
that, compared to samples #9, #10, #22, samples #15 and #18
had similar visually homogenous porosity (and equivalent low
DA) but with a lower Ks. Samples from group 2 in Figure 4
(#5, #6, #8, #13, #17 and #20, #23, #24) had higher log(Ks) with
a more heterogeneous porosity (and higher DA). The narrower
distribution of the 25 and 75% regression model quantiles came
from the exclusion of two outliers in the model computation.

The prediction of the hydraulic conductivity curve is
frequently extracted from the SWRC shape and absolute values
of K(h) can be obtained by matching both curves with a
specific point, which is often Ks (Vogel and Roth, 1998). Ks
is however cumbersome and time-consuming to measure in-
situ. We reported here that the porosity arrangement described
by the global connectivity, the fractal dimension, and degree
of anisotropy had an impact on the soil conductivity, the
combination of those indicators provided information that could
be used across scales and to eventually better estimate Ks.
No other relationships between log(Ks) or Ks and the other
microscopic measurements were reported.

Air Permeability Variations Explained by Microscopic

Structure
Macroscopic measurements showed, as expected, that the air
permeability increased with air-filled porosity. We also observed
positive credible Bayesian correlation coefficients between
log(ka) measured at various h and microscopic indicators
of the porosity (µCT_PO, Large_PO, Avg_vol, Avg_Bvol,
and Avg_Svol), although only log(ka,−70 kPa) was positively
correlated to µCT_PO (Table 6). Given the X-ray µCT image
resolution, µCT_PO should be representative of the air-filled
PO measured at h = −1 kPa although th e soil samples were
scanned at h = −70 kPa. The choice to scan soil samples at
h = −70 kPa was a compromise between the fact that all the
potential visible porosity should be air-filled and without cracks
due to drying, and this particular correlation suggests that all
the potential visible porosity was indeed air-filled. In their study,
Katuwal et al. (2015b.) and Naveed et al. (2016) both observed a
power-law function between, respectively, ka(−2 kPa) or ka(−3
kPa) and µCT_PO. The µCT_PO calculated on their images
is equivalent to the Large_PO on our images as previously
stated, and we also reported a correlation between Large_PO and
log(ka) (Table 6). Therefore, the difference between µCT_PO
and Large_PO might be the part of the PO that should have
drained at low negative potential (from the capillary law),
but was actually drained at higher negative potential (due to
unusable pathways). We refer to Hunt et al. (2013) to name that
part of porosity, the inaccessible porosity. This assumption was
confirmed by the credible correlations between the inaccessible
PO andmicroscopic parameters which expresses a notion of pore
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network complexity (B, J, L, NP, SS, IPO, FD). We previously
pointed out the drawback that, when calculating SWRC from the
X-ray µCT data (namely from the visual pore size distribution),
the connectivity was not taken into account. We here confirmed
that the pore network connectivity play a role in the desorption
process.

Lamandé et al. (2013) found a positive correlation between
log(ka,−10 kPa) and NP. We observed negatives correlations
(as well as with B, J, and SS). Many pores of our samples were
connected to others with connections smaller than the voxel
size and were considered isolated (high IP and ε, Table 3). It
would make sense, that an increasing volume of small (invisible)
connections reduces the airflow through the pore network. The
air permeability is also largely dependent on the tortuosity and
connectivity of the pore network (Ball and Schjønning, 2002;
Moldrup et al., 2003), but to our knowledge, no study has
reported these links from µCT measurements. From Table 6,
it appears that the air permeability increased with a growing
average number of connections (Avg_Z) as well with a growing
global connectivity (Ŵ/BoneJ), but also with Min_ε and B/J.
The last two parameters indicate a decreasing connectivity with
an increasing value. First, from Table 4, it was observed that
B/J increased with decreasing B or decreasing J. That purely
algebraic relationship might explain why the air permeability
would decrease with decreasing B/J (increasing connectivity).
Then, Min_ε was calculated over the largest connected pore
component, and, because there are no cavities in real soil pore
space (Vogel and Roth, 1998), Min_ε decreased as the number
of redundant connections increased. When calculating Avg_Z by
class of pore according to their volumes, it appeared that the
values of Avg_Z we observed came from a large number of small
pores having few connections; the biggest pores had ten times

TABLE 6 | Credible Bayesian correlation coefficients between microscopic

measurements and logarithmic air permeability (ka) measured at water matric

potentials of −70, −30, −10, and −7 kPa for the calibration data set.

log

ka (−7 kPa) ka (−10 kPa) ka (−30 kPa) ka (−70 kPa)

µCT_PO 0.53

Large_PO 0.54 0.60 0.64

Avg_Vol 0.72 0.76 0.72 0.79

Avg_Svol 0.75 0.85 0.75 0.84

Avg_Bvol 0.69 0.76 0.69 0.77

NP −0.70 −0.76

Avg_Z 0.55 0.78 0.85 0.69

SS −0.64 −0.73 −0.80 −0.54

IPO −0.70 −0.76 −0.82 −0.62

B −0.56 −0.68 −0.72

J −0.52 −0.68 −0.71

B/J 0.62 0.63

Ŵ/BoneJ 0.54 0.54

Min_ε 0.68 0.73

The abbreviations of the microscopic measurements are listed in Table 1.

more connections. Avg_Z was correlated to Avg_Z calculated on
the pores having a radius between 250 and 375µm. Therefore, air
permeability was correlated to the fact that “medium” size pores
had more connections. Moreover, there was a negative trend
between log(ka) and Avg_Z calculated on the largest pores which
corroborated the positive correlation between ka and Min_ε.

The best regression models calculated on the calibration
data (Bayes factor) and applied on the validation data reported
that the best explaining variable for all measures of log(ka)
(RRMSE) was the average pore volume of the smallest pores
(Avg_Svol). That parameter might be seen as a limiting factor,
and this suggested that ka was more related to pore size
distribution than porosity. Figure 5A displays log(ka, −70 kPa)
as a function of Avg_Svol and the distribution of the 25
and 75% regression model quantiles are rather narrow. The
RRMSE was 1.256 or 0.0649 when the two worst predicted
validation data points were not taken into account. The
RRMSE for log(ka, −30 kPa) and log(ka, −10 kPa) were
around 0.800 with one bad validation data point, and the
RRMSE for log(ka, −7 kPa) was very high (8.154) with three

FIGURE 5 | (A) Logarithmic air permeability measured at a water matric

potential of −70 kPa (ka) vs. the average pore volume of the smallest pores

(Avg_Svol). Black and white circles represent the observations from the

calibration and validation data sets, respectively. Crosses represent the

predicted validation data points and the dotted lines the 25 and 75%

regression model quantiles. (B) The predicted logarithmic air permeability from

the average pore volume of the smallest pores vs. the observed logarithmic air

permeability. Error bars represent the 75% regression model quantiles.
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badly predicted data points out of five. The combination of
Avg_Svol and average pore volume of all pores (Avg_Vol)
performed slightly better in some cases, and slightly worse in
others. Figure 5B shows the predicted log(ka) from Avg_Svol
vs. the observed log(ka) values. Although the RRMSE were
acceptable, the regression model distributions (the error bars
represent the 75% regression models quantiles) were high which
induce large uncertainty. That combination of two explaining
variables was, in all cases, the best regression model of two
explaining variables. Other important explaining variables were
the average coordination number (Avg_Z), the proportion
of isolated porosity (IPO), the average pore volume of the
biggest pores (Avg_Bvol) and the combination of µCT_PO and
Large_PO.

With soil air diffusivity, soil air permeability is one of the main
processes governing the exchange of gases with the atmosphere,
including therefore soil aeration. Through our experimentations,
we aimed at unraveling the main physical drivers of air fluxes
through the soil. We have previously observed that subdividing
the pore volume averages into three categories (all of the
pores, the biggest, and smallest) was not informative; in this
study, we have shown the opposite. Avg_Svol was the average
volume of the pores having a volume between 4 × 105 and
± 8 × 107 µm3, in contrast to other cited studies; those
pores were visible because of our high resolution (43µm).
Eventually, we suggested that Avg_Svol worked as a limiting
factor.

CONCLUSION

X-ray microtomography, among other visualization techniques,
has brought new insight into the study and the understanding of
soil function. The challenge, however, is the representativeness
of the studied soil samples (Vogel et al., 2010) and, to
that purpose, the analysis of the same soil samples at
two scales has become more prevalent. The resulting
next challenge is the resolution at which the soil samples
should be studied. To our knowledge, very few studies
dealt with equivalent voxel size (433 µm3) and, we did
not find any micro-macro correlations such as the ones we
observed.

Starting with the comparison of the calculated visible porosity
for all pores and for those of at least 1,000 voxels in volume,
it appeared that the difference was rather small but positively
correlated to indicators of the pore network complexity. The
uncommon relationships we observed might be due to the higher
resolution we worked with and the resulting finer details of
the pore network structure. For example, the calculated fractal
dimension and degree of anisotropy are both global indicators
of the pore network complexity and both were positively
correlated to the saturated hydraulic conductivity, although with
some limitations. The global connectivity showed interesting
results although highly dependent on the decomposition software
used to extract the pore size distribution. Identifying the key
parameters that convey the complexity of the pore network is
a motivating goal to reach. Pore network modeling has already

proven useful (e.g., Vogel and Roth, 1998, or more recently,
Köhne et al., 2011), and those three indicators are values
that could be used for the generation of a phenomenological
model.

Furthermore, we have reported various positive correlations
between the air permeability measured at several water
matric potentials and microscopic measurements. The average
volume of the smallest pores (as small as ± 4 × 105

µm3) showed the best link with air permeability. Due
to our high resolution, we observed a higher number of
pores than in other studies and consequently more isolated
pores. The Euler number based on the connected space
was expected to correlate well with air permeability, but
this was not the case. Other measures that provide similar
types of information (total pore length, total number of
branches, and junctions) proved equally unsatisfactory. In fact,
a pertinent link was the positive relationship between the
average pore volume of the biggest pores and that of the
smallest ones, suggesting dependence between pores of different
volumes.

We also reported that the soil water retention curve was
better predicted near saturation with the pore size distribution
extracted from the X-ray µCT data. Indicators can be derived
from the SWRC to characterize soil quality or extrapolate
microorganism development (Rabot et al., 2018); its accurate
description is therefore a prerequisite. The degree of saturation
is also important in the modeling of microbial growth, the
dissolution of O2, the soil respiration, the NO and N2O
production. These processes are affected by the so-called water
filled pore space, by soil oxygen content and by soil temperature,
which all vary with the volumetric water content (Smith
et al., 2003). Blagodatsky and Smith (2012) concluded that
the microbial growth models (and we add to this statement:
“among others”) including “an explicit description of microbial
growth, i.e., growth rate and efficiency, humidification ratios
and their relationship with N availability, need to be coupled
with well-developed soil transport models.” The fluid transport
predictions for a continuous range of water contents and
from discrete measurements are possible through models that
are, today, mostly not physically-based. From the pore space
structures analyzed, we aimed at contributing to a better
understanding of the potential influences of the pore network
topology on the physical hydrodynamic properties of soil.
Strong unequivocal conclusions could not be drawn because
of the limited number of repetitions; image processing and
analysis are time-consuming and will be increase with increasing
resolution. The comparisons to others studies, as discussed
multiple times, depends on many factors and we, therefore,
strongly urge the open access to gray scale X-ray µCT
images.
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