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Abstract. Monte Carlo methods have been used extensively in the area of stochastic programming. As
with other methods that involve a level of uncertainty, theoretical properties are required in order to give
an indication of their performance. Traditional convergence properties of Monte Carlo methods in stochastic
programming consider global minimisers or first-order critical points of the sample average approximation
(SAA) problems as well as of the true problem. In this paper we review the first-order critical convergence
and extend these results to the case where computed solutions are second-order critical, in turn allowing
for problems whose objective function is nonconvex. As an application, we use the proposed framework in
the estimation of mixed logit models for discrete choice, guaranteeing almost sure convergence of the solu-
tions of the successive SAA problems. The result is observed to hold both for constrained and unconstrained
problems. Finally, we produce estimates of the simulation bias and variance.

1. Introduction

Stochastic programming, that is mathematical programming where uncertainty is in-
troduced in the problem by the use of random variables, is today recognised as an im-
portant area of operations research (see the books by Birge and Louveaux [10] and by
Kall and Wallace [29], for instance). Amongst the methods of stochastic programming,
Monte Carlo techniques are well-known tools for the case where the random variables
are either discrete with a large number of possible realisations, or continuous. However,
to our knowledge, the convergence theory for these methods has so far been limited
to the case where the minimisation of the approximating subproblems is assumed to
produce a global minimum in all the feasible set (see for instance Shapiro [39]), a first-
order critical point (Gürkan, Özge and Robinson [21,22], Shapiro [40]) or a solution
in a complete local minimising set with respect to some nonempty open bounded set
(Robinson [36]). As a result, they have been applied mostly to linear or convex prob-
lems, where such assumptions are not restrictive.

It is our purpose to extend the theoretical understanding of this class of methods to
the case where this global minimisation assumption no longer holds: the minimisation
of the subproblem is allowed to converge to a local minimiser, irrespectively of the set
of minimisers of the true problem. This investigation is worthwhile, in particular be-
cause it opens the possibility to consider stochastic problems with nonconvex objective
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functions. We introduce our approach by reviewing consistency results when only first-
order critical points are considered. We next examine second-order criticality and show
that, when the sample size tends to infinity, approximating local solutions may have
limit points that are not (local) solutions of the true problem. We then set conditions
under which second-order properties are preserved for limit points. This is interesting
because there may be more than one solution in the nonconvex case, and they often do
not share the same constraint qualification properties.

Nonconvex stochastic problems do occur in practise, and we will apply our con-
vergence results to the specific and important case of (possibly) constrained parameter
estimation in mixed logit models. Mixed logit modelling is one of the most power-
ful tools currently available to estimate individual demand from discrete choice re-
sponses. In spite of their inherent complexity, they are becoming very popular among
researchers and practitioners in economics and transportation (see, for instance, Mont-
marquette, Cannings and Mahseredjian [31], Bhat and Castelar [8], Brownstone, Bunch
and Train [12], Cirillo and Axhausen [13], Hensher and Greene [24], Hensher and Sul-
livan [25], Hess and Polak [26]). Their advantages include the possibility to estimate
taste variations, to take into account state dependence across observations and to avoid
the problem of restricted substitution patterns in the standard logit model. However the
complexity of the likelihood function, the loss of an easy behavioural interpretation of
the results and a heavier computational burden mitigate these advantages. In particular,
mixed logit model estimation implies the evaluation of multidimensional integrals de-
scribing the choice probabilities, which are typically calculated, in real applications, by
the following sampling (simulation) technique. For each individual in the considered
population, pseudo-random sequences are drawn from a given density and, for each
draw, observed parts of the alternatives utilities are calculated conditionally to this re-
alisation and inserted in the logit formula. The integral giving the probability choice
for this individual is then approximated by the mean of these results. Hajivassiliou and
McFadden [23] show that the computed estimators are, under reasonable assumptions,
asymptotically consistent and efficient. But, even in this form, evaluation costs can be
prohibitive. The current research approach has thus shifted, in order to reduce com-
putational time and simulation error, to quasi-Monte Carlo approaches instead of pure
Monte Carlo methods. Bhat [6] and Train [42] advocate Halton sequences for mixed
logit models and find that they perform much better than random draws in simulation
estimation. However Bhat [7] has pointed out that Halton sequences rapidly deteriorate
in the coverage of the integration domain for high integration dimensions and has pro-
posed using scrambled Halton sequences. He also randomised these sequences in order
to allow the computation of the simulation variance of the model parameters. Hess,
Polak and Daly [27] have shown that scrambled Halton methods can be very sensitive
to the number of draws, and can behave poorly when this number increases. Recently
Hess, Train and Polak [28] have proposed the use of modified latin hypercube sequences
and have reported better results than with any of the Halton based approaches.

The second purpose of this paper is nevertheless to provide additional insight in
the process of estimating mixed logit models that can be derived from considering the
question in the framework of pure Monte Carlo methods. The main reason for return-
ing to the pure Monte Carlo framework is that it completely avoids the problems of
sample correlations and loss of uniform coverage in the estimation of high-dimensional
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integrals. For such problems, practitioners report that Monte Carlo methods are again
competitive compared to quasi Monte Carlo approaches (Deak [15], Hess, Train and Po-
lak [28]). We apply our convergence results for stochastic programs to develop almost
sure convergence of the approximating solutions to the true maximum likelihood esti-
mators, when the population size is fixed, covering both constrained and unconstrained
problems as well as nonlinear utilities. These results are theoretically interesting since
they complete the classical ones in mixed logit theory (see Train [43]), exploring con-
vergence in probability and in distribution when both sample and population sizes grow.
The asymptotic behaviour of the approximating solutions, when the population size in-
creases, is also briefly discussed in this paper. A second reason of our interest in Monte
Carlo techniques is that statistical inference can be easily used to provide computable
estimates of the simulation bias and variance.

The paper is organised as follows. We introduce the general stochastic problem
and its application to mixed logit models in Section 2. Sections 3 and 4 discuss our
convergence theory for the general problem, while Section 5 applies them to the mixed
logit case and explores bias and variance estimates. Some conclusions and perspectives
are outlined in Section 6.

2. Stochastic programming and mixed logit parameter estimation

2.1. The stochastic problem

A classical problem in stochastic programming is the minimisation of the expectation
of some function depending on a random variable (see Birge and Louveaux [10] or Kall
and Wallace [29] for a more complete exposition):

min
z∈S

g(z) = EP [G(z, ξ)] , (2.1)

where z ∈ R
m is a vector of decision variables, where S is a compact subset of R

m

representing feasible solutions of the above problem, where ξ is a real random vector
defined on the probability space (Ξ,F , P ) and taking values in

(

R
k,Bk

)

, where G :
R

m × Ξ → R is a real valued function, and where EP [·] is the expectation w.r.t. the
measure P . We assume that for every z ∈ S the expected value function g(z) is well
defined, i.e. that the function G(z, ·) is F-measurable and P -integrable. For simplicity,
we restrict ourselves in a first step to the case where the set S is deterministic.

If the distribution function of ξ is continuous or discrete with a large number of
possible realisations, g(z) is usually very hard to evaluate. Solving the problem (2.1)
thus becomes difficult and we have to turn to approximations such as Monte Carlo
methods (see Shapiro [39,40] for a review). In these methods, the original problem (2.1)
is replaced by successive approximations obtained by generating samples ξ1, . . . , ξN .
The approximation for a sample of size N is

min
z∈S

ĝN (z) =
1

N

N
∑

i=1

G (z, ξi) . (2.2)

We refer to (2.1) and (2.2) as the true (or expected value) and the sample average ap-
proximation (SAA) problems, respectively.
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2.2. Discrete choice models and mixed logit

The field of discrete choice modelling attempts to provide an operational description
of how individuals perform a selection amongst a finite (discrete) set of alternatives.
Choice between competing products in a marketing campaign (see for instance Ander-
son, De Palma and Thisse [2], McFadden and Train [30] and Allenby and Rossi [1]) or
between transportation modes for travel (see Sheffi [41], Ortúzar and Willumsen [33])
are good examples of the many possible applications.

In this theory, the probability of an individual choosing a given alternative is mod-
elled as a function of his/her socio-economic characteristics and the relative attractive-
ness of the alternative.

Let us denote by A the set of alternatives and by I the population size. The set
of alternatives available for individual i (i = 1, . . . , I) is represented by A(i) ⊂ A.
For each individual i, each available alternative Aj ∈ A(i) (j = 1, . . . , |A(i)|) has an
associated utility Uij , which is typically split into two components,

Uij = Vij + εij .

In this description, Vij = Vij(βj , xij) is a function of some model parameters βj and
of xij , the observed attributes of alternative A, while εij is a random term reflecting
the unobserved part of the utility. Without loss of generality, it can be assumed that the
residuals εij are random variables with zero mean and a certain probability distribution
to be specified. A popular and simple expression for Vij (j = 1, . . . , |A(i)|) is the linear
utility

Vij(βj , xij) = βT
j xij =

Kj
∑

k=1

βk
j xk

ij ,

where Kj is the number of observed attributes for alternative j (j = 1, . . . , |A(i)|), but
our analysis does not rely on this form. The parameter vectors βj (j = 1, . . . , |A(i)|) are
assumed to be constant for all individuals but may vary across alternatives. The theory
then assumes that individual i selects the alternative that maximises his/her utility. In
other terms, he/she chooses Aj if and only if

Uij ≥ Uil, ∀Al ∈ A(i).

Thus the probability of choosing alternative Aj is given by

Pij = P [εil ≤ εij + (Vij − Vil) , ∀Al ∈ A(i)] .

A model parameter is called generic if it is involved in all alternatives, and has the
same value for all of them. Otherwise it is said to be (alternative) specific. Since we can
decompose a specific parameter in several parameters taking the same value for a subset
of alternatives, and associated to null observations for others, we may assume, without
loss of generality, that all parameters are generic. In order to simplify the notation, we
will hence omit the subscript j for parameters vectors.

A popular distribution in discrete choice models is the Gumbel distribution, also
called the extreme value type I distribution. Its probability distribution function is given
by

f(x) = µe−µ(x−η)e−e−µ(x−η)

,
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where η is a location parameter and µ > 0 is a scale factor. Its mean is

η +
γE

µ
,

where γE ≈ 0.57721 is the Euler constant. The popularity of the Gumbel distribution
partly lies in the fact that it allows to express the choice probabilities in a very simple
form. Assume indeed that the residuals εij are independently Gumbel distributed (with
mean 0 and scale factor 1.0). The probability that the individual i chooses the alternative
j is then

eVij

∑|A(i)|
m=1 eVim

.

This is the multinomial logit model. This model has some serious drawbacks. In par-
ticular the assumption that the error terms are identically and independently distributed
(IID) across alternatives induces the independence of irrelevant alternatives (IIA) prop-
erty, which states that, if some alternatives are removed from a choice set, the relative
choice probabilities in the reduced choice set remain unchanged. A more formal de-
scription of this property and associated difficulties can be found for instance in Ben-
Akiva and Lerman [5], who show that its validity depends on the structure on the choice
set, and also that it may be unrealistic if the alternatives are not distinct for the individ-
ual.

Several extensions of the multinomial logit model have been proposed and allow
to partially avoid the IID assumption, including the mixed logit models (or error com-
ponents models) (see Bhat and Koppelman [9] for a review of these developments).
Mixed-logit models use non-identical, non-independent random components, so they
fully relax the IID assumption and overcome the rigid inter-alternative substitution pat-
tern of the multinomial logit models. More precisely they suppress the assumption that
the parameters β are the same for all individuals, but assume instead that each param-
eter vector β(i) (i = 1, . . . , I) is a realisation of a random vector β. Furthermore, β is
itself assumed to be derived from a random vector γ and a parameters vector θ, which
we express as

β = h(γ, θ). (2.3)

γ typically specifies the random nature of the model while θ quantifies the population
characteristics for the model. Usually, β follows itself some probability distribution,
and θ specifies the parameters of this distribution. We have therefore that f(β|θ) =
f(h(γ, θ)), where f denotes the underlying distribution function. We will nevertheless
use the notation (2.3) in order to emphasise that the random part can be expressed by
a non-parametric vector, as in (2.1). For example, assume that β is a K-dimensional
vector of independent normal variables whose k-th component is N(µk, σ2

k), where
N(µ, σ2) designs a normal distribution of mean µ and variance σ2. We may then choose
γ = (γ1, γ2, . . . , γK), with γk ∼ N (0, 1) and let the vector θ specify the means and
standard deviations of the βk, θ = (µ1, σ1, µ2, σ2, . . . , µK , σK). Therefore, (2.3) can
be written in this case as β = (µ1 + σ1γ1, µ2 + σ2γ2, . . . , µK + σKγK) .

If we knew the realisation γ(i), and thus the value β(i) = h(γ(i), θ), for some
individual i, the conditional probability that he/she chooses alternative j would then be
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given by the standard logit formula

Lij (γ, θ) =
eVij(β(i),xij)

∑|A(i)|
m=1 eVim(β(i),xim)

. (2.4)

However, since β is random, we need to calculate the associated unconditional proba-
bility, which is obtained by integrating (2.4) over γ:

Pij(θ) = EP [Lij(γ, θ)] =

∫

Lij(γ, θ)P (dγ) =

∫

Lij(γ, θ)f(γ)dγ, (2.5)

where P is the probability measure associated to γ and f(·) is its distribution function.
The unknown values of θ are estimated by maximising the log-likelihood function,

i.e. by solving the program

max
θ

LL(θ) = max
θ

1

I

I
∑

i=1

ln Piji
(θ), (2.6)

where ji is the alternative choice made by the individual i. This involves the computa-
tion of Piji

(θ) of (2.5) for each individual i (i = 1, . . . , I), which is impractical since it
requires the evaluation of one multidimensional integral per individual. Therefore, we
use a Monte Carlo estimate of Piji

(θ) obtained by sampling over γ, and given by

SP R
iji

(θ) =
1

R

R
∑

r=1

Liji
(γi,r, θ),

where R is the number of random draws γi,r, taken from the distribution function of γ.
As a result, θ is now computed as the solution of the simulated log-likelihood problem

max
θ

SLLR(θ) = max
θ

1

I

I
∑

i=1

ln SP R
iji

(θ).

However, since I can be large (typically in the thousands), the evaluation of SLLR(θ)
may remain very expensive, even on modern computers, as pointed out by Hensher and
Greene [24].

We finally notice that the mixed logit problem (2.5)–(2.6) can be viewed as a gen-
eralised stochastic programming problem (2.1). Indeed, we may write (2.5)–(2.6) as

min
θ

g (θ) = −min
θ

LL(θ) = −1

I
min

θ

I
∑

i=1

ln EP [Liji
(γ, θ)] . (2.7)

The associated sample average approximation problem is then written as

min
θ

ĝN (θ) = −min
θ

SLLR(θ) = −1

I
min

θ

I
∑

i=1

ln SP R
iji

(θ), (2.8)

where N = R I . We will denote by θ∗ a solution of (2.7) and by θ∗R a solution of (2.8).
The generalisation is minor since it only consists in optimising a sum of logarithms of
expectations, instead of a single expectation.
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3. First-order convergence for stochastic programs

We now investigate the convergence of the solutions and optimal values of the sequence
of SAA problems (2.2) to a solution and optimal value of (2.1) for N approaching
infinity. We introduce the basic concepts used in this paper by reviewing first-order
convergence.

Let z∗N be a first-order critical point of ĝN (·), as defined in (2.2). In order to stress
the dependence of z∗

N on the successive draws ξ1, . . . , ξN , we will often use the nota-
tion z∗N (ξ1, . . . , ξN ), or z∗N

(

ξ
)

, since (ξ1, . . . , ξN ) can be seen as the finite truncation
of an infinite sequence ξ

def
= {ξk}∞k=1. Since S is a compact set, the sequence of SAA

solutions has some limit point z∗
(

ξ
)

. By identifying this sequence with one its subse-
quences if necessary, we can therefore assume that z∗

N

(

ξ
)

→ z∗
(

ξ
)

as N → ∞. Our
first aim is to show that, under reasonable assumptions, z∗

(

ξ
)

is a first-order critical
point for the true problem (2.1).

Since z∗(ξ) depends from the sequence of realisations ξ, which is not known a
priori, we have to introduce a suitable probability space on which we can define some
random variable, whose realisations are such (infinite) sequences. Consider the stochas-
tic process

ξ = {ξk}∞k=1,

later called the sampling process, where the random vectors ξk, k = 1, . . . ,∞, are
assumed to be independent and identically distributed (IID). From the IID property and
the Kolmogorov consistency theorem (see for instance Parthasarathy [34], Chapter V,
Theorem 5.1), we can construct the infinite-dimensional probability space

(ΞΠ ,FΠ , PΠ ) , (3.1)

where the measure PΠ has the property that for any non-zero natural j,

PΠ [B] =

j
∏

i=1

P [Bi],

for any set B =
∏j

i=1 Bi ×
∏∞

i=j+1 Ξ, with Bi ∈ F , i = 1, . . . , j. In other terms, the
marginal measures defined on

∏j
i=1(Ξ,F), with finite j (j = 1, . . .), correspond to the

products measures
∏j

i=1 P , as expected. An element of (3.1) is therefore a process

ξ = {ξk}∞k=1,

formed by the successive draws ξk, k = 1, . . . ,∞.
It is useful at this stage to introduce some notations which will be used throughout

the paper. We use the symbols

– a.e. for almost everywhere;
– a.s.−→ for almost sure convergence;
–

p→ for convergence in probability;
– ⇒ for convergence in distribution.
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We refer the reader to Davidson [14] for the definitions of the various types of conver-
gence, which are mentioned here in order of decreasing strength. In what follows, and
unless explicitly stated otherwise, we will assume that the terms almost everywhere et
almost surely refer to the infinite-dimensional space (ΞΠ ,FΠ , PΠ ), which allows ex-
plicit consideration of the sets of realizations whose elements are of the form {ξN}∞N=1.
(In other words, results expressed in these terms hold for almost every sampling pro-
cess). Reference to another probability space will be denoted by prefixing the terms
almost everywhere et almost surely by the measure defined on this probability space.
As above, we continue to use bold symbols to denote random variables, while a reali-
sation of such a variable is represented in standard font.

We now state our assumptions.

A.0 The random draws {ξk}∞k=1 are independently and identically distributed.
A.1 For P -almost every ξ, the function G(·, ξ) is continuously differentiable on S.
A.2 The family G(z, ξ), z ∈ S, is dominated by a P -integrable function K(ξ), i.e.
EP [K] is finite and |G(z, ξ)| ≤ K(ξ) for all z ∈ S and P -almost every ξ.

A.1 obviously implies that G(·, ξ) is continuous almost surely. This and A.2 are typ-
ical assumptions of stochastic programming theory (see for instance Rubinstein and
Shapiro [37]). The stronger form of A.1 is justified by our interest in first-order opti-
mality conditions, which are expressed in terms of the objective function’s gradient.

It is important to note (see [37] again) that A.0–A.2 together imply that there exists
a uniform law of large numbers (ULLN) on S, for the approximation ĝN (z) of g(z),
that is

sup
z∈S

|ĝN(z) − g(z)| a.s.−→ 0 as N → ∞.

They also imply that g(z) is then continuous on S.
The ULLN property corresponds to the stochastic version of the uniform conver-

gence of a sequence of functions. Therefore, we recall the following results.
Lemma 3.1. Assume that A.0–A.2 hold. Then

ĝN(z∗N )
a.s.−→ g(z∗). (3.2)

Furthermore, if f(·) is a continuous function defined on some convex domain that in-
cludes ĝN (z∗N) (N = 1, . . . ,∞) and g (z∗), then

f (ĝN (z∗N ))
a.s.−→ f (g (z∗)) . (3.3)

If ĥN (·) (N = 1, . . . ,∞), and h (·) are functions such that

ĥN (z∗N )
a.s.−→ h(z∗),

then, for any real scalar α,

αĥN (z∗N) + ĝN (z∗N)
a.s.−→ αh (z∗) + g (z∗) , (3.4)

and
ĥN (z∗N ) ĝN (z∗N)

a.s.−→ h (z∗) g (z∗) . (3.5)
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As first-order conditions are generally expressed in terms of the objective function’s
gradient, we need a further assumption on this gradient.

A.3 The gradient components ∂
∂zl

G(z, ξ) (l = 1, . . . , m), z ∈ S, are dominated by a
P -integrable function.

This new assumption allows us to apply the results of Rubinstein and Shapiro [37],
page 71, and deduce that the expected value function g(z) is continuously differen-
tiable over S, and that the expectation and gradient operator can be interchanged in the
expression of the gradient, giving

∇zg(y) = EP [∇zG (y, ξ)] .

This also implies that ∇ĝN (z∗) is an unbiased estimator of ∇g (z∗).
First-order convergence can be derived from stochastic variational inequalities, as

presented in Shapiro [40]. Consider a mapping Φ : R
n×ΞΠ → R

n and a multifunction
Γ : R

n
⇒ R

n. Suppose that the expectation φ(z) := EPΠ
[Φ(z, ξ)] is well defined. We

refer now to
φ(z) ∈ Γ (z) (3.6)

as the true, or expected value, generalised equation and say that a point z∗ ∈ R
n is a

solution of (3.6) if φ(z∗) ∈ Γ (z∗). If {ξ1, . . . , ξN} is a random sample, we refer to

φ̂N (z) ∈ Γ (z) (3.7)

as the SAA generalised equation, where φ̂N (z) = N−1
∑N

i=1 Φ(z, ξi). We denote by
S∗ and S∗

N the sets of (all) solutions of the true (3.6) and SAA (3.7) generalised equa-
tions, respectively.

Let denote by

d(x, A)
def
= inf

x′∈A
‖x − x′‖,

the distance from x ∈ R
n to A, and

d(A, B)
def
= sup

x∈A

d(x, B),

the deviation of the set A from the set B. We then have the following result (Shapiro [40]):

Theorem 3.1. Let S be a compact subset of R
n such that S∗ ⊂ S. Assume that

(a) the multifunction Γ (z) is closed, that is if zk → z, yk ∈ Γ (zk) and yk → y, then
y ∈ Γ (z),

(b) the mapping φ(z) is continuous on S,
(c) almost surely, ∅ 6= S∗

N ⊂ S for sufficiently large N , and
(d) φ̂N (z) converges to φ(z) almost surely uniformly on S as N → ∞.

Then d(S∗
N , S∗) → 0 almost surely as N → ∞.
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3.1. Deterministic and convex constraints

When S is convex, the first-order critical condition for some point z∗ is equivalent to
require that −∇zg(z∗) belongs to the normal cone to S at z∗, denoted by NS(z∗). If S
is moreover deterministic, the feasible sets are the same for the true and SAA problems,
irrespective of the number of draws. Theorem 3.1 then allows an easy proof of almost
sure first-order convergence. Consider the choice Γ (·) = NS(·). Then φ(z∗) ∈ Γ (z∗)
if and only if

〈φ(z∗), u − z∗〉 ≤ 0, ∀u ∈ S.

Following Shapiro [40], we refer to such variational inequalities as stochastic varia-
tional inequalities and note that the assumption (a) of Theorem 3.1 always holds in this
case. Take Φ(z, ξ) = −∇zG(z, ξ) and let S∗ and S∗

N represent the set of first-order
critical points of the true (3.6) and SAA (3.7) generalised equations, respectively. Then
under A.0–A.3, we have that φ(z) = −∇zg(z), and that φ(z) is a continuous random
vector on S, yielding assumption (b). Assumption (d) results from the ULLN, while A.1
and S compact ensure assumption (c) by setting S = S. Thus Theorem 3.1 guarantees
first-order criticality in the limit as N → ∞, almost surely.

3.2. Stochastic constraints

Under stronger assumptions, it is also possible to prove almost-sure first-order conver-
gence when S is nonconvex or non-deterministic. We now suppose that the feasible set
can be described by equality and inequality constraints. The original problem is then
stated as follows

min
z∈V

g(z) = EP [G(z, ξ)],

subject to cj(z) ≥ 0, j = 1, . . . , k,

cj(z) = 0, j = k + 1, . . . , M,

(3.8)

where V is a compact subset of R
n. The corresponding SAA problem is then defined

as
min
z∈V

ĝN (z),

subject to ĉjN (z) ≥ 0, j = 1, . . . , k,

ĉjN (z) = 0, j = k + 1, . . . , M.

(3.9)

Here, for every j = 1, . . . , M , {ĉjN (·)} is a sequence of real-valued (random) functions
converging asymptotically to the corresponding function cj(·) as N → ∞. We assume
that the functions cj(·) can be represented in the form of expected values:

cj(z) = EP [Hj(z, ξ)], j = 1, . . . , M.

These functions can then be estimated by the corresponding sample mean functions

ĉjN (z) =
1

N

N
∑

i=1

Hj(z, ξi).
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For simplicity, we will consider the more general parametric mathematical program-
ming problem

min
z∈V

ĝ(z, ε),

subject to ĉj(z, ε) ≥ 0, j = 1, . . . , k,

ĉj(z, ε) = 0, j = k + 1, . . . , M,

(3.10)

where ε is a random vector of parameters giving perturbations of the program (3.10);
g(·), ĝ(·, ε), cj(·), ĉj(·, ε) are assumed to be twice continuously differentiable with
respect to z. We will assume that the perturbation is of the form

ε = ε(z, ξ) =
(

εg εc1 . . . εcM
ε∇g ε∇c1 . . . ε∇cM

)T
,

where each component is a function from R
m × ΞΠ to R, and

ĝ(z, ε) = g(z) + εg,

ĉj(z, ε) = cj(z) + εcj
, j = 1, . . . , M,

∇zĝ(z, ε) = ∇zg(z) + ε∇g ,

∇z ĉj(z, ε) = ∇zcj(z) + ε∇cj
, j = 1, . . . , M.

We also define εN

(

z, ξ
)

as

εN (z, ξ) =









ĝN (z) − g(z)
ĉjN (z) − cj(z), j = 1, . . . , M

∇zĝN (z) −∇zg(z)
∇z ĉjN (z) −∇zcj(z), j = 1, . . . , M









,

and we will denote the corresponding random vector by εN

(

z, ξ
)

. We will assume that
εN

(

z, ξ
)

converges uniformly on V to 0 = 0(z) almost surely as N tends to infinity.
In other terms, we assume that the ULLN holds for the objective and the constraints,
as well as for the corresponding derivatives. We finally assume that the feasible sets
for the original and approximating problems are nonempty. The Lagrangian functions
associated to (3.8) and (3.10) are respectively

L(z, λ) = g(z) −
M
∑

j=1

λjcj(z) and L(z, λ, ε) = ĝ(z, ε) −
M
∑

j=1

λj ĉj(z, ε).

Let z∗(ε) denote a first-order critical point for program (3.10): there therefore exist
Lagrange multipliers λ∗(ε) such that (z∗(ε), λ∗(ε)) satisfy the Karush-Kuhn-Tucker
(KKT) solutions; in other terms (z∗(ε), λ∗(ε)) is solution of the system

∇zL(z, λ, ε) = 0,

λj ĉj(z, ε) = 0, j = 1, . . . , M,

ĉj(z, ε) = 0, j = k + 1, . . . , M,

ĉj(z, ε) ≥ 0, j = 1, . . . , k,

λj(ε) ≥ 0, j = 1, . . . , k.
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Consider now a particular sampling process ξ. To clarify the dependency of the first-
order critical points on the sampling process, we write z∗

N (ξ) for z∗(εN ) and λ∗
N (ξ) for

λ∗(εN ). As before, since V is compact, z∗
N(ξ) has some limit point z∗

(

ξ
)

as N → ∞.
Without loss of generality, we can assume that z∗

N(ξ) converges to z∗
(

ξ
)

as N → ∞,
by considering a subsequence if necessary. We can now prove almost-sure first-order
convergence for the general case.

Theorem 3.2. Assume that

(a) εN
a.s.−→ 0 uniformly on V, as N → ∞,

(b) for almost every ξ in (ΞΠ ,FΠ , PΠ), λ∗
N (ξ) has some limit point λ∗

(

ξ
)

as N → ∞,

Then, for almost every ξ, z∗
(

ξ
)

is a first-order critical point for (3.8).

Proof. From (b), for almost every ξ, the sequence {(z∗
N(ξ), λ∗

N (ξ)}, N = 1, . . . ,∞,
has some limit point

(

z∗
(

ξ
)

, λ∗
(

ξ
))

. (a) and Lemma 3.1 imply that
(

z∗
(

ξ
)

, λ∗
(

ξ
))

satisfies the KKT conditions for the true problem. ut

Note that assumption (b) always holds if the multipliers remain bounded. If this
stronger assumption is made, it is also possible to use Theorem 3.1 to show that z∗ is
first-order critical, as in Shapiro [40]. Let µ := (z, λ) ∈ R

m+M and K := R
m ×R

k
+ ×

R
M−k ⊂ R

m+M . Define

φ(µ) = (∇zL(z, λ), ck+1(z), . . . , cM (z)) ,

and
φ̂N (µ) = (∇zL(z, λ, εN ), ĉk+1(z, εN ), . . . , ĉM (z, εN )) .

The variational inequality φ(µ) ∈ NK(µ) then represents the KKT optimality con-
ditions for the true optimisation problem, and Theorem 3.1 then implies almost sure
first-order criticality, with Γ (µ) := NKµ. Assumptions (a) and (c) are satisfied since
ε → 0 almost surely, and. (c) is ensured by the assumption that the feasible sets for the
original and approximating problems are nonempty.

4. Second-order convergence

4.1. Deterministic constraints

If we are ready to further strengthen our assumptions, we now show that, almost surely,
there exists a limit point z∗

(

ξ
)

which is a local minimizer. We first consider the case
where S is deterministic and assume that, for a particular sampling process ξ, z∗

N (ξ) is
a local minimiser of ĝN (z). This is to say that

∃ δN(ξ) s.t. ∀z ∈ B(z∗
N (ξ), δN (ξ)) ∩ S, ĝN(z∗N (ξ)) ≤ ĝN(z), (4.1)

where B(x, d) is the open ball centred at x and of radius d. As before, we also assume
that z∗N(ξ) converges to some z∗

(

ξ
)

as N tends to infinity. In order to show that z∗
N

(

ξ
)

is a local minimiser of g(·), we must therefore have that the neighbourhood in which
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z∗N (ξ) is a local minimiser does not shrink to a singleton when N → ∞. We express
this requirement by the following technical assumption.

A.4 For almost every sampling process ξ, there exists a δ(ξ) > 0 and an N(ξ) > 0 such
that, for all N ≥ N(ξ),

∀z ∈ B(z∗N (ξ), δ(ξ)) ∩ S, ĝN(z∗N (ξ)) ≤ ĝN(z). (4.2)

This allows us to write a basic second-order convergence theorem.
Theorem 4.1. Assume that A.0–A.4 hold. Then for almost every sampling process ξ,
z∗
(

ξ
)

is a local minimum of g(·).

Proof. Consider a particular realisation ξ in (ΞΠ ,FΠ , PΠ) such that

sup
z∈S

|ĝN(z) − g(z)| → 0, (4.3)

ĝN (z∗N ) −→ g(z∗) (4.4)
and such that the δ(ξ) given by A.4 exists. From the ULLN property, Lemma 3.1 and
A.4, almost every ξ in (ΞΠ ,FΠ , PΠ) satisfies these requirements. For simplicity of
notation, we will write z∗ instead of z∗

(

ξ
)

, and δ instead of δ(ξ). Let z′ be a minimiser
of g in K def

= B
(

z∗, δ
2

)

∩ S. Then we first show that, for N sufficiently large,

z∗N ∈ K ⊆ B(z∗
N , δ). (4.5)

Since z∗ is the limit point of {z∗
N}∞N=0, the first inclusion of (4.5) must hold for N

sufficiently large. Consider now z ∈ K We have that |z − z∗
N | ≤ |z − z∗| + |z∗ − z∗N |,

and thus that
|z − z∗N | <

δ

2
+

δ

2
= δ.

Therefore z ∈ B(z∗
N , δ), completing our proof of (4.5) holds for N is sufficiently large.

We now verify that
|ĝN(z∗N ) − g(z′)| −→ 0. (4.6)

Assume first that ĝN (z∗N ) ≤ g(z′). Since z′ minimises g(·) in K and, from (4.5), z∗
N ∈

K, we have that

0 ≤ |ĝN (z∗N ) − g(z′)| = g(z′) − ĝN(z∗N ) ≤ g(z∗N ) − ĝN(z∗N ) ≤ sup
z∈S

|ĝN(z) − g(z)| .

The limit (4.3) then implies (4.6). Assume now that ĝN (z∗N ) ≥ g(z′). Since z′ ∈ K, we
then deduce, from the second part of (4.5) and Assumption A.4, that ĝN (z∗N) ≤ ĝN (z′).
Therefore

0 ≤ ĝN(z∗N ) − g(z′) ≤ ĝN (z′) − g(z′) ≤ sup
z∈S

|ĝN (z) − g(z)| ,

and we again deduce (4.6) in this case. Taking now (4.4) into account, we deduce that
g(z′) = g(z∗), and g(z∗) ≤ g(z), for all z ∈ K. In other terms, z∗ is a local solution of
problem (2.1). Since this reasonning is valid for almost every sampling process ξ, our
proof is complete. ut
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Classical results, where global minimisers are considered, express that d(z∗
N , S∗)

converges almost surely to zero as N tends to infinity, where S∗ is the set of minimisers
of the true problem (see for instance Theorem 3.1). Robinson [36] shows that, under
mild regularity conditions, if the true problem has a complete local minimising (CLM)
set with respect to a nonempty open bounded set G, then for large N , the approximating
problem has almost surely a CLM set with respect to G such that the distance between
the CLM set associated to the true problem and the one corresponding to the approxi-
mating problem tends to 0 as N tends to infinity. Moreover, the approximating infimum
over the closure of G converges to a finite minimum for the true problem over the clo-
sure of G. While this proves the existence of solutions for the approximating problem,
it does not imply that the distance from (local) minimiser of the approximating problem
to the set of true local minimisers converges almost surely to zero. To see this, consider
the problem

min
z∈[−1,1]

z3 − z

2
EP [ξ], (4.7)

where Ξ = {−1, 1} and P [ξ = −1] = P [ξ = 1] = 0.5, so EP [ξ] = 0. Therefore (4.7)
has only one local minimiser, which is also global, at z∗ = −1. The SAA problem is
then

min
z∈[−1,1]

z3 − z

2N

N
∑

i=1

ξi. (4.8)

(4.8) has two (isolated) local minimisers,







−1,

√

∑N
i=1 ξi

6N







,

when
∑N

i=1 ξi > 0. We have that P
[

∑N
i=1 ξi > 0

]

→ 0.5 when N → ∞, but

√

∑N
i=1 ξi

6N

a.s.−→ 0

since, from the strong law of large numbers, 1
N

∑N
i=1 ξi → EP [ξ] = 0 almost surely

as N → ∞. But zero is a saddle point of the true problem (4.7), not a minimiser, even
locally, and the distance to S∗ = {−1} is then equal to 1. Note that in this example the
ULLN holds for the objective function as well as for all its derivatives.

It can be shown that in a neighbourhood of a local solution of the true solution, under
some mild regularity the SAA has almost surely a solution when N is sufficiently large
(Shapiro [40]). However, the previous example illustrates that care must be exercised
when solving the SAA problem for N fixed since we can find approximating local
minimisers that are not close to true local minimisers.
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4.2. Stochastic constraints

Assumption A.4 is somewhat artificial and it is thus of interest to search for more ele-
gant conditions. While our arguments will be similar to those presented in perturbation
analysis, as for instance in Rubinstein and Shapiro [37], it is important to note that
perturbation analysis assumes the existence of a solution of the true problem and then
studies the existence and behaviour of solutions of the perturbed problem in a neigh-
bourhood of this original solution. At variance with this approach, we focus here on
conditions under which the limit point of a sequence of approximating solutions is a
solution of the true problem. The difference will be more formally illustrated at the end
of the section where we compare our developments to some sensitivity analysis results.

We consider the case where the feasible set is described by a set of equality and
inequality constraints, as in (3.8). As before, we assume that εN converges uniformly
on V to zero almost surely. Consider a particular sampling process ξ in (ΞΠ ,FΠ , PΠ);
without loss of generality, we can assume that z∗

N (ξ) converges to some z∗
(

ξ
)

as N →
∞. Under some conditions, λ∗

N (ξ) also converges to some Lagrange multipliers vector
λ∗
(

ξ
)

associated to z∗
(

ξ
)

for the true problem, as expressed in the lemma below.

Lemma 4.1. Consider a particular sampling process ξ in (ΞΠ ,FΠ , PΠ) such that
εN

(

z, ξ
)

→ 0 uniformly on V as N → ∞ and that z∗
N (ξ) converges to some z∗

(

ξ
)

.
Assume moreover that there is an unique Lagrange multipliers vector λ∗

(

ξ
)

associated
to z∗

(

ξ
)

that satisfies the KKT conditions. Then λ∗
N (ξ) converges to λ∗

(

ξ
)

as N tends
to infinity.

Proof. From the uniqueness of λ∗
(

ξ
)

, the Mangasarian-Fromowitz constraint qualifi-
cation (MFCQ) holds at z∗(ξ), and therefore in a neighbourhood of z∗

(

ξ
)

(while the
converse is not necessarily true, as shown by Gugat [20]). Hence the Lagrange multipli-
ers are uniformly bounded for ε close to zero. It is therefore sufficient to show that every
limit point of the sequence {λ∗

N}, N = 1, . . . ,∞, is equal to λ∗
(

ξ
)

. Let λ′ be such a
limit point. By continuity, (z∗

(

ξ
)

, λ′) satisfies the KKT conditions, so λ′ is equal to
λ∗
(

ξ
)

. ut

The uniqueness of λ∗
(

ξ
)

can be ensured with a suitable constraint qualification, as
the linear independence constraint qualification (LICQ). This constraint qualification
will be particularly convenient for our discussion. First of all we recall the notion of
active set. Consider the program (3.8). The active set A(z) at any feasible z is the union
of set of indices of equality constraints with the indices of active inequality constraints:

A(z) = {i ∈ {1, . . . , k} | ci(z) = 0} ∪ {k + 1, . . . , M}.

Definition 4.1. Given the point z∗ and the active set A(z∗) we say that the linear inde-
pendence constraint qualification (LICQ) holds if the set of active constraint gradients
{∇cj(z

∗), j ∈ A(z∗)} is linearly independent.

For a discussion of LICQ and other constraint qualifications, see for instance Nocedal
and Wright [32]. Another useful concept for our purposes is the strict complementarity
condition.
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Definition 4.2. Given z∗ and a vector λ∗ satisfying the KKT conditions, we say that the
strict complementarity condition holds if exactly one of λ∗

j and cj(z
∗) is zero for each

index j = 1, . . . , k. In other words, we have that λ∗
j > 0 for each j ∈ {1, . . . , k} ∩

A(z∗).

If the assumptions of Lemma 4.1 hold for almost every sampling process ξ in
(ΞΠ ,FΠ , PΠ ), the gradient ∇L

(

z∗N
(

ξ
)

, λ∗
N

(

ξ
))

converges almost surely to some
∇L

(

z∗
(

ξ
)

, λ∗
(

ξ
))

, when N tends to infinity. Consider again a particular sampling
process ξ in (ΞΠ ,FΠ , PΠ) such that εN

(

z, ξ
)

→ 0 as N → ∞. Assume that the strict
complementarity condition and the LICQ hold at (z∗

(

ξ
)

, λ∗
(

ξ
)

) for problem (3.10)
at ξ. If λ∗

N (ξ) → λ∗
(

ξ
)

we obtain then that λ∗
N (ξ), j ∈ {1, . . . , k} ∩ A

(

z∗
(

ξ
))

,
are strictly positive and hence the corresponding constraints are active at z∗

N (ξ) for N
sufficiently large. Moreover, assuming ĉj(z

∗
N (ξ), εN (z∗N (ξ), ξ)) → c(z∗(ξ)) (which is

true for almost every ξ), we have that for N large enough, A(z∗
N (ξ)) = A(z∗(ξ)) and

the strict complementarity condition holds at z∗
N(ξ), with respect to the Lagrangian

multipliers λ∗
N (ξ), for problem (3.9). This allows us to state the theorem below.

Theorem 4.2 (Second-order convergence). Assume that, for almost every sampling
process ξ in (ΞΠ ,FΠ , PΠ ), λ∗

(

ξ
)

is the unique vector of Lagrangian multipliers as-
sociated to program (3.8) at z∗

(

ξ
)

, and that

(a) εN(z∗N (ξ), ξ) −→ 0 uniformly on V, as N → ∞,
(b) z∗N(ξ) −→ z∗

(

ξ
)

as N → ∞,
(c) ∇2

zz ĝ(z∗N (ξ), εN (z∗N (ξ), ξ)) −→ ∇2
zzg
(

z∗
(

ξ
))

as N → ∞,
(d) ∇2

zz ĉj(z
∗
N (ξ), εN (z∗N (ξ), ξ)) −→ ∇2

zzcj

(

z∗
(

ξ
))

(j = 1, . . . , M ) as N → ∞.

Suppose also that, almost surely, the strict complementarity condition and the LICQ
hold at

(

z∗
(

ξ
)

, λ∗
(

ξ
))

for (3.8). Then, for almost every sampling process ξ,

(i) the LICQ holds at
(

z∗N
(

ξ
)

, λ∗
N

(

ξ
))

,
(ii)
(

z∗
(

ξ
)

, λ∗
(

ξ
))

satisfies the second-order necessary condition for (3.8):

wT∇2
zzL

(

z∗
(

ξ
)

, λ∗
(

ξ
))

w ≥ 0, for all w ∈ Null[∇zcj

(

z∗
(

ξ
))T

]
j∈A(z∗(ξ)).

(4.9)

If furthermore there exists almost surely some α(ξ) > 0 such that, for all N large
enough,

wT∇2
zzLN(z∗N (ξ), λ∗

N (ξ))w > α(ξ), for all w ∈ Null[∇z ĉj(z
∗
N (ξ))T ]j∈A(z∗

N
(ξ)), ‖w‖ = 1,

(4.10)
then (z∗

(

ξ
)

, λ∗
(

ξ
)

) almost surely satisfies the second-order sufficient conditions for
problem (3.8), that is

(iii) wT∇2
zzL

(

z∗
(

ξ
)

, λ∗
(

ξ
))

w > 0, for all w ∈ Null[∇zcj

(

z∗
(

ξ
))T

]
j∈A(z∗(ξ)), ‖w‖ = 1.

(4.11)
In other terms, z∗

(

ξ
)

is an isolated local minimiser of (3.8), for almost every sampling
process ξ.
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Proof. Consider a sampling process ξ such that the assumptions of the theorem are
satisfied. For simplicity, we drop the dependence on ξ in our notation. In order to show
(i), consider

{∇zcj(z
∗)}j∈A(z∗), (4.12)

the matrix formed by the gradients of active constraints at z∗ for (3.8). From the strict
complementarity conditions and convergence of Lagrange multipliers, the active set of
program (3.9) at z∗

N is asymptotically the same as the active set of program (3.8) at z∗.
Since εN → 0 uniformly on V , we have that the matrix formed by the active constraints
of the perturbed problem,

{∇z ĉj(z
∗
N , εN)}j∈A(z∗

N
) (4.13)

converges to (4.12) as N tends to infinity:

{∇z ĉj(z
∗
N , εN )}j∈A(z∗

N
) −→ {∇zcj(z

∗)}j∈A(z∗). (4.14)

The LICQ amounts to say that at least one square submatrix of (4.12) is nonsingular.
From (4.14), the same is true for (4.13) for N large enough. Thus the LICQ holds for
the approximating problems when N is sufficiently large. Conclusion (i) then follows
from the fact that our assumptions on the sampling process ξ hold almost surely.

We show now (ii) and again consider a particular sampling process ξ satisfying our
assumptions. From (4.14) we may associate a basis KN with the null space of (4.13)
such that

KN −→ K, (4.15)
where K is a basis of Null[∇zcj(z)T ]j∈A(z∗) (see Gill et al. [18]). Using the strict
complementarity condition and LICQ, the fact that (z∗

N , λ∗
N ) satisfies the second-order

necessary conditions can now be expressed as

KT
N∇2

zzL(z∗N , λ∗
N , εN)KN is positive semi-definite.

From (4.15) and Assumptions (a)–(d), we have that

KT
N∇2

zzL(z∗N , λ∗
N , εN )KN −→ KT∇2

zzL(z∗, λ∗)K.

Therefore we have (4.9) and (ii) follows from the fact that our assumptions on the
sampling process hold almost surely. The reasonning is identical for proving (iii), except
that one now uses the lower bound α on the eigenvalues of KT

N∇2
zzL(z∗N , λ∗

N , εN)KN

to obtain (4.11). ut

Theorem 4.2 expresses that, under some smoothness conditions, a limit point of a
sequence of SAA second-order critical solutions is almost surely a solution of the true
problem if some qualification constraints hold at this point.

Note that the LICQ and strict complementarity conditions imply that the minimiser
is isolated while the second-order sufficient condition is usually used to characterise
strict local minimisers. In other terms, there exists a neighbourhood VS of z∗

(

ξ
)

such
that z∗

(

ξ
)

is the only local minimiser in VS . Recall that isolated local minimisers
are also strict local minimisers but that the inverse is not always true (Nocedal and
Wright [32], page 14). If z∗

(

ξ
)

is a strict but not isolated local minimiser every neigh-
bourhood of z∗

(

ξ
)

contains other local minimisers than z∗
(

ξ
)

, that are candidates to
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be limit points of the sequences of solutions of the SAA problems (2.2), as N tends to
infinity, so z∗

(

ξ
)

can be difficult to identify.
The non-degeneracy assumption (4.10) can also be replaced by requiring that the

Jacobian of the equality equations involved in the KKT conditions associated to the
program (3.8),

∇zL(z, λ) = 0,

λjcj(z) = 0, j = 1, . . . , M,

cj(z) = 0, j = k + 1, . . . , M

(4.16)

is nonsingular at (z∗, λ∗), as shown in the corollary below.

Corollary 4.1. Assume that, for almost every ξ in (ΞΠ ,FΠ , PΠ), λ∗
(

ξ
)

is the unique
vector of Lagrangian multipliers associated to program (3.8) at z∗

(

ξ
)

, that assump-
tions (a)-(d) of Theorem 4.2 hold and that the strict complementarity condition holds
at
(

z∗
(

ξ
)

, λ∗
(

ξ
))

for (3.8). Assume furthermore that the Jacobian of (4.16) is al-
most surely nonsingular at

(

z∗
(

ξ
)

, λ∗
(

ξ
))

. Then (z∗(ξ), λ∗(ξ)), almost surely satis-
fies (4.11), the second-order sufficient conditions for program (3.8).

Proof. Consider a sampling process ξ such that our assumptions are met. We again
drop the dependence on this process from our notation. In order to prove second-order
sufficiency, we rewrite the KKT conditions at z∗ as

∇zL(z∗) = 0,

cj(z
∗) = 0, j ∈ A(z∗),

λ∗
j = 0, j /∈ A(z∗),

(4.17)

where we have used the strict complementarity condition when eliminating Lagrange
multipliers in active inequality constraints. We renumber the active constraints such that
A(z∗) = {1, . . . , na}, while the inactive constraints are now numbered from na + 1 to
M . The Jacobian of (4.17) is then
























∇zzL(z∗) −∇zc1(z
∗) · · · −∇zcna

(z∗) −∇zcna+1(z
∗) · · · −∇zcM (z∗)

∇T
z c1(s

∗) 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . . 0
∇T

z cna
(z∗) 0 . . . 0 0 . . . 0

0 0 . . . 0 1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1

























,

who is nonsingular if and only if










∇zzL(z∗) ∇zc1(z
∗) · · · ∇zcna

(z∗)
∇T

z c1(s
∗) 0 . . . 0

...
∇T

z cna
(z∗) 0 . . . 0











, (4.18)
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is itself nonsingular. From the Sylvester’s law of inertia, (4.18) is nonsingular if and
only if

wT∇2
zzL(z∗, λ∗)w 6= 0, for all w 6= 0 ∈ Null[∇zcj(z

∗)T ]j∈A(z∗)

(see Gould [19]). Note that (4.18) also implies that the LICQ holds at (z∗, λ∗). From
Theorem 4.2, (z∗, λ∗) also satisfies the second-order necessary conditions for pro-
gram (3.8), that is (4.11). ut

The converse of Theorem 4.2 can be obtained from classical results of perturbation
analysis (Fiacco [16], Theorem 3.2.2), which we restate for completeness. More de-
velopments in the context of stochastic programming can be found in Rubinstein and
Shapiro [37] and Shapiro [38].

Theorem 4.3. Suppose that the following assumptions hold:

(a) the functions defining (3.10) are twice continuously differentiable in z and their
gradients with respect to z and the constraints are once continuously differentiable
in ε in a neighbourhood of (z∗, 0),

(b) the second-order sufficient conditions for a local minimum of (3.10) hold at z∗, with
associated Lagrange multipliers λ∗,

(c) the LICQ holds at (z∗, 0),
(d) the strict complementarity condition holds at (z∗, 0),

then

(i) z∗ is a local isolated minimum of (3.10) with ε = 0 and the associated Lagrange
multipliers λ∗ are unique,

(ii) for ε in a neighbourhood of 0, there exists a unique, once continuously differen-
tiable vector function γ(ε) = (z(ε), λ(ε))T satisfying the second-order sufficient
conditions for a local minimum of problem (3.10) such that γ(0) = (z∗, λ∗)T , and
hence z(ε) is a local isolated minimiser of problem (3.10) with associated unique
Lagrange multipliers λ(ε), and

(iii) for ε near 0, the set of active constraints is unchanged, strict complementarity
conditions hold, and the LICQ holds at z∗(ε).

Of course, this theorem must be applied for a fixed sampling process ξ, and the re-
sults of interest here are only true almost surely. Note that the second-order sufficiency
property is now taken as an assumption, so that z∗ is in fact assumed to be a local so-
lution. More general results of perturbation analysis can also be obtained by using epi-
continuity arguments and the concept of complete local minimising set (Robinson [35,
36]).

5. Application to mixed logit problems

5.1. Convergence

We now apply the above results to the framework of mixed logit models. This is pos-
sible because we have already seen in Section 2.2 that the mixed-logit problem is a
generalisation of the stochastic program (2.1).
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In this context, A.0 should now be understood as the requirement that the different
samples used to compute the choice probabilities are identically distributed and inde-
pendent both for each individual and across them.

We next note that, at variance with the stochastic programming case where we as-
sume that the set S is compact ensures that the solutions of problem (2.2) remain in a
bounded domain of R

m, our formulation of the mixed logit problem does not include
any such safeguard. We therefore complete our assumptions on the latter by introducing
it.

A.5 For almost every sampling process γ = {γi,r}I, ∞
i=1, r=1, the solution θ∗R(γ) of the

simulated mixed-logit problem (2.8) remains in some convex compact set S (indepen-
dent of γ) for all R sufficiently large.

The set S can be explicitly expressed as convex constraints (bounds are typical) on the
problem or be implicit for an unconstrained problem. In the latter case, A.5 indicates
that the solutions are uniformly bounded for sufficiently large sampling sizes. Such
an assumption is reasonable to avoid pathological cases where some components of
θ∗R converge towards infinity. As for the stochastic programming case, this assumption
implies that, for almost every sampling process γ, the corresponding sequence {θ∗

R(γ)}
has limit points, and, again as above, we identify it, without loss of generality, to one of
its convergent subsequences and assume that θ∗R(γ) → θ∗(γ) as R → ∞.

In order to obtain convergence to first-order critical points, we also need to translate
Assumptions A.1–A.3. We first ensure A.1 and A.2 by imposing suitable conditions on
the problem’s components EP [Liji

(γ, θ)].

A.1ml The utilities Vij(γ, ·, xij) (i = 1, . . . , I , j = 1, . . . , J) are continuously differ-
entiable for P -almost every γ.

That A.1ml implies A.1 immediately results from the property of the logit formula,
which ensures that

∂

∂θt

Liji
(γ, θ) =

Liji
(γ, θ)

∑

s6=ji

Lis (γ, θ)
∂

∂θt

(Viji
(γ, θ, xiji

) − Vis (γ, θ, xis)) . (5.1)

A.2 is automatically satisfied since |Liji
(γ, θ)| ≤ 1 for all θ and 1 is obviously P -

integrable with unit expectation. We obtain from A.5, A.1ml and Lemma 3.1 that, for
all individuals i (i = 1, . . . , I),

SP R
iji

(θ∗R(γ))
a.s.−→ Piji

(θ∗(γ)) and SLLR(θ∗R(γ))
a.s.−→ LL(θ∗(γ)).

We now turn to Assumption A.3 by examining the derivatives of the true and SAA
problems. For t = 1, . . . , m, we have

∂

∂θt

LL(θ) =
1

I

I
∑

i=1

1

EP [Liji
(γ, θ)]

∂

∂θt

EP [Liji
(γ, θ)] ,



Convergence theory for nonconvex stochastic programming with an application to mixed logit 21

and
∂

∂θt

SLL(θ) =
1

I

I
∑

i=1

1

SP R
iji

(θ)

1

R

R
∑

r=1

∂

∂θt

Liji
(γi,r , θ).

A.3 now becomes

A.3ml For t = 1, . . . , m, ∂
∂θt

Liji
(γ, θ) (i = 1, . . . , I) is dominated by a P -integrable

function.

From (5.1) we see that this property holds in particular if

A.3ml’ For t = 1, . . . , m, ∂
∂θt

Vij (γ, θ, xij) (i = 1, . . . , I , j = 1, . . . , J) is dominated
by a P -integrable function.

If the utilities are linear in θ, as is often the case in applications, the derivatives are
independent of θ. Then all we have to assume is that the expectation of the absolute
partial derivatives is finite, which is usually not restrictive. If the utilities are nonlinear,
we observe that A.3ml’ is satisfied if, for t = 1, . . . , m, i = 1, . . . , I , j = 1, . . . , J ,
EP [K(γ)] is finite, where K(γ) = maxθ

∣

∣

∣

∂
∂θt

Vij (γ, θ, xij)
∣

∣

∣. Under A.1ml, and the
assumption that θ ∈ S, where S is compact, K(γ) is finite for almost every γ, and its
expectation is usually finite.

We may now apply Lemma 3.1 and deduce that

∇θSLLR(θ∗R(γ))
a.s.−→ ∇θLL(θ∗(γ)),

as R → ∞. We can again apply Theorem 3.1 in order to deduce the following result.

Theorem 5.1 (First-order convergence for mixed logit). Assume that A.0, A.5, A.1ml
and A.3ml hold. Then for almost every sampling process γ = {γi,r}, θ∗(γ) is a first-
order critical point of problem (2.7).

We have therefore proved that any limit point of a sequence of first-order critical
simulated estimators is almost surely a first-order critical solution for the true maxi-
mum likelihood problem, allowing the inclusion of convex constraints on θ. Classical
results (see Chapter 10 of Train [43]) show convergence in distribution and in proba-
bility asymptotically when the population size increases. The asymptotic behaviour is
briefly discussed in section 5.3.

The extension of Theorem 4.2 establishing second-order convergence to the mixed-
logit problem is immediate, as well as Theorem 4.1, as long as the corresponding as-
sumptions are made. In particular, assuming that the utilities are twice continuously
differentiable P -almost surely, we have that

∂

∂θu∂θt

LL(θ) =
1

I

I
∑

i=1

Piji
(θ) ∂

∂θu

∂
∂θt

EP [Liji
(γ, θ)]

(Piji
(θ))

2

− 1

I

I
∑

i=1

∂
∂θu

EP [Liji
(γ, θ)] ∂

∂θu
EP [Liji

(γ, θ)]

(Piji
(θ))2

,
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and

∂

∂θu∂θt

SLL(θ) =
1

I

I
∑

i=1

SP R
iji

(θ) 1
R

∑R
r=1

∂
∂θu

∂
∂θt

Liji
(γi,r, θ)

SP R
iji

(θ)2

− 1

I

I
∑

i=1

(

1
R

∑R
r=1

∂
∂θu

Liji
(γi,r, θ)

)(

1
R

∑R
r=1

∂
∂θt

Liji
(γi,r, θ)

)

SP R
iji

(θ)2
.

We therefore have to request that

1

R

R
∑

r=1

∂

∂θu

∂

∂θt

Liji
(γi,r, θ

∗
R(γ))

a.s.−→ ∂

∂θu

∂

∂θt

EP [Liji
(γ, θ∗(γ))] ,

for i = 1, . . . , I , t, u = 1, . . . , m, which is usually the case, for instance if the second-
order derivatives are dominated by integrable functions.

5.2. Estimation of the simulation’s variance and bias

We now further investigate the question of estimating the error made by using the SAA
problem (2.8) instead of the true problem (2.7) as a function of the sampling size R. Due
to the stochastic nature of the approximation, the size of the error can only be assessed
by providing a (hopefully high) probability that it is within some confidence interval
asymptotically centred at zero and of radius ∆. In practise, we first fix some probability
level α > 0 and determine the value of ∆ such that, for given θ (and dropping the
dependence on the sampling process γ),

P
[∣

∣LL(θ) − SLLR(θ)
∣

∣ ≤ ∆
]

≥ α.

Developing this expression we have that
∣

∣LL(θ) − SLLR(θ)
∣

∣ is smaller than ∆ if
and only if

∣

∣

∣

∣

∣

1

I

I
∑

i=1

ln Piji
(θ) − 1

I

I
∑

i=1

ln SP R
iji

(θ)

∣

∣

∣

∣

∣

≤ ∆.

Consider now individual i. We are interested in the asymptotic behaviour of

ln Piji
(θ) − ln SP R

iji
(θ)

for a given θ (such as the solution of the SAA problem). Since the logarithm is con-
tinuously differentiable on R

+
0 and since EP

[

Liji
(γ, θ)

2
]

is finite, we can use the
Delta method (see for instance Borovkov [11], page 44, for the one-dimensional case
or Rubinstein and Shapiro [37] section 6.3, for the multi-dimensional case) to conclude
that

√
R
(

ln Piji
(θ) − ln SP R

iji
(θ)
)

⇒ d

dPiji

ln Piji
(θ)N(0, σ2

iji
(θ)),
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where σ2
iji

(θ) is the variance of Liji
(γ, θ). In other terms, we have that

ln Piji
(θ) − ln SP R

iji
(θ) ⇒ 1

Piji
(θ)

√
R

N
(

0, σ2
iji

(θ)
)

.

As samples are independent between individuals, so are the normal distributions in this
last limit, and we thus have that

LL(θ) − SLLR(θ) ⇒ N

(

0,
1

I2

I
∑

i=1

σ2
iji

(θ)

R (Piji
(θ))

2

)

. (5.2)

Let αδ be the quantile of a N(0, 1) associated to some level of significance δ, i.e.
P [−αδ ≤ X ≤ αδ ] = δ, where X ∼ N(0, 1). The associated asymptotic value of
the confidence interval radius ∆ is then given by

∆R
δ (θ) = αδ

1

I

√

√

√

√

I
∑

i=1

σ2
iji

(θ)

R (Piji
(θ))

2 . (5.3)

Typically, one chooses α0.9 ≈ 1.64 of α0.95 ≈ 1.96. In practise we evaluate this ac-
curacy ∆R

δ (θ) by taking the SAA estimators σR
iji

(θ) and SP R
iji

(θ), where σR
iji

(θ) is the
sample standard deviation of Liji

(γi,r , θ), r = 1, . . . , R.
Equation (5.3) gives us important information on the quality of the approximation.

The accuracy can be improved if we take a bigger sampling size R, but, as in other basic
Monte Carlo methods, the convergence is only in O

(√
R
)

(Fishman [17], page 8).
However the population size also has an influence on the quality of the approximation.
First of all, we note that

0 ≤ ∆R
δ (θ) ≤ αδ

1

I

I
∑

i=1

√

σ2
iji

(θ)

R (Piji
(θ))2

.

If the total population is assumed to be infinite, then we may consider a population of
size I as an independent and identically distributed sample within it. From now on, we
also assume that σiji

(θ)

Piji
(θ) has finite mean and variance. We obtain from the strong law of

large numbers that, almost surely,

0 ≤ ∆R
δ (θ) ≤ αδ√

R
EI

[

σiji
(θ)

Piji
(θ)

]

.

In other terms, for a fixed sampling size R and a fixed θ, ∆R
δ (θ) converges almost surely

to some real value which is less than the expectation of individual errors, defined by

αδ√
R

EI

[

σiji
(θ)

Piji
(θ)

]

.

Assume now that these quantities are almost surely finite, i.e. that there exists some κ
such that for all θ in S, and for almost every individual i in the (infinite) population,

σiji
(θ)

Piji
(θ)

≤ κ
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Then, from (5.3),
∆R

δ (θ) ≤ αδ

κ√
IR

almost surely. This suggests that the error decreases as the population size increases.
However, we must remember that EP

[

SLLR(θ)
]

6= LL(θ), because of the logarith-
mic operator, and our confidence interval is thus centred at zero only asymptotically.
However, since (5.2) implies that LL(θ) − SLLR(θ)

p→ 0, when R tends to ∞ for a
fixed population size I , we deduce that the estimator is consistent. To estimate the bias
for a given finite R, we first compute the Taylor development of ln SP R

iji
around the

true value Piji
, for some individual i:

ln SP R
iji

(θ) = ln Piji
(θ) +

1

Piji
(θ)

hiji
− 1

2 (Piji
(θ))

2 h2
iji

+ O
(

h3
iji

)

,

where hiji
= SP R

iji
(θ) − Piji

(θ). Therefore, since EP [hiji
] = 0,

EP

[

ln SP R
iji

(θ)
]

− ln Piji
(θ) = − 1

2 (Piji
(θ))

2 EP

[

h2
iji

]

+ EP

[

O
(

h3
iji

)]

.

From A.0, we obtain then that

EP

[

h2
iji

]

=
1

R
σ2

iji
(θ).

Averaging now over the individuals, and neglecting the terms of order three and above,
we obtain that the simulation bias B can be approximated by

BR(θ) := EP [SLLR(θ)] − LL(θ) = − 1

2IR

I
∑

i=1

σ2
iji

(θ)

(Piji
(θ))

2 ≤ 0, (5.4)

which can be easily computed from the estimated error as

BR(θ) = − I

2α2
δ

(

∆R
δ (θ)

)2
. (5.5)

Thus, (5.4) implies that, up to second order,

max
θ

EP [SLLR(θ)] ≤ max
θ

LL(θ).

It is interesting to note from (5.3) that the confidence interval radius ∆R
δ (θ) is small

whenever the standard deviations are themselves small compared to the probability
choices. Moreover, (5.5) shows that the simulation bias decreases faster than the er-
ror. This suggests that the number of random draws is heavily related to the nature of
the model: as expected, more variation of model parameters between the individuals
imposes larger samples. The choice of a uniformly satisfying sample size across dif-
ferent models thus appears doubtful. This observation seems to support, for the case of
the objective function value, the practical conclusions of Section 4.3 of Hensher and
Greene [24].
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Moreover, if we now make the additional assumption that the SAA problems are
solved globally instead of locally, we obtain that, almost surely,

max
θ∈S

EP [SLLR(θ)] ≤ EP

[

max
θ∈S

SLLR(θ)

]

.

Therefore the maximisation procedure itself can produce another bias opposed to the
bias of simulation. As a consequence, the solutions of successive SAA problems do not
necessarily increase monotonically when R grows, which makes bias tests based on this
increase questionable.

5.3. Asymptotic behaviour for increasing population sizes

We finally devote a last paragraph to extending the results obtained by Hajivassiliou
and McFadden [23] on the consistency and efficiency of the SAA problem when the
population size becomes infinite. In particular, our results apply to the constrained case
and the convergence results hold almost everywhere, instead of in distribution.

From the strong law of large numbers,

BR(θ)
a.s.−→ − 1

2R
EI

[

σ2
iji

(θ)

(Piji
)
2

]

,

where we have again assumed that σiji
(θ)

Piji
(θ) has finite mean and variance. Therefore the

problem is consistent if and only if R tends to infinity when I tends to infinity, as
reported by Hajivassiliou and McFadden [23] and Train [43], page 288. Taking the
Taylor expansion around the true parameters, that solve ELL(θ) := EI [ln Piji

(θ)] ,
the expectation of the logarithm of the probability choice for all individuals i, these
authors conclude that

– if R is fixed, the SAA problem is inconsistent;
– if R rises slower than

√
I , the SAA problem is consistent but not asymptotically

normal;
– if R rises faster than

√
I , the SAA problem is consistent, asymptotically normal and

efficient, equivalent to the true problem.

Note that these results are obtained using convergence in distribution of the solutions
of the SAA problems. We provide, in the next theorem, results of the same type. They
are now expressed almost surely, at the expense of not being directly computable.

Proposition 5.1. Assume that a ULLN holds for the approximation LL(θ) of ELL(θ)
and another ULLN holds for the approximation SLLR(θ) of LL(θ). Suppose further-
more that SLLR(·, γ) is continuous on S for almost every sampling process γ, that
LL(θ) is continuous on S for almost every i, and that ELL(θ) is continuous on S.
Then

sup
θ∈S

∣

∣SLLR(θ) − ELL(θ)
∣

∣

a.s.−→ 0

as I tends to infinity and R tends to infinity sufficiently fast compared to I .
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Proof. Let δ > 0 be a small constant. From the ULLN assumption for LL(θ), we have
that, for I sufficiently large,

sup
θ

∣

∣

∣

∣

∣

EI [ln Piji
(θ)] − 1

I

I
∑

i=1

ln Piji
(θ)

∣

∣

∣

∣

∣

<
δ

2
a.e.

For such an I , we have, from the ULLN assumption for SLLR(θ), that for R suffi-
ciently high,

sup
θ

∣

∣

∣

∣

∣

1

I

I
∑

i=1

ln Piji
(θ) −

I
∑

i=1

ln
1

R

R
∑

r=1

P R
iji

(θ)

∣

∣

∣

∣

∣

<
δ

2
a.e.

Combining these two inequalities with the triangular inequality

sup
θ

|SLLR(θ) − ELL(θ)| ≤ sup
θ

|SLLR(θ) − LL(θ)| + sup
θ

|LL(θ) − ELL(θ)|,

we obtain that

∃ Iδ s.t. ∀I ≥ Iδ ∃RI s.t. ∀R ≥ RI , sup
θ

|SLLR(θ) − ELL(θ)| < δ a.e.

Now define some sequence {δn}∞n=1 converging to zero, and let {Iδn
} be the corre-

sponding population sizes as given by this last bound. If the population size I grows
faster than Iδn

and R faster than RI , we see that

sup
θ

∣

∣SLLR(θ) − LL(θ)
∣

∣→ 0, a.e., (5.6)

which implies the desired result in this case. If, on the other hand, I grows slower than
Iδn

, we identify an increasing subsequence of population sizes {In} ⊆ {I} that grows
faster than Iδn

. For population sizes I ′ between In and In+1, (5.6) holds if we require
RI′ to be equal or larger than RIn+1 . As a consequence, we obtain that (5.6) holds
irrespective of the speed of growth of {I} provided R grows sufficiently fast. ut

Let {θ∗I,R} be a sequence of SAA solutions for I tending to infinity, and R tending
to infinity sufficiently fast compared to I . Dropping again the explicit dependence on
the sampling process, let θ∗ be a limit point of this sequence and assume (without loss
of generality) that {θ∗I,R} converges to θ∗. Then, under the assumptions of the previous
proposition, we obtain from Lemma 3.1 that

SLLR
(

θ∗I,R

)

→ ELL(θ∗),

for almost every sequence {θ∗I,R}. We may finally re-apply our convergence analysis
to this framework, and obtain, under assumptions similar to those used above (we now
need domination by functions that are (I × P )-integrable), that, almost surely, a se-
quence {θ∗I,R}∞, ∞

I=1, R=1 has a limit point θ∗ that is first (second)-order critical if the
θ∗I,R are first (second)-order critical points.
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6. Conclusion

We have first extended convergence properties known in stochastic programming in
the case where minimisers of the approximating problems are global to the case where
they are only local or even first-order critical. This in turn allows for problems whose
objective function is nonconvex.

In a second part, we have shown that the problem of estimating parameters in mixed
logit models for discrete choices can be cast into this general stochastic programming
framework. We then applied the new convergence properties to that case and strength-
ened existing results by proving almost sure convergence instead of convergence in
distribution, both for constrained and unconstrained problems. The new theory also al-
lows for general nonlinear utility functions. We finally derived computable estimates
of the simulation bias and variance. These estimates provide information on the qual-
ity of the successive average approximation which can be used to improve efficiency
of numerical estimation procedures, as done in AMLET (Bastin, Cirillo and Toint [3]),
whose description and assessment are available in a companion paper [4].

Further research would be useful to alleviate assumptions needed for our consis-
tency results, in particular when the feasible set S is nonconvex and/or stochastic, and
to develop a more complete statistical inference theory for local minimisation. Another
point of interest is a better understanding of the bias and variance of the solutions of
the successive average approximation solutions themselves (as opposed to values of
the log-likelihood functions). A next step would also be to determine accurate bounds
derived from quasi-Monte Carlo techniques instead of Monte Carlo samplings.
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