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Dynamical analysis and feedback control of age-structured epidemic
models

by Candy Sonveaux

Abstract: The field of epidemiology concerns notably the study of the dis-
tribution of diseases (in terms of location, occurrence and characteristics) and
the study of the health states of a given population. But il also relies on such
analysis for the control of health problems. The first part can be dealt with
mathematical modeling whereas the second part benefits from advances in the
field of control theory. In this work, both subjects are tackled. Firstly, a case
study concerning the covid-19 disease is performed thanks to a nonlinear SIRD
model described by ordinary differential equations. The dynamical analysis of
this model is developed to ensure the quality of the model (well-posedness) and
to provide prediction for the future (stability). Then two vaccination strategies
are proposed in order to imply disease eradication, by using two methods of con-
trol theory: observer-based output feedback design and model predictive con-
trol. Secondly, a nonlinear SIR model described by partial integro-differential
equations is studied. This model is well-suited to describe the evolution of
long-term diseases. Results concerning the dynamical analysis of the model in
terms of existence and uniqueness of solution, nonnegativity of the state vari-
ables and stability are established. In view of the stability results, a control
law is needed to obtain disease eradication. An innovative extension of the
linearizing state feedback approach is given for the infinite-dimensional case to
obtain a stabilizing vaccination law whose properties are proven.

Analyse dynamique et commande par rétroaction de modèles
épidémiologiques structurés par âge

par Candy Sonveaux

Résumé : Le domaine de l’épidémiologie concerne notamment l’étude de la
répartition de maladies (au point de vue de leurs localisations, leurs apparitions
et leurs caractéristiques) et l’étude de l’état de santé d’une population donnée.
Mais, il s’appuie également sur ces analyses pour le contrôle des problèmes de
santé. La première partie peut être réglée grâce à la modélisation mathéma-
tique alors que la seconde partie bénéficie des avancées dans le domaine de
la théorie du contrôle. Dans ce travail, les deux sujets sont traités. Première-
ment, une étude de cas concernant la maladie de covid-19 est réalisée à l’aide
d’un modèle SIRD structuré par âge. Ce dernier est décrit grâce à un système
d’équations différentielles ordinaires non linéaires. L’analyse dynamique de ce
modèle est étudiée pour assurer la qualité du modèle (problème bien posé)
ainsi que pour fournir des prédictions concernant le futur (stabilité). Ensuite,
deux stratégies de vaccination sont proposées afin d’obtenir l’éradication de la
maladie. Cela est réalisé en utilisant deux méthodes provenant de la théorie du
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contrôle : la conception d’une commande de sortie basée sur un observateur et
la commande prédictive. Deuxièmement, l’étude d’un modèle SIR dépendant
de l’âge est proposée. Ce dernier est décrit à l’aide d’équations aux dérivées par-
tielles non linéaires avec termes intégrales. Ce modèle est approprié pour décrire
l’évolution de maladies de longues durées. Des résultats concernant l’analyse
dynamique du modèle en termes d’existence et d’unicité de la solution, de po-
sitivité des variables d’état et de stabilité, ont été démontrés. Étant donné
les résultats de l’analyse de stabilité, une loi de contrôle est nécessaire afin
d’obtenir l’éradication d’une maladie. Une extension innovante de l’approche
de linéarisation par feedback d’état est donnée pour le cas en dimension infinie.
Et cela, afin d’obtenir une loi de vaccination stabilisante dont les propriétés ont
été démontrées.

Ph.D. thesis in Mathematics
Date: 19/12/23
naXys Research Institute, Department of Mathematics
Advisor: Joseph Winkin
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Introduction

Now, even more than before, we know that infectious diseases may lead to
huge damage once out of control. The successful eradication of those diseases
implies in particular the ability to understand their transmission dynamics.
This has became a particularly hot topic with the recent covid-19 pandemic
that occurred in November 2019. (Nane et al. (2023)) cited that over half a
million of covid-19-related papers were published by early 2021. Among all
those articles, and in epidemiology in general, different kind of models are
used to study the dynamics of infectious diseases: statistic versus mechanis-
tic, deterministic versus stochastic, discrete versus continuous... All have some
advantages and disadvantages. This thesis focuses on a particular class of epi-
demic models: mechanistic and deterministic models, known as compartmental
models. As mentioned in (Tolles and Luong (2020)), those simple models con-
sider the average behavior of the system at a population level. In this case, the
whole population is assumed to be divided into distinct groups with given char-
acteristics. Moreover, the particularity of the models considered in this thesis
is that the age-dependency of the parameters are taken into account. Hence,
the models studied are best-suited for diseases with different transmission dy-
namics according to the age of individuals. One can cite childhood diseases or
long-term diseases for instance. The main features of those models is that they
are nonlinear. This nonlinearity brings complexity since solutions can often not
been obtained explicitly. The key questions studied in this thesis concern the
dynamical analysis and control of the models considered. The first question,
about the dynamical analysis, can be divided into two sub-questions. The first
one, refereed as the well-posedness, focuses on the existence and uniqueness of
a solution for the model considered. This is particularly important because if
the model does not admit a solution it should not be considered. Moreover, if
it admits several solutions, it would not be possible to perform accurate predic-
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2 Introduction

tions. Furthermore, the physical meaning of the solution is also tackled when
dealing with well-posedness. Indeed, for systems dealing with physical quan-
tities it is often required to impose the nonnegativity of the state variables to
maintain physical meaning. Those types of systems are called positive systems.
The second sub-question concerns the concept of stability that allows to char-
acterize the trajectories of the states of the system. This gives an idea of the
behavior of the system’s solution. If the solution has not the desired behavior,
it is sometimes possible to act on it so that it reaches some wanted state. This
brings us to the second question of this thesis concerning the control of a sys-
tem. In epidemiology, there are different ways of controlling a disease, such as
quarantine, the wearing of masks, social distancing and hygiene measures,... In
this thesis, vaccination is considered as a way of controlling a disease. The field
of control theory in mathematics provides a wide range of methods to control
dynamical systems described with different equations according to different de-
sired objectives. Those methods are used in different fields such as, robotics,
chemical engineering, pharmacology.... In this work, two different designs are
considered, namely the output-feedback control and the model predictive con-
trol, in order to obtain disease eradication.

Structure of the thesis
This thesis is intended to be self-contained. Hence, theoretical concepts are

recalled in preliminary chapters of Parts II and III. The informed reader can
skip those parts and go back to them when needed.

The thesis is divided in three main parts, according to the point of view
adopted. The first part gives the fundamentals of epidemic models, whereas
the second part focuses on finite-dimensional models and the third part is ded-
icated to the infinite-dimensional models.

The first part, composed of Chapter 1 only, is dedicated to preliminaries con-
cerning epidemic models. After a brief history of epidemiology, the main types
of epidemic models are introduced, with a focus on the ones of interest for this
thesis, namely the age-dependent compartmental models. Then, an overview
concerning some control strategies that lead to disease eradication is intro-
duced.

The second part concerns an epidemic model where the ages are gathered by
class of age. This corresponds to a nonlinear finite-dimensional model. Useful
concepts needed throughout this part are recalled in Chapter 2. Then a case



Introduction 3

study concerning covid-19 is presented. Indeed, Chapter 3 is dedicated to the
calibration of the model parameters when no control is applied. Then, those
parameters are used in the next chapters. At first, the dynamical analysis of
the model is performed in Chapter 4. Then, since the good properties of the
solution of the studied model are ensured, the design of a control law can be
performed. This is detailed in Chapters 5 and 6, using two different design
methods. The first one uses state feedback whereas the second one is based on
an optimal control approach, namely model predictive control.

Finally, the third part is dedicated to an epidemic model where the age is con-
sidered to be continuous. This corresponds to a nonlinear infinite-dimensional
model. As previously, the first chapter of this part, Chapter 7, gathers the
necessary concepts used in this part. Then, Chapter 8 concerns the dynamical
analysis of this model. In view of the stability result, a control law is needed.
It is developed in Chapter 9, using a state feedback design.

Contributions
The contributions of this thesis have been obtained thanks to fruitful col-

laborations (see co-authors of the publications listed below). The contributions
of this thesis concern mainly the control of epidemic models using some known
approaches but also a new control design method. They are summarized in
Figure 0.2.
A first main contribution concerns the design of an observer-based output feed-
back, introduced in Chapter 5. This has the advantage to propose an imple-
mentable output feedback law, by combining two known theories about state-
feedback for finite-dimensional nonlinear systems and about the design of an
observer-based feedback. This theory has been applied on real covid-19 data
whose parameters have been calibrated in Chapter 3.
The second contribution that can also be highlighted concerns the design of a
control law for finite-dimensional systems but this time using a model predic-
tive control (MPC). MPC is widely used in all kinds of applications. However
in this thesis, a proof of the stability of the closed-loop system is performed in
Chapter 6, ensuring that it can be used safely. This law was also implemented
in the context of the covid-19 disease.
Finally, a third major contribution worth mentioning concerns the design of a
control law for a nonlinear infinite-dimensional system. The approach proposed
in this case is an extension of the theory about stabilizing state feedback in
finite dimension to the infinite-dimensional case. This is presented in Chapter
9.
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Control of
age-structured (AS)

Models

Observer-based
output feedback for an

age-discretized
SIRD model

Model predictive
control (MPC) for a

time and age-discretized
SIRD model

State feedback for a
distributed parameter

AS SIR model

Figure 0.2 – Main contributions of the thesis concerning control theory. In
green, Part II of the thesis, in red, Part III of the thesis

Note to the reader: in order to ease the reading, in the derivation of intricate
formulas, some terms are colored in blue for highlighting calculation tricks.

Communication
• Sonveaux, C., and Winkin, J. J., Design of a vaccination law for an age-

dependent epidemic model using state feedback, IFAC-PapersOnLine, pp.
65-70, vol. 55, 2022.

• Sonveaux, C., and Winkin, J. J., State feedback control law design for
an age-dependent SIR model, Automatica, vol. 158, 2023.

• Sonveaux C., Prieur C., Besançon G. and Winkin J. J., Observer-based
output feedback for an age-structured SIRD model, submitted to IEEE
Transactions on Automatic Control, July 2023.

Moreover, chapters 3 and 6 of the thesis are based on a joint work with Morgane
Dumont (HEC, ULiège, Belgium) and Mirko Fiacchini (Gipsa-Lab, Grenoble,
France), respectively.



Introduction 5

Acknowledgments
This research used resources of the "Plateforme Technologique de Calcul In-

tensif (PTCI)" (http://www.ptci.unamur.be) located at the University of Na-
mur, Belgium, which is supported by the FNRS-FRFC, the Walloon Region,
and the University of Namur (Conventions No. 2.5020.11, GEQ U.G006.15,
1610468, RW/GEQ2016 et U.G011.22). The PTCI is member of the "Consor-
tium des Équipements de Calcul Intensif (CÉCI)" (http://www.ceci-hpc.be).
Moreover, Chapter 3 was made possible thanks to the data provided by the
AVIQ ("Agence pour une Vie de Qualité").



6 Introduction



Notations

Symbol Meaning
Parameters

N Number of individuals in the whole population
Nk Number of individuals in the population

in the kth class of age
β Infection rate
βpᾱq Infection rate after a time ᾱ since the infection
γ "Recovery" rate (includes death and recovery rate)
γR Recovery rate
γRk Recovery rate for the kth class of age
γD Death rate
γDk Death rate for the kth class of age
λ Transmission probability
λk Transmission probability for the kth class of age
σ Infectiousness rate (inverse of the latent period)
ω Loss of immunity (inverse of the protection period)
µpaq Mortality rate
cpt, a, a1q Contact kernel
cpaq Simplified contact kernel
C Contact rate matrix
αk Proportion of recovered people that needed hospital care
pk Probability of succesful vaccination for an individual

in the kth class of age
ppaq Probability of successful vaccination for an individual

of age a
B Birth rate

7
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Variables
t Time
a Individual age
ᾱ Age of infection
amax Maximum age
na Number of classes of age
9 Proportionality coefficient
Sptq Number of susceptible individuals at time t
Iptq Number of infected individuals at time t
Rptq Number of recovered individuals at time t
Dptq Number of dead individuals at time t
Eptq Number of exposed individuals at time t
Skptq Number of susceptible individuals at time t

with age in rak´1, akq

Ikptq Number of infected individuals at time t
with age in rak´1, akq

Rkptq Number of recovered individuals at time t
with age in rak´1, akq

Dkptq Number of dead individuals at time t
with age in rak´1, akq

Spt, aq Density of susceptible individuals of age a at time t
Ipt, aq Density of infected individuals of age a at time t
Rpt, aq Density of recovered individuals of age a at time t
P pt, aq Density of the total population
P ‹pt, aq Density of the total population at steady state
Ipt, ᾱq Density of infected individuals at time t

that are infected since time ᾱ
β̄pt, a, Iq Force of infection
θkptq Vaccination rate for the kth class of age
θpt, aq Vaccination rate for an individual for age a
spt, aq Density of the proportion of susceptible individuals

of age a at time t
ipt, aq Density of the proportion of infected individuals

of age a at time t
rpt, aq Density of the proportion of recovered individuals

of age a at time t
ŝpt, aq Normalized density of susceptible individuals

of age a at time t
Sets & Operators

9x Time derivative of x (other notation,dx
dt

)
Bt Partial derivative with respect to t
R` Sets of nonnegative real numbers
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R Extended real number line, i.e r´8,8s
R0 Sets of non zero real numbers
Rn Sets of real vectors od dimension n
Rn` Nonnegative orthant of Rn
Bδ Open ball of radius δ in Rn

B=B1 Open unit ball in Rn

Idn Identity matrix of size nˆ n
0nˆn Null matrix of size nˆ n
X State space
U Input space
Y Output space
Lkab kth order Lie derivative of b along the vector field a
∇fpxq Gradient of fpxq
idX Identity operator on the space X
X 1 Dual space of X
L pXq Set of linear and bounded operators on

the space X
L pX,Y q Set of linear and bounded operators from

the space X to the space Y
B pXq Set of bounded operators on the space X
L8pXq Space of essentially bounded functions defined on X
L1pa, bq Space of Lebesgue integrable functions from ra, bs,

equipped with the L1-norm.
L1
`pa, bq Space of nonnegative Lebesgue integrable functions

from ra, bs, equipped with the L1-norm.
AC ra, bs Set of absolutely continuous functions on ra, bs
Ker A Kernel of the operator A
Im A Range of the operator A
CnpXq Space of n-times continuously differentiable

functions defined on X
W k,npXq Sobolev space of functions defined on X which are

in LnpXq and whose generalized derivatives up to
order k are in LnpXq

BB Boundary of B
ρpAq resolvent set of A
σpAq spectrum of A
RλpAq resolvent operator of A
rpAq spectral radius of A
spAq spectral bound of A
PσpAq Point spectrum of A

Miscellaneous
| ¨ | Modulus
} ¨ } Norm
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} ¨ }l1 l1-norm in Rn

} ¨ }1 Usual norm on L1 pa, bq

}x}M “ dpx,Mq Distance between the point x and the set M
x‹ Equilibrium
X‹ Set of equilibria
Re λ Real part of λ
x¨, ¨y Inner product
rF, xs Pairing between an element, F , of the dual of

the positive cone of X, X 1`,
and an element x of the positive cone, X`.

Abbreviations
BC. Before Christ
cst Constant
GAS Global asymptotic stability
MPC Model Predictive Control
not. Notation
ODE Ordinary differential equation
PDE Partial differential equation
PIDE Partial integro-differential equation
WHO World Health Organization
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Chapter 1
Epidemic Models

This chapter is dedicated to the introduction of basic notions in epidemiol-
ogy. First, an overview of the evolution and complexity of the epidemic models
over the years is provided. Then, a discussion is proposed to emphasize the
variety of epidemic models. Afterwards, the focus is on compartmental models,
which are the ones of interest in this thesis. Finally, the end of this chapter
is dedicated to the compartmental age-structured models which play a crucial
role to capture the evolution of diseases and to be able to act on them through
various policies, such as vaccination for instance.

1.1 A brief history of the beginning of epidemi-
ology

Over the last decade, the number of major epidemics has significantly in-
creased. One can cite the Ebola virus disease, the Sudan virus disease outbreak
in Uganda or, more recently, the coronavirus disease 2019 (covid-19) pandemic,
that officially occurred in Wuhan (China) in November 2019. All those diseases
showed that the outbreaks can both spread rapidly through the community and
undermine the health care system. Those showed notably the importance of
mathematical models in order to understand the spreading of a disease and
be able to act effectively on it. Especially since experts agree on saying that
one can expect an upsurge of epidemics in the world. This is mainly due, as
mentioned in (Institut Pasteur (2019)) to the increase of the world popula-
tion, the accelerated urbanization, the development of air transport, the global
warming, but also the deforestation that puts the Human in contact of new an-
imals. Nevertheless, epidemic modeling is not recent and this is related to the

13



14 Chapter 1. Epidemic Models

fact that there have been numerous epidemic diseases in the world, in the past.
One can cite, for instance, the Plague of Athens (430-265 BC), the Black Death
(1346-1353), the smallpox (XVIIIe), the HIV/AIDS (1981-nowadays),... Those
diseases can either disappear after causing lots of deaths, reappear, sometimes
with less severity, come back seasonally,... Epidemiology aims at understanding
the process of diseases propagation in order to predict their evolution and in a
second time, in order to develop control measures to stop their spreading.
The first known analysis of epidemic data was performed by John Graunt.
He published in his book "Natural and Political Observations made upon the
Bills of Mortality", (Graunt (1662)), an analysis of the deaths ensuing from
infectious diseases. Those observations were based on weekly records about
the numbers and causes of deaths occurring in the London parishes. Con-
cerning mathematical epidemic models, the first known model is the one by
Daniel Bernoulli. He developed a statistical model to study the benefits of the
variolation (inoculation of the smallpox) on the life expectancy of the popula-
tion (see (Bernoulli (1760)) and (Bernoulli (1766))). Some other works have
been developed in order to understand epidemic diseases without knowing their
transmission processes. For instance, John Snow found the source of a cholera
infection, in London, by focusing on the distribution of cholera cases in time
and space (see (Snow (1855))). However, those approaches are limited be-
cause they are not driven by "an appropriate theory to explain the mechanisms
by which epidemics spread" (Daley and Gani (2007)). The twentieth century
marked a turning point in epidemiology. Indeed the idea of disease transmis-
sion by contact through a germ was introduced in 1840 by Jacob Henley and
was then popularized in the late nineteenth and the early twentieth centuries.
In 1906, W. H. Hammer introduced the principle of mass action in epidemiol-
ogy for a discrete time model (Hamer (1906)). According to this principle, the
rate of transition from a category to another one is proportional to the num-
ber of individuals in those categories, and hence, proportional to the number
of contacts in the population. Concerning continuous time epidemic models,
one can cite the work of Ross that provides a compartmental model to study
malaria (Ross (1911)). This paper is the first reference to the concept of basic
reproduction number (even though it was not named), a key notion in epidemic
modeling since it gives a threshold to disease propagation. However, the most
common compartmental model was introduced by (Kermack and McKendrick
(1927)) and is well-known as the SIR model. Until then, numerous models
and techniques have been developed to tackle the complexity of the diseases
propagation. Some of them, of interest for this thesis, are introduced in what
follows.
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1.2 Epidemic models
The previous section showed the evolution of epidemic models until 1930.

However, instead of looking at the evolution of epidemic models in history, an
interesting approach is also to compare the models according to the way they
are built, the type of solution they give, their intrinsic properties,... This is
done here to motivate the choice of models used in this thesis. After comparing
the different types of models, the focus is given on compartmental models and
more precisely, the age-structured ones.

1.2.1 Types of models
Different kinds of models can be identified. Two types can be distinguished

and the choice of one type or another can depend on the research question or
on the considered context.

Statistical versus Mechanistic

When dealing with data, two choices can be made in the development of a
model. Either statistical models (such as Machine Learning, Artificial Intelli-
gence, Deep Learning,...) can be used. In this case the model derives from the
data, in order to describe them as well as possible. Or mechanistic models are
used. In this case, the equations (often ordinary differential equations (ODE))
are obtained from the understanding of the natural laws (biological, physical or
epidemiological laws). Both points of view have pros and cons. In the case of
statistical models lots of data are needed to initialize the model and the initial
assumptions about the mechanisms that drive the system need to be correct.
In the mechanistic models, on the other hand, the equations are more complex
but less data are needed. They even can be used without any data. Notice that
data are still required to describe real epidemics. Moreover, thanks to the bio-
logical definition of the parameters, they can be studied independently of the
choice of the data set. In this thesis, only mechanistic models are used because
they have the advantage to allow extrapolation (prediction outside the range
of data that are used) and to provide a better understanding of the considered
system. Moreover, they are used preferably to evaluate the impact of control
measures, which is one of the main goals of this thesis.

Deterministic versus Stochastic

For deterministic modeling, the output is entirely determined by the input.
Hence, a given input will always lead to the same output. Those models are
well-suited for large populations, where the mean number of infected individuals
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can be approximated by a deterministic model. However, in small populations,
as the spread of an infectious disease is a random process, the approximation
is not valid anymore and this random phenomenon needs to be taken into
account. In stochastic models, it is assumed that the transition between two
states follows a probability law (Poisson law or Binomial law for instance).
Since random processes are taken into account in stochastic models, a given
input will lead to different outputs if the simulation is performed several times.
Therefore, sensibility analysis of the model is needed when dealing with this
type of model. In this thesis, only deterministic models are considered. Indeed,
a trade-off is needed between complexity and usable theory. In the following,
it is shown that complexity is introduced in other parts of the modeling.

Individual level versus Population level

Two different approaches can be used when simulating epidemic models.
The population can be considered as a whole and the focus is on its global
evolution. This approach is often linked to the use of mechanistic models. For
compartmental models, where the population is divided into different classes
and the transition from one group to another is described by rates or differen-
tial equations, the population level is used. Another approach is to focus on
each individual as an independent unit and to consider the interactions between
individuals and possibly their interactions with their environment. It is also
possible to mix the two approaches by using for instance networks where each
node consists of individual level models: such models are called metapopula-
tion models (see for instance (Colizza and Vespignani (2008))). This thesis is
dedicated to compartmental models, so the population level is used.

Discrete versus Continuous

Another important question that arises when choosing a model concerns
the type of states and variables.
In epidemic models, the state represents (either directly or through an inte-
gration) numbers of individuals in the population. Therefore, it is a discrete
variable. However, when dealing with the evolution dynamics, the states are
often smoothed to use continuous variables, which are more appropriate for
differential equations models.
A second important feature of the model is the type of time and age variables
considered in this thesis. Both variables are continuous in reality. However,
in simulation, it is not possible to implement continuous variables. Therefore,
for simulation (especially for the model predictive control stability analysis of
Part II), those variables are discretized. Concerning the age variable, one can
group the age by class since the data are often collected that way. Therefore
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a discrete number of classes of age is used. This is developed in Part II of this
thesis. However, for long-time disease as HIV/AIDS for instance, the aging
effect can influence the disease propagation. This is why the age is considered
continuously in Part III of this thesis.

1.2.2 Compartmental models
This part is dedicated to the introduction of several basic epidemic com-

partmental models. Those are mechanistic models and it is chosen to present
their deterministic, continuous-time version. In the case of compartmental dis-
ease transmission models, it is assumed that the whole population is divided
in different compartments according to the state of illness of the individuals.
Then, assumptions coming from biological laws describe the transition from
one compartment to another. As introduced earlier, the key assumption for
compartmental model in epidemiology is the principle of mass action which
states that the number of new infections, when a contact occurs between a sus-
ceptible individual and an infected individual, is proportional to the number of
individuals in both categories. For the other compartments, it is assumed that
the transitions are proportional to the number of individuals in the original
compartment.
The most known model in epidemiology is the SIR model of (Kermack and
McKendrick (1927)). In this model, the population N is divided in three dis-
tinct classes. The group S of susceptible individuals who can catch the disease
when a contact happens with infected individuals of the group I. Then in-
fected individuals can recover (or die) to enter the group R of recovered (or
removed) individuals. The propagation of the disease in the population can be
viewed as the compartmental diagram in Figure 1.1. In continuous version, this
corresponds to the following set of nonlinear ordinary differential equations,
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Figure 1.1 – Propagation of the disease in the SIR model
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where the total population N “ Sptq ` Iptq ` Rptq is constant, due to the
nature of the equations (summing all the equations leads to the fact that the
time-variation of the total number of individuals equals zero). The parameter
β, named "the infection rate" in the following, is the product between the mean
number of contacts and the probability λ of the disease transmission when a
contact occurs with an infected individual. Moreover, γ denotes the recovery
rate and 1

γ represents the average time period of infection. One can notice that
the parameters are assumed constant in time. More refined versions of this
model allow the parameters to vary in time, allowing, for instance, the disease
to become less virulent with time. Finally, in this model, as it is the case for
the ones considered in this thesis, the considered disease is assumed to confer
total immunity. Therefore, once recovered it is not possible to catch the disease
again. To allow possible loss of immunity, a transition between the R and S

compartment is added. Those models are named SIRS model, where the last
S refers to loss of immunity.

In some cases, like in control design, it can be interesting to keep track of the
deceased population. In this thesis, this will be essential in order to calibrate
the parameters of the model for the covid-19 disease, as detailed in Chapter
3. Indeed, the only satisfactory available data are the data about the dead
individuals. Therefore, the R compartment is decomposed in two compart-
ments, one for the (alive) recovered individuals, named R and another one for
the deceased individuals, denoted by D. In this case, the propagation of the
disease can be represented by the diagram in Figure 1.2 and the dynamics in
continuous time is given by the following set of ordinary differential equations,
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(1.2)

where γR and γD denote the recovery rate and the death rate, respectively.

Some other compartments can be added to tackle features of the pathogen.
One can cite, for instance, the SEIRS model. Figure 1.3, adapted from (Keeling
and Rohani (2008)), helps to understand the new compartment E of exposed
individuals by representing the dynamic of an infection by comparing the med-
ical point of view and the modeling point of view. Before the infection, any
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Figure 1.2 – Propagation of the disease in the SIRD model

individual is susceptible and they may have some intrinsic immunity and no
pathogen is present in their organism. When the susceptible individual encoun-
ters an infected individual they becomes infected. From the medical point of
view, two status are considered when a patient catches a disease: the incuba-
tion period which corresponds to the time interval between the infection and
the beginning of the symptoms; and the period during which the patient is sick
until they has no more symptoms. However, from the epidemiology point of
view, other status are considered and their duration is not the same as for the
medical status. At first, the level of pathogen is too low to enable disease trans-
mission. The individual is considered exposed to the disease. For diseases that
have a long latent period, it is important to consider this status to emphasize
that there is no on-and-off switch process between susceptibility and infectious-
ness. After the exposed phase, when the level of pathogen is sufficiently high,
the host becomes infectious. Finally, once the individual’s immune system has
fought the virus, the patient is no longer infectious and becomes recovered.
However, with time their immunity decreases and they becomes susceptible
again. Notice that it is important to adopt the epidemiological point of view
since, even without symptoms, the individuals can transmit the disease. As
suggested by Figure 1.3, to implement the SEIR model it suffices to add an
"E" compartment to the SIR model. Therefore, the dynamics of the epidemic
is given, in the continuous-time version, by a set of four nonlinear ordinary
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Figure 1.3 – Propagation of the infection in a SEIRS structure

differential equations given by
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where the parameter σ is named "infectiousness rate" and is such that 1
σ is the

latent period. The parameter ω represents the fact that the recovered individ-
uals lose immunity with an average protection period of 1{ω.

As shown in this section, numerous modifications can be made from the clas-
sical SIR model. Those modifications can either occur by adding new com-
partments in order to have a better understanding of the disease propagation
and/or to match available data or one can also consider other variables of in-
terest in the disease evolution: for instance the dynamics may depend on the
spatial (geographical) distribution of the population, the distribution by age
of the population... The next section focuses on age-structured compartmental
models, which are of interest in this thesis.
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1.2.3 Age-structured compartmental models
The study of age-structured models is motivated by the fact that some dis-

eases can be highly age-dependent and therefore, the control strategies need to
take into account this age-dependency to give adapted solutions. For instance,
the way the disease propagates can depend on the age of the individuals at the
level of susceptibility of catching the disease, at the level of the transmission
of the disease once infected but also in terms of the individuals habits (con-
tacts are more important among young people). In this part, different types of
age-structured models are presented.

Continuous age-structured model

In reality, the age variable is a continuous variable. Therefore, it is natural
to consider it continuously in the models. The difference with previous com-
partmental models is that some of the states depend both on time and age.
Therefore they do not represent numbers of individuals anymore but densities.
Hence, Spt, aq, Ipt, aq and Rpt, aq denote the density of susceptible, infected
and recovered individuals, whose age is a, at time t respectively. Integrating
these quantities between two given ages gives the total number of individuals
in the given state between those two ages. In terms of host-age, the SIR model
(1.1) extends to its age-dependent version as the following set of three partial
integro-differential equations (PIDE),
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under some given initial and boundary conditions which model the birth pro-
cess. In this case the force of infection, which is the per capita rate at which
the susceptible individuals are infected, is given by

β̄pt, a, Iq “

ż amax

0
cpt, a, a1qIpt, a1qda1

where cpt, a, a1q is the contact kernel that represents the contact between an
individual of age a with one of age a1 at time t. In this thesis, a simplified
version of the force of infection is used where cpt, a, a1q “: cpaq. The fact that c
is considered independent of the time t is crucial for the analysis. However the
dependency with respect to the age a could be readily extended, although more
computationally demanding, to the case where the contact function depends on
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the age of the two individuals involved in the contact under the assumption of
proportionate mixing, i.e cpa, a1q “ cpaqcpa1q. This assumption, used in (Inaba
(2017)) for instance, allows to calculate explicitly the threshold condition (in
terms of the parameter R0) for an epidemic to occur. Moreover, notice that
in this equation, the natural mortality rate µpaq is added since this model is
best-fitted for long-term diseases. Then, the individual natural mortality needs
to be taken into account.

In the context of disease-age-dependent models, the first model was intro-
duced by (Kermack and McKendrick (1927)) with the study of an infection-
age-dependent SIR Model. In fact, although (1.1) is the most popular model, it
is just a simplification of the following hybrid ODE - PIDE model, introduced
by Kermack and McKendrick in 1927,
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where Ipt, ᾱq represents the density of infected individuals at time t that are
infected since time ᾱ. Moreover, β̄pt, Iq, which denotes the force of infection as

in the previous case, is now defined by β̄pt, Iq “
ż 8

0
βpᾱqIpt, ᾱqdᾱ, where β pᾱq

is the infection rate after a time ᾱ since the infection. It is worth mentioning
that other ages can be considered to model the evolution of a disease and the
equations of the model are similar to the ones presented here. However, those
models are not studied in this thesis.

Discretized age-structured model

In order to use the model in practice, it can be more appropriate to use a
discretized version of the previous models. In this thesis, the discretization is
developed for the host-age model only. One easy way to do so is to group ages
in na classes and to duplicate the classical SIR model (1.1) for each class of age.
Therefore, the equations remain almost the same as for (1.1) but they are in-
dexed by k. The hardest difficulty is to generalize the parameter β. It becomes
a matrix that indicates who acquires infection from whom (and not a vector as
for the other parameters). However, when the model parameters are calibrated,
there are too many parameters to identify. Therefore, an assumption is made
on the transmission of the pathogen. This is the social contact hypothesis that
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states that the number of contacts by age leading to an infection is proportional
to the age-specific number of social contacts. This translates as

¨

˚

˚

˚

˚

˝

β11

N1
¨ ¨ ¨

β1na
N1

...
. . .

...
βna1

Nna
¨ ¨ ¨

βnana
Nna

˛

‹

‹

‹

‹

‚

“

¨

˚

˝

λ1C11 ¨ ¨ ¨ λ1C1na
...

. . .
...

λnaCna1 ¨ ¨ ¨ λnaCnana

˛

‹

‚

where C is the contact rate matrix and represents the per capita daily contact
rate between the classes of age. Therefore, Cij is the probability for an indi-
vidual in the ith class of age to encounter an individual in the jth class of age.
Sometimes, instead of Cij one can use Mij

Nj
. C is a known matrix in the litera-

ture and it does not have to be estimated. Moreover, λk is the proportionality
factor that represents the probability of transmission of the disease when an
individual of the kth class of age has a contact. Therefore, the dynamics of the
disease propagation is given by a set of 3na ODEs,
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dRk ptq

dt
“ γRkIk ptq

(1.6)

for k “ 1, ..., na.

Obviously, this methodology can be extended to models with more compart-
ments. In this thesis, an extension of the SIR model (1.6) with an additional
compartment that incorporates the dynamics of the dead individuals indepen-
dently to the one of recovered people is introduced. This choice of model is
motivated by the fact that it is used here to simulate the covid-19 pandemic,
which is a lethal disease. Moreover, the importance of taking into account the
ages of the individuals for the covid-19 disease is established in several articles
such as in (Davies et al. (2020)) or (Dowd et al. (2020)), for instance. This
motivates the consideration of an age-structured model. The age-dependent
SIRD epidemic model used in this thesis groups ages by class and is inspired
by the works of (Calafiore and Fracastoro (2022)) and (Franco (2021)). How-
ever, some adaptations have been made. Indeed, as introduced in Model (1.6),
the transmission probability λk is assumed to be different among classes of age.
Therefore, the disease propagation for a fixed class of age, k, is given by a set
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of 4na nonlinear ordinary differential equations,
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dSk ptq

dt
“ ´λkSkptq

na
ÿ

j“1
CkjIjptq

dIk ptq

dt
“ λkSkptq

na
ÿ

j“1
CkjIjptq ´ pγRk ` γDkq Ik ptq

dRk ptq

dt
“ γRkIk ptq

dDk

dt
ptq “ γDkIk ptq ,

(1.7)

k “ 1, ..., na.

Remark that for ODE models as (1.6) and (1.7), initial conditions are needed.
Those conditions are introduced later in this thesis.
Finally, notice that for long term diseases, as the ones studied in Part III, the
aging effect needs to be taken into account. This is made possible by allowing
transfers between classes of age.

1.3 Successful control strategies in epidemiol-
ogy

As mentioned in Section 1.1, infectious diseases are expected to occur more
often nowadays. Therefore, it is essential to find ways to deal with them and
eventually achieve their eradication. In this section, several strategies, based
on (Roser et al. (2014)) are detailed to emphasize the possible approaches used
in epidemiology to control a disease. To date, only two diseases are declared
eradicated by the World Health Organization (WHO). Those are the smallpox,
which is a human disease, eradicated in 1980 and the rinderpest, a disease at-
tacking the cattle, that was declared eradicated in 2011. The first disease was
eradicated thanks to vaccination. According to the WHO, vaccination allows
to protect an individual against harmful diseases, before entering into contact
with them. The idea is to inject killed or weakened forms of the germs (viruses
or bacteria) or molecules of antigen-encoding messenger RNA, so that the im-
mune system creates antibodies and the individual becomes resistant to the
disease. The second disease was eradicated thanks to vaccination and sanitary
measures such as quarantine and slaughter.
Another disease, named Guinea worm disease, is almost eradicated. Unofficial
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data from (The Carter Center (2023)) report six cases from January 1st 2023
to August 31st 2023. This disease is treated through hygiene measures, water
decontamination and health education.
Other control strategies are also possible as preventive chemotherapy or drugs.
In the case of this thesis, the focus is made on one preventive treatment that
was alluded to earlier, namely vaccination. This control action is studied in
Part II and Part III of this thesis.

In summary, all the basic ingredients of age-structured epidemic models
have been introduced in this part and the motivation behind the importance
of considering the age has been emphasized. Moreover, some particular mod-
els used in this thesis, which represent extensions of the classical ones, were
described. In the next parts, questions regarding their well-posedness and sta-
bility will be studied. Then, in some cases, control laws representing the vac-
cination are designed. Finally, numerical simulations are implemented. Some
of them are based on covid-19 data. Therefore, the model parameters need to
be calibrated appropriately. This method will be developed in Part II.
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Discretized age-dependent
epidemic model

27





29

Introduction
The aim of this part is to study fatal diseases. Hence modeling requires

to consider the deceased individuals. Moreover, it is assumed that the studied
diseases are short-term diseases. Therefore, the aging effect is not considered.
Examples of diseases with those features are covid-19, Hepatitis B, flu... To deal
with those kinds of illness, this part focuses on the discretized age-dependent
epidemic model (1.7) introduced in Part I. Once the model formulated, one may
want to calibrate the model parameters. In this thesis, this is done in Chapter
3 using covid-19 data. Then, in order to assess the well-posedness of the model
and to understand its evolution, a dynamical analysis of the system in open-loop
is performed in Chapter 4. Finally, Chapters 5 and 6 are dedicated to the design
of control laws representing the vaccination. Those laws are implemented using
two different methods, one is an estimated state feedback whereas the other
one is an optimal law which is obtained by using model predictive control.
The aim of those laws is to find a vaccination strategy based on the age of
the individuals to eradicate the disease quickly enough and to achieve other
interesting goals such as the minimization of the peak of infected individuals
or the minimization of the number of dead individuals.
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Chapter 2
Theoretical concepts

This chapter aims at gathering all the theoretical concepts needed in this
part. The informed reader can skip this chapter and come back to it when
complementary details about a technical aspect are needed.

2.1 Essential nonnegativity
One key feature of the epidemic models studied in this thesis is that they

are nonnegative dynamical systems. Indeed, the states of those systems need to
be nonnegative since they represent quantities that would not have any mean-
ing if they were negative. Therefore, in this case, it is important to ensure
that, given nonnegative initial conditions, the state trajectories remain in the
nonnegative orthant of the state space. An important concept to ensure the
well-posedness of a nonnegative dynamical system is the essential nonnegativ-
ity. This is introduced in this section and it is used in Chapter 4. This section
is inspired by (Haddad et al., 2010a, Chapter 2).

Consider an autonomous nonlinear system of ordinary differential equations,

9xptq “ fpxptqq, xp0q “ x0 (2.1)

where xptq P D Ď Rn, with D a relatively open set (see Definition 2.1.1),
t P r0, τx0q, 0 ă τx0 ď 8, the maximal interval of existence for the solution of
(2.1), and f : D Ñ Rn is continuous on D.
Some concepts, including the essential nonnegativity, are introduced before
stating the main result allowing to conclude about the well-posedness of non-
negative dynamical systems.
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Definition 2.1.1 Relatively open set
A set D Ď Rn` is open relative to Rn` if there exists an open set R Ď Rn such
that D “ RX Rn`.

Definition 2.1.2 Invariant set
A subset Dc Ď D is an invariant set with respect to (2.1) if Dc contains the
future orbits of all its points, i.e

x0 “ xp0q P Dc ñ xptq P Dc,@t P r0, τx0q .

In the case where the solution exists in R`, Dc is said to be positively invariant
if xp0q P Dc ñ xptq P Dc,@t ě 0.

Definition 2.1.3 Essential Nonnegativity
Let f “ rf1, ¨ ¨ ¨ , fns

T : D Ñ Rn. Then, f is essentially nonnegative if for
all i “ 1, ..., n and for all x P D such that xi “ 0, where xi denotes the ith
component of x, one has that fipxq ě 0, where fi : D Ñ R is the ith component
of the function f .

Now, all the elements are gathered to report the main result of this section.

Proposition 2.1.1
Suppose that D “ Rn` and that the maximal interval of existence of the
solution is R`. Then, Rn` is an invariant set with respect to (2.1), that
is R`n is positively invariant, if and only if f : D Ñ Rn is essentially
nonnegative.

2.2 Existence and uniqueness of solution
In this section a result concerning the existence and uniqueness of the so-

lution for nonlinear differential equations systems is developed. It consists of
Corollary 2.5 in (Haddad and Chellaboina, 2008, Chapter 2). Remark that this
result is similar to Theorem 3.3 introduced in (Khalil (2002)). The main fea-
ture of the result detailed in the following is that, contrary to the well-known
theorem of Picard, it states the existence and uniqueness of a global solution,
meaning a solution defined for all t ě 0.
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Theorem 2.2.1
Consider the nonlinear dynamical system (2.1) where D is an open subset
of Rn that includes 0.
Assume that f : D Ñ Rn is Lipschitz continuous on D. Furthermore,
let Dc Ă D be compact and suppose that for x0 P Dc, the solution
x : r0, τq Ñ D lies entirely in Dc, with r0, τq , the maximal interval of
existence of (2.1).
Then, this solution can be extended uniquely on r0,8q.

This theorem follows from the fact that, if τ is finite, then the solution must
leave any compact subset of D. Since the solution always lies entirely in the
compact set Dc then, by a contrapositive argument, τ “ 8.

2.3 Stability for continuous-time systems
In this section, based on (Khalil, 2002, Chapter 4) a quick introduction

to the concept of stability for continuous-time systems is given. This topic is
discussed in the case of an age-dependent SIRD model in Section 4.2. The
focus is given on the stability of equilibrium points. In this part, no input is
considered but the definition easily extends to the case where an input is taken
into account. Indeed, as mentioned in (How and Frazzoli (2010)) for instance,
it suffices to find equilibria consisting in couples "state-input" that leave the
system constant for the future times when it starts at those points.

Consider the autonomous nonlinear system (2.1) where f : D Ñ Rn is a locally
Lipschitz map from D Ă Rn into Rn.

Definition 2.3.1 Equilibrium for continuous-time systems
The point x‹ P D is an equilibrium point of the system (2.1) if fpx‹q “ 0. In
other words an equilibrium point is a point that cancels the derivative. Hence,
the system, starting at an equilibrium point remains at the same state indefi-
nitely.

In nonlinear systems, the stability of an equilibrium cannot be checked by a
single overall criteria, contrary to the linear case where it suffices to check the
eigenvalues of A where 9x “ Ax. Therefore, in the case where the system has
multiple distinct equilibrium points, one needs to study the stability of each of
them.
As it is classically done, the following definitions and propositions are stated
for a null equilibrium point. In the case where the origin is not an equilibrium,
the change of variables x̃ “ x´x‹ implies that the system in the new variables
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xptq δ

ε

δ

ε

t

xptq

Figure 2.1 – Illustration of the definition of (Lyapunov) stability, inspired by
(Kundur et al. (2004))

has an equilibrium at the origin. Hence, in the following, it is assumed that
fp0q “ 0.

Definition 2.3.2 Stability for continuous-time systems
The equilibrium point x‹ “ 0 of system (2.1) is

— (Lyapunov) stable if, for each ε ą 0, there exists δ “ δε ą 0 such that

}xp0q} ă δ ñ }xptq} ă ε,@t ě 0.

— unstable if it is not stable.
— asymptotically stable if it is stable and δ can be chosen such that

}xp0q} ă δ ñ lim
tÑ8

}xptq} “ 0.

— exponentially stable if there exist δ ą 0,M ą 0 and α ą 0 such that

}xp0q} ă δ ñ }xptq} ďMe´αt}xp0q},@t ě 0.

If the conditions are satisfied for any initial state, the system (2.1) is said to
be globally (exponentially/asymptotically) stable.
Note that other forms of stability can be considered, such as uniform stability
for instance. However, they are not used in this thesis.

Those definitions are illustrated in Figures 2.1 and 2.2 for a state xptq
in R2. In the first figure, one can observe that by choosing an initial condition
x0 sufficiently close to the origin (in a sphere of radius δ around the origin),
the state trajectory remains entirely in a sphere of radius ε around the origin.
That corresponds to the definition of Lyapunov stability. Moreover, in the case
of asymptotic stability, depicted in Figure 2.2, the same occurs but the origin is
attractive, meaning that the state tends to the equilibrium point as time goes
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δ

ε

xptq δ

ε

t
xptq

Figure 2.2 – Illustration of the definition of asymptotic stability, inspired by
(Kundur et al. (2004))

M

xp0q

t

xptq
Meαt

´Meαt

Figure 2.3 – Illustration of the definition of exponential stability, inspired by
(Kundur et al. (2004))

to infinity. Furthermore, Figure 2.3 shows the behavior of an exponentially
stable solution xptq P R. One can observe that an exponentially stable solu-
tion decays at an exponential rate and asymptotically tends to the equilibrium
point. Therefore, exponentially stable solutions can not blow up.

Now that the concepts are defined, some theorems are introduced to charac-
terize the stability of an equilibrium point. The first one is due to the Russian
mathematician Lyapunov, who contributed a lot to the field of stability of dy-
namical systems. The formulation of this theorem is taken from (Khalil, 2002,
Theorem 4.1).
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Theorem 2.3.1: Lyapunov stability
Let x‹ “ 0 be an equilibrium point of (2.1) and let V : D Ñ R be a
continuously differentiable function defined in a domain (that is an open
and connected subset) D Ă Rn that contains the origin such that

V p0q “ 0 and V pxq ą 0 in Dz t0u (2.2)
9V pxq ď 0 in D (2.3)

then, x‹ “ 0 is stable. Moreover, if

9V pxq ă 0 in Dz t0u (2.4)

then x‹ “ 0 is asymptotically stable.

A continuously differentiable function V satisfying conditions (2.2) and (2.3)
is called a Lyapunov function. The previous Lyapunov’s theorem gives a local
result. However, under some assumptions, one can conclude about the global
asymptotic stability (GAS). This is presented in the theorem below, stated in
(Khalil, 2002, Theorem 4.2).

Theorem 2.3.2: Barbashin-Krasovskii’s theorem
Let x‹ “ 0 be an equilibrium point of (2.1). Let V : Rn Ñ R be a
continuously differentiable function such that

V p0q “ 0 and V pxq ą 0 in R0 (2.5)
}x} Ñ 8 ñ V pxq Ñ 8 (2.6)
9V pxq ă 0 in R0 (2.7)

then x‹ “ 0 is globally asymptotically stable.

Remark that global asymptotic stability is only possible if the system has a
unique equilibrium. In the case studied in this thesis, there is a continuum of
equilibrium points. Therefore, a new concept of stability, introduced in (Hui
et al., 2008, Definition 3.1), is needed.

Definition 2.3.3 Semistability
— An equilibrium point x‹ P D of (2.1) is semistable if

1. x‹ is a Lyapunov stable equilibrium,
2. there exists a set U Ď D that is open relative to D and containing
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x‹ such that, for all initial conditions in U , the trajectory of (2.1)
converges to a Lyapunov equilibrium point, that is, lim

tÑ8
xpt, x0q “ y,

where y P D is a Lyapunov stable equilibrium point of (2.1) and
x0 P U .

— In addition, the equilibrium point x‹ P D of (2.1) is a globally semistable
equilibrium if conditions 1 and 2 above hold with U “ D “ Rn.

— The system (2.1) is semistable if every equilibrium point x‹ of (2.1) is
semistable.

— A set X‹ is semistable if all its elements are semistable equilibria, i.e if
@x‹ P X‹, x‹ is a semistable equilibrium.

In other words, an equilibrium is semistable if it is Lyapunov stable and if
every solution starting from an appropriate set containing this equilibrium of
the system converges to one of the equilibria.
The following theorem, stated in (Khalil, 2002, Theorem 4.4), is helpful to
prove the second condition in the definition of semistable equilibrium point.

Theorem 2.3.3: LaSalle’s theorem
Let Dc Ă D be a compact set that is positively invariant with respect to
(2.1). Let V : D Ñ R be a continuously differentiable function such that
9V pxq ď 0 in Dc. Let E be the set of all points in Dc where 9V pxq “ 0.
Finally, let M be the largest invariant set in E. Then, every solution
starting in Dc approaches M as time tends to 8, i.e @ x0 P Dc,

d pxptq,Mq “ inf
mPM

}xptq ´m} ÝÑ
tÑ8

0.

All the propositions detailed previously use the property of Lyapunov func-
tion to conclude about stability. However, in the case of linear systems, defined
by

9xptq “ Axptq, xp0q “ x0, (2.8)

where A P Rnˆn, it is possible to characterize stability using eigenvalues.

Theorem 2.3.4
The linear system (2.8) is exponentially stable if and only if the eigen-
values λi of the matrix A have a negative real part, i.e Re λi ă 0, for all
i “ 1, ..., n (counting multiplicities).
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2.4 Stability for discrete-time systems
In the model predictive control approach, studied in Chapter 6 and briefly

explained in Section 2.7, a discrete-time system is used. This section, based on
(Rawlings et al., 2020, Appendix B) provides a brief overview of the concept
of stability for those systems. Notice that the following definitions are similar
to the ones introduced in previous section but for the discrete-time case.
The following notations are used in this part: x denotes the current state,
x` is the state at the next sample time, also called the successor state and
xpnq “ φpn;x0q is the solution of x` “ fpxq at time n with x0 the initial state
at time 0.

Definition 2.4.1 Equilibrium for discrete-time systems
The point x‹ P Rn is an equilibrium point of the system x` “ fpxq if xp0q “ x‹

implies that xpnq “ φpn;x‹q “ x‹ for all n ě 0. Therefore, x‹ is an equilibrium
point of x` “ fpxq if it satisfies x‹ “ fpx‹q.

Now it is possible to characterize the stability and attractivity of an equilibrium
point corresponding to the origin, i.e for systems such that fp0q “ 0. The
following definitions can easily be extended to any non null equilibrium point
thanks to an obvious change of variables (shift).

Definition 2.4.2 Stabilty and attractivity for discrete-time systems
The equilibrium point x‹ “ 0 of the system x` “ fpxq, xp0q “ x is

— locally stable if, for each ε ą 0, there exists δ “ δε ą 0 such that

}x} ă δ ñ }φpn;xq} ă ε,@n P N.

— unstable, if it is not locally stable.
— globally attractive if

lim
nÑ8

}φpn;xq} “ 0 @x P Rn.

— globally asymptotically stable if it is locally stable and globally attractive
— globally exponentially stable if there exist M ą 0 and η P p0, 1q such that

}φpn;xq} ďM}x}ηn,@n P N.

In some cases the convergence to a set of equilibria, X‹, is wanted. The pre-
vious definition extends to this case, where the equilibrium x‹ “ 0 is replaced
by a closed, positively invariant set X‹. In this case, the norm } ¨ } is replaced
with } ¨ }X‹ , where }x}X‹ “ dpx,X‹q :“ inf

zPX‹
}x ´ z} denotes the distance of

the point x from the set X‹.
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In practice, due to some state constraints, the global asymptotic stability of the
system cannot be achieved. Hence the following definitions, that extend the
previous ones are introduced. Those definitions require the property of posi-
tively invariant sets, ensuring that the solution starting in a positively invariant
set remains in this set, for all time. This concept is first recalled.

Definition 2.4.3 Positively invariant set for discrete-time systems
A set D Ď Rn is positively invariant with respect to x` “ fpxq if x P D implies
fpxq P D.

In the following, Bδ denotes the open ball in Rn of radius δ, centered at the
origin.

Definition 2.4.4 Stabilty and attractivity for constrained discrete-time
systems
Assume that D is positively invariant with respect to x` “ fpxq. The equilib-
rium point x‹ “ 0 of the system x` “ fpxq is

— locally stable in D if, for each ε ą 0, there exists δ “ δε ą 0 such that

x P D X Bδ ñ }φpn;xq} ă ε,@n P N.

— (globally) attractive in D if

lim
nÑ8

}φpn;xq} “ 0 @x P D.

— (globally) asymptotically stable in D if it is locally stable in D and (glob-
ally) attractive in D.

In this case, the set D is called the region of attraction for the origin.
— (globally) exponentially stable in D if there exist M ą 0 and η P p0, 1q

such that
}φpn;xq} ďM}x}ηn,@x P D and @n P N.

Finally, the previous concepts can be characterized thanks to Lyapunov
functions. However, intermediate concepts that characterize some classes of
function need to be recalled. Those types of function are often used in control
theory to check the stability of a system and can be used for discrete-time
systems as well as to continuous-time systems.

Definition 2.4.5 Comparison function
— A function σ : R` Ñ R` belongs to class K if it is continuous, with

σp0q “ 0 and strictly increasing.
— A function σ : R` Ñ R` is of class K8 if it is of class K and unbounded.
— A function β : R`ˆNÑ R` is of class KL if for each n P N, β p¨, nq is

a function of class K, and for each s P R`, β ps, ¨q is nonincreasing and
satisfies lim

nÑ8
β ps, nq “ 0.
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— A function η : R Ñ R` belongs to class PD if ηp0q “ 0 and is positive
everywhere else. Such a function is called positive definite.

With those definitions, the global asymptotic stability of the origin for the
system x` “ fpxq can be defined equivalently by

@x P Rn, }φpn;xq} ď β p}x}, nq for all n P N, for some β p¨q P KL.

Notice that in the case of a set of equilibria X‹, the definitions of global asymp-
totic stability of X‹ for the system x` “ fpxq are equivalent if X‹ is compact
and positively invariant and fp¨q is continuous.

Now all the elements are gathered to characterize the stability. The following
result is the analogous of Theorem 2.3.2 for discrete-time systems and when a
set of equilibria, X‹, is considered.

Theorem 2.4.1: Lyapunov function for GAS
Suppose that D is positively invariant and that the set X‹ Ď D is closed
and positively invariant with respect to x` “ fpxq, and fp¨q is locally
bounded.

Let V : Rn Ñ R` such that there exist functions α1, α2 P K8 and a
continuous function α3 P PD satisfying for any x P Rn,

α1 p}x}X‹q ď V pxq ď α2 p}x}X‹q , (2.9)
V pfpxqq ´ V pxq ď ´α3 p}x}X‹q . (2.10)

Then X‹ is globally asymptotically stable.

A function V satisfying conditions of Theorem 2.4.1 is called a Lyapunov
function for the system x` “ fpxq and the set X‹.
In the constrained case, the previous theorem is stated as follows.
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Theorem 2.4.2: Lyapunov function for GAS (constrained case)
Suppose that D is positively invariant and that the set X‹ Ď D is closed
and positively invariant with respect to x` “ fpxq, and fp¨q is locally
bounded.
Let V : D Ñ R` such that there exist functions α1, α2 P K8 and a
continuous function α3 P PD satisfying for any x P D,

α1 p}x}X‹q ď V pxq ď α2 p}x}X‹q (2.11)
V pfpxqq ´ V pxq ď ´α3 p}x}X‹q (2.12)

then X‹ is globally asymptotically stable in D for x` “ fpxq.

A function V satisfying conditions of Theorem 2.4.2 is called a Lyapunov
function in D for the system x` “ fpxq and set X‹.
Finally, a characterization of exponential stability is also possible using Lya-
punov function, as presented in the next theorem.

Theorem 2.4.3: Lyapunov function for exponential stability
Suppose that D is positively invariant and that the set X‹ Ď D is closed
and positively invariant with respect to x` “ fpxq, and fp¨q is locally
bounded.
Let V : D Ñ R` satisfying for any x P D,

a1}x}
σ
X‹ ď V pxq ď a2}x}

σ
X‹ (2.13)

V pfpxqq ´ V pxq ď ´a3}x}X‹ (2.14)

in which a1, a2, a3 and σ ą 0.
Then X‹ is exponentially stable in D for x` “ fpxq.

2.5 Linearizing state feedback
In this section, based on (Isidori, 1995, Chapter 5), a summary of the theory

of linearizing state feedback design for multi-input multi-output systems is
given. This method is used in Chapters 5 and 9.
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Consider a system in state space form given by

9x “ fpxq `
m
ÿ

k“1
gkpxquk

yk “ hkpxq for k “ 1, ...,m,

which can be rewritten in a more compact way as

9x “ fpxq ` gpxqu

y “ hpxq,
(2.15)

where fpxq and gkpxq, k “ 1, ...,m, are smooth vector fields and hkpxq, k “
1, ...,m are smooth functions, defined on an open set of Rn. Moreover, u “
colpu1, ..., umq, y “ colpy1, ..., ymq, hpxq “ colph1, ..., hmq are vectors in Rm and
gpxq “ pg1pxq, ..., gmpxqq is an nˆm matrix.

The goal of the control is defined below.

Problem 2.5.1 State space exact linearization Problem
Given a set of vector fields fpxq and gkpxq, k “ 1, ...,m and an initial state x0,
find a neighborhood D of x0, a feedback u “ αpxq ` βpxqv and a coordinates
transformation (diffeomorphism) z “ Φpxq such that (2.15) is linear (given by
9z “ Āz ` B̄v).

A key concept in the design of a linearizing state feedback is the notion of
relative degree. This concept, which is explained in the following, requires the
computation of a Lie derivative. The kth order Lie derivative of b along the
vector field a is denoted by Lkabpxq “ LaL

k´1
a bpxq “ x∇Lk´1

a bpxq, apxqy.

Definition 2.5.1 Relative degree
A multivariable nonlinear system of the form (2.15) has a relative degree tr1, ..., rmu

at a point x0 if
1. LgjLkfhipxq “ 0 for all 1 ď j ď m, k ă ri´ 1, 1 ď i ď m and for all x in

a neighborhood of x0.
2. the mˆm matrix

Apxq “

¨

˚

˝

Lg1L
r1´1
f h1pxq ¨ ¨ ¨ LgmL

r1´1
f h1pxq

...
. . .

...
Lg1L

rm´1
f hmpxq ¨ ¨ ¨ LgmL

rm´1
f hmpxq

˛

‹

‚

(2.16)

is nonsingular at x “ x0.

The next result ensures that the design of a linearizing state feedback is feasible.
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Lemma 2.5.1
Suppose the matrix gpx0q has rank m. Then, the state space exact lin-
earization problem, defined in Problem 2.5.1 is solvable if and only if
there exists a neighborhood D of x0 and m real-valued functions hkpxq,
k “ 1, ...,m defined on D, such that the system (2.15) has some relative
degree tr1, ..., rmu at x0 and r1 ` ...` rm “ n.

Finally, one can state under what coordinates change and control law it is
possible to have a linearizing state feedback.

Proposition 2.5.1
Let the functions

φki pxq “ zik “ Li´1
f hkpxq (2.17)

for 1 ď i ď rk, 1 ď k ď m define some coordinates change.
Moreover, define

u “ A´1pxq pvpxq ´ bpxqq (2.18)

where A is given by (2.16) and bpxq “
´

Lr1
f h1pxq, ..., L

rm
f hmpxq

¯T

. Then,
the system in the new coordinates is given by

9z “ Āz ` B̄v (2.19)

where A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 0 ¨ ¨ ¨ 1
0 0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

and B “

¨

˚

˚

˚

˝

0
...
0
1

˛

‹

‹

‹

‚

, which is a linear and

controllable system.

Notice that this result is obtained by plugging the input (2.18) in system
(2.15), expressed in the variables z thanks to the change of coordinates (2.17).
To control the linear system (2.19), it suffices to choose v appropriately so that
the system in closed-loop is stable. According to Theorem 2.3.4, v needs to
be chosen such that the real parts of the eigenvalues of the system in closed-
loop are negative. A useful proposition taken from (Fortmann and Hitz, 1977,
Chapter 5) is helpful to establish the stability of linear systems.
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Definition 2.5.2 Polynomial stability
Consider the polynomial of degree n given by ppsq “ sn`pn´1s

n´1`...`p1s`p0.
Denote the roots of ppsq as λ1,...,λn.
Then, ppsq is a stable polynomial if Repλiq ă 0 for all i “ 1, ..., n.

Now, a corollary of Liénard-Chipart Theorem can be stated, in the case of a
second-order polynomial.

Proposition 2.5.2: Corollary of Liénard-Chipart theorem
The second-order polynomial ppsq “ s2 ` p1s` p0 is stable if and only if
the coefficients p1 and p0 are both positive.

2.6 Observer-based output feedback
In this section, a theorem from (Atassi and Khalil (1999)) is recalled. Notice

that the matrix sizes can be more general but have been already adapted to
the framework of Section 5.3, where this theorem is used. The aim of this
result is to design an observer-based output feedback, which is implementable
in practice. In other words, this theorem gives conditions ensuring that the
state trajectories of a system under an observer-based output feedback, γpẑptqq
(where ẑptq denotes the estimated state), converges to the one under exact state
feedback, γpzptqq. This is paramount since, in order to be implementable, the
vaccination law needs to be based only on the measurements and not on the
whole state of the system (which is not available).

Theorem 2.6.1: (Atassi and Khalil, 1999, Theorem 3 and The-
orem 4)

Consider a multivariable nonlinear system given by
"

9z ptq “ Az ptq `Bφ pz ptq , u ptqq

y ptq “ Cz ptq
(2.20)

with zp0q “ z0, where z P Z Ď R3n is the state vector,

u “ γpzptqq, (2.21)

such that u P U Ď Rn, is the control input (i.e. the exact state feedback)
and y P Y Ď Rn is the measured output.



2.6. Observer-based output feedback 45

The matrices A, B and C are given by A “ blockdiagrÃ, ..., Ãs3nˆ3n,
B “ blockdiagrB̃, ..., B̃s3nˆn and C “ blockdiagrC̃, ..., C̃snˆ3n, where

Ã “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚, B̃ “
`

0 0 1
˘T
, C̃ “

`

1 0 0
˘

.

Assume that
1. the function φ : Z ˆ U Ñ Rn is locally Lipschitz in its arguments

on its domain, with φp0, 0q “ 0.
2. the function φ is globally bounded in z.
3. the function γ is a locally Lipschitz function in its arguments on its

domain and γp0q “ 0.

4. the function γ is a globally bounded function of z.
5. the origin (z “ 0) is an asymptotically stable equilibrium point of

the closed-loop system.

Consider the high-gain observer given by

9̂zptq “ Aẑptq `Bφpẑptq, γpẑptqqq `Hpyptq ´ Cẑptqq, (2.22)

with ẑp0q “ ẑ0, where H denotes the observer gain, defined by H “

blockdiagrH1, ...,Hns3nˆn where

Hi “

ˆ

βi1
ε

βi2
ε2

βi3
ε3

˙T

with the parameters βji , j “ 1, 2, 3 chosen such that the roots of s3 `

βi1s
2 ` βi2s ` βi3 are in the open left-half plane, for i “ 1, ..., n. Then,

the solution z̃pt, εq of the system (2.20) under the observer-based output
feedback

u “ γpẑptqq, (2.23)

converges to the solution zptq of the system (2.20) under the exact state
feedback (2.21) uniformly in t, i.e. for all ζ ą 0, there exists ε‹ ą 0 such
that for every 0 ă ε ď ε‹, for all t ě 0

}z̃pt, εq ´ zptq} ď ζ,

where } ¨ } denotes any norm on R3n.
Moreover, there exists ε̃‹ such that, for every 0 ă ε ď ε̃‹, the origin of
system (2.20) under observer-based feedback is asymptotically stable.
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2.7 Model predictive control
This section is based on the book by (Rawlings et al. (2020)) that provides

fundamentals of the theory and design of model predictive control (MPC).
Model predictive control can be used to tackle regulation problems as well as
estimation problems. In the context of this thesis, only the regulation problem
is studied. The idea of model predictive control for regulation is, as mentioned
in (Rawlings et al. (2020)), to "use a dynamical model to forecast system be-
havior and optimize the forecast to produce the best decision, hence the best
control move, at current time". Indeed, MPC is a particular form of control
where the control action is obtained by online calculation, at each sampling
time, "by solving a finite horizon optimal control problem in which the initial
state is the current state of the plant." The solution of the finite horizon opti-
mal control problem is a finite sequence of controls and only the first control
action in the sequence is applied to the plant at the current sample time. The
methodology used in MPC can be illustrated for a single-input, single-output
system as in Figure 2.4. As explained previously and developed in (Seborg
et al., 2004, Chapter 20), the goal of MPC is to provide the optimal sequence
of control moves, uo, based on current measurements, y, and predictions of the

u

uo

Control horizon, N

Prediction horizon, P

y

ŷ

Target

Past Future

Past outputs y
Predicted outputs ŷ
Past control action u
Optimal control action

at time k, uo

n´ 1 n n` 1 n`N ´ 1 n` P
Sampling instants

Figure 2.4 – Illustration of the MPC calculation, inspired by (Seborg et al.,
2004, Chapter 20)
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future values of the outputs, ŷ, obtained by the dynamical model to reach some
desired target. Therefore, as explained in (Seborg et al. (2004)), "at the cur-
rent sampling instant, n, the MPC strategy calculates a sequence of N values
of the input, consisting of the current input upnq and the N ´ 1 future inputs.
Then, the input is held constant after the N control moves." Those inputs are
obtained to ensure that the set of P predicted outputs reaches the target in an
optimal way, based on the optimization of an objective function (see Problem
2.7.1). MPC is called a receding horizon approach since only the first move of
the optimal control sequence uo is implemented at the current sampling time
n. At the next sampling instant, a new optimal sequence is calculated, using
the new available measurements and only the first move is implemented. In
the following, it is assumed that the whole state is known, therefore, y “ x.
In this case, the system can precisely predict future trajectories and the MPC
solution at a given state is given by a receding horizon control law obtained by
dynamic programming, and evaluated at this state.

One of the main advantages of the MPC approach is that it needs to solve
an open-loop optimal control problem which is often solved rapidly enough.
Hence MPC can be used to deal with nonlinear systems with constraints on
both states and inputs, which is the case in this thesis.

In the following, the attention is focused on MPC for the control of constrained
nonlinear discrete time-invariant systems of the form

x` “ fpx, uq, (2.24)

xp0q “ x0, where x P X Ď Rn is the current state, u P U Ď Rm is the current
control action and x` P X Ď Rn is the state at the next sample time, also called
the successor state. The sets X and U are assumed to be closed and denote
the set of state constraints and input constraints respectively. The system
(2.24) can also be subject to hard constraints. Hence one can introduce the set
Z Ď X ˆ U , which is the set of all constraints in the problem. The function
f : X ˆ U Ñ X is assumed to be continuous and to vanish at the origin, such
that p0, 0q is the desired equilibrium pair. Thanks to an appropriate coordinate
change, the subsequent theory easily extends to non trivial equilibria. In the
following, (finite or infinite) sequences are denoted by bold letters. Moreover,
the solution of (2.24) at time n with x the initial state at time 0 and the control
sequence u is denoted by xpnq “ φpn;x;uq.
Now that the system is defined, it remains to express the optimization problem
to be solved at each time step. The goal is to minimize a given cost function. To
ensure practical (fast) resolution of the problem, this cost needs to be defined
over a finite horizon N . The goal of MPC presented here is to steer the state
to the target state, which is the origin in the remainder of this section. This is
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refereed to the regulation problem to the origin. To solve this, it is necessary
to find the solution of the following optimal control problem over the control
horizon N .

Problem 2.7.1 Optimal control problem

PN pxq : min
x,u

N´1
ÿ

n“0
l pxpnq, upnqq ` Vf pxpNqq

subject to x and u satisfy (2.24), with xp0q “ x,

x and u satisfy the state and input constraints.

Using a priori the fact that the state sequence x is the solution of x` “ fpx, uq,
problem 2.7.1 can be expressed equivalently, for analysis purpose, as an opti-
mization with respect to the variable of decision u only. Hence the cost to
minimize is given by

VN px,uq “
N´1
ÿ

n“0
l pxpnq, upnqq ` Vf pxpNqq , where xpnq “ φpn;x,uq (2.25)

which depends only on the initial state x and the control sequence u.
An additional terminal constraint,

xpNq P Xf Ď X

can sometimes be imposed in order to obtain some desired properties. Taking
this into account, considering the new equivalent cost function (2.25), and in-
troducing the set UN pxq of (feasible) control sequences satisfying all the (input,
state and terminal) constraints, namely the control constraint set, yields to the
following equivalent optimal control problem formulation:

PN pxq : min
uPUN pxq

VN px,uq “: V o
N pxq.

One can also define the set

XN :“ tx P X : UN pxq ‰ Hu

which corresponds, as seen in the sequel, to the set of states in X for which
PN pxq has a solution. So that the previous problem is well-posed, it needs to
admit a solution. The following proposition ensures that this holds under some
mild assumptions. The first assumption concerns the continuity of the system
functions and cost function.

Assumption 2.7.1 The functions f : Z Ñ X , l : Z Ñ R` and Vf : Xf Ñ R`
are continuous and such that fp0, 0q “ lp0, 0q “ Vf p0q “ 0.
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The second assumption imposes some properties about the constraint sets.

Assumption 2.7.2 The set Z is closed, the set Xf Ď X is compact and each
set contains the origin. Furthermore, if U is bounded, then the set Upxq :“
tu P U : px, uq P Zu is compact for all x P X . If U is unbounded, the function
uÑ VN px,uq is coercive, hence VN px,uq Ñ 8 as |u| Ñ 8 for all x P X .

Proposition 2.7.1
Suppose that Assumptions 2.7.1 and 2.7.2 hold. Then,

1. The function VN p¨q is continuous in ZN , the set of px,uq for which
the constraints of the optimal control problem PN pxq are satisfied.
Those px,uq are called admissible.

2. For each x P XN , the control constraint set UN pxq is compact.
3. For each x P XN , a solution to PN pxq exists.

Therefore, under Assumptions 2.7.1 and 2.7.2, PN pxq admits a solution for
all x P XN . For this solution, the optimal control sequence is denoted by
uopxq “ puop0, xq, ..., uopN ´ 1, xqq “ arg min

uPUN pxq
VN px,uq. In the MPC ap-

proach, the control applied to the system is the first element uop0;xq of the
solution of the optimal control problem and is denoted κN pxq.

Another important question concerns the stability of the controlled system.
This stability will ensure that small perturbations of the initial state do not
cause large variations in the subsequent behavior of the system and that the
state trajectories converge to the desired state or set of states. Since MPC re-
quires to solve a finite horizon optimal problem, (Kalman (1960)) pointed out
that optimality does not ensure stability unlike the infinite horizon case. In or-
der to ensure the design of a stabilizing MPC scheme, the function Vf p¨q, lp¨q and
the set Xf need to be chosen in an appropriate way. The idea is to show that un-
der some assumptions, presented below, the value function V o

N is a valid choice
of Lyapunov function for the closed-loop system x` “ fpx, κN pxqq. Hence by
Theorem 2.4.2, one can conclude about the global asymptotic stability of the
origin of the closed-loop system. Details of the proof, available in (Rawlings
et al., 2020, Chapter 2), are not presented here. However, some elements are
used in the proof of Theorem 6.2.1 in the context of an age-dependent SIRD
model.

Assumption 2.7.3 Basic stability assumption
The functions Vf p¨q and lp¨q, and the set Xf have the following properties:

1. For all x P Xf , there exists a u (such that px, uq P Z) satisfying
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(a) fpx, uq P Xf
(b) Vf pfpx, uqq ´ Vf pxq ď ´lpx, uq

2. There exist K8 functions α1 p¨q and αf p¨q satisfying
(a) lpx, uq ě α1 p}x}q @x P XN , @u such that px, uq P Z
(b) Vf pxq ď αf p}x}q @x P Xf

Assumption 2.7.4 Weak controllability
There exists a K8 function α p¨q such that

V o
N pxq ď α p}x}q @x P XN .

This assumption is called weak controllability since it restricts the attention to
the states that can be steered to Xf in N steps and requires to do so with an
non excessive cost.

Theorem 2.7.1
Suppose that Assumptions 2.7.1 to 2.7.4 hold. Then

1. there exist K8 functions α1 p¨q and α2 p¨q such that for all x P XN
(a) α1 p}x}q ď V o

N pxq ď α2 p}x}q

(b) V o
N pfpx, κN pxqqq ´ V

o
N pxq ď ´α1 p}x}q

2. the origin is asymptotically stable in XN for x` “ fpx, κN pxqq.

Note that in this theorem, Assumptions 2.7.1 and 2.7.2 are needed. Hence
this theorem allows to conclude the existence of a solution for the optimiza-
tion problem (see Proposition 2.7.1), as well as the stability of the closed-loop
system. Therefore, the two questions can be answered all at once.



Chapter 3
Model calibration

The aim of this chapter is to calibrate the parameters of the age-dependent
SIRD model (1.7), recalled here:
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dSk ptq

dt
“ ´λkSkptq

na
ÿ

j“1
CkjIjptq

dIk ptq

dt
“ λkSkptq

na
ÿ

j“1
CkjIjptq ´ pγRk ` γDkq Ik ptq

dRk ptq

dt
“ γRkIk ptq

dDk

dt
ptq “ γDkIk ptq ,

k “ 1, ..., na, by using covid-19 data in Wallonia (Belgium). Only one method
of parameter identification is used since this chapter is a support to the other
ones of this thesis. Indeed, its goal is to provide parameters based on a real dis-
ease (instead of academic examples), useful in the simulations of the following
chapters in order to illustrate theoretical results. Hence, those parameters are
used first to simulate the covid-19 disease in Wallonia (under some assumptions
developed below). This is developed in the numerical simulations of Section
4.3. Secondly, the parameters are used to see the effects of feasible vaccination
laws on the eradication of the covid-19 in Wallonia. This is developed in the
numerical simulations of Chapters 5 and 6.
Notice that the parameter calibration is not an "observable" problem: different
sets of parameters can lead to similar results in terms of quality of the estima-
tion. Hence, this chapter is an attempt to derive a possible set of parameters
that could explain the covid-19 data in Wallonia. Then, this set of parameters
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is used to illustrate the theoretical arguments developed in the thesis.

3.1 Data
In order to calibrate the model parameters several available data from Wal-

lonia (Belgium) are used. Some of them are directly linked to the covid-19
pandemic whereas the others concern the population and its behavior.
Remark that, unfortunately, the available data are not the optimal data that
could ease the fitting. Indeed, data about the infected individuals are available
only after the beginning of the testing. Moreover, tests were not systematic for
the complete population and testing policies were not constant over the time
(e.g. for one period, all contacts of positive cases were tested, then, at some
points, to be tested an individual needed to be in contact with an infected indi-
vidual and to have symptoms, etc.). Hence, this made the consideration of the
cases data very hazardous for research purposes. Knowing the weaknesses of
cases data, only data from the hospital and data about the dead individuals in
the population are considered. Indeed, in the hospitals, the decision to test was
more constant since during a long period, everyone entering the hospital was
tested. However, since individuals coming to the hospital are maybe infected
since several days or even weeks, data concerning recovered from hospital in-
stead of infected from hospital are taken into account. Therefore, the total
number of recovered individuals in the population is estimated assuming that
a proportion of the recovered individuals are passing through the hospital and
this proportion, denoted αk, is supposed to be age-dependent. Indeed, it is
obvious that the proportion of young infected individuals going to the hospital
is different from the proportion of older people. Furthermore, data concerning
the dead individuals are assumed to be reliable and are used to calibrate the
model. However, as mentioned in (Sciensano et al. (2023)), one has to keep
in mind that Belgium has adopted a "broad inclusion strategy" for the surveil-
lance of deaths from covid-19, by also reporting deaths in cases confirmed by
radiology and possible cases based on clinical symptoms. So it is possible that
the number of dead individuals in Wallonia has been overestimated.

Thanks to the AVIQ ("Agence pour une Vie de Qualité"), data coming from
the RHM ("Résumé Hospitalier Minimum") has been available for this research.
The extracted data base contains for every day from mid March to December
2020, the number of patients in Wallonia, positive to covid, deceased at the
hospital and leaving the hospital alive, per age.

Thanks to Sciensano, the Belgian institute for health, some open data sets
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Figure 3.1 – Recovered from hospital, initial data from RHM

about covid-19 in Belgium are available in (Sciensano (2023)). The dataset
"Mortality by date, age, sex, and region of death" gathers data about individ-
uals who died from covid-19 from 7th March 2020 until now since it is updated
weekly. The different classes of age considered in those data are the following,

r0´ 25q , r25´ 45q , r45´ 65q , r65´ 75q , r75´ 85q and 85` .

This choice of classes of age seems relevant for this study since the covid-19 is
particularly virulent for old population, this is why the discretization by age
is more important for old ages than for young ages. Hence this distribution is
used in the sequel.

Figures 3.1 and 3.2 show the number of recovered individuals from the hos-
pitals and the number of deceased individuals in the population, respectively,
per class of age. Those data are not well distributed on a smooth curve con-
trary to what the model will produce. This is probably due to the fact that
the data are provided by healthcare actors: the way of collecting data during
the week and the week-end can cause differences. Hence, a moving average is
calibrated on the week around each data (3 days before and after). The new
curves which are smoother than the previous ones thanks to the moving aver-
age are illustrated on Figures 3.3 and 3.4.
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Figure 3.2 – Dead individuals, initial data from (Sciensano (2023))

Figure 3.3 – Recovered from hospital, RHM data with weekly moving average
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Figure 3.4 – Dead individuals, data from (Sciensano (2023)) with weekly mov-
ing average (MA)

In Section 3.2, the model parameters are calibrated using real data in-
troduced earlier. However, since the considered model is age-dependent, the
number of parameters increases with the considered number of classes of age.
In order to limit the number of parameters to be calibrated, the contact matrix
is chosen using the online tool Socrates (Social contact rates) from ( SIMID
group and Funk (2020)); (Willem et al. (2020)). The data are obtained thanks
to different surveys collecting the contact habits of the participants. For this
thesis, data collected for Belgium in 2010 are used under the assumption that
the social behavior of individuals has not change much the past ten years.
However, in the age-dependent SIRD model (1.7), the contact rate matrix per
capita, C, is needed. Therefore, the elements of the social contact matrix M
obtained in ( SIMID group and Funk (2020)) need to be divided by the total
number of individuals in the appropriate class of age. Hence, data about the
distribution of the Walloon population by class of age are needed. Those data
are available in the website of the Belgian office of statistics, (Statbel (2023))
and more precisely the file about the "Population, place of residence, nationality
(Belgian/non-Belgian), marital status, age and sex" in 2020 is considered.
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3.2 Parameter calibration
This section is dedicated to the calibration of the parameters of an age-

dependent SIRD model using covid-19 data introduced in the previous section.
The data available from the RHM and considered in this thesis are from

March 2020 to December 2020. This corresponds to a period where no vaccine
was available, which is coherent with the aim of this thesis of designing a vac-
cination law. Therefore this law needs to apply to a situation where no vaccine
has been applied before.

To start the simulation with the theoretical model it is mandatory to begin
with non-zero initial conditions that correspond to a given starting date for the
epidemic. Hence those quantities (initial conditions and starting date) need
to be chosen. Since both quantities are too correlated, it has been decided to
choose a given starting date and to calibrate the initial conditions. However,
the starting date has been chosen to be before the first deceased individual (so,
Dkp0q “ 0, k “ 1, ..., na) and early enough to have no recovered individuals at
time 0 (Rkp0q “ 0, k “ 1, ..., na). Since the first death attributed to covid-19 in
Belgium is on March 11th 2020 and since the first known apparition of covid-19
in Belgium occurs on the 1st February with people coming back from China
but those people went in quarantine for 14 days, then the chosen starting date
is February 10th 2020. This corresponds to the 41st day after the 1st January.
Hence, at this date it is assumed that there were no recovered individuals from
covid-19 in Belgium. Of course, another choice could have been made and
it would be interesting to study the impact of this choice on the parameters
calibration. Moreover, the initial number of infected individuals for each class
of age is a parameter and needs to be calibrated. Note that for this part, the
fact that the simulation considers real numbers is an advantage, since this can
model the fact that the chosen starting date is not the precise moment of a
new case, but between two moments.
Ideally, in order to calibrate the parameters in a more appropriate way, data
should be collected for several weeks with a population living normally. Of
course, this is not the case in practice. Indeed, in Belgium some restrictive
measures have been adopted for short periods of time and then reevaluated.
For instance, one can cite the fact that on 10th March 2020, the visits to re-
tirement home have been forbidden, or also on 16th March 2020 the schools
have been closed, and so on. Those measures impact the contact matrix used
in the theoretical model. However, in this thesis, this has not been taken into
account. A way to improve this is to use several contact matrices that capture
the effect of the measures taken by the government, instead of a fixed one.
However, as discussed below, this choice of constant matrix can be relevant in
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the context of this thesis. Indeed this thesis intends to study the control of the
epidemic via the vaccination only. Therefore, it seems meaningful to remove
the effect of other control measures, such as distancing, by ignoring variations
in the contact matrix.
Finally, a last choice concerns the number of days considered to perform the
calibration. This choice has been motivated by the shape of Figures 3.3 and
3.4. Indeed it is well known that the model considered in this thesis can only
capture one "peak" of the epidemic. Hence, since the initial time t0 has been
chosen to be the day 41, the calibration is performed on the first peak. More-
over, since the aim of the thesis is to design a control law, the calibration is
performed only on the increasing part of the epidemic, this is why the final
time considered for the calibration is the day 100 (9th April 2020). Indeed, the
fact that the epidemic reaches its maximum and then is almost eradicated in
a short period of time is due to the sanitary control measures imposed by the
governments. However, the interest in this thesis is to demonstrate the perfor-
mance of the vaccination in order to imply disease eradication in the absence of
other measures. Hence, calibrating only on the increasing part of the epidemic
will lead to simulations where the number of infected individuals will increase
after some time (recall that the contact matrix does not capture the sanitary
control measures). Hence, the application of the vaccination to eradicate the
epidemic reveals itself relevant.

3.2.1 Cost function
In order to be able to calibrate the parameters of Model (1.7), it is impor-

tant to use tools quantifying the quality of the estimation. The cost function
allows to quantify the error between predicted values, ŷi and real data, yi.
Hence it gives a measure of the quality of the estimation. The cost function
produces a real number to characterize the quality of the calibration. Indeed,
the parameters that minimize the cost function are the ones whose predicted
values fit the data best. So, before introducing the optimization method, it is
important to design this cost function appropriately.
The choice of the cost function is highly dependent on the considered problem
and the type of available data. As mentioned in (Towers (2014)), when dealing
with count data, particularly with small numbers of counts, the Poisson like-
lihood statistic is often used to assess the performance of a model to describe
the data. In the framework of epidemic models, the available data are count
data, so the use of Poisson likelihood statistic makes sense. In this approach, it
is assumed that the daily data follow a Poisson distribution. It follows that, for
a fixed day, the probability of observing y counts in the data when the model
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predicted ŷ counts is given by Ppy|ŷq “
ŷye´ŷ

y! . Hence, for a set of N data

points yi, i “ 1, ..., N the probability (or likelihood) that those observed data
correspond to model’s predictions, ŷi, for each point, is

L “
N
ź

i“1

ŷyii e
´ŷi

yi!
. (3.1)

Therefore, the optimal parameters are the ones which maximize this likelihood.
However, in practice it is computationally more convenient to use sums instead
of products. So, it is best to maximize the logarithm of (3.1). Moreover, most
optimization methods deal with minimization problems. Thus it is standard
to work with negative log likelihood, which for the Poisson distribution is

´ log L “
N
ÿ

i“1
logpyi!q ´ logpŷiqyi ` ŷi.

Since the term logpyi!q is constant with respect to the model, then it can be
ignored in the minimization. Therefore, the log-likelihood function to minimize
is given by

´ log L “
N
ÿ

i“1
´ logpŷiqyi ` ŷi. (3.2)

This quantity corresponds to the cost function that is used to estimate the
adequacy between the model prediction and the real data.

3.2.2 Optimization method
In order to minimize the cost function (3.2), an optimization algorithm

is needed. In this thesis a genetic algorithm is used in order to solve the
optimization problem. Those types of algorithms consist of heuristic search
and optimization techniques that mimic the Darwinian evolution process. Even
if those algorithms can be sensitive to the choice of the parameters of the
algorithm such as the size of the population or the rate of mutation for instance,
their main advantage is that they can explore vast spaces of solution and so
they are less likely to get stuck in local extrema than other methods. In the
simulations, the "ga" function from R is used. However, in the following a brief
explanation, based on (Obitko (1998)), of the method is given. As mentioned
earlier, the genetic algorithms are inspired by Darwin’s theory of evolution.
The algorithm starts with a random initial population consisting of possible
solutions (called chromosomes). Each chromosome is characterized by a set of
parameters called genes. In the context of parameters calibration, one possible
solution corresponds to a set of admissible parameters for the model. Then, the
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Figure 3.5 – Flowchart for the Genetic Algorithm

quality of those solutions is evaluated thanks to a given cost function. Then,
a new population is obtained by applying a sequence of operations to some
chosen solutions. Those operations are

1. Selection: Two chromosomes (parents) are selected from the population
to transmit their genes to the next generation according to their fitness
(value of the cost function). Indeed, the individuals with the highest
fitness score have more chance to be selected.

2. Cross-over: With some cross-over probability, the parents genes are crossed
to form a new offspring (child). If no crossover is performed, the offspring
is the exact copy of the parents.

3. Mutation: According to some mutation probability the offspring genes
are mutated in a new offspring.

4. Accepting: The new offspring is placed in the new population.
Then the process can be reiterated until some given condition is fulfilled. A
schematic representation of the algorithm is presented in Figure 3.5.



60 Chapter 3. Model calibration

3.3 Results
As mentioned previously, 6 classes of age are considered in this study.

Hence, 6 ˆ 5 “ 30 variables need to be calibrated. This corresponds to the
model parameters namely, the transmission probability, λk, the recovery rate,
γRk , and the death rate, γDk for each class of age. But it is also required, as
developed earlier, to estimate the number of infected individuals at the chosen
start of the simulation (day 41), I0k , for each class. Finally, since the recovered
data concern only the recovered individuals from the hospital, it also requires
to estimate the proportion of recovered individuals that needs hospitalization,
αk, in order to perform the data calibration.
Simulations were performed using the Hercules cluster from the "Plateforme

Technologique de Calcul Intensif" (PTCI) and the code was run 20 times, where
the genetic algorithm was set to use a population of 150 chromosomes and to
stop after 200000 iterations. Figure 3.6 gathers information about the distribu-
tion of the parameters obtained during the 20 runs of simulation. Notice that
αk is not presented since it is a parameter useful for the calibration but not
in simulations for prediction purpose. In this figure, one can observe that the

Figure 3.6 – Boxplot of estimated parameters
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parameters obtained for the different runs are relatively spread. This is not sur-
prising since, as mentioned earlier, the problem is not "observable". Therefore,
different sets of parameters give estimation with the same quality level. More-
over to achieve the best quality of the calibration it is important to consider
the combination of parameters and not to look at them separately. Hence it is
impossible to draw a conclusion by taking the median parameters for instance.
Therefore, in the following, it is chosen to pursue the analysis using the set
of parameters associated with the smallest log-likelihood value, given in Table
3.1. Those parameters suggest, without surprise, that the young individuals
recover best from the covid-19. A more surprising result is that the mortality
occurs principally for the individuals older than 65 years old but with a higher
rate in the class r65, 75q instead of the class 85`, as expected. Moreover, in
view of the parameter λk the older individuals are more susceptible to catch the
disease. Those results can be compared to the ones obtained in (Cartocci et al.
(2021)). In this article, parameter calibration has been performed on covid-19
data in Italy. Although this article deals with Italian data instead of Belgian
data, it has the advantage to use the same SIRD continuous-time model than
in this thesis. In this paper, the authors use time-varying parameters. Hence
the idea is to perform the comparaison on the parameters obtained at the be-
ginning of the epidemic. As in this thesis, the parameter λk (bk in (Cartocci
et al. (2021))) is higher for the oldest individuals. And the order of magnitude
is the same, around 0.3, for the older individuals and less than 0.02 for the
younger ones. In terms of recovery rate, the results are much more different.
Indeed, the recovery rate obtained in April 2020 (which is the final month of
calibration in this thesis) in Italy is lower than 0.03 in all classes of age whereas
the parameters obtained for Belgium are all above 0.28. This can be partly
explained by the fact that there was a saturation of the hospitals in Italy during
that period, which was not the case in Belgium. Notice that, even if the order
of magnitude is not the same, the idea that the younger individuals recover
best remains. Finally, in terms of mortality rate, in Italy, this is decreasing
with the age of individuals, which is not the case in the parameters obtained
for the Belgian case, since the individuals with age between 65 and 75 years
old have the higher mortality rate. In view of this, it could be interesting, for
a future work, to deepen this research or to take parameters from the litera-
ture. However, to the best of our knowledge, there is no work on calibration
of a simple age-dependent SIRD model for Belgian data. This is why, in the
following, those parameters are used in the numerical simulations.

Figures 3.7 and 3.8 represent the number of recovered individuals from the
hospital and the number of dead individuals, respectively. The blue lines are
obtained thanks to a simulation that uses the parameters of Table 3.1 (as well as
the proportion parameter, αk “ p0.07616054, 0.2533263, 0.2259822, 0.3252174,
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Class of age k λk γRk γDk I0k
r0, 25q 1 0.01041746 0.9874599 0 2.369302
r25, 45q 2 0.01641594 0.7657494 0.005532648 2.519808
r45, 65q 3 0.04816858 0.7972883 0.0221575 0.6859303
r65, 75q 4 0.05924954 0.6839887 0.1412507 0.8195691
r75, 85q 5 0.2210087 0.5968281 0.09957165 1.511804

85` 6 0.3217112 0.2811098 0.05519273 2.842605

Table 3.1 – Parameters with the best fitness function

0.07708276, 0.02689599q, which is used to deduce the number of recovered in-
dividuals from the hospital). Moreover, the red dots correspond to the real
data from RHM and sciensano, respectively. Notice that the time considered
in those Figures range from 41 to 100 since it is the initial and end time cho-
sen to calibrate the data. In Figure 3.7, one can observe that the simulation
obtained is relatively close from the real data, but the match is clearly not
perfect. It seems that the calibration performs well to get the initial and final
data but not the intermediate ones. The same conclusion holds for Figure 3.8.
Notice that the simulation seems far away from the real data for the deceased
individuals in the first class of age but this is due to the fact that the scale
for the y axis is not constant for all the graphs. One can try to improve those
results by using another optimization method or different assumptions than
the ones made before. However, as mentioned previously, since the goal of this
thesis is not the calibration of data in itself, the set of parameters of Table 3.1
will be considered acceptable for the rest of this thesis.

Thanks to those parameters, it is now possible to perform predictions con-
cerning the behavior of the covid-19 disease (if no sanitary measures are ap-
plied). This is done in Section 4.3. Then, vaccination laws can be designed
to obtain the eradication of covid-19 according to desired objectives. This is
developed in Section 5.4 and Section 6.3.
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Figure 3.7 – Recovered from hospital, obtained from simulation (blue lines)
and from RHM data (red dots)

Figure 3.8 – Dead individuals, obtained from simulation (blue lines) and from
Sciensano data (red dots)
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Chapter 4
Dynamical analysis

This chapter is dedicated to the dynamical analysis of the discretized age-
dependent epidemic model (1.7) where a vaccination law is added in open-loop.
Then, in view of this analysis, control laws will be designed in Chapter 5 and
6 in order to improve the performance of the system, i.e to enable quicker
eradication of the disease. Therefore, model (1.7) becomes
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dSk ptq

dt
“ ´λkSkptq

na
ÿ

j“1
CkjIjptq ´ pkθkptqSkptq

dIk ptq

dt
“ λkSkptq

na
ÿ

j“1
CkjIjptq ´ pγRk ` γDkq Ik ptq

dRk ptq

dt
“ γRkIk ptq ` pkθkptqSkptq

dDk

dt
ptq “ γDkIk ptq ,

(4.1)

k “ 1, ..., na, where θkptq represents the vaccination rate for the kth class of
age. The parameter pk P p0, 1s represents the probability of efficiency of the
vaccination for the kth class of age. Remark that vaccination works as a pre-
ventive treatment since it is applied on the susceptible individuals. Moreover,
it is assumed to give permanent immunity when the vaccination is a success. In
the case of covid-19, this is a strong assumption since in practice there is a loss
of vaccine immunity. A possible way to take this into account is, for instance,
to consider an SIRDS model that allows recovered individuals to become in-
fected again. The methodology presented in this thesis could be adapted to
this new model and some adaptations would be needed. Table 4.1 gathers
the interpretation and units of the variables and parameters involved in Model

65
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(4.1).

Variables Interpretation Range Unit
t Time R` day
amax Maximum age R` year
na number of class of age N
Sk ptq
Ik ptq
Rk ptq
Dk ptq

Number of susceptible, infected
recovered and dead individuals
at age in rak´1, akq

R` Human

θk ptq
Rate of vaccinated individuals
at age in rak´1, akq

R`
1

day
Parameters

Nk
Total number of individuals
at age in rak´1, akq

R` Human

λk
Probability of transmission of the disease
for ages in rak´1, akq

r0, 1s no unit

Ckj
Probability for an individual in the
kth class of age to encounter
an individual in the jth class of age

r0, 1s 1
Human.day

γRk Recovery rate at age in rak´1, akq R`
1

day
γDk Disease mortality rate at age in rak´1, akq R`

1
day

pk
Probability of successful vaccination for
individuals at age in rak´1, akq

p0, 1s no unit

Table 4.1 – Parameters and variables for the NODE

4.1 Well-posedness
When dealing with a model, one important question that can arise concern

its physical coherence. In the case of epidemic models with discrete age, the
states are (continuous) numbers of individuals. Therefore, those quantities can
not become smaller than zero. Moreover, they represent individuals, with a
given state of health, in a population. Hence, the states need to be upper
bounded by the number of individuals in each class of age, Nk. Thus, the
states should stay in the feasible set

X “
 

x “ pS1, ..., Sna , I1, ..., Ina , R1, ..., Rna , D1, ..., Dnaq
T P R4na :

0 ď Sk, Ik, Rk, Dk such that Sk ` Ik `Rk `Dk “ Nk for k “ 1, ..., nau .
(4.2)

Moreover, it is important to be confident that the set of equations admits a
solution and that this solution is unique to ensure that the predictions made by
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the model are reliable and that the results can be interpreted. Those important
properties of the model are developed in the following results.

Proposition 4.1.1
Assume that Model (4.1) admits a solution on R` and that θkptq ě 0 for
k “ 1, ..., na and for all t ě 0.
Then the compact set X , given by (4.2), is positively invariant with
respect to Model (4.1).

Proof. This proof is based on the concept of essential nonnegativity of the
vector field (see Definition 2.1.3). Define f “ rf1, ..., f4nas

T : R4na
` Ñ R4na

such that, for x “ pS1, ..., Sna , I1, ..., Ina , R1, ..., Rna , D1, ..., Dnaq
T ,

fkpxq “ ´λkSk

na
ÿ

j“1
CkjIj ´ pkθkSk

fna`kpxq “ λkSk

na
ÿ

j“1
CkjIj ´ pγRk ` γDkq Ik (4.3)

f2na`kpxq “ γRkIk ` pkθkSk

f3na`kpxq “ γDkIk

for k “ 1, ..., na. The function f is essentially nonnegative since fkpxq “ 0

when Sk “ 0, fna`kpxq “ λkSk

na
ÿ

j“1,j‰k
CkjIj ě 0 when Ik “ 0, f2na`kpxq “

γRkIk ` θkSk ě 0 when Rk “ 0 since θk is assumed to be nonnegative and
f3na`kpxq “ γDkIk ě 0 when Dk “ 0. Therefore, thanks to Proposition 2.1.1,
the set R4na

` is invariant.
Moreover the fact that the states variables are bounded by Nk is a direct con-
sequence of the fact that Nk “ Sk` Ik`Rk`Dk and the nonnegativity of the
states. ˝

Now, the existence of a unique global solution can be established thanks to
theorem 2.2.1.

Proposition 4.1.2
Let x “ pS1, ..., Sna , I1, ..., Ina , R1, ..., Rna , D1, ..., Dnaq

T , and x0 P X ,
given by (4.2). Assume that θk is bounded for k “ 1, ..., na, i.e there
exists θ̄k ą 0 such that |θkptq| ď θ̄k for all t ě 0 and k “ 1, ..., na.
Then, there exists a unique solution xptq to the system (4.1) for all t ě 0.
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Proof. Define the open set D “ r0, N ` 1r4na .
The function f : r0, N ` 1r4na Ñ R4na whose components are defined by (4.3)
is Lipschitz continuous on D. Indeed, let x, x̃ P D,

}fpxq ´ fpx̃q}l1 “
4na
ÿ

i“1
|fipxq ´ fipx̃q|

ď

4na
ÿ

i“1
Li}x´ x̃}l1

“: L}x´ x̃}l1 .

The second inequality follows from the definition of the functions fi, the choice
of D and the boundness of θk. The following development gives a proof of this
relation for k “ 1, ..., na. Similar calculations can be obtained for the other
values of k. Let k “ 1, ..., na,

|fkpxq ´ fkpx̃q| “

ˇ

ˇ

ˇ

ˇ

ˇ

λk

#

S̃k

na
ÿ

j“1
Ckj Ĩj ´ Sk

na
ÿ

j“1
CkjIj

+

` pkθk
`

S̃k ´ Sk
˘

ˇ

ˇ

ˇ

ˇ

ˇ

ď λk

#
ˇ

ˇ

ˇ

ˇ

ˇ

S̃k

˜

na
ÿ

j“1
Ckj Ĩj ´

na
ÿ

j“1
CkjIj

¸
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

na
ÿ

j“1
CkjIj

`

S̃k ´ Sk
˘

ˇ

ˇ

ˇ

ˇ

ˇ

+

` |θk|
ˇ

ˇS̃k ´ Sk
ˇ

ˇ

ď λk

#

ˇ

ˇS̃k
ˇ

ˇ

na
ÿ

j“1
Ckj

ˇ

ˇĨj ´ Ij
ˇ

ˇ`

ˇ

ˇ

ˇ

ˇ

ˇ

na
ÿ

j“1
CkjIj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇS̃k ´ Sk
ˇ

ˇ

+

` θ̄k
ˇ

ˇS̃k ´ Sk
ˇ

ˇ

ď Lk}x´ x̃}l1 ,

where Lk “ max
#

λk pN ` 1q
na
ÿ

j“1
Ckj , θ̄k

+

ą 0.

Moreover, the compact set X is positively invariant with respect to Model
(4.1) by Proposition 4.1.1. So the solution lies entirely in X . Theorem 2.2.1
completes the proof. ˝

4.2 Stability
In the previous section, the well-posedness of the system in terms of ex-

istence and uniqueness of a solution and in term of coherent physical inter-
pretation was established. Another important question to answer when one
wants to a design control law concerns the stability of the system. The study
of the system stability helps to predict its behavior over time. Moreover, it
gives a hint on how one can act on the system to, for instance, prevent some
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undesired behavior or to increase the performance of the system. The concept
of stability is an important area in mathematics. In this section, a proposition
concerning the semistability (see Definition 2.3.3) of the equilibria in open-loop
is developed. For interested readers, Section 2.3 provides a brief overview of
the concept of stability and gathers the key elements for the following proof.

Proposition 4.2.1
Let θkp¨q ě 0 for all k “ 1, ..., na. The set of disease-free equilibria of the
system (4.1),

X‹ “ tx P X : Ik “ 0, k “ 1, ..., nau

is semistable. Hence, any trajectory starting in X converges to a
given equilibrium point in this set, i.e. for all initial conditions x0 “

pS1p0q, ..., Snap0q, I1p0q, ..., Inap0q, R1p0q, ..., Rnap0q, D1p0q, ..., Dnap0qqT P
X , there exists a unique equilibrium x‹ P X‹ such that xptq Ñ x‹, as t
tends to infinity, where xptq is the solution of System (4.1) with initial
condition x0.

Proof. An equation admits equilibrium points if the derivative of the variables
with respect to time is zero. It is equivalent to cancel the right hand-side of
Model (4.1). Therefore, it follows from the last ODE of (4.1) that I‹k equals
0 for k “ 1, ..., na. Moreover, the first and third equations imply to solve the
relation θ‹kS‹k “ 0. Three cases can be considered, either S‹k ‰ 0 then θ‹k “ 0 or
S‹k “ 0 and θ‹k ‰ 0 or S‹k “ θ‹k “ 0. Furthermore, since there is no condition on
the other variables, it follows that there is an infinity of possible equilibrium
points pS‹k, R‹k, D‹kq corresponding to the disease-free case pI‹k “ 0q.
LaSalle’s theorem 2.3.3 leads to the conclusion about the stability for the
infected individuals. Indeed, consider x “ pS1, ..., Sna , I1, ..., Ina , R1, ..., Rna ,

D1, ..., Dnaq
T P X Ă R4na

` where X is a compact set which is positively invari-
ant with respect to Model (4.1), by Proposition 4.1.1. Define the Lyapunov

functional V pxq “
na
ÿ

k“1
Sk` Ik`Rk`

1
2Dk ě 0. The time derivative of V along

the trajectories of the System (4.1) is given by

9V pxq “
na
ÿ

k“1

δV

δSk

dSk
dt

`
δV

δIk

dIk
dt
`

δV

δRk

dRk
dt

`
δV

δDk

dDk

dt

“

na
ÿ

k“1
´γDkIk ptq `

1
2γDkIk ptq
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“

na
ÿ

k“1

´1
2 γDkIk ptq

ď 0

in X . Therefore, by LaSalle’s theorem 2.3.3, any solution starting in X con-
verges to the set X‹ as time goes to infinity. Moreover, since dSkptq

dt
ď 0

and Skptq ě 0 for all t ě 0, it follows that Skptq converges to an equilibrium
point S‹k. The same applies for Rkptq and Dkptq that are increasing and upper
bounded by Nk for all t ě 0. Therefore they converge to an equilibrium point
R‹k and D‹k. Finally, the semistability is obtained by combining LaSalle’s the-
orem and convergence of bounded monotone functions. ˝

Notice that when computing the equilibria, the case S‹k “ 0 and θ‹k ‰ 0 has no
physical sense because it means that we need to pursue the vaccination whereas
there is no more susceptible individual to vaccinate. Hence, in practice, null
input at the equilibrium is imposed.

4.3 Numerical simulations
In this section, numerical simulations are performed, using parameters ob-

tained in Chapter 3, recalled in Table 3.1. Notice that the time 0 in this
simulation correspond to the day 41, which is the chosen start of the epidemic.
Simulations are stopped when there remains less than one individuals in the
simulation. The code is performed using an explicit Runge-Kutta (4,5) formula,
thanks to the ODE45 function in Matlab.

The dynamics of the proportion of infected population in open-loop, without
vaccination, is illustrated in Figure 4.1. Without surprise, the disease eradi-
cation is observed, even if no vaccination is applied. This is due to the choice
of the model, which is stable in open-loop, as mentioned in Proposition 4.2.1.
Intuitively, this result is not surprising since there is a finite number of suscep-
tible individuals and those individuals can only leave their compartment. After
some time, the disease dies out since there is not enough susceptible individ-
uals to infect anymore. Moreover, one can notice that the disease eradication
occurs after 192 days. Therefore, one may aim to design a control law to reduce
this time. Furthermore, the maximal total proportion of infected individuals
is equal to 0.0432. This number can also be reduced thanks to the control law
in order to not exceed the hospital beds capacity.
In addition, Figure 4.1 shows that the system is well-posed since all the quanti-
ties are greater than 0 and smaller that one in each class of age. This means that
the number of individuals is smaller than the total number of individuals in each
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Figure 4.1 – Dynamics of the proportion of infected individuals without vacci-
nation

class of age, given according to (Statbel (2023)) by p1058304, 915796, 983789,
384803, 203035, 99516q. The same applies for the susceptible, recovered and
deceased individuals.
It can be surprising that, in Figure 4.1 the class of age with the most infected
individuals is the class 85`. Indeed, for the covid-19 in Belgium, it seems (one
needs to be careful about cases data) that there were more young individuals
that were infected than the older ones. However, looking at the parameters
obtained in Table 3.1 this result is not surprising since the transmission prob-
ability is much higher for the older classes of age.

Now that the dynamical analysis is performed, the considered system is
better understood. Therefore, it can be interesting to act on it to improve
some features of the system, such as the convergence time for instance. This is
discussed in the following chapters.
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Chapter 5
Observer-based output feedback

In this chapter a first control law is implemented. This vaccination law
consists in an observer-based output feedback. It is built in two steps. First,
a state feedback is developed in Section 5.2. Its feature is to linearize the
system in closed-loop. Then, some control parameters are adjusted to ensure
disease eradication exponentially fast. The characteristics of this feedback, in
term of well-posedness, are studied. However, since this control law requires
the knowledge of all the state, which is not available in practice, in a second
step an observer-based output feedback is designed in Section 5.3. Finally,
numerical simulations that corroborate the theoretical results are performed in
Section 5.4.

5.1 Aim of the control
The control developed in the following is designed to decrease the largest

number of infected individuals in the population,
na
ÿ

k“1
Ikptq. This is motivated

by the fact that there are limited numbers of beds in hospitals. So the maximum
number of infected individuals, all ages considered, at a given time should not
be too large. This condition will indirectly decrease the number of deceased
individuals. The next proposition emphasizes that vaccinating individuals helps
to decrease the peak of infected individuals in the population.
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Proposition 5.1.1
Consider two trajectories xptq and x̄ptq of Model (4.1) where only one class
of age is considered, with the same initial conditions, xp0q “ x̄p0q P X ,
defined in (4.2). The first trajectory xp¨q is obtained without vaccination
whereas the second one x̄p¨q is obtained with

θptq ě 0 @t ě 0.

Then, the maximum number of infected individuals, all ages considered
subject to the input θptq is smaller than the one without input, i.e

max
tě0

Īptq ď max
tě0

Iptq.

Proof. When only one class of age is considered, the dynamics of the infected
individuals are given by 9Iptq “ λ1C11SptqIptq ´ pγR ` γDqIptq “: αSptqIptq ´
γIptq and the dynamics for the susceptible are given by 9Sptq “ ´αSptqIptq ´

p1θptqSptq.
Moreover, max

tě0
Iptq “: Imax and max

tě0
Īptq “: Īmax are reached at times tm and

t̄m such that 9Iptmq “ 0 and 9̄Ipt̄mq “ 0 and 0 ă Iptmq, Īpt̄mq ď N1 since the C1

functions Iptq and Īptq tend to 0 as time tends to infinity, by Proposition 4.2.1.
This implies that Sptmq “ S̄pt̄mq :“ Ŝ “

γ

α
.

Now, considering dS
dI
“
´αSI ´ p1θS

αSI ´ γI
, defining θ̃pIq :“ θptpIqq, for t P r0, tms ,

and integrating, one gets
ż Ŝ

S0

αS ´ γ

S
dS “ ´

ż Īmax

I0

αI ` p1θ̃

I
dI

α
´

Ŝ ´ S0

¯

´ γ ln
˜

Ŝ

S0

¸

“ ´α
`

Īmax ´ I0
˘

´ p1

ż Īmax

I0

θ̃pIq

I
dI,

where xp0q “ x̄p0q is used. It follows that

Īmax “ ´
γ

α
` S0 `

γ

α
ln
ˆ

γ

αS0

˙

` I0 ´
p1

α

ż Īmax

I0

θ̃pIq

I
dI, (5.1)

In the case where no input is considered, (5.1) still holds with θ̃ replaced by 0.
Hence,

Imax “ Īmax `
p1

α

ż Īmax

I0

θ̃pIq

I
dI ě Īmax
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because Īmax ě I0, θ̃pIq ě 0 for all I and 0 ă I0 ă I ă Īmax. ˝

Remark that this proposition implies that in order to decrease the maximum
number of infected individuals in the whole population, it is better to vaccinate
than doing nothing. This proposition still holds thanks to similar arguments,
in the case of a state feedback law, θptq “ θpSptq, Iptqq, since S is decreasing.
Notice that attempts to demonstrate this proposition by comparing two vac-
cination laws have been made. However, the structure of the equations make
this analysis complicated. Hence, this is still an open question.

5.2 State feedback
In this part, the model is put into normal form to implement a control law

that implies that the infected individuals for each class of age are bounded by
a decreasing exponential function, improving the result of asymptotic stability
obtained in Proposition 4.2.1. However, this first law is not bounded. Hence, a
second law, reducing the total number of infected individuals thanks to Propo-
sition 5.1.1 is proposed. Then, conditions ensuring its physical feasibility are
obtained. Those conditions concern the nonnegativity of the feedback and the
fact that it is bounded.

5.2.1 Unconstrained linearizing state feedback design
In view of Model (4.1) and the control objectives, only the 2na first equa-

tions are needed in the feedback design. Indeed, for k “ 1, ..., na, the control
of Ikptq (and therefore Dkptq) implies to take the dynamics of Sk and Ik into
consideration. Therefore, the 2na first equations of Model (4.1) are a nonlinear
control affine system, written in state space form as

"

9x ptq = f px ptqq ` g px ptqq θ ptq

y ptq = h px ptqq
(5.2a)

where x ptq “ pI1 ptq , ..., Ina ptq , S1 ptq , ..., Sna ptqq
T
P R2na , for all t ě 0 is

the state space vector, h px ptqq “ pI1 ptq , ..., Ina ptqq
T
P Rna ,@t ě 0 is the

measurable output function chosen equal to the infectious population and
θ ptq “ pθ1 ptq , ..., θna ptqq

T
P Rna ,@t ě 0 is the input function. Moreover,

g px ptqq “

ˆ

0naˆna
´pkdiagpSkptqqk“1,...,na

˙

(5.2b)

and

f px ptqq :“ pf1 px ptqq , ..., f2na px ptqqq
T (5.2c)
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where

fk px ptqq “ λkSk ptq
na
ÿ

k“1
CkjIj ptq ´ pγRk ` γDkq Ik ptq

fna`k px ptqq “ ´λkSk ptq
na
ÿ

k“1
CkjIj ptq

for k “ 1, ..., na.
In this case, the relative degree of the system, whose definition is recalled in
Definition 2.5.1, equals the dimension of the state space for any x P D Ă R2na

where

D “

#

x P R2na s.t Sk ‰ 0 and
na
ÿ

j“1
CkjIj ‰ 0, k “ 1, ..., na

+

. (5.3)

Therefore, by Lemma 2.5.1 the "state space exact linearization problem", men-
tioned in Problem 2.5.1 is feasible. Hence, one can introduce a nonlinear in-
vertible (for x P D) coordinate change

z1k ptq “ hk px ptqq “ Ik ptq ,

z2k ptq “ Lfhk px ptqq “ fk px ptqq (5.4)

for k “ 1, ..., na. Notice that this change of variable is only invertible for x P D.
However, the aim of the control is to bring the number of infected to zero, which
does not belong to D. Hence, in Subsection 5.2.3, a constrained feedback law
is implemented to take this fact into account.
Thanks to this change of variable, the model dynamics in normal form, in the
neighborhood of any x P D is given by

$

’

&

’

%

dz1k ptq

dt
“ z2k ptq ,

dz2k ptq

dt
“ L2

fhk px ptqq ` LgkLfhk px ptqq θk ptq
(5.5)

for k “ 1, ..., na, where

L2
fhk px ptqq “ λkSk ptq

na
ÿ

j“1
Ckjfj px ptqq

´ pγRk `γDkq fk px ptqq ` fna`k px ptqq
na
ÿ

j“1
CkjIjptq.

Let A px ptqq “ diag

˜

´pkλkSk ptq
na
ÿ

j“1
CkjIj ptq

¸

, k “ 1, ..., na. One can notice

that this matrix is not invertible for all x P D. This will be taken care of in
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Subsection 5.2.3 by using a constrained feedback, defined for all x such that
Apxq is invertible.
Moreover, define the vector v px ptqq “

`

v1 px ptqq ¨ ¨ ¨ vna px ptqq
˘T such that

vk px ptqq “ ´α
k
2fk px ptqq´α

k
1Ik ptq , where αk1 and αk2 are some free parameters

that will be tuned in order to get stability.
Furthermore, b px ptqq “

`

b1 px ptqq ¨ ¨ ¨ bna px ptqq
˘T
,

where bk px ptqq “ L2
fhk px ptqq. This allows to design a stabilising and linearis-

ing state feedback.

Lemma 5.2.1
The state feedback control law defined by

θ ptq “ A´1 px ptqq pv px ptqq ´ b px ptqqq , (5.6)

for all xptq P D, where A, b and v are defined above, applied on system
(5.2), induces the linear closed-loop output dynamics given by

:y ptq ` Ã2 9y ptq ` Ã1y ptq “ 0. (5.7)

where Ãi “ diagpαki q for i “ 1, 2 and k “ 1, ..., na.

Proof. The control law (5.6) is obtained, inspired by Proposition 2.5.1. It can
be rewritten as

θ ptq “ A´1 px ptqq pv px ptqq ´ b px ptqqq

“

¨

˚

˝

v1pxptqq ´ b1 px ptqq

p1λ1S1ptq
na
ÿ

j“1
CkjIjptq

¨ ¨ ¨
vnapxptqq ´ bna px ptqq

pnaλnaSnaptq
na
ÿ

j“1
CkjIjptq

˛

‹

‚

T

.

“

ˆ

v1pxptqq ´ L
2
fh1 px ptqq

Lg1Lfh1 px ptqq
¨ ¨ ¨

vnapxptqq ´ L
2
fhna px ptqq

LgnaLfhna px ptqq

˙T

.

The closed-loop equations of Model (5.5) are linear and given by, for k “
1, ..., na,

$

’

&

’

%

dz1k ptq

dt
“ z2k ptq

dz2k ptq

dt
“ ´αk2z2k ptq ´ α

k
1z1k ptq

which can be written as

9z ptq “

ˆ

0naˆna Idna
´Ã1 ´Ã2

˙

z ptq ,
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:“ Āz ptq

where z ptq “
`

z11 ptq ¨ ¨ ¨ z1n ptq z21 ptq ¨ ¨ ¨ z2na ptq
˘T . The solution of this ODE

yields the following expression of the output y ptq “ Cz ptq “
`

z11 ptq ¨ ¨ ¨ z1na ptq
˘T .

9y ptq “ pz21 ptq ¨ ¨ ¨ z2n ptqq
T and

:y ptq “ Ã1y ptq ` Ã2 9y ptq .

˝

Moreover, the infected individuals converge exponentially to zero for the closed-
loop system under some appropriate conditions.

Theorem 5.2.1
Pick an initial condition x0 P D, where D is given by (5.3). Assume that
the control tuning parameters satisfy αkj ą 0 for j “ 1, 2 and k “ 1, ..., na.
Then, as long as the closed-loop states with the state feedback (5.6)
remain in D, the infected populations Ikptq, for k “ 1, ..., na, of Model
(4.1), are bounded by a decreasing exponential function, i.e there exists
µ ą 0 and C ą 0 such that xptq P D and

Ikptq ď C}Ikp0q}e´µt,@t ě 0 and k “ 1, ..., na.

Moreover the susceptible, recovered and deceased populations converge
asymptotically to some constants S‹k, R‹k and D‹k respectively, for k “
1, ..., na.

Proof. Since the closed-loop dynamics (5.7) is a system of decoupled ODEs it
can be written as

"

9znew ptq “ Âznew ptq ,

y ptq “ Cznew ptq
(5.8)

with znew “
`

z11 z21 ¨ ¨ ¨ z1na z2na
˘T , Â “ blockdiagpĀkq, where Āk “

ˆ

0 1
´αk1 ´αk2

˙

and C “
`

1 0 1 ¨ ¨ ¨ 1 0
˘

.

Therefore, Â is stable if all its eigenvalues are in the open left half-plane.
However, the eigenvalues of Â are those of the Āk’s matrices. Moreover, those
eigenvalues are the roots of the characteristic polynomial P psq “ detpĀk´sIq “

s2 ` sαi2 ` αi1. By the corollary of Lienard-Chipart, Theorem 2.5.2, since αk1
and αk2 are positive, the real parts of the eigenvalues of Â, are negative. Then
the control law (5.6) exponentially stabilizes the model in normal form (5.5).
Therefore, znew ptq exponentially converges asymptotically to zero. It follows
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that z1k ptq “ Ik ptq converges to zero as time goes to infinity for k “ 1, ..., na.
Moreover, by the convergence of bounded monotone functions, it follows that,
for k “ 1, ..., na, Skptq Ñ S‹k, Rkptq Ñ R‹k and Dkptq Ñ D‹k as times goes to
infinity. ˝

Remark that the trajectory leaves D if there exists k such that Sk “ 0 or
Ik “ 0 @k “ 1, ..., na, which asymptotically happens. In those cases, the state
feedback is not well defined. Therefore, an adapted feedback law, based on
(5.6), will be introduced in Subsection 5.2.3.

5.2.2 Nonnegativity of the feedback
Obviously a vaccination law should be described by a nonnegative function.

This in turn will ensure both a physical meaning and the nonnegativity of the
state, as stated in Proposition 4.1.1. The following theorem provides sufficient
conditions for the nonnegativity of the control law.

Theorem 5.2.2
Define

Γ “ max
k“1,...,na

pγRk ` γDkq

For all k “ 1, ..., na, select αk1 and αk2 such that

αk1 ą pγRk ` γDkq

˜

Γ`
na
ÿ

j“1
Mkj

¸

(5.9)

and

αk2 “ γRk ` γDk ` Γ`
na
ÿ

j“1
Mkj . (5.10)

Then the state trajectories of Model (4.1) starting in X remain in X , the
input generated by the control law (5.6) is nonnegative and the conclu-
sions of Theorem 5.2.1 hold.

Proof. First, one can notice that Skptq, Ikptq and Dkptq are nonnegative for all
t ě 0 and k “ 1, ..., na. This follows a same reasoning as in the proof of Propo-
sition 4.1.1 (since the essential nonnegativity of the functions fk is independent
of the choice of θk for those variables).
The nonnegativity of Rkptq, which is needed to conclude about the nonneg-
ativity of θkptq, for all t ě 0 and k “ 1, ..., na is not straightforward and
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additional details are needed. First, since x0 is in X , it follows that 0 ď
Skp0q, Ikp0q, Rkp0q, Dkp0q ď Nk. Moreover, using (4.1),

9Rk p0q “ γRkIkp0q ` pkθkp0qSkp0q
ě pkθkp0qSkp0q

“
1

λk

na
ÿ

j“1
CkjIjp0q

“

αk1Ikp0q ` fkpxp0qq
`

αk2 ´ pγRk ` γDkq
˘

` λkSkp0q
na
ÿ

j“1
Ckj

#

λjSjp0q
na
ÿ

l“1
CjlIlp0q

´
`

γRj ` γDj
˘

Ijp0q
+

´ λkSkp0q
˜

na
ÿ

j“1
CkjIjp0q

¸2
fi

fl

by the vaccination law in (5.6) and the nonnegativity of Ik. Furthemore, by
using the inequalities Ijp0q ď Nj , γRk ` γDk ď Γ and the nonnegativity of the
states at time 0,

9Rk p0q ě
1

λk

na
ÿ

j“1
CkjIjp0q

«

αk1Ikp0q ` fkpxp0qq
`

´pγRk ` γDkq ` α
k
2
˘

´λkSkp0qΓ
na
ÿ

j“1
CkjIjp0q ´ λkSkp0q

˜

na
ÿ

j“1
CkjIjp0q

¸˜

na
ÿ

j“1
Mkj

¸ff

ě
1

λk

na
ÿ

j“1
CkjIjp0q

ˆ

«

Ikp0q
#

αk1 ´ pγRk ` γDkq

˜

Γ`
na
ÿ

j“1
Mkj

¸+

`fkpxp0qq
#

αk2 ´ γRk ´ γDk ´ Γ´
na
ÿ

j“1
Mkj

+ff

,

where the fact that

λkSkptq
na
ÿ

j“1
CkjIjptq “ fkpxptqq ` pγRk ` γDkqIkptq (5.11)

was used as long as the relation Ckj “
Mkj

Nj
. Hence, using conditions (5.9)

and (5.10), 9Rkp0q ą 0. Using continuity of 9Rk, there exists a time t1 ą 0 such
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that 9Rkptq ą 0 for all t P r0, t1q . Moreover, since Rk is strictly increasing on
r0, t1q and Rkp0q “ 0, there exists t2 ą t1 such that Rkptq ą 0 @ t P r0, t2q.
The aim of this part is to prove that Rkptq ą 0 for all t ě 0 because this
assumption will lead to the nonnegativity of the state feedback. Thus, by an
absurd reasoning, assume there exists a time t3 ą t1 such that Rkpt3q “ 0 for
the first time and Rkptq ď 0 for t P pt3, t4s . This is only possible if 9Rkptq ď 0
for all t in I Ď rt1, t3s . However, let t P rt1, t3s ,

9Rkptq ď 0 ô ´

´

9Sk ` 9Ik ` 9Dk

¯

ptq ď 0

ô ´pkθkptqSkptq ´ γRkIkptq ě 0, (5.12)

by equations (4.1). Moreover, for t P r0, t3s,

pkθk ptqSkptq “
1

λk

na
ÿ

j“1
CkjIj ptq

“

αk1Ik ptq ` fk px ptqq
`

αk2 ´ pγRk ` γDkq
˘

`λkSk ptq
na
ÿ

j“1
Ckj

#

λjSj ptq
na
ÿ

l“1
CklIl ptq

´
`

γRj ` γDj
˘

Ij ptq

+

´ λkSkptq

˜

na
ÿ

j“1
CkjIj ptq

¸2
fi

fl

ě
1

λk

na
ÿ

j“1
CkjIj ptq

“

αk1Ik ptq ` fk px ptqq
`

αk2 ´ pγRk ` γDkq
˘

´ λkSk ptq
na
ÿ

j“1
Ckj

`

γRj ` γDj
˘

Ij ptq

´λkSk ptq

˜

na
ÿ

j“1
CkjIj ptq

¸2
fi

fl

By using Ikptq ď Nk, since Skptq ` Ikptq ` Rkptq ` Dkptq “ Nk and all the
quantities are nonnegative for t P r0, t3s, by definition of t3 and using γRk `
γDk ď Γ for k “ 1, ..., na, it follows that

pkθkptqSkptq ě
1

λk

na
ÿ

j“1
CkjIj ptq

“

αk1Ik ptq ` fkpx ptqq
`

αk2 ´ pγRk ` γDkq
˘

´ λkSk ptqΓ
na
ÿ

j“1
CkjIjptq



82 Chapter 5. Observer-based output feedback

´λkSk ptq

˜

na
ÿ

j“1
CkjIjptq

¸˜

na
ÿ

j“1
Mkj

¸ff

ě
1

λk

na
ÿ

j“1
CkjIj ptq

ˆ

«

Ik ptq

#

αk1 ´ pγRk ` γDkq

˜

Γ`
na
ÿ

j“1
Mkj

¸+

`fkpx ptqq

#

αk2 ´ γRk ´ γDk ´ Γ´
na
ÿ

j“1
Mkj

+ff

,

by using equality (5.11). Then, pkθkptqSkptq ą 0 @t P r0, t3s, thanks to the
choice of conditions (5.9) and (5.10). Hence, ´pkθkptqSkptq ´ γRkIkptq ă 0
and a contradiction occurs with (5.12). Therefore, Rkptq ą 0 for all t ě 0.
Then, the previous reasoning for θk can be performed for all t ě 0, where the
assumption Ikptq ď Nk holds for all t ě 0 since it has just be proven that the
states are nonnegative, and it is known that their sum equals Nk, yielding the
nonnegativity of the vaccination law thanks to the choice of conditions (5.9)
and (5.10).
Moreover, since the feedback design parameters are positive, Theorem 5.2.1
concludes the proof. ˝

5.2.3 Constrained state feedback design
Previously, a stabilizing state feedback law has been defined by

θ ptq “

ˆ

v1 ´ L
2
fh1 px ptqq

Lg1Lfh1 px ptqq
¨ ¨ ¨

vna ´ L
2
fhna px ptqq

LgnaLfhna px ptqq

˙T

,

where LgkLfhk px ptqq “ ´pkλkSk ptq
na
ÿ

j“1
CkjIj ptq , by definition of the Lie

derivative and of the functions gk, f and hk. As predicted in Theorem 5.2.1,
na
ÿ

j“1
CkjIj ptq tends to 0 and the feedback blows up. To avoid this and to take

into account an amplitude constraint on the vaccination, denoted by θsup, a
new control law is defined, inspired by the previous one but with saturation
and insurance that x is in D when the law (5.6) is used. This law will solve
the second problem that consists, as mentioned before, of designing an ampli-
tude limited control that improves performance with respect to the open-loop
system regarding the peak of total infected individuals (thanks to Proposition
5.1.1), while maintaining asymptotic convergence.
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Nk

˜̃Ik

Ĩk

Nk˜̃SkS̃k

Sk

Ik

A

θsatk “ 0

B θsatk “ qkpxkqθ̄kpxqB3

B2

B1

Figure 5.1 – Representation of the construction of the constrained feedback
law, θsatkpxq

Let us define a new state feedback law by

θsatk : r0, Nksna`1
Ñ R

where, with x “ pSk, I1, ..., Inaq,

θsatkpxq “

$

&

%

pqkθ̄kqpxq if Sk ě S̃k and Ik ě Ĩk (B region)

0 otherwise (A region)
(5.13)

where pqkθ̄kqpxq denotes qkpxqθ̄kpxq and the regions refer to the visual repre-
sentation, available in Figure 5.1.

The functions θ̄k and qk are defined on
“

S̃k, Nk
‰

ˆ r0, Nks ˆ ¨ ¨ ¨ ˆ r0, Nks ˆ
“

Ĩk, Nk
‰

ˆr0, Nksˆ ¨ ¨ ¨ˆ r0, Nks and allow the new state feedback law (5.13) to
have desired properties, such as bounded and Lipschitz properties. They are
given by

θ̄kpxq “

$

&

%

θkpxq if θkpxq ď θsup

θsup otherwise.
(5.14)
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Figure 5.2 – Representation of the vaccination law θsatkptq

and

qkpxq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1 if Sk ě ˜̃Sk and Ik ě ˜̃Ik(B1 region)

4
π

arctan
˜

Ik ´ Ĩk
˜̃Ik ´ Ĩk

¸

if Ik ď
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

Sk ´ S̃k
˘

` Ĩk

and Ik ă ˜̃Ik (B2 region)

4
π

arctan
˜

Sk ´ S̃k
˜̃Sk ´ S̃k

¸

otherwise (B3 region),

(5.15)
where the constants ˜̃Sk and ˜̃Ik are chosen larger than S̃k and Ĩk, respectively.
Moreover, S̃k and Ĩk have to be selected appropriately as shown in the following.
The intuition for the choice of the function qpxq can be understood thanks to
Figure 5.1, where the idea is to obtain the value 1 at the common boundary
of regions B2 and B3 with B1 and to obtain 0 at the common boundary of
those two regions with A. The computational details in Appendix A help to
understand the relevance of this choice.
This new vaccination law is represented in Figure 5.2 for S̃ “ 3, ˜̃S “ 5, Ĩ “
2, ˜̃I “ 6. With this definition, θsatk is globally bounded and Lipschitz as
function of Ik and Sk. Those properties will be useful in the design of the
observer-based output feedback, developed in Section 5.3. Some performance
properties of this law are shown in the sequel.

The first result states the asymptotic stability of the trajectories for the
closed-loop model under saturated feedback.
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Proposition 5.2.1
Assume that the control tuning parameters satisfy assumptions of Theo-
rem 5.2.2. Then, the saturated state feedback (5.13) implies the semista-
bility of the disease-free equilibria of Model (4.1). Moreover the suscepti-
ble, recovered and deceased populations converge asymptotically to some
constants S‹k, R‹k and D‹k, respectively, for k “ 1, ..., na.

Proof. This proposition is a direct consequence of Proposition 4.2.1 since the
saturated state feedback (5.13) is, by construction, nonnegative. ˝

The following lemma introduces an invariant set helpful to prove that the con-
strained feedback law (5.13) has a finite number of jumps.

Lemma 5.2.2

Let Ĩk ą 0 and S̃k ď
pγRk ` γDkq Ĩk

λk

na
ÿ

j“1
Mkj

. Then, the set
“

0, S̃k
‰

ˆ
“

0, Ĩk
‰

is

invariant with respect to Model (4.1), for any nonnegative input.

Proof. First, observe that the nonnegativity follows from Proposition 4.1.1
since θsatk is nonnegative. Moreover, let pSkptq, Ikptqq P

“

0, S̃k
‰

ˆ
“

0, Ĩk
‰

, for
some t ě 0 arbitrarily fixed.
For, Sk, two cases can happen. Either there exists t1 such that Skpt1q “ 0, in
that case, 9Skpt1q “ 0. It follows that Skptq “ 0 for all t ě t1 and remains in
“

0, S̃k
‰

. Either Skptq ‰ 0 for all t ě 0. It follows that dSkptq
dt

ă 0 since the
input is nonnegative. Therefore, at the border, when Skptq “ S̃k, the solution
remains in the set

“

0, S̃k
‰

ˆ
“

0, Ĩk
‰

. Furthemore, focus on what happens at the
other border, when Ikptq “ Ĩk and Skptq ď S̃kptq. Then,

Skptq ď S̃k ď
pγRk ` γDkq Ĩk

λk

na
ÿ

j“1
Mkj

ď
pγRk ` γDkq Ĩk

λk

na
ÿ

j“1
CkjIj

ñλkSkptq
na
ÿ

j“1
CkjIj ´ pγRk ` γDkq Ĩk ď 0

ô
dIkptq

dt
ď 0.

Therefore, it holds that the set
“

0, S̃k
‰

ˆ
“

0, Ĩk
‰

is invariant. ˝
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Nk

˜̃Ik

Ĩk

Nk˜̃SkS̃k

Sk

Ik

θsatk “ 0

θsatk “ qkpxkqθ̄k

θsatk “ θ̄k
x0

Figure 5.3 – Illustration of the finite number of jumps for the saturated vacci-
nation law, θsatkptq

The next property ensures that the solution will end up in a situation where
the vaccination law (5.13) can not switch anymore, in finite time.

Property 5.2.1
Let Ĩk and S̃k be chosen as in Lemma 5.2.2 and let x0 P X . Then, there
exists nx0 P N such that Ikptnx0

q “ Ĩk. Therefore, there is a finite number
of jumps m ď nx0 for the function θsatk defined in (5.13).

Proof. Let k “ 1, ..., na, and consider three cases. First, assume that there
exists T ą 0 such that SkpT q “ 0. In that case, Skptq “ 0 for all t ě T since
9SkpT q “ 0, implying that Skptq “ 0 ă S̃k for all t ě T . Then, no more jump is
possible thanks to the definition (5.13) of θsatk .

Second, assume that there exists T ą 0 such that λk
na
ÿ

j“1
CkjIjpT q`pkθsatkpT q “

0. Thanks to the nonnegativity of the elements in the equation, this case is
only possible if IkpT q “ 0 for all k “ 1, ..., na and if θsatkpT q “ 0. Therefore,
9IkpT q “ 0 implying that Ikptq “ 0 ă Ĩk for all t ě T . Then, no more jump is
possible thanks to the definition (5.13) of θsatk .

Finally, in the case where Skptq ‰ 0 and λk

na
ÿ

j“1
CkjIjptq ` pkθsatkptq ‰ 0,

k “ 1, ..., na, t ě 0 then Skptq is strictly decreasing, since the feedback θsatkptq
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is nonnegative. Moreover, Sk has zero as a lower bound therefore it converges
to some equilibrium S‹k. Since Ikptq tends to zero, thanks to Proposition 5.2.1,
so the couple pSkptq, Ikptqq tends to pS‹k, 0q when t goes to infinity. By contra-
diction, assume that there exists an infinite number of switches. In this case,
there always exist time instants t such that Ikptq ě Ĩk, for the switches to
occur. This contradicts the fact that the infected individuals tend to zero. Re-
mark that, in the case where the equilibrium is such that S‹k ă S̃k, illustrated
in Figure 5.3, the strictly decreasing property of Sk can be invoked to show
that there exists a finite time instant T where SkpT q “ S̃k. Afterwards, the
control law will remain switch off and the trajectory will enter the invariant
region

“

0, S̃k
‰

ˆ
“

0, Ĩk
‰

since the infected individuals tend to 0. ˝

Finally, it can be shown that the constrained feedback law, as defined in
(5.13), is Lipschitz. This property is a crucial assumption for the design of an
observer-based output feedback, presented in the next section.

Property 5.2.2
The function θsatk is Lipschitz on its domain.

Proof. This proof is quite computational. Therefore, only some key elements
are presented here. Some additional information is available in Appendix A.
Moreover, the reader can refer to Figure 5.1 to better understand the regions
considered in each case.
Let zk “ pxk, y1, ¨ ¨ ¨ , yk, ¨ ¨ ¨ , ynaq

T and z1k “ px1k, y11, ¨ ¨ ¨ , y1k, ¨ ¨ ¨ , y1naq
T P r0, Nksna`1

.

Three main cases can be identified.
1. Assume that zk and z1k are such that xk, x1k ă S̃k or yk, y1k ă Ĩk (zk and
z1k P A). Hence, |θsatkpzkq´ θsatkpz1kq| “ 0 ď L0}zk´ z

1
k}l1 for all L0 ą 0.

2. Assume that zk and z1k are such that pxk, ykq and px1k, y1kq P
“

S̃k, Nk
‰

ˆ
“

Ĩk, Nk
‰

(zk and z1k P B). Therefore,

|θsatkpzkq ´ θsatkpz
1
kq| “ |pqkθ̄kqpzkq ´ pqkθ̄kqpz

1
kq|

ď L}zk ´ z
1
k}l1 ,

with L ą 0, the Lipschitz constant of qkθ̄k (see details in Appendix A).
3. Assume that zk and z1k are such that pxk, ykq P

“

S̃k, Nk
‰

ˆ
“

Ĩk, Nk
‰

and
x1k ă S̃k or y1k ă Ĩk (zk P B and z1k P A). Then,

|θsatkpzkq ´ θsatkpz
1
kq| “ |pqkθ̄kqpzkq|

“ pqkθ̄kqpzkq.
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Three subcases can again be identified.
(a) zk such that pxk, ykq P

“

S̃k, Nk
‰

ˆ
“

Ĩk, Nk
‰

with xk ě ˜̃Sk and yk ě ˜̃Ik
(zk P B1). Hence,

|θsatkpzkq ´ θsatkpz
1
kq| “ θ̄kpzkq

ď θsup

ď L1}zk ´ z
1
k}l1

where L1 “
θsup

dpA,B1q
with

dpA,B1q “ inf
aPA,bPB1

}a´ b}l1 ,

since by definition, dpA,B1q ď }zk ´ z
1
k}l1 .

(b) zk such that pxk, ykq P
“

S̃k, Nk
‰

ˆ
“

Ĩk, Nk
‰

with yk ď
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

xk ´ S̃k
˘

`

Ĩk and yk ă ˜̃Ik (zk P B2). Therefore,

|θsatkpzkq ´ θsatkpz
1
kq| “ qkpzkqθ̄kpzkq

ď
4
π

arctan
˜

yk ´ Ĩk
˜̃Ik ´ Ĩk

¸

θsup

ď
4θsup

πp ˜̃Ik ´ Ĩkq
pyk ´ Ĩkq

“: L2pyk ´ Ĩkq

since arctan is a Lipschitz function with constant 1. Now, if y1k ď Ĩk,
then

|θsatkpzkq ´ θsatkpz
1
kq| ď L2

“

pyk´y
1
kq ` py

1
k ´ Ĩkq

‰

ď L2pyk ´ y
1
kq

ď L2}zk ´ z
1
k}l1 .

On the other hand, if y1k ą Ĩk, that means that x1k ď S̃k and we
have that

|θsatkpzkq ´ θsatkpz
1
kq| ď L2

˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

pxk ´ S̃kq

“: L3
“

pxk´x
1
kq ` px

1
k ´ S̃kq

‰

ď L3pxk ´ x
1
kq

ď L3}zk ´ z
1
k}l1 .
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(c) zk such that pxk, ykq P
“

S̃k, Nk
‰

ˆ
“

Ĩk, Nk
‰

with yk ą
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

xk ´ S̃k
˘

`

Ĩk and xk ă ˜̃Sk (zk P B3). By using similar reasoning as (b), it fol-
lows that

|θsatkpzkq ´ θsatkpz
1
kq| ď L4}zk ´ z

1
k}l1 .

Therefore, there exists K “ max tL0, L, L1, L2, L3, L4u ą 0 such that, for all
zk and z1k P r0, Nks

na`1
,

|θsatkpzkq ´ θsatkpz
1
kq| ď K}zk ´ z

1
k}l1 .

˝

5.3 Observer-based output feedback
The feedback law introduced in the previous section is a state feedback law.

This means that the knowledge of the full state at each time is assumed in order
to compute the feedback. However, it is not often the case in practice. Usually,
only a part of the state is known, corresponding to some measurements. In
the case of epidemic, one usually measures the number of dead individuals in
each class of age. Therefore, the goal of this section is to design and analyze
an observer-based output feedback law which is based only on such measure-
ments. The technique used in this work is based on the separation principle
introduced in (Atassi and Khalil (1999)) and recalled in Theorem 2.6.1 for
multi-input multi-output systems.
Moreover since in the case of epidemic, data on the dead individuals can
be collected, Model (4.1) is used where only the equations of Sk, Ik and Dk

are kept due to the constant population assumption, with outputs given by
ykptq “ Dkptq, k “ 1, ..., na.
In order to fit the framework of Theorem 2.6.1, a change of variable is per-
formed:

z1k ptq “ D‹k ´Dk ptq ,

z2k ptq “ ´ 9Dk ptq “ ´γDkIk ptq

z3k ptq “ ´γDk
9Ik ptq (5.16)

“ ´γDk

#

λkSk ptq
na
ÿ

j“1
CkjIjptq ´ pγRk ` γDkq Ik ptq

+

for k “ 1, ..., na, where D‹k is assumed to be known and stands for the equilib-
rium for the dead individuals, obtained for the closed-loop system under exact
state feedback (5.13). Remark that this change of variable corresponds to the
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change of variable (5.4) introduced previously, for z2k and z3k, k “ 1, ..., na,
up to multiplication by the factor ´γDk . Therefore, it is also invertible if
na
ÿ

j“1
CkjIj ‰ 0. Indeed, the nominal coordinates can be obtained by

Dk ptq “ D‹k ´ z1k ptq ,

Ik ptq “
´z2k ptq

γDk
(5.17)

Sk ptq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

S‹k if z2j “ 0 @j

z3k ptq

γDk
` pγRk ` γDkq

z2k ptq

γDk

λk

na
ÿ

j“1
C̃kjz2jptq

otherwise

where C̃kj “
Ckj
γDj

“
Mkj

γDjNj
and S‹k is the equilibrium for the susceptible

individuals in the kth class of age. Remark that this value does not need to
be computed since it is known that the state feedback is 0 in this case. In
simulation, one does not need to compute the output feedback in this case, it
can just be set to 0.
One can notice that z2j “ 0 for all j “ 1, ..., na is equivalent to the fact that
Ij “ 0 for all j “ 1, ..., na. Therefore, it implies that z3j “ 0 for all j “ 1, ..., na
in view of the change of variable (5.16).

Therefore, in the new variables, Model (4.1) becomes
$

’

’

’

’

&

’

’

’

’

%

9z1k ptq “ z2k ptq

9z2k ptq “ z3k ptq

9z3k ptq “

#

0 if z2j , z3j “ 0 @j

hkpzptqq otherwise

(5.18a)

where

hkpzptqq “ pz3kptq ` pγRk ` γDkq z2kptqq

ˆ

»

—

—

—

—

–

λk

na
ÿ

j“1
C̃kjz2jptq ´ pkθsatkptq `

na
ÿ

j“1
C̃kjz3jptq

na
ÿ

j“1
C̃kjz2jptq

´ pγRk ` γDkq

fi

ffi

ffi

ffi

ffi

fl

` pγRk ` γDkq
2
z2kptq

(5.18b)
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Letting z “
`

z11 z21 z31 z12 z22 z32 ... z3na
˘T and A,B and C as in

Theorem 2.6.1, i.e. A “ blockdiagrÃ, ..., Ãs3naˆ3na , B “ blockdiagrB̃, ..., B̃s3naˆna
and C “ blockdiagrC̃, ..., C̃snaˆ3na , where

Ã “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚, B̃ “
`

0 0 1
˘T
, C̃ “

`

1 0 0
˘

,

(5.18) is rewritten under the form (2.20), i.e.
"

9z ptq “ Az ptq `Bφ pz ptq , u ptqq

y ptq “ Cz ptq

with zp0q “ z0, where z P Z Ď R3na , u “ θsatpzptqq “
`

θsat1pzptqq ... θsatna
˘T

such that u P U “ tθ P Rna : 0 ď θk ď θsupu Ď Rna , y P Y Ď Rna and φpz, uq “
`

φ1pz, uq ... φnapz, uq
˘T where φkpz, uq “

#

0 if z2j , z3j “ 0 @j

hkpzptqq otherwise,
for k “ 1, ..., na.
It remains to prove that the assumptions of Theorem 2.6.1 are satisfied. Then,
the desired observer-based output feedback will be obtained using the high-gain
observer (2.22). For this proof the uniform norm on R3na is used.

Lemma 5.3.1
The function φ : ZˆU Ñ Rna is locally Lipschitz in its arguments on its
domain. In addition, φp0, 0q “ 0.

Proof.
— First, observe that @k “ 1, ..., na and @z such that z2j ‰ 0 and z3j ‰ 0

for some j P t1, ..., nau, φkpx, uq is locally Lipschitz in z and in u on the
set Z,

Z “

"

z P R3na : D‹k ´Nk ď z1k ď D‹k,
´Nk
γDk

ď z2k ď 0,

NkγDkλk

na
ÿ

j“1
C̃kjz2j ´ pγRk ` γDkq z2k ď z3k ď ´pγRk ` γDkq z2k @k “ 1, ..., na

*

which corresponds to the set X for the original variables, and U “ tθ P Rna :
0 ď θk ď θsupu since φk is of class C1 on tz P Z : z2j ‰ 0 or z3j ‰ 0 for some
j P t1, ..., nauu and on U .

— Moreover, for all z0 “
`

z011 ¨ ¨ ¨ z01na
0 ¨ ¨ ¨ 0

˘T , φkpz0, uq is lo-
cally Lipschitz in Z.
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This means that for any δ ą 0 such that @z P Z, }z ´ z0} ď δ, there exists
M ą 0 such that |φkpz, uq ´ φkpz0, uq| ď M}z ´ z0}. Indeed, for z P Z such
that z equal to z0, the result is trivial.
In addition, considering z ‰ z0, it follows from the definition of φk that

|φkpz, uq ´ φkpz0, uq| “ |φkpz, uq|, (5.19)

ď | pz3k ` pγRk ` γDkq z2kq |

»

—

—

—

—

–

λk

na
ÿ

j“1
C̃kj |z2j | ` |pkθsatk | `

∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
` pγRk ` γDkq

fi

ffi

ffi

ffi

ffi

fl

` pγRk ` γDkq
2
|z2k|,

ď p1` pγRk ` γDkqq }z ´ z0}

»

—

—

—

—

–

λk

na
ÿ

j“1
C̃kj |z2j | ` |θsatk | `

∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
` pγRk ` γDkq

fi

ffi

ffi

ffi

ffi

fl

` pγRk ` γDkq
2
}z ´ z0},

by using the definition of z0 in this case which implies φkpz0, uq “ 0. It follows
that for all z P Z such that }z ´ z0} ă δ,

|φkpz, uq ´ φkpz0, uq| ď p1` pγRk ` γDkqq }z ´ z0}

ˆ

»

—

—

—

—

–

λk

na
ÿ

j“1
C̃kjδ ` θsup `

∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
` pγRk ` γDkq

fi

ffi

ffi

ffi

ffi

fl

` pγRk ` γDkq
2
}z ´ z0}.

(5.20)

The fraction term is smaller than a constant. Indeed,∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
ď

na
ÿ

j“1
C̃kj |z3j |∣∣∣∣∣ naÿ

j“1
C̃kjz2j

∣∣∣∣∣
“

na
ÿ

j“1
C̃kj

∣∣∣∣∣
#

γDjλjSj

na
ÿ

l“1
Cjlz2l ´

`

γRj ` γDj
˘

z2j ptq

+
∣∣∣∣∣

´

na
ÿ

j“1
C̃kjz2j
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ď

na
ÿ

j“1
λjC̃kjγDjNj

na
ÿ

l“1
Cjl|z2l |

´

na
ÿ

j“1
C̃kjz2j

`

Γ
na
ÿ

j“1
C̃kj |z2j |

´

na
ÿ

j“1
C̃kjz2j

using the fact that γRj ` γDj ď Γ for all j, where Γ is given as in Theorem
5.2.1, and the fact that 0 ď Sj ď Nj for all j over the domain of interest. Then,

∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
ď

na
ÿ

j“1
λjC̃kjγDjNj

na
ÿ

l“1
z2l‰0

Cjlz2l

na
ÿ

j“1
C̃kjz2j

` Γ

“

na
ÿ

j“1
λjC̃kjγDjNj

$

’

’

’

’

&

’

’

’

’

%

na
ÿ

l“1
z2l‰0

Cjl
na
ÿ

j“1
C̃kj

z2j

z2l

,

/

/

/

/

.

/

/

/

/

-

` Γ

“

na
ÿ

j“1
λjC̃kjγDjNj

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

na
ÿ

l“1
z2l‰0

Cjl

C̃kl

¨

˚

˚

˝

1`
na
ÿ

j“1
j‰l

C̃kj

C̃kl

z2j

z2l

˛

‹

‹

‚

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

` Γ

ď K

where K “

na
ÿ

j“1
λjC̃kjγDjNj

na
ÿ

l“1

Cjl

C̃kl
` Γ. Therefore, inequality (5.20) becomes

|φkpz, uq ´ φkpz0, uq| ďM}z ´ z0}

where M “ p1` Γq
«

na
ÿ

j“1
λjC̃kjδ ` θsup `K ` Γ

ff

` Γ2 ą 0.

Finally, observe that φkp0, 0q “ 0. Therefore, Assumption 1 of Theorem 2.6.1
is satisfied. ˝

Lemma 5.3.2
The function φ is globally bounded in z P Z.
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Proof. This proof is based on a similar reasoning as for Lemma 5.3.1. An
additional argument, stating that z3k is bounded, is useful for the following
developments. This follows from the fact that, since z is in Z, there holds

NkλkγDk

na
ÿ

j“1

Mkj

NjγDj
z2j ´ pγRk ` γDkq z2k ď z3k ď ´pγRk ` γDkq z2k.

It follows that

´NkλkγDk

na
ÿ

j“1
C̃kj

Nj
γDj

ď z3k ď
Nk
γDk

pγRk ` γDkq ,

hence, since z2k is bounded,

|z3k| ď K̃

where

K̃ “ max
#

Nk
γDk

pγRk ` γDkq , NkλkγDk

na
ÿ

j“1
C̃kj

Nj
γDj

+

ą 0.

It follows that

|φkpzq| ď | pz3k ` pγRk ` γDkq z2kq |

»

—

—

—

—

–

λk

na
ÿ

j“1
C̃kj |z2j | ` |pkθsatk | `

∣∣∣∣∣∣∣∣∣∣

na
ÿ

j“1
C̃kjz3j

na
ÿ

j“1
C̃kjz2j

∣∣∣∣∣∣∣∣∣∣
` pγRk ` γDkq



ď

ˆ

K̃ ` pγRk ` γDkq
Nk
γDk

˙

«

λk

na
ÿ

j“1
C̃kj

Nk
γDk

` θsup `K ` pγRk ` γDkq

ff

` pγRk ` γDkq
2 Nk
γDk

“: M̃.

˝

Lemma 5.3.3
The function γ “ θsatk defined in (5.13) is a locally Lipschitz function,
bounded and such that γp0q “ 0.
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Proof. By Property 5.2.2, the function θsatk has been defined to be Lipschitz.
Moreover, γp0q corresponds to the case where Sk “ Ik “ 0. In this case,
θsatk “ 0 by definition. Finally, the boundness follows the definition of θsatk ,
where saturation is imposed. ˝

Lemma 5.3.4
The origin (z “ 0) is an asymptotically stable equilibrium point of the
closed-loop system.

Proof. This assumption is a direct consequence of Theorem 5.2.1 combined
with the change of variables (5.16). ˝

The following theorem states the main result of this section.

Theorem 5.3.1
The observer-based output feedback, based on the high-gain observer
(2.22) implies the semistability of the disease-free equilibria of Model
(4.1).

Proof. Lemmas 5.3.1 to 5.3.4 show that the assumptions of Theorem 2.6.1 are
satisfied. Therefore, an observer-based output feedback can be obtained for
Model (5.18), based on the design of a high-gain observer defined by (2.22).
Moreover, there exists ε̃‹ ą 0 such that for every 0 ă ε ď ε̃‹, the origin z “ 0
of Model (5.18a) is asymptotically stable. Using the change of variables (5.17),
this implies that pS‹1 , ..., S‹na , 0, ..., 0, R

‹
1, ..., R

‹
na , D

‹
1, ..., D

‹
naq is asymptotically

stable. ˝

5.4 Numerical simulations
In this section, numerical simulations, which illustrate Theorems 5.2.1, 5.2.2

and 5.3.1, are presented. Those simulations are performed with the parameters
used in Section 4.3 and calibrated in Chapter 3 on covid-19 data. However, to
mimic the fact that a vaccine is not available at the beginning of the epidemic,
it has been chosen to apply the vaccine one month after the assumed start of the
epidemic, that is on the 10th of March. Therefore, in the following simulations,
time 0 corresponds to the 10th March. Furthermore, since the aim of this
chapter is to design a vaccination law implementable in practice, vaccination
data are needed. Indeed, as mentioned previously, there is a maximum number
of vaccine doses that can be administrated each day. To be aware of this number
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the dataset, named "Administered vaccines by date, region, age, sex, brand and
dose" and available in (Sciensano (2023)), is used. Hence, the maximum number
of vaccines that have been administrated in Wallonia in one day is 55191 and
happened on the 16th June 2021. Therefore, in the following, it will be assumed
that it is not possible to vaccinate more than 55191 individuals (1.5141% of the
population) per day. This number will be helpful to define the upper bound
on the control law allowing to design an implementable vaccination strategy.
Moreover, it is assumed that the vaccine efficacy corresponds to 80% for the
individuals less than 65 years old and to 60% for the ones older. This estimation
is inspired from the results obtained in (Braeye et al. (2022)), for the variant
Delta in the case of a primary vaccination. As for the previous simulations,
the code is stopped when some convergence criteria is satisfied. In this case, it
corresponds to the time when there remains less than one infected individuals
in the whole population. Moreover, ODE45 function from Matlab is used to
solve the ODEs.

5.4.1 Unsaturated state feedback
In view of Figure 4.1, one can wish to obtain disease eradication faster and

with less infected individuals in the population. This can be done with the
state feedback law (5.6) that implies exponential convergence to zero of the in-
fected individuals. This law was implemented numerically satisfying parameter
conditions mentioned in Theorem 5.2.2, with

αk1 “ pγRk ` γDkq

˜

maxpγDk ` γRkq `
na
ÿ

j“1
Mkj

¸

` 0.1

and
αk2 “ γRk ` γDk `maxpγDk ` γRkq `

na
ÿ

j“1
Mkj .

Figure 5.4 shows that the convergence of individuals to zero is much faster than
without control. This occurs in 30 ` 13 “ 43 days compared to 192 days in
absence of control. Notice that 30 corresponds to the assumed time needed to
develop a vaccine. Moreover, the peak of infected individuals is much lower.
The total proportion of infected individuals is at most 0.0011 in the closed-
loop case, which is smaller than 0.0432 in Figure 4.1 for the open-loop case.
Notice that this phenomenon of reduction is also seen for the dead individuals,
as it can be expected. Indeed, in simulations, a percentage of 11.82% of the
population is deceased in the open-loop case but only 0.0788% of the population
die when the control law is applied. However, the dynamics of the control law,
not represented here, tends quickly to infinity as expected and will not be
applicable in practice.
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Figure 5.4 – Dynamics of the proportion of infected individuals with uncon-
strained state feedback

5.4.2 Amplitude constrained control
To ensure a feasible vaccination law, the state feedback is saturated and is

given by (5.13). The upper bound is fixed to 0.05 to ensure a physical meaning,
as shown in Figure 5.10. Indeed, Figure 5.10 shows the percentage of vaccines
needed to be administrated per day, all age groups being combined. By the rea-
sonable assumption mentioned previously, it is not possible to vaccinate more
than 1.5141% of the population each day, one can see that the proposed vac-
cination law can be applied in practice. Notice that the upper bound 0.05 was
obtained by trial and error in order to ensure applicability of the vaccination
law.

Moreover, the switch in the vaccination law θsatkptq is chosen to satisfy Lemma
5.2.2 where Ĩk is arbitrarily set to 20 for all k and we take the equality to
choose S̃k. Under this feedback, the convergence of the infected individuals to
0 is no longer exponential. However, disease eradication occurs with a smaller
peak of infected individuals than in the open-loop case, a proportion of 0.0016
infected individuals instead of 0.0432. The dynamics of the proportion of in-
fected individuals for each class of age is represented in Figure 5.5. The same
holds for the dead individuals (not represented here), a proportion of 0.0026
is observed with the state feedback instead of 0.1182 in open-loop. Moreover,
it is interesting to see that the law is highly age-dependent, as emphasized in
Figure 5.6. It recommends to focus effort on the older class of age 75` but
also to the group r45, 65q. Moreover, it is also time dependent. Finally, the
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Figure 5.5 – Dynamics of the proportion of infected individuals with constrained
state feedback

disease eradication is reached after 30` 50 “ 80 days instead of 192 days if no
vaccination is applied.

Furthermore, thanks to the input θsatk , it is possible to design an observer-
based output feedback, which can be used in practice. As viewed in Figure 5.7,
the estimated closed-loop trajectory converges to the trajectory obtained with
the system under state feedback. Moreover, as one can see by comparing Fig-
ures 5.8 and 5.9, taking ε smaller implies more precision in the approximation.
Indeed, for the last class of age, the maximal absolute error is 5.6332 ˆ 10´6

and 1.4349ˆ 10´7 for ε equals to 0.5 and 0.1 respectively. The same holds for
the other classes of age.
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Figure 5.6 – Dynamics of the constrained vaccination law

Figure 5.7 – Dynamics of the proportion of infected individuals with constrained
state feedback in plain line and observer-based output feedback in dots, for
ε “ 0.1
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Figure 5.8 – Absolute error between the proportion of infected individuals with
constrained state feedback and observer-based output feedback, for ε “ 0.5

Figure 5.9 – Absolute error between the number of infected individuals with
constrained state feedback and observer-based output feedback, for ε “ 0.1
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Figure 5.10 – Percentage of vaccinated people per day

In view of the results obtained in this Chapter, a natural question that arises
is how to choose the feedback gains in the best way possible. For instance, by
finding the parameters that minimize the number of dead individuals. In view
of the equations, this will minimize the number of infected individuals. This
remains an open question in this thesis. However, in the following chapter, the
model predictive control strategy is used to implement a control law, with the
property of minimizing the number of dead individuals and ensuring disease
eradication.
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Chapter 6
Model predictive control

This chapter, based on a joint work with Mirko Fiacchini 1, concerns the de-
sign of a vaccination control law based on the model predictive control (MPC)
approach. Therefore, contrary to the previous chapter, the age-dependent vac-
cination strategy is chosen in an optimal way, according to criteria presented
later. A brief reminder of MPC is presented in Chapter 2, Section 2.7.
The first section of this chapter presents the formulation of the problem of
interest. Then, Section 6.2 is dedicated to the proof of the feasibility and sta-
bility of the closed-loop system obtained with model predictive control. Finally,
numerical simulations are given in Section 6.3.

6.1 Problem formulation
This chapter is dedicated to the design of an age-dependent vaccination law

in order to achieve one main objective, the disease eradication. However, in
view of the model equations, this is obtained even in open-loop. Hence, some
additional desirable objectives are added such as the minimization of the num-
ber of dead individuals in the population (which has for consequence to ensure
that the total number of infected individuals is not too high). Moreover, in
order to obtain a vaccination law that is implementable in practice, additional
constraints on the control are added: the nonnegativity of the vaccination law
as well as the limitation in the number of available vaccines per day. Hence, an
optimization problem of a nonlinear system with constraints needs to be solved.
To achieve this, model predictive control theory is used. In order to numerically

1. Mirko Fiacchini performed the numerical simulations with model predictive control,
whereas the stability analysis was a joint work.

103
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implement the algorithm, a discrete version of Model (4.1) is introduced. This
choice allows to perform the simulation directly on the studied model, contrary
to the previous chapter, where the model is discretized after the analyis. Both
approaches can be justified and the theory proposed here could be developed
in the case of a continuous-time model, of course with suitable modifications.
The discretized model is obtained by using Euler discretization of the previous
model with a time step of one day. In the case of another choice of discretization
step ∆t the model equations should be rescaled accordingly. The discrete-time
age-structured SIRD epidemic model is given by
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Sk pn` 1q “ Sk pnq ´ λkSkpnq
na
ÿ

j“1
CkjIjpnq ´ pkuk pnq

Ik pn` 1q “ Ik pnq ` λkSkpnq
na
ÿ

j“1
CkjIjpnq ´ pγRk ` γDkq Ik pnq

Rk pn` 1q “ Rk pnq ` γRkIk pnq ` pkuk pnq

Dk pn` 1q “ Dk pnq ` γDkIk pnq ,

(6.1)

where k “ 1, ..., na. Notice that the control law ukpnq “ θkpnqSkpnq has been
introduced. It corresponds to the number of vaccines administrated at time n.
Model (6.1) can be equivalently rewritten as

x` “ fpx, uq

where x “ pS1, ..., Sna , I1, ..., Ina , R1, ..., Rna , D1, ...Dnaq
T
P X :“

 

x P R4na :
0 ď Sk, Ik, Rk, Dk ď Nk, k “ 1, ..., nau, x` denotes the successor state, u “
pu1, ..., unaq

T P U :“ r0, bsupsna and f : X ˆ U Ñ X is bounded.

As mentioned previously, the goal of this research is to find the best age-
dependent vaccination law u with desired properties (disease eradication while
minimizing the total number of deceased individuals at each day, therefore
reduction of the number of infected individuals) and under some constraints
(vaccination law that fulfills the physical constraints). This law can be ob-
tained, thanks to model predictive control theory, by solving the following
optimal control problem, over the finite time horizon N ,

Problem 6.1.1

min
up¨q

VN px,uq :“
N´1
ÿ

n“0

na
ÿ

k“1
Dkpn` 1q ´Dkpnq ` Vf pxpNqq

with respect to px,uq “ pxp0q, ..., xpNq, up0q, ..., upN ´ 1qq
subject to the fact that (6.1) is satisfied with initial condition xp0q “ x, and
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pxpnq, upnqq P Z “: X ˆ

#

u P U :
na
ÿ

k“1
uk ď bsup

+

Ă X ˆ U @n P N

where Vf is a terminal constraint defined in order to ensure that the MPC
algorithm steers the state to the positively invariant equilibrium set defined by
X‹ “ tx P X : Ik “ 0, k “ 1, ..., nau. This terminal constraint is discussed in
Subsection 8.2.2 since it is a key element to ensure the stability of the closed-
loop system.

For analysis purpose, it is best to reformulate the optimal control Problem
6.1.1 by using the fact that xpnq “ φpn;x;uq, the solution of (6.1) at time
n with the initial state x at time 0 and the control sequence u. Adding an
additional terminal constraint,

xpNq P Xf Ď X

where Xf will be defined later, as well as the function Vf , in order to ensure
the stabilizing property of the MPC, the optimal control problem to be solved
is given by

min
up¨q

N´1
ÿ

n“0

na
ÿ

k“1
γDkIkpnq ` Vf pxpNqq where xpnq “ φpn;x;uq @n P t0 ..., Nu

with respect to u “ pup0q, ..., upN ´ 1qq (6.2)
subject to pxpnq, upnqq P Z

xpNq P Xf Ď X .

Observe that the term
na
ÿ

k“1
γDkIkpnq represents the number of dead individuals

at day n: see the last equation of Model (6.1). Furthermore, as mentioned
previously, Vf and Xf are specified in the next section and the following analysis
will show that this choice is appropriate for the pursued goals. Moreover, for
the following analysis, let us define

lpx, uq “
na
ÿ

k“1
γDkIk,

VN px,uq “
N´1
ÿ

n“0
l pxpnq, upnqq ` Vf pxpNqq , where xpnq “ φpn;x,uq

and UN pxq, the set of (feasible) control sequences satisfying all the (input, state
and terminal) constraints, namely the control constraint set. Then, the optimal
control problem rewrites shortly as

PN pxq : min
uPUN pxq

VN px,uq :“ V o
N pxq
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Notice that, thanks to equation (6.1), the control of Ik implies the control of
Rk and Dk. Therefore, in the following, the attention is focused on the 2na first
equations concerning the susceptible and infected individuals. Hence, in what
follows, x “ pS1, ..., Sna , I1, ..., Inaq

T P X :“
 

x P R2na : 0 ď Sk, Ik ď Nk,

k “ 1, ..., nau.
Finally, the optimal control sequence obtained by solving problem (6.2) is de-
noted

uopxq “ puop0, xq, ..., uopN ´ 1, xqq “ arg min
up¨q

VN px,uq.

In the MPC approach, the control applied to the system is the first element
uop0;xq of the solution of the optimal control problem and is denoted κN pxq.

6.2 Dynamical analysis
In order to perform the model predictive control approach, it is important

to ensure the feasibility of the problem, i.e the existence of a solution of the
MPC problem, as well as the stability guarantee. Indeed, when applying MPC,
there is no guarantee that the trajectories converge. In the following, those two
points are studied to show that the MPC problem introduced in Section 6.1
is well-posed in terms of existence of a solution and stability. This ensures
that the solution obtained thanks to the model predictive control calculations
converges to the desired disease-free equilibrium.

A useful notation is introduced in this part. Let x “ px1 . . . xnq
T . The

notation x ą 0 (x ě 0) means that each component xi of x is positive (non-
negative).

Now, all the elements are gathered to define the terminal cost Vf pxpNqq and
the terminal constraint Xf that will help to obtain stability.

Definition 6.2.1 Let ε P p0, 1s, γD “
`

γD1 , ..., γDna
˘T , I “ pI1, ..., Inaq

T and
S “ pS1, ..., Snaq

T . Define

Vf pxpNqq “
1
ε

na
ÿ

k“1
γDkIkpNq “

1
ε
γTDIpNq

and
Xf “

 

x P X : CT diagpγDλqS ď Γ
(

with C “

¨

˚

˝

C11 ¨ ¨ ¨ C1na
...

. . .
...

Cna1 ¨ ¨ ¨ Cnana

˛

‹

‚

, diagpγDλq “

¨

˚

˝

γD1λ1
. . .

γDnaλna

˛

‹

‚

and
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Γ “

¨

˝

γD1 pγR1 ` γD1 ´ εq

. . .

γDna
`

γRna ` γDna ´ ε
˘

˛

‚.

Notice that Xf is chosen such that the number of total deceased individuals
per sampling interval is decreasing. Indeed, the choice of this region implies
that, for I P Xf ,

γTDIpn` 1q ´ γTDIpnq ď ´εγTDIpnq (6.3)

with ε P p0, 1s. To prove this result, one can use the discrete-time dynamics
(6.1) to notice that condition p6.3q is equivalent to

na
ÿ

k“1
γDkλkSk

na
ÿ

j“1
CkjIj ´

na
ÿ

j“1
γDj pγRj ` γDj ´ εqIj ď 0

na
ÿ

j“1

´

na
ÿ

k“1
γDkλkSkCkj ´ γDj pγRj ` γDj ´ εq

¯

Ij ď 0,
(6.4)

where the time dependence has been dropped for ease of notation. From the
nonnegativity of I, a sufficient condition for p6.4q to hold is

na
ÿ

k“1
γDkλkSkCkj ď γDj pγRj ` γDj ´ εq, @j “ 1, . . . , na

which is equivalent, in matrix form, to

CT

¨

˚

˚

˝

γD1λ1 0 . . . 0
0 γD2λ2 . . . . . .

. . . . . . . . . . . .

0 0 . . . γDnaλna

˛

‹

‹

‚

S ď

¨

˚

˚

˝

γD1pγR1 ` γD1 ´ εq

γD2pγR2 ` γD2 ´ εq

. . .

γDnapγRna ` γDna ´ εq

˛

‹

‹

‚

.

Some lemmas are introduced to demonstrate the main assumptions needed to
conclude about the stability of the set of disease-free equilibria X‹ and the
solvability of problem (6.2). Those are the same as the "basic stability assump-
tion", recalled in Assumption 2.7.3 but adapted to the concept of convergence
to a set.
In the following, the set XN denotes the set of states x in X for which there
exist (feasible) control sequences u P UN pxq.
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Lemma 6.2.1
Let Vf and Xf be given as in Definition 6.2.1, for some ε P p0, 1s . Then

1. @x P Xf , there exists u (such that px, uq P Z) satisfying
(a) fpx, uq P Xf ,
(b) Vf pfpx, uqq ´ Vf pxq ď ´lpx, uq.

2. There exist K8 functions α1p¨q and αf p¨q satisfying
(a) lpx, uq ě α1 p}x}X‹q @x P XN , @u such that px, uq P Z,
(b) Vf pxq ď αf p}x}X‹q @x P Xf
where }x}X‹ “: inf

x̃PX‹
}x´ x̃}l1 .

Proof.
1. Assume that x P Xf .

(a) Since x P Xf , the following inequalities hold:

na
ÿ

k“1
γDkλkSkCkj ď γDj pγRj ` γDj ´ εq, @j “ 1, . . . , na.

Moreover, it follows from the fact that px, uq P Z that u ě 0 and x ě
0. Hence, since by (6.1), Skpnq is non-increasing for every n P N and

k “ 1, ..., na, it follows that
na
ÿ

k“1
γDkλkCkjSk ě

na
ÿ

k“1
γDkλkCkjS

`
k , for

j “ 1, ..., na. Thus, the set Xf is an invariant set for System (6.1).
(b) For u “ 0, Vf pfpx, 0qq ´ Vf pxq ď ´lpx, 0q. Indeed,

Vf px
`q ´ Vf pxq “

1
ε
γTD

`

I` ´ I
˘

ď ´γTDI “ ´lpx, 0q (6.5)

by (6.3), since x P Xf .

2. The following relations holds for the l1 norm, }pa1, ..., anq}l1 “
n
ÿ

k“1
|ak|.

(a) Let x P XN and u such that px, uq P Z. By defining γD “ min
k“1...na

tγDku

it follows that

lpx, uq “ γTDI ě γD

na
ÿ

k“1
Ik “ γD}I}l1 “ γD}x}X‹ .
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Indeed, }x}X‹ “ inf
x̃PX‹

}x´ x̃}l1 “ inf
x̃PX‹

na
ÿ

k“1
|Sk´ S̃k` Ik| “

na
ÿ

k“1
|Ik| “

}I}l1 .

The function α1 p}x}X‹q “ γD}I}l1 is of class K8 (i.e. continuous,
strictly increasing, unbounded function that cancels in 0).

(b) By the same reasoning, the proof is completed with αf p}x}X‹q “
1
ε
γ̄D}I}l1 which is of class K8, where γ̄D “ max

k“1...na
tγDku .

˝

The main result of this section is presented below.

Theorem 6.2.1
Let Vf and Xf be given as in Definition 6.2.1, for some ε P p0, 1s . Then

1. for each x P XN , a solution to problem (6.2), denoted uopxq, exists;
2. the set X‹ is asymptotically stable in XN for x` “ fpx, κN pxqq,

with κN pxq “ uop0, xq.

Proof. This proof is based on the stabilizing conditions developed in (Rawlings
et al., 2020, Chapter 2) and recalled in Section 2.7 but adapted to the concept
of convergence to a set.

1. This immediately follows from Proposition 2.7.1. Indeed, the functions
f : Z Ñ X ; l : Z Ñ R` and Vf : Xf Ñ R` are continuous and satisfy
fpx‹, 0q “ lpx‹, 0q “ Vf px

‹q “ 0, with x‹ P X‹. Hence, Assumption
2.7.1 holds. Moreover, the set Z is closed and Xf Ď X is compact.
Furthermore, each set contains the set of equilibria and since U “ Upxq
is closed and bounded, Upxq is compact for all x P X . Thus Assumption
2.7.2 holds and Proposition 2.7.1 can be used to conclude the first item.

2. The proof of asymptotic stability for the set X‹ is based on Theorem
2.4.2 which characterizes the global asymptotic stability of a set, when
there are state constraints, using a Lyapunov function. Hence, some
assumptions about the sets must be fulfilled.
(a) Firstly, X needs to be positively invariant with respect to x` “

fpx, κN pxqq. In view of Model (6.1), this is the case if and only

if pkukpnq{Skpnq ď 1 ´ λk

na
ÿ

k“1
Mkj and if γRk ` γDk ď 1 for k “

1, ..., na. Remark that the implementation of the control law in the
numerical simulations ensures that the first condition is satisfied,
whereas the second condition holds for the covid-19 parameters cal-
ibrated in Chapter 3.
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(b) Moreover, it is obvious that the set X‹ Ď X is closed and positively
invariant with respect to x` “ fpx, κN pxqq.

(c) Furthermore, f is bounded thanks to the invariance property of X .
(d) Finally, it remains to show that there exists a Lyapunov function in

X for x` “ fpx, κN pxqq and the set X‹. The optimal objective value
function V o

N pxq is a good candidate. Indeed, thanks to Lemma 6.2.1,
it can be established, by using similar arguments as in (Rawlings
et al., 2020, Section 2.4), that
i. there exists a K8 function α1 such that the value function V o

N pxq

satisfies α1p}x}X‹q ď V o
N pxq.

Indeed,

V o
N pxq “ VN px,uopxqq

“ lpx, κN pxqq `
N´1
ÿ

j“1
l pxo pj;xq , uo pj;xqq ` Vf pxopN ;xqq

(6.6)
ě lpx, κN pxqq

ě α1p}x}X‹q

by Lemma 6.2.1, condition 2(b).
ii. V o

N pf px, κN pxqqq ´ V 0
N pxq ď ´α1 p}x}X‹q for all x P XN , with

α1 p}x}X‹q a PD function (i.e. function that cancels in 0 and is
positive evrywhere else).
Indeed, recall that

uopxq “ puop0;xq, ..., uopN ´ 1;xqq
“ pκN pxq, u

op1;xq, ..., uopN ´ 1;xqq

and the resulting optimal state sequence is given by

xopxq “ pxop0;xq, ..., xopN ;xqq ,

where pxop0;xq “ x and xop1;xq “ fpx, κN pxqq “ x`.
Second, notice that

V o
N pf px, κN pxqqq :“ V o

N

`

x`
˘

“ VN
`

x`,uo `x`
˘˘

ď VN px
`, ũq, (6.7)

for any ũ P UN pxq. In particular, it holds for

ũpxq “ puop1;xq, ..., uopN ´ 1;xq, uq
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in which u P U can be chosen. Hence, the state sequence due to
ũ is given by

x̃ “ pxop1;xq, ..., xopN ;xq, f pxopN ;xq, uqq .

Therefore,

VN px
`, ũq “

N´1
ÿ

j“1
l pxo pj;xq , uo pj;xqq ` l pxo pj;xq , uq

` Vf pfpx
opN ;xq, uqq (6.8)

From (6.6), the equality

N´1
ÿ

j“1
l pxo pj;xq , uo pj;xqq “ V o

N pxq´ lpx, κN pxqq´Vf px
opN ;xqq

follows. Replacing it in (6.8) implies that

VN px
`, ũq “ V o

N pxq ´ lpx, κN pxqq ´ Vf px
opN ;xqq

` l pxo pj;xq , uq ` Vf pfpxopN ;xq, uqq
ď V o

N pxq ´ lpx, κN pxqq

by choosing u such that Lemma 6.2.1, condition 1(b) holds. Fi-
nally, using (6.7), it follows that V o

N px
`q ď V o

N pxq´ lpx, κN pxqq

and Lemma 6.2.1, condition 2(b) concludes this part.
iii. there exists a K8 function αf such that V o

N pxq ď αf p}x}X‹q.
Indeed, let xpiq “ pSpiq, IpiqqT , where x P X ,

Sd “

¨

˚

˝

S1
. . .

Sna

˛

‹

‚

, diagpγRDq “

¨

˚

˝

γR1 ` γD1

. . .
γRna

` γDna

˛

‹

‚

,

Λ “

¨

˚

˝

λ1
. . .

λna

˛

‹

‚

and diagpNpopq “

¨

˚

˝

N1
. . .

Nna

˛

‹

‚

.

One has that

γTDIpi` 1q “ γTD pIdna ` SdpiqΛC ´ diagpγRDqq Ipiq
ď γTD pIdna ` diagpNpopqΛC ´ diagpγRDqq Ipiq
ď αγTDIpiq, (6.9)
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where α ą 0 such that pIdna ` diagpNpopqΛC ´ diagpγRDqq
T
γD ď

αγD. From (6.9) it follows that

γTDIpi` nq ď αnγTDIpiq, @n P N, i P N.

Moreover, by the definition of Vf ,

Vf pxpi`Nqq “
1
ε
γTDIpi`Nq ď

1
ε
αNγTDIpiq.

Hence, the bound

VN pIpiqq “
N´1
ÿ

n“0
γTDIpi` nq ` Vf pxpi`Nqq

ď

˜

N´1
ÿ

n“0
αn `

1
εαN

¸

γTDIpiq

ď

˜

N´1
ÿ

n“0
αn `

1
ε
αN

¸

γ̄D}I}l1 :“ αf p}I}l1q (6.10)

holds.
Finally, V o

N pxpiqq ď VN pxpiq, 0q ď αf p}I}l1q by (6.10).

Therefore, the optimal value function is a Lyapunov function for the
closed-loop system, which implies the global asymptotic stability of the
set X‹.

˝

6.3 Numerical simulations
Numerical simulations are performed to illustrate the performance obtained

by using model predictive control. Two examples are presented. One of them
is based on the parameters obtained in Chapter 3 on covid-19 data whereas
the second one is an academic example consisting in a small adaptation of the
previous parameters. The latter can be viewed as a new disease, similar to
the one illustrating covid-19 in Belgium, but with a transmission probability
that is independent of the classes of age. In both cases, simulations are per-
formed using the Ipopt solver for nonlinear optimization problems of Python.
It consists of the implementation of an interior point line search filter method
to find local solutions of nonlinear optimization problems. Moreover, the MPC
strategies are built using a control horizon equal to 40 days and a prediction
horizon of 60 days.
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Figure 6.1 – (Discrete-time) dynamics of the proportion of infected individuals
with MPC

6.3.1 Wallonia case
The idea of this part is to compare the model predictive control strategy

applied on the model of the covid-19 disease to a vaccination strategy that
mimics the one that was performed in Belgium. The latter consisted in vac-
cinating individuals in decreasing order of age. Notice that the simultaneous
vaccination of vulnerable individuals and elder people is not considered here.
The vaccination data used in this section are the same as in Section 5.4, namely
a maximum of 55191 individuals vaccinated each day and a vaccine efficacy of
80% below 65 years old and an efficacy of 60% for people older than 65 years
old.
Figure 6.1 represents the proportion of infected individuals obtained using the
MPC approach. Since the goal of the MPC is not to reduce the time before
disease eradication, all the figures are represented until the 19th April (40 days
after the 10th March). Concerning the total proportion of infected individuals,
it is at most 0.0011 compared to 0.0016 with the observer-based output feed-
back. The total proportion of dead individuals is also improved using MPC
compared to the observer-based output feedback. Indeed, there is only 0.097%
of the population who died with the MPC vaccination law instead of 0.26%
with the output feedback law. The number of vaccines needed to be adminis-
trated each day, by class of age, to obtain those improvements is represented
in Figure 6.2.
This result can also be compared with a more realistic vaccination strategy,

following the idea of the vaccination implemented in Belgium to tackle the
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Figure 6.2 – Distribution of the number of administrated vaccines per day, by
using MPC strategy

covid-19 disease, namely to vaccinate old people first. This is represented in
Figure 6.3. In this case, the dynamics of the proportion of infected individuals
is given in Figure 6.4. The total maximum proportion of infected individuals is
the same as for the MPC case. Concerning the dead individuals (whose graph
is not presented here), it is a little bit better than in the MPC case, since
0.096% of the population dies. This result can be surprising but it is explained
by the fact that MPC is a suboptimal method: it gives a solution near the
optimal solution. In the case considered here, the Belgian strategy appears
to be adequate and sufficiently efficient to obtain disease eradication since, as
one can see in Table 3.1, the transmission probability and the death rate are
mostly increasing with the age (except for the 4th class of age). Furthermore,
remark that the vaccination strategies suggested in both cases (see Figures 6.2
and 6.3) are similar for the first days of the epidemic.
Furthermore, observing Figure 6.3, one can wonder why there is, for several
days (day 2 to 6), people of more than 85 years old being vaccinated in the same
time as people of age between 75 and 85 years old, knowing that the Belgian
strategy is to vaccinate individuals in the decreasing order. This is due to the
vaccine efficacy parameter pk. Indeed, if the strategy is vaccinating all people
from 85 years old and if there are still vaccines available then individuals from
the class of age under 85` are vaccinated. However, some of the elder people
are vaccinated with an inefficient vaccine and then can get vaccinated again.
Therefore, taking into account vaccine efficacy in the simulation allows for an
individual to get vaccinated several times (until leaving the class of susceptible
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Figure 6.3 – Distribution of the number of administrated vaccines per day,
following the Belgian strategy

individuals). This occurs also for the MPC strategy. With a totally efficient
vaccine, the last class of age can be entirely vaccinate in two days. This is
a drawback of the SIRD model considered here. In order to improve this, it
is necessary to keep track of the number of individuals that have received a
vaccine, for each class of age. Hence it is necessary to consider what we may
call an SIRDV model, where V stands for vaccinated individuals.

6.3.2 Academic case
This academic example is presented to show that, in some cases, the MPC

approach is very useful to estimate the ideal vaccination law to obtain disease
eradication with less dead and infected individuals. The parameters used for
this part are identical as the previous section, except that the transmission
probability, λk, is assumed to be the same for each class of age and is taken
equal to 0.05. The results presented below are compared to the ones obtained
by using the vaccination strategy implemented in Belgium to tackle the covid-
19 disease, illustrated in Figure 6.3. The dynamics of the proportion of the
infected individuals obtained with the MPC approach is given in Figure 6.5
whereas the one obtained with the Belgian strategy is represented in Figure
6.6. Although the maximum proportion of infected individuals is the same for
both classes, it is obvious to see that the MPC strategy is the best, since it
achieves disease eradication in 40 days and with less infected individuals than
in the other case. The MPC strategy is also much better in terms of deceased
individuals, after 40 days, 0.11% of the population die with the Belgian strategy
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Figure 6.4 – (Discrete-time) dynamics of the proportion of infected individuals,
following the Belgian strategy

and only 0.0952% with the MPC approach.
Figure 6.7 illustrates the scheme of vaccination to apply in order to minimize the
number of deceased individuals. The proposed method is completely different
from the one inspired by the Belgian strategy. It suggests to focus first on the
young adults, r25, 45q, and then a mix between essentially the young people,
r0, 25q, and the adults of ages between 45 and 65. This example shows that,
minor changes in the parameters of a disease can lead to major changes in the
optimal vaccination strategy in terms of number of dead individuals. Indeed,
one has to find a trade-off between protecting elder people and vaccinating
younger individuals who transmit the disease the most. Hence, theoretical
studies are required because small changes in the disease propagation lead to
totally different strategies. Therefore, this chapter provides an implementable
law which is essential to guide decision policies concerning the strategy to obtain
disease eradication under some desired objectives (minimizing the number of
dead people) and constraints (vaccines availability and physical constraints).
Other control theory approaches than model predictive control can be applied
to deal with control of epidemics: one can cite for instance the Danish case
reported in (Stoustrup (2023)) where the authorities and control experts worked
together to mitigate the effect of covid-19.
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Figure 6.5 – (Discrete-time) dynamics of the proportion of infected individuals
with MPC (academic case)

Figure 6.6 – Dynamics of the proportion of infected individuals, following the
Belgian strategy (academic case)
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Figure 6.7 – Distribution of the number of administrated vaccines per day, by
using MPC strategy (academic case)
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Introduction
This part applies to non-lethal long-term diseases. Hence the dynamics of

the deceased individuals do not need to be considered. However it is important
to consider the aging of the population. Examples of illnesses with those fea-
tures are Human Papillomavirus (HPV), chronic obstructive pulmonary disease
(COPD), pertussis... To deal with those kinds of disease, a simplified version
of the PIDE model (1.4), described in (Bastin and Coron (2016)) is studied.
An input, denoted θpt, aq, representing the vaccination is added. It represents
the rate at which the susceptible individuals are vaccinated at time t and age
a. Those individuals leave the class of susceptible to become recovered. The
parameter ppaq, representing the probability of successful vaccination for an
individual of age a, is added to consider the fact that the vaccination does not
always work perfectly. Therefore, the evolution of the different groups, in terms
of densities, is described by a system of nonlinear partial integro-differential
equations, called PIDE model, given by
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pBt ` κBaqS pt, aq “ ´ pµpaq ` ppaqθpt, aqqSpt, aq ´ cpaqSpt, aq

ż amax

0
Ipt, bqdb

pBt ` κBaq I pt, aq “ ´ pµpaq ` γpaqq Ipt, aq ` cpaqSpt, aq

ż amax

0
Ipt, bqdb

pBt ` κBaqR pt, aq “ ´µpaqRpt, aq ` γpaqIpt, aq ` ppaqθpt, aqSpt, aq,

(6.11)
where the coefficient κ is introduced to balance the possible change of units
for time and age. For instance, it is set to 1{365 when time is in day and age
in year, which is the case here. The initial conditions are given by Sp0, aq “
S0paq, Ip0, aq “ I0paq, Rp0, aq “ R0paq. Moreover, it is assumed that there is
no vertical transmission of the disease, i.e a mother cannot transmit the disease
to her child. Therefore, all new born are susceptible. This translates in terms
of boundary conditions by

$

&

%

Spt, 0q “ B

Ipt, 0q “ 0
Rpt, 0q “ 0,

where B, denoting the birth rate, is assumed constant in time. In the following,
it is assumed that cp.q and γp.q are in L8 pr0, amaxsq, the space of essentially
bounded functions defined on r0, amaxs. The interpretations and units of the
variables and parameters involved in the PIDE Model and in the following
models, are described in Table 6.1.

Notice that, since an SIR model is used, instead of an SIRD for instance,
this model is best-suited for non-lethal disease. Moreover, the age is consid-
ered continuously, which is important for long-term diseases. Hence, the study
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Variables Interpretation Range Unit
t Time R` day
amax Maximum age R` year
a Age r0, amaxs year
α balancing coefficient R`

year
day

P pt, aq Age density of the total population R`
Human
day

S pt, aq
I pt, aq
R pt, aq

Density of susceptible, infected
and recovered individuals at time t
and age a

R`
Human
day

s pt, aq
i pt, aq
r pt, aq

Normalized density of susceptible,
infected and recovered individuals
at time t and age a

r0, 1s no unit

ŝ pt, aq Normalized density of susceptible
individuals at time t and age a r´1, 0s no unit

θ pt, aq Rate of vaccinated individuals R`
1

day
Parameters

B birth rate R`0
Human
day

µ paq Per capita natural death rate R`
1

day

c paq
Mean contact between all
infected and a susceptible individuals
of age a

R`
1

Human.day

γ paq Recovery rate R`
1

day
p paq Probability of successful vaccination p0, 1s no unit

Table 6.1 – Parameters and variables for PIDE models

developed in this part could be very interesting for instance for the Human
papillomavirus (HPV) for which a vaccine exists.

Chapter 7 gathers the concepts needed in this Part. Then, the dynamical
analysis of Model (6.11) is performed in Chapter 8 to investigate the question
of existence and uniqueness of a solution but also the question of the stability
of the equilibria. In view of the results obtained in previous chapter, Chapter
9 is dedicated to the design of a state feedback law for Model (6.11) in or-
der to stabilize the disease-free equilibrium. This law is implemented in two
steps. First, a linearizing state feedback law is designed on the discretization by
age of Model (6.11), using classical theory for finite dimensional systems (see
(Isidori (1995))). In a second time, a linearizing feedback law for the infinite
dimensional system is deduced from the previous one.



Chapter 7
Theoretical concepts

In the same spirit as Chapter 2, this chapter is dedicated to the introduc-
tion of some necessary concepts to the understanding of the following chapters.
The reader may skip this chapter and come back to it if needed. This part
mainly develops tools that are useful for the study of infinite dimensional sys-
tems. Firstly, the background for linear systems is recalled. Then, some results
concerning nonlinear systems are described.

7.1 A state-space approach for linear infinite di-
mensional systems

This first part, inspired by (Klaus-Jochen and Rainer (2006)) and (Curtain
and Zwart (2020)), is dedicated to the development of a theory to deal with
linear infinite dimensional systems.
In the case of partial differential equations (PDEs), one natural approach con-
sists to use semigroups, defined in Definition 7.1.1, to represent the system of
PDEs via an "abstract Cauchy problem" (also called an abstract differential
equation),

#

9xptq “ Axptq, t ą 0

xp0q “ x0
(7.1)

where A is a linear operator on a dense subspace DpAq of a Banach space
X. DpAq is called the domain of the operator. If for each initial condition
x0 P X, a unique solution xp., x0q exists then, T ptqx0 :“ xpt, x0q, t ě 0 defines
an operator semigroup.

123



124 Chapter 7. Theoretical concepts

Definition 7.1.1 Operator semigroup
Consider the linear operator-valued function T ptq on X, for any t ě 0. It is an
operator semigroup if it satisfies

1. T p0q “ idX

2. T pt` sq “ T ptqT psq for all t, s ě 0.

Remark that the abstract differential equation extends the finite dimen-
sional case, where A is given by a matrix. In this case, the solution is given by
the matrix exponential xptq “ etAx0. This can be generalized for any operator
A in the set of linear and bounded operators on X, denoted LpXq, by the
operator valued function

T ptq “ etA :“
8
ÿ

n“0

tnAn

n! .

In most of the cases, the operator semigroup needs to be strongly continuous
to ensure that (7.1) admits a unique solution (see Section 7.2 for more details).
This important property is defined in the next definition.

Definition 7.1.2 Strongly continuous semigroup
A family pT ptqqtě0 of bounded linear operators on a Banach space X is called
a strongly continuous (C0-semigroup) if it is an operator semigroup and it
satisfies

}T ptqx0 ´ x0} Ñ 0 as tÑ 0` for all x0 P X.

The following proposition will be helpful to define a particular bound of the
semigroup, the growth bound, that plays an important role in the stability
analysis.

Proposition 7.1.1
For every strongly continuous semigroup pT ptqqtě0, there exist constants
ω P R and M ě 1 such that

}T ptq} ďMeωt,@t ě 0.

Remark that, whenM “ 1 and ω “ 0, the semigroup is called a contraction
semigroup. Now, the infimum of all the exponents ω can be introduced.

Definition 7.1.3 Growth bound
The growth bound of a strongly continuous semigroup pT ptqqtě0 is given by

ω0 :“ ω0pT q :“ inf
 

ω P R : there exists Mω ě 1 such that }T ptq} ďMωe
ωt,@t ě 0

(

.
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Moreover, one can express A as a function of T ptq. In this case, A is called the
generator of the semigroup.

Definition 7.1.4 Infinitesimal generator
The infinitesimal generator A of a C0-semigroup pT ptqqtě0 is the operator

Ax0 “ lim
tÑ0`

T ptqx0 ´ x0

t
, (7.2)

defined for every x0 P DpAq “ tx0 P X : (7.2) existsu .

As previously mentioned, T ptq is crucial to express the solution of (7.1). How-
ever, solutions of (7.1) can be characterized in two types, according to their
regularity with respect to the initial condition.

Definition 7.1.5 Classical solution
A differentiable function x : R` Ñ X is a classical solution of (7.1) if for all
t ě 0, xptq P DpAq and equation (7.1) is satisfied.

Definition 7.1.6 Mild solution
A continuous function x : R` Ñ X is a mild solution of (7.1) if

ż t

0
xpsqds P DpAq, xp0q “ x0 and xptq ´ x0 “ A

ż t

0
xpsqds,

for all t ě 0.

In some particular cases, one needs to deal with so-called perturbation systems
of the form

#

9xptq “ pA`Dqxptq, t ą 0

xp0q “ x0
(7.3)

where D P LpXq. In this case, the following result, taken from (Curtain and
Zwart, 2020, Chapter 3, Section 5) and generalized to Banach spaces, turns
out to be very interesting. Notice that this result is also introduced in (Klaus-
Jochen and Rainer, 2006, Chapter 3, Section 1) as the bounded perturbation
theorem.
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Theorem 7.1.1: Bounded perturbation Theorem
Suppose that A is the infinitesimal generator of a C0´semigroup T ptq on
a Banach space X and that D P LpXq.
Then, A`D is the infinitesimal generator of a C0-semigroup TDptq.
Moreover, if }T ptq} ďMeωt, then }TDptq} ďMepω`M}D}qt.
Furthermore, this C0-semigroup satisfies the following equations for every
x0 P X,

TDptqx0 “ T ptqx0 `

ż t

0
T pt´ sqDTDpsqx0ds

and
TDptqx0 “ T ptqx0 `

ż t

0
TDpt´ sqDT psqx0ds.

Finally other ways for generating new C0-semigroups are given below.

Proposition 7.1.2
Let T1ptq and T2ptq be C0-semigroups on their respective Banach spaces
X1 and X2, with infinitesimal generators A1 and A2, respectively.
Suppose that }Tiptq} ďMie

ωit, i “ 1, 2 and D P LpX1, X2q.

Then, the operator A “
ˆ

A1 0
D A2

˙

with DpAq “ DpA1q ˆ DpA2q is the

infinitesimal generator of the C0-semigroup T ptq on X “ X1 ˆX2 given
by

T ptq “

ˆ

T1ptq 0
Sptq T2ptq

˙

, Sptqx “

ż t

0
T2pt´ sqDT1psqxds.

Furthermore, there exists a positive constant M such that

}T ptq} ďMeωt,

where ω “ max tω1, ω2u if ω1 ‰ ω2 and ω ą ω1 if ω1 “ ω2.

A second way to generate new C0-semigroups is developed in (Schumacher,
1981, Lemma 4.5) and uses a similarity transformation, defined below.

Definition 7.1.7 Similarity transformation
A linear mapping between two Banach spaces is a similarity transformation if
the mapping is bounded and has a bounded inverse.

Hence, a semigroup can be modified thanks to such transformation, according
to the following result.
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Proposition 7.1.3
Suppose that J : X1 Ñ X2 is a similarity transformation between the
Banach spaces X1 and X2. Let T ptq be a semigroup on X1 with infinites-
imal generator A and growth bound ω0.
Then, the function T̃ ptq “ JT ptqJ´1 is a semigroup on X2.
Moreover, the infinitesimal generator of T̃ ptq is the operator Ã :“ JAJ´1

with domain DpÃq “
 

x P X2 : J´1x P DpAq
(

“ J rDpAqs, and the
growth constant of T̃ ptq is ω0.

Now that the foundations are established, the following section is dedicated
to results about the existence and uniqueness of solution, for the semilinear
case.

7.2 Existence and uniqueness of solution
This section presents an important result concerning the existence and

uniqueness of the solution for semilinear partial differential equations given
by

#

9xptq “ Axptq `N pxptqq , t ą 0

xp0q “ x0.
(7.4)

The result, partially presented in (Pazy, 1983, Chapter 6, Section 1) for Ba-
nach spaces, extends the proposition in (Curtain and Zwart, 2020, Chapter 11,
Section 1) stated for Hilbert spaces.

Theorem 7.2.1
Let A be the infinitesimal generator of the C0-semigroup pT ptqq on the
Banach space X.
If N : X Ñ X is uniformly Lipschitz continuous, then (7.4) admits a
unique mild solution on r0,8q, given by

xptq “ T ptqx0 `

ż t

0
T pt´ sqNx psq ds.

7.3 Method of characteristics
This section gives a brief insight on the method of characteristics, designed

to solve first order PDEs. This method is used several times in this thesis: in
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Sections 8.1, 8.2 and 9.2. The idea of the method is to reduce a PDE into
a family of ODEs along some curves, called the characteristics. This part is
inspired by (Salih (2016)) but many references exist on this subject. Only the
case of a first-order linear equation of the form

$

&

%

Bx

Bt
pt, aq ` c

Bx

Ba
pt, aq “ 0

xp0, aq “ fpaq
(7.5)

where c is a constant, is studied to introduce the methodology. The goal is
to reduce this problem along some curve aptq in the pa, tq-plane. Hence, the
objective is to find a curve aptq such that the PDE equation (7.5) is satisfied
along this curve. Therefore, one needs that

dxpt, aptqq

dt
“
Bx

Bt
pt, aq ` c

Bx

Ba
pt, aq “ 0

ô
dxpt, aptqq

dt
“
Bx

Bt

dt

dt
`
Bx

Ba

da

dt
“
Bx

Bt
`
Bx

Ba

da

dt

by the chain rule of differentiation. It follows that it is satisfied if da
dt

equals c.
Therefore, the PDE (7.5) can be viewed as the ordinary differential equation

dx

dt
“ 0, (7.6)

along any curves aptq that is solution of the equation

da

dt
“ c. (7.7)

By integrating equation (7.7), it follows that the characteristic curves are given
by aptq “ ct` ξ. Moreover, from equation (7.6), one can observe that the value
of x remains constant along any characteristic curve aptq. Hence, this value
can be determined thanks to the initial condition,

xpt, aq “ xp0, ξq “ fpξq.

Finally, since ξ “ a´ ct, then the solution of the PDE (7.5) is given by

xpt, aq “ fpa´ ctq.

Thus, the solution of the PDE (7.5) is the transportation of the initial profile
fpaq along the characteristics, with a speed of da

dt
“ c, as illustrated in Figure

7.1. Indeed, xpt1, aq “ fpa ´ ct1q “ xpa ´ ct1, 0q. The presented case is very
simple, but the methodology can be applied to other kinds of linear PDEs.
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a

x t

t0

t1

t2

ps, 0q

xpt, aq “ fpξq “ cst

xp0, aq “ fpaq

slope “ 1{c

Figure 7.1 – Characteristics (in dashed) and solutions (in blue) of the PDE
(7.5) at various time, inspired by (Salih (2016))

However, one helpful tool when dealing with more complex PDEs is to write
the previous method of characteristic using its parametric form.

Hence, we introduce a new parameter η such that a “ apηq “: aη, t “ tpηq “: tη
and xpt, aq “ xptpηq, apηqq “: xη. Therefore, one wants that

dxptpηq, apηqq

dη
“
Bx

Bt
` c
Bx

Ba
“ 0

ô
dxptpηq, apηqq

ds
“
Bx

Bt

dt

dη
`
Bx

Ba

da

dη
.

This is satisfied if
dtη
dη

“ 1; daη
dη

“ c and dxη
dη

“ 0.

Solving those equations implies

tη “ η ` t0; aη “ cη ` a0 and xη “ cst.

So, as previously, the solution xη is constant along the characteristics. Letting
t0 “ 0, a0 “ a0 implies that x0 “ xptp0q, ap0qq “ xp0, a0q “ fpa0q. Therefore,
xη “ x0 “ fpa0q “ fpaη ´ cηq. Hence, xpt, aq “ fpa ´ ctq. Notice that, in
some more complicated cases, as in Section 8.1 for instance, the domain of the
variable needs to be taken into account when solving the ODEs.
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7.4 Principle of linearized stability
Dealing with nonlinear PDEs systems is often difficult. However, some tools

have been developed to establish conclusions about the stability of equilibria of
nonlinear systems by studying their linearization. To linearize some equations,
one needs to compute the derivative of a nonlinear operator. The following
concepts introduce two notions of differentiability for operators that are useful
for the next theorem.

Definition 7.4.1 Gâteaux differentiability
Let N : DpN q Ď X Ñ X be a nonlinear operator on a Banach space X.
The operator N is Gâteaux differentiable at x0 P DpN q if there exists a linear
operator dN px0q : X Ñ X such that

lim
εÑ0

N px0 ` εzq ´N px0q

ε
“ dN px0qz,

for every z P DpN q such that x0 ` εz P DpN q for all ε sufficiently small. The
operator dN px0q is called the Gâteaux derivative of the operator N at x0.

Definition 7.4.2 Fréchet differentiability
The nonlinear operator N : DpN q Ď X Ñ X is said to be Fréchet differentiable
at x0 P DpN q if there exists a bounded linear operator dN px0q : X Ñ X such
that

lim
hÑ0

}N px0 ` hq ´N px0q ´ dN px0q}X

}h}X
“ 0,

where h is such that x0 ` h P DpN q.

Moreover, in the next theorem, the concept of exponential stability is de-
fined for an abstract differential equation. This extends Definition 2.3.2 to
infinite-dimensional systems. As for the finite case, exponential stability ex-
presses the fact that the trajectories of (7.8), i.e the C0´semigroup pSptqqtě0,
decay exponentially. Formally, as introduced in (Curtain and Zwart, 2020, Sec-
tion 4) (but stated here for Banach spaces), this means that the C0´semigroup
pSptqqtě0 satisfies the definition below.

Definition 7.4.3 Exponential stability
A strongly continuous semigroup pSptqqtě0 of bounded linear operators on a Ba-
nach space X, is (globally) exponentially stable if there exist positive constants
M and α such that

}Sptq} ďMe´αt,@t ě 0.

Finally, the following theorem needs the assumption that an operator is
dissipative. The next definition, from (Engel and Nagel, 2000, Definition 3.13),
recalls this concept.
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Definition 7.4.4 Dissipative operator
A linear operator pA,DpAqq on a Banach space X is called dissipative if

} pλId´Aqx} ě λ}x}

for all λ ą 0 and x P DpAq.

The process of studying the stability of the linearized system is called the
principle of linearized stability and it shows that, under some hypothesis, the
stability of the linearized system implies the local stability of the considered
equilibrium for the nonlinear system. This is introduced in the following theo-
rem, stated a particular case (with space X=Y ) of a result developed in (Hastir
et al., 2020, Theorem 9), that extends results of (Jamal and Morris (2018)), on
Banach spaces.

Theorem 7.4.1
Consider a semilinear system of the form

"

9x “ Ax`N pxq

x p0q “ x0
(7.8)

where A is a linear operator on its domain D pAq, which is a linear sub-
space of a Banach space X, and N is a nonlinear operator such that
N : D pAq XD pN q Ă X Ñ X.
Assume that (7.8) admits an equilibrium profile xe, i.e there exists
xe P D pAq XD pNq such that Axe `N pxeq “ 0.
Assume that the following conditions hold:

1. A is quasidissipative, i.e. there exists lA ą 0 such that the operator
A´ lAI is dissipative (see Definition 7.4.4) on D pAq XD pN q;

2. the nonlinear operator N is Lipschitz continuous on D pAqXD pN q
with respect to the X norm;

3. the operator A ` N is the infinitesimal generator of a nonlinear
C0´semigroup pS ptqqtě0 on X;

4. the Gâteaux derivative dN pxeq of N at xe is a bounded linear
operator on X;

5. the Gâteaux linearized dynamics of (7.8) is given by
"

9̄x “ pA` dN pxeqq x̄

x̄ p0q “ x0 ´ xe “ x̄0
(7.9)
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6. the nonlinear semigroup pS ptqqtě0 is Fréchet differentiable with
Fréchet derivative pTxe ptqqtě0 corresponding to the linear semi-
group generated by the Gâteaux derivative of A`N at xe.

Then, if the linearized system (7.9) is exponentially stable, then xe is
a locally exponentially stable equilibrium of (7.8). Moreover, if xe is
an unstable equilibrium of (7.9), it is locally unstable for the nonlinear
system (7.8).

In view of Proposition 7.1.1 and the Definition 7.1.3 of the growth bound,
the following result is obvious.

Proposition 7.4.1
The C0´semigroup pSptqqtě0 is exponentially stable if and only if ω0 ă 0.

7.5 Spectrum theory for stability analysis
In this section, the main concepts and results that are needed for the sta-

bility analysis developed in Subsection 8.2.2 are gathered. The definition and
results of this section are taken from (Klaus-Jochen and Rainer (2006)).
First, some concepts (linking numbers to linear operators) needed to investi-
gate stability of a system, are defined below.
Let

A : D pAq Ă X Ñ X

be a closed linear operator on a Banach space X.

Definition 7.5.1 Resolvent set, spectrum, resolvent operator
— The set ρpAq “ tλ P C : λId´A : D pAq Ñ X is bijectiveu is the resol-

vent set of A.
— The complement of the resolvent set, denoted σ pAq :“ C zρpAq, is the

spectrum of A.
— For λ P ρpAq, the operator RλpAq :“ pλId´Aq´1 is a bounded operator

on X and is called the resolvent of A at the point λ.

The spectrum of A can be characterized thanks to two quantities defined below.

Definition 7.5.2 Spectral radius and spectral bound
— The spectral radius, rpAq, of A is the supremum of the modulus of the

elements of its spectrum, i.e rpAq “ sup t|λ| : λ P σpAqu.
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— The spectral bound of A, spAq, is the supremum of the real parts of the
elements of its spectrum, i.e spAq “ sup tRe λ : λ P σpAqu.

Notice that spAq can be any real number or ´8 (if σpAq “ H). Moreover, the
spectral bound spAq is always dominated by the growth bound ω0 (see Defini-
tion (7.1.3)). Hence, ´8 ď spAq ď ω0.

The following definition concerns one subset of the spectrum of A.

Definition 7.5.3 Point spectrum
The set tλ P C : λId´A is not injectiveu is the point spectrum of A, denoted
by PσpAq.
Moreover, each λ P PσpAq is called an eigenvalue of A and each x P DpAq such
that x ‰ 0, satisfying pλId´Aqx “ 0 is an eigenvector of A (corresponding to
λ.)

As mentioned in (Webb (1985)), for a closed linear operator, the eigenvalues
of A are the poles of the resolvent.

Proposition 7.5.1
Let A be a closed linear operator in the complex Banach space X and let
λ0 be an isolated point of σ pAq. If λ0 is a pole of pλId´Aq´1 of order
m, then λ0 is an eigenvalue of A with multiplicity m.

Finally, the next definition characterizes a property of operators, leading to
interesting results in the case of spectrum theory.

Definition 7.5.4 Compact operator
An operator T P L pX,Y q is said to be compact if the image T pBq is relatively
compact in Y , with B the closed unit ball in X.

All the necessary concepts are introduced to be able to state the following
result, telling that, as in finite dimension, the spectrum and the point spectrum
of an operator with compact resolvent coincide. This is a corollary of the
"Spectral mapping theorem for the resolvent" (see (Klaus-Jochen and Rainer,
2006, Chapter V, Corollary 1.15))

Proposition 7.5.2
If the operator A has compact resolvent, then σpAq “ PσpAq.

Moreover the following theorem from (Heijmans (1986)) states that, under
some assumptions, the spectral radius of a positive and compact operator A,
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r pAq, is an eigenvalue of A. This theorem can thus be seen as an extension of
the Perron-Frobenius theorem to the infinite-dimensional case. But first let us
define some necessary concepts.

Definition 7.5.5 Cones and Positive operators
— A non-empty closed subset X` of a Banach space X is called a cone if

the following holds:
1. X` `X` Ă X`,
2. λX` Ă X` for λ ě 0,
3. X` X p´X`q “ t0u.

— The cone X` is called total if the set tx´ y : x, y P X`u is dense in X.
— A bounded linear operator A : X Ñ X is positive (with respect to the

cone X`) if Ax P X` for all x P X`.

Theorem 7.5.1
Let A : X Ñ X be compact and positive with respect to the total cone
X` Ď X (a Banach space) and let r pAq be the spectral radius of A.
Then, there exists a ψ P X`, ψ ‰ 0 such that Aψ “ rpAqψ.

In this thesis, a particular class of operators, named Volterra operators will be
encountered. The following proposition, coming from (Brunner, 2017, Chapter
8, Section 1), states results about the compactness of those operators, that are
linked to the property of their kernel, K.

Proposition 7.5.3: Compact Volterra operator
Let V be the Volterra integral operator defined by

pVfq ptq “
ż t

0
K pt, sq f psq ds.

Then
1. if K is continuous on its domain, D, V is a compact (and hence

bounded) operator from Lp p0, T q to Lp p0, T q for any p P r1,8q .
2. if K P L2 pDq, V is a compact (and hence bounded) operator from
L2 p0, T q to L2 p0, T q, with norm

}V}2 “

¨

˝

ż T

0

˜

ż T

0
|K pt, sq |2ds

¸2
˛

‚

1{2

.
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However, if one wants to establish that an operator, which is not a Volterra
operator, is compact, the next result will prove helpful. It requires the notion
of operator with finite rank, defined for instance in (Brezis (2011)).

Definition 7.5.6 Finite-rank Operators
Let X and Y denote two Banach spaces.
An operator A P LpX,Y q is said to be finite rank it the range of A, ImA :“
tAx : x P DpAqu Ă Y , is finite-dimensional.

Proposition 7.5.4
Any finite-rank operator is compact.

Moreover, the following proposition, find in (Yosida, 1980, Chapter X, Section
2), states some interesting properties about compact operators.

Proposition 7.5.5
1. A linear combination of compact operators is compact.
2. The composition of a compact operator with a bounded linear op-

erator is compact.
3. Let a sequence pTnq of compact operators Ă L pX,Y q converge to

an operator T in the sense of the uniform operator topology, i.e,
lim
nÑ8

}T ´ Tn} “ 0. Then, T is also compact.

Another interesting property about operators leads to some helpful spec-
trum theory results, in terms of eigenvalues. This applies to analytic families of
compact operators. First, let us recall what is an analytic family of operators
using (Steinberg (1968)).

Definition 7.5.7 Analytic family of operators
Let T : Ω Ă C Ñ B pXq, where B pXq is the set of bounded operators on X,
which is a Banach space. Then T pxq is said to be analytic in Ω if, for each
x0 P Ω,

T pxq “
8
ÿ

n“0
Tn px´ x0q

n
,

where Tn P B pXq and where the serie converges in the uniform operator topol-
ogy in some neighbourhood of x0.
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In the case of analytic families of compact operators T pxq, a proposition from
(Steinberg (1968)) shows that if pI ´ T pxqq is invertible for at least one x,
hence each of its singular points are poles.

Proposition 7.5.6
If T pxq is an analytic family of compact operators for x P Ω Ă C,
then pI ´ T pxqq is nowhere invertible in Ω or else pI ´ T pxqq´1 is
meromorphic a in Ω.

a. A meromorphic function is an holomorphic function in a domain Ωz ta1, a2, ...u

which has at every singular point ap a pole.

Concerning the spectral radius, one can state two useful results, in the case
of compact non-supporting operators. But first, let us define those operators,
using a definition from (Heijmans (1986)).

Definition 7.5.8 Non-supporting operator
Let X be a Banach space and X 1 its dual (the space of all linear functionals on
X).
A bounded, positive operator A : X Ñ X is called non-supporting with respect
to the cone X` if and only if for every pair ψ P X`z t0u , F P X 1`z t0u , there
exists a positive integer p such that for all n ě p, the value of F at Anψ,
denoted by rF,Anψs, is positive, i.e rF,Anψs ą 0.

Now, two propositions concerning the spectral radius of non-supporting oper-
ators can be applied. They are taken from (Inaba (1990)) and derived from
(Marek (1970)).

Proposition 7.5.7: Comparison Proposition
Let X be a Banach lattice a and let A, B P B pXq be positive operators.

1. If A ď B then, r pAq ď r pBq.
2. If A and B are compact (see Definition 7.5.4) and non-supporting

operators such that r pBq ‰ 0 and A ď B then, r pAq ă r pBq.

a. A Banach lattice is Banach space with a lattice order, i.e such that @ x, y P
X, |x| ď |y| ñ }x} ď }y} where |x| is the supremum of x and ´x.
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Proposition 7.5.8
Let X be a Banach lattice and let A P B pXq be compact and non-
supporting. Then, the following holds :

1. r pAq P Pσ pAq z t0u and r pAq is a simple pole of the resolvent, that
is, r pAq is an algebraically simple eigenvalue of A.

2. The eigenspace corresponding to r pAq, with corresponding eigen-
vector ψ P X`, is one-dimensional and the relation Aφ “ µφ with
φ P X` implies that φ “ cψ for some non-zero constant c.

3. The eigenspace of A‹ corresponding to r pAq is also one-dimensional
subspace of X‹ spanned by a strictly positive function f P X`.

Finally, a class of semigroups of interest in this thesis, with particular prop-
erties is introduced, as well as some spectrum theory results applying to those
semigroups.

Definition 7.5.9 Eventually norm-continuous
A strongly continuous semigroup pT ptqqtě0 is called eventually norm-continuous
if there exists t0 ě 0 such that the function tÑ T ptq P pLpXq, } ¨ }q is continu-
ous from pt0,8q into LpXq. It is called norm-continuous if t0 “ 0.

Remark that nilpotent semigroups, pT ptqqtě0 such that there exists r ą 0 :
T ptq “ 0, t ą r, are examples of eventually-continuous semigroups.

The following result, from (Arendt et al., 1983, A-II, Section 1, Theorem 1.30)
is useful to characterize semigroups obtained via an addititive perturbation

Theorem 7.5.2
Let pT ptqqtě0 be a C0-semigroup with generator A and B P L pXq.
If pT ptqqtě0 is holomorphic or norm-continuous or compact, then so is
the semigroup pS ptqqtě0 generated by A`B.
Moreover, if pT ptqqtě0 is eventually-norm continuous and if B is compact,
then pS ptqqtě0 is also eventually norm-continuous.

Now, a corollary of the "Spectral mapping theorem for the eventually norm-
continuous semigroups" (see (Klaus-Jochen and Rainer, 2006, Chapter V, Corol-
lary 2.9)) can be stated. It establishes the equality between the growth bound
and the spectral bound of an operator.
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Proposition 7.5.9
For an eventually norm-continuous semigroup pT ptqqtě0 with generator
pA,DpAqq on a Banach space X, it holds that spAq “ ω0.



Chapter 8
Dynamical analysis

In this chapter, questions about the well-posedness of the considered system
in terms of existence and uniqueness of a solution are investigated. Moreover,
a study of the stability of the equilibria is performed in order to have a better
knowledge concerning the behavior of the trajectories of the system. This
analysis is done by considering the system under a state feedback, contrary to
what has been done in (Inaba (2017)). Moreover, in this thesis, a proof of the
principle of linearized stability is given.

8.1 Well-posedness
This section is inspired by (Inaba (1990)) and (Inaba, 2017, Chapter 6).

First, the existence of a unique solution is established. Then, its well-posedness
in terms of physical meaning is studied. Those results are obtained using semi-
group theory results, recalled in Section 7.2 and the method of characteristics,
briefly introduced in Section 7.3.

8.1.1 Normalized SIR model
For the following analysis, it is easier to work with a normalized model in

order to consider only two equations instead of three. This is done by taking
into account the age density of the total population, P pt, aq “ S pt, aq`I pt, aq`

R pt, aq, whose dynamics is given by

BtP pt, aq ` κBaP pt, aq “ ´µ paqP pt, aq ,

with initial condition P p0, aq “ P0 paq and boundary condition P pt, 0q “ B.
The solution of this system can be determined by using the method of charac-

139
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teristics, as mentioned in (Hethcote (2008)),

P pt, aq “

$

’

’

’

&

’

’

’

%

B exp
ˆ

´
1
κ

ż a

0
µ pηq dη

˙

for t ě a

κ
,

P0 pa´ κtq exp
ˆ

´

ż a

a´κt

1
κ
µ pηq dη

˙

otherwise.

One can notice that lim
tÑ8

P pt, aq “ B exp
ˆ

´

ż a

0

1
κ
µ pηq dη

˙

“: P ‹ paq . Hence,

in the following analysis, it is assumed that the population has reached its de-
mographic steady-state, meaning that the age density of the host population
is given by P pt, aq “ P ‹paq.

In order to get a dimensionless model of System (6.11), new variables, s,
i and r defined by S pt, aq “ P ‹paqs pt, aq; I pt, aq “ P ‹paqi pt, aq; R pt, aq “
P ‹paqr pt, aq are introduced. Therefore, the PIDE model (6.11) can be rewrit-
ten as a nonlinear system of normalized partial integro-differential equations,
denoted by NPIDE,
$

’

’

’

’

&

’

’

’

’

%

pBt ` κBaq s pt, aq “ ´ppaqθ pt, aq s pt, aq ´ c paq s pt, aq

ż amax

0
ipt, bqP ‹pbqdb,

pBt ` κBaq i pt, aq “ ´γ paq i pt, aq ` c paq s pt, aq

ż amax

0
ipt, bqP ‹pbqdb,

pBt ` κBaq r pt, aq “ ppaqθ pt, aq s pt, aq ` γ paq i pt, aq

(8.1)
under initial conditions s p0, aq “ s0 paq , i p0, aq “ i0 paq , r p0, aq “ r0 paq and
boundary conditions s pt, 0q “ 1, i pt, 0q “ 0, r pt, 0q “ 0. Using those variables
leads to the invariance relation s pt, aq ` i pt, aq ` r pt, aq “ 1. Therefore, only
two equations are needed in order to characterize the dynamics of the disease
propagation.

8.1.2 Homogeneous normalized SIR model
Before entering the core of this chapter, one last change is performed to the

NPIDE model (8.1) in order to work with homogeneous boundary conditions.
Indeed, to perform dynamical analysis and stability analysis, it is easier to deal
with a system with homogeneous boundary conditions. Hence, the new variable
ŝ pt, aq “ s pt, aq ´ 1 yields an equivalent model with homogeneous boundary
conditions, which is denoted as HNPIDE,
$

’

’

’

’

&

’

’

’

’

%

pBt ` κBaq ŝ pt, aq “ ´ppaqθ pt, aq p1` ŝ pt, aqq

`c paq p1` ŝ pt, aqq
ż amax

0
ipt, bqP ‹ pbq db,

pBt ` κBaq i pt, aq “ ´γ paq i pt, aq ` c paq p1` ŝ pt, aqq
ż amax

0
ipt, bqP ‹ pbq db,

(8.2)
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under initial conditions ŝ p0, aq “ ŝ0 paq “ s0 paq ´ 1, i p0, aq “ i0 paq and
boundary conditions ŝ pt, 0q “ 0, i pt, 0q “ 0. With this new variables, the non-
negativity of the system is lost. However, the boundary conditions become
homogeneous.

In the analysis, the state space of the model is the Banach spaceX “ L1 p0, amaxq
ˆL1 p0, amaxq and its norm is defined for all x “ px1, x2q

T
P X by }x}X :“

}x} “ }x1}1 ` }x2}1 where }x}1 is the usual norm on L1 p0, amaxq. Moreover,
the physical space is

Ω “
!

pŝ, iq
T
P L1 p0, amaxq ˆ L1 p0, amaxq : ´1 ď ŝ` i ď 0

)

. (8.3)

This choice of space has the advantage to allow the (nonnegative) state vari-
ables to be interpreted as numbers of individuals. Moreover, in the dynamical
analysis developed in Chapter 9, this choice turns out to be fully appropriate.
Remark that in the following, the same units in age and time are considered for
the analysis, therefore κ equals 1. The results easily extend to the case where
κ is not equal to 1.

8.1.3 Existence and uniqueness
A key question before starting the design of a control law is to make sure

that the equations admit a unique solution. If this is not the case, no prediction
could be made on the basis of the model. The following theorem shows that the
HNPIDE (8.2) under state feedback has a unique solution. Therefore, it is also
the case for models PIDE (6.11) and NPIDE (8.1) since they are equivalent.
The choice of a state feedback has been made since this is the control method
that is applied in the following. In the next part of the thesis, this analysis will
be particularized since the obtained feedback will be linearizing.

Theorem 8.1.1
Assume that θpt, aq is given by a bounded Lipschitz continuous state
feedback law θpt, aq “ Θ̂ pxpt, aqq.
Then, for every x0 P L

1 p0, amaxq ˆ L1 p0, amaxq, the system HNPIDE
(8.2) has a unique mild solution on r0,8q.

Proof. In order to use Theorem 7.2.1, a semigroup formulation of the HNPIDE
model (8.2) is used. Hence, HNPIDE model (8.2) rewrites

dx̂ ptq

dt
“ Ax̂ ptq ` N̂ px̂ ptqq , x̂ p0q “ x̂0 (8.4)
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where x̂ “ pŝ, iqT is the state vector. Moreover, A is defined by

Ax̂ “

¨

˚

˝

´
dŝ

da
0

0 ´
di

da

˛

‹

‚

with D pAq “
!

pŝ, iq
T
P X : ŝ, i P AC r0, amaxs , and ŝ p0q “ i p0q “ 0

)

and N̂
is defined by

N̂ px̂q paq “

¨

˚

˚

˝

´ppaqΘ̂ px̂q paq p1` ŝ paqq ` c paq p1` ŝ paqq
ż amax

0
ipbqP ‹ pbq db

´γ paq i paq ` c paq p1` ŝ paqq
ż amax

0
ipbqP ‹ pbq db

˛

‹

‹

‚

.

Firstly, one can notice that A is the infinitesimal generator of a C0´semigroup
of the form

ˆ

T1 ptq 0
0 T1 ptq

˙

where
pT1 ptqxq paq “

"

0 if a ă t,

x pa´ tq if a ě t.

Secondly, the operator N̂ is Lipschitz continuous on X. Indeed, when com-
puting }N̂ px̂q ´ N̂ px̂1q}X , the Lipschitz property of the linear terms is trivial.
However, for the nonlinear terms, some further calculations are needed. Two
of those terms are developed here. The other ones can be handled by the same
reasoning. For one of the nonlinear terms one has that
ż amax

0

ˇ

ˇ

ˇ
´ppaqΘ̂px̂q paq ŝpaq ` ppaqΘ̂px̂1q paq ŝ1paq

ˇ

ˇ

ˇ
da

“

ż amax

0

ˇ

ˇ

ˇ
ppaq

´

´Θ̂px̂q paq ŝpaq ` Θ̂px̂1q paq ŝ1paq`Θ̂px̂q paq ŝ1paq ´ Θ̂px̂q paq ŝ1paq
¯
ˇ

ˇ

ˇ
da

ď

ż amax

0
ppaqΘ̂px̂q paq |ŝpaq ´ ŝ1paq|da`

ż amax

0
ppaq|ŝ1paq||Θ̂px̂q paq ´ Θ̂px̂1q paq |da

ď
¯̂Θ}ŝ´ ŝ1}1 ` LΘ̂}x̂´ x̂

1}X

ż amax

0
|ŝ1paq|da,

ď
¯̂Θ}ŝ´ ŝ1}1 ` LΘ̂M}x̂´ x̂

1}X ,

using the fact Θ̂ is Lipschitz with positive constant LΘ̂, ppaq is smaller than
1 for all a since it is a probability, Θ̂px̂q ď ¯̂Θ since Θ̂ is bounded and ŝ is in
L1p0, amaxq. Another nonlinear term satisfies
ż amax

0

ˇ

ˇ

ˇ

ˇ

´cpaqŝpaq

ż amax

0
ipbqP ‹ pbq db` cpaqŝ1paq

ż amax

0
i1pbqP ‹ pbq db

ˇ

ˇ

ˇ

ˇ

da
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“

ż amax

0

ˇ

ˇ

ˇ

ˇ

cpaq

ˆ

´ŝpaq

ż amax

0
ipbqP ‹ pbq db` ŝ1paq

ż amax

0
i1pbqP ‹ pbq db

`ŝ1paq

ż amax

0
ipbqP ‹ pbq db´ ŝ1paq

ż amax

0
ipbqP ‹ pbq db

˙
ˇ

ˇ

ˇ

ˇ

da

ď

ż amax

0
cpaq

ż amax

0
|ipbq|P ‹ pbq db|ŝpaq ´ ŝ1paq|da

`

ż amax

0
cpaq|ŝ1paq|

ˇ

ˇ

ˇ

ˇ

ż amax

0
pipbq ´ i1pbqqP ‹ pbq db

ˇ

ˇ

ˇ

ˇ

ď c̄P̄

ż amax

0
|ipbq|db}ŝ´ ŝ1}1 ` c̄P̄ }i´ i

1}1,

ď c̄P̄M 1}ŝ´ ŝ1}1 ` c̄P̄ }i´ i
1}1,

since cpaq ď c̄ for all a and P ‹paq ď P̄ , for all a ě 0. By similar arguments ap-
plied to the other nonlinear terms, it follows that }N̂ px̂q´N̂ px̂1q} ď C}x̂´ x̂1}X
for some positive constant C. Hence, applying Theorem 7.2.1 to the semilinear
problem (8.4) implies that there exists a unique mild solution of (8.2) ˝

Since x̂ is a mild solution, then x̂ptq equals to T ptq x̂0`

ż t

0
T pt´ sq N̂ px̂q psq ds.

8.1.4 Nonnegativity of the states
It can be shown that the model is realistic in the sense that the quantities s

and i are in r0, 1s, since they are proportions, if a meaningful initial condition is
chosen. The following stronger result, inspired by (Inaba (1990)) and extended
to the case of an SIR model with input, states this fact.

Proposition 8.1.1
Let

Ω̃ :“
 

pŝ, iq P L1 p0, Lq ˆ L1 p0, Lq : ŝ ě ´1, i ě 0
(

and let

Ω̃0 :“
 

pŝ, iq P L1 p0, Lq ˆ L1 p0, Lq : ´1 ď ŝ ď 0, 0 ď i ď 1
(

Then the mild solution x pt;x0q, with x0 P Ω̃ enters into Ω̃0 after a finite
time. Moreover, the set Ω̃0 is positively invariant with respect to (8.2).

Proof.
— Step 1: Show that ŝ is bigger than ´1. To do so, let us solve the first

equation of (8.1) by using the method of characteristics (see Section
7.3 for a brief summary of this method). For ease of calculation, the
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notation β̄pt, aq “ cpaq

ż amax

0
ipt, bqP ‹pbqdb is introduced, so the first

equation of (8.1) is given by

pBt ` Baq s pt, aq “ ´
`

ppaqθ pt, aq ` β̄pt, aq
˘

s pt, aq , (8.5)

with the initial and boundary conditions equal to sp0, aq “ s0paq and
spt, 0q “ 1, respectively. A new variable η is introduced to parameterize
the equation. Hence, a “ aη, t “ tη and spt, aq “ sptη, aηq “ sη. The
method of characteristics implies to solve

dtη
dη

“ 1; daη
dη

“ 1

and
dsη
dη

“ ´
`

ppaηqθ ptη, aηq ` β̄ptη, aηq
˘

s ptη, aηq . (8.6)

The first two ODEs give tη “ η ` t0 and aη “ η ` a0. Let a0 “ 0. Two
cases can be identified.
Either a ă t, then integrating (8.6) from 0 to η implies that

sη “ spt0, a0q exp
ˆ

´

ż η

0
ppaη1qθ ptη1 , aη1q ` β̄ptη1 , aη1qdη

1

˙

ôspt, aq “ exp
ˆ

´

ż a

0
ppη1qθ

`

η1 ` t0, η
1
˘

` β̄pη1 ` t0, η
1qdη1

˙

ôspt, aq “ exp
ˆ

´

ż a

0
ppη1qθ

`

η1 ` t´ a, η1
˘

` β̄pη1 ` t´ a, η1qdη1
˙

.

Either a ě t, then integrating (8.6) from ´t0 to η implies that

sη “ spt´t0 , a´t0q exp
ˆ

´

ż η

´t0

ppaη1qθ ptη1 , aη1q ` β̄ptη1 , aη1qdη
1

˙

ôsptη, aηq “ sp0,´t0q exp
ˆ

´

ż aη

´t0

ppη1qθ
`

η1 ` t0, η
1
˘

` β̄pη1 ` t0, η
1qdη1

˙

ôspt, aq “ s0pa´ tq exp
ˆ

´

ż a

a´t

ppη1qθ
`

η1 ` t´ a, η1
˘

` β̄pη1 ` t´ a, η1qdη1
˙

ôspt, aq “ s0pa´ tq exp
ˆ

´

ż t

0
ppξ ` a´ tqθ pξ, ξ ` a´ tq ` β̄pξ, ξ ` a´ tqdξ

˙

,

by a change of integration variables. To summarize, the solution s is
obtained as

s pt, aq “

$

’

’

’

’

’

&

’

’

’

’

’

%

exp
ˆ

´

ż a

0
ppη1qθ

`

η1 ` t´ a, η1
˘

` β̄
`

η1 ` t´ a, η1
˘

dη1
˙

if t ą a,

s0 pa´ tqˆ

exp
ˆ

´

ż t

0
ppξ ` a´ tqθ pξ, ξ ` a´ tq ` β̄ pξ, ξ ` a´ tq dξ

˙

if t ď a.
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It follows that s ě 0 when s0 paq ě 0. Since x0 P Ω̃, then ŝ ě ´1.

— Step 2: Show that i is nonnegative. The abstract Cauchy problem for
the variable pŝ, iq is considered, so the second equation of (8.2) is given
by

$

’

&

’

%

di ptq

dt
“ Ei ptq ` pQi ptqq p1` ŝ ptqq ,

i p0q “ i0

where E “ ´ d

da
´ γ on the domain

D pEq “
 

i P L1 p0, amaxq , i P AC r0, amaxs , i p0q “ 0
(

and pQi ptqq “
ż amax

0
c paq i pt, bqP ‹ pbq db. Notice that E is a closed op-

erator on DpEq and it is the infinitesimal generator of the C0-semigroup
`

T̃ ptq
˘

tě0 such that

T̃ ptq i0 “

$

’

&

’

%

i0 pa´ tq exp p´γtq if a ě t,

0 otherwise.

As seen previously, the solution of such an abstract Cauchy Problem is
given by

i ptq “ T̃ ptq i0 `

ż t

0
T̃ pt´ xq pQi pxqq p1` ŝ pxqq dx.

Since T̃ ptq is nonnegative for all t ě 0 (its expression can be easily
obtained using the method of characteristics), i0 ě 0 because x0 P Ω̃
and ŝ is bigger than ´1 by Step 1, then i ptq, which can be obtained by
monotone iteration,

i0 ptq “ i0

in`1 ptq “ T̃ ptq i0 `

ż t

0
T̃ pt´ xq

`

QT̃ pxq in pxq
˘

p1` ŝ pxqq dx for n “ 1, 2, ...

is nonnegative.
— Step 3: Show that ŝ ď 0 and i ď 1. In order to do this, consider

w ptq “ ŝ ptq ` i ptq. The abstract Cauchy problem of w is given by

dw

dt
“ Fw ptq ´ γi ptq
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where F “ ´ d

da
with domain

D pF q “
 

w P L1 p0, amaxq , w P AC r0, amaxs , w p0q “ 0
(

.

Therefore, the solution w of this problem is given by

w ptq “ T1 ptqw0 ´

ż t

0
T1 pt´ sq γi psq ds. (8.7)

T1 ptq is a positive nilpotent semigroup generated by the operator F .
Therefore, it follows from (8.7) that

w ptq ď T1 ptqw0 “

$

’

&

’

%

w pa´ tq if a ě t,

0 otherwise.

Therefore, if t ą amax ě a, then w ptq ď 0 and since i ptq ě 0 and
ŝ ptq ě ´1 by steps 1 and 2, it follows that ŝ ď 0 and i ď 1. Thus,
the mild solution x pt;x0q with x0 P Ω̃ enters into Ω̃0 for t ě amax.
Furthermore, if x0 P Ω̃0, then x pt;x0q P Ω̃0 for all t ě 0.

˝

8.2 Stability
The previous section showed that there exists a unique solution for the

PIDE model and that this solution has a physical meaning. The goal of this
section is to study the stability of the distributed parameter age-dependent epi-
demic system to understand its long-term behavior. This analysis will justify
the importance of the design of a control law in order to get disease eradica-
tion. This section is divided in several parts. First, the characterization of the
equilibria of the system is performed. Then, the stability of the equilibria is
analyzed, based on the principle of linearized stability, semigroup theory and
property of operators.

8.2.1 Existence of steady-states
This part, dedicated to the characterization of the equilibria of system

NPIDE (8.1), is inspired by (Bastin and Coron (2016)), but in this thesis an
additional input, θpt, aq, is considered.

A partial differential equation admits an equilibria if the partial derivative
of the variable with respect to time is zero. In the case of the PIDE model
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(6.11), that means that the variables S, I and R do not depend on t. It follows,
by the definition of the new variables s, i and r, that they are independent of
the time. Moreover, at the equilibrium, the input θpt, aq does not depend on
time and is denoted by θ‹paq. Therefore, from the Model (8.1), where only the
two first equations are needed, a steady-state ps‹, i‹qT is the solution of

$

’

’

&

’

’

%

ds‹

da
“ ´c paq s‹ paqψ‹ ´ ppaqθ‹ paq s‹ paq ,

di‹

da
“ c paq s‹ paqψ‹ ´ γ paq i‹ paq

with

s‹ p0q “ 1, i‹ p0q “ 0

where ψ‹ “
ż amax

0
i‹ pbqP ‹ pbq db.

The solution of the first ODE is immediate as this ODE is separable. The
second ODE is linear thus, by solving the homogeneous equation in first step
and then by varying the constant, the solution is obtained. Therefore, the
steady-state is

s‹ paq “ exp
ˆ

´

ż a

0
pc pσqψ‹ ` ppσqθ‹ pσqq dσ

˙

, (8.8)

i‹ paq “ Γ paqψ‹
ż a

0

c pσq s‹ pσq

Γ pσq dσ (8.9)

where Γ paq “ exp
ˆ

´

ż a

0
γ pσq dσ

˙

.

In view of equation (8.9) and the definition of ψ‹, there exists a steady-
state if ψ‹ satisfies

ψ‹ “

ż amax

0
P ‹ pbqΓ pbqψ‹

ż b

0

c pσq s‹ pσq

Γ pσq dσdb. (8.10)

A trivial solution is obtained if ψ‹ equals zero. Then, the equilibrium is
ˆ

exp
ˆ

´

ż a

0
ppσqθ‹ pσq dσ

˙

, 0
˙

which corresponds to the disease-free steady-
state.
Now, let check the existence of other steady-states if ψ‹ is not zero. Therefore,
the equation (8.10) can be divided by ψ‹ and become
ż amax

0
P ‹ pbqΓ pbq

ż b

0

c pσq

Γ pσq exp
ˆ

´

ż σ

0
pc pηqψ‹ ` ppηqθ‹ pηqq dη

˙

dσdb
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

not.
“ Rpψ‹q

“ 1.



148 Chapter 8. Dynamical analysis

Note that R pψ‹q is a positive decreasing function with lim
ψ‹Ñ8

R pψ‹q “ 0 and

lim
ψ‹Ñ´8

R pψ‹q “ 8. Therefore, the equation R pψ‹q equals 1 is satisfied if and

only if R p0q ą 1 since ψ‹ ą 0. Therefore, there is an endemic state if R p0q ą 1.

Summary
Let

Rp0q “
ż amax

0
P ‹ pbqΓ pbq

ż b

0

c pσq

Γ pσq exp
ˆ

´

ż σ

0
ppηqθ‹ pηq dη

˙

dσdb,

(8.11)

where Γ pσq “ exp
ˆ

´

ż σ

0
γ pηq dη

˙

.

If R p0q ď 1, the NPIDE model (8.1) admits only one epidemic
steady-state, the disease-free equilibrium, corresponding to ψ‹ “ 0.
If R p0q ą 1, there are two endemic steady-states for the NPIDE
model (8.1), one corresponding to the disease-free equilibrium and
the other one corresponding to ψ‹ ‰ 0.

R p0q, defined rigorously in (Diekmann et al. (1990)) and used in most of
epidemiology papers because it expresses if a new epidemic will die out or can
spread, is known as the basic reproduction number of the infection. Notice that
one gets the parameter R0 “

CN

γ
of a standard SIR model without vaccination

when the parameters of equation (8.11) are considered independent of the age
and by taking amax “ 8. This last choice allows to consider all the individuals
as being in the same class of age, which is the case in the standard SIR model.

8.2.2 Stability analysis
It remains to establish the stability of the equilibria, according to the value

of Rp0q.

Principle of linearized stability

The study of the stability analysis is performed using the principle of lin-
earized stability. Proposition 8.2.1 shows that this principle holds, based on
Theorem 7.4.1.
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Proposition 8.2.1
If the linearization (around x‹) of the nonlinear HNPIDE Model (8.2)
where θpt, aq is given by a bounded Lipschitz continuous state feedback
law θpt, aq “ Θ̂ px̂pt, aqq is (globally) exponentially stable, then x‹ is a
locally exponentially stable equilibrium of Model (8.2) with θpt, aq “

Θ̂ px̂pt, aqq. Moreover, if the linearization (around x‹) of Model (8.2)
with θpt, aq “ Θ̂ px̂pt, aqq is unstable, x‹ is locally unstable (i.e. not
asymptotically stable) for Model (8.2) with θpt, aq “ Θ̂ px̂pt, aqq.

Proof.
Step 1: Equations (8.2) of the HNPIDE model can be rewritten as the abstract
differential equation (8.4), where

DpN̂ q “ tx̂ P X : ´1 ď ŝ ď 0, 0 ď i ď 1 a.e. on r0, amaxsu .

This corresponds to the system introduced in Theorem 7.4.1.

Step 2: The operator A is quasidissipative. Indeed, let λ ą 0 and x̂ “ pŝ, iqT P
D pAqXDpN̂ q be arbitrarily fixed, knowing that ´1 ď ŝ ă 0 and 0 ď i ď 1, we
get the following inequalities for any lA ą 0:

} pλId´A` lAIdq x̂}X “

ż amax

0

ˇ

ˇ

ˇ

ˇ

pλ` lAq ŝ paq `
dŝ paq

da

ˇ

ˇ

ˇ

ˇ

da

`

ż amax

0

ˇ

ˇ

ˇ

ˇ

pλ` lAq i paq `
di paq

da

ˇ

ˇ

ˇ

ˇ

da

ě

ˇ

ˇ

ˇ

ˇ

ż amax

0
pλ` lAq ŝ paq da

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż amax

0
pλ` lAq i paq da

ˇ

ˇ

ˇ

ˇ

ě λ}x̂}X .

Step 3: The operator N̂ is Lipschitz continuous on D pAq X DpN̂ q. The proof
here is similar to the one presented in Theorem 8.1.1, except that in the previous
theorem, the Lipschitz property was on X. When computing }N̂ px̂q´N̂ px̂1q}X ,
for x̂, x̂1 P D pAq X DpN̂ q, the Lipschitz property of the linear terms is trivial.
However, for the nonlinear terms, some further calculation is needed. One of
those terms is developed here. The other ones can be handled by the same
reasoning. The nonlinear term considered satisfies
ż amax

0

ˇ

ˇ

ˇ
´ppaqΘ̂px̂q paq ŝpaq ` ppaqΘ̂px̂1q paq ŝ1paq

ˇ

ˇ

ˇ
da

ď

ż amax

0
ppaqΘ̂px̂q paq |ŝpaq ´ ŝ1paq|da`

ż amax

0
ppaq|ŝ1paq||Θ̂px̂q paq ´ Θ̂px̂1q paq |da
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ď
¯̂Θ}ŝ´ ŝ1}1 ` η}x̂´ x̂1},

using the fact Θ̂ is Lipschitz with positive constant η, ppaq is smaller than 1
for all a since it is a probability, Θ̂px̂q ď ¯̂Θ since Θ̂ is bounded and |ŝ| ď 1.
By similar arguments applied to the other nonlinear terms, it follows that
}N̂ px̂q ´ N̂ px̂1q}X ď C|x̂´ x̂1}X for some positive constant C.

Step 4: Theorem 8.1.1 concludes the existence of a mild solution x̂ ptq “ S ptq x̂0
of (8.2) for all t ě 0.

Step 5: The Gâteaux derivative of N̂ satisfies assumptions of Theorem 7.4.1.
Indeed, by Definition 7.4.1, the Gâteaux derivative of N̂ at x̂‹ “ pŝ‹ paq , i‹ paqqT “
ps‹ paq ´ 1, i‹ paqqT is given by

dN̂ px̂‹q z “ lim
εÑ0

N̂ px̂‹ ` εzq ´ N̂ px̂‹q

ε

“

˜

´c p¨q p1` ŝ‹ p¨qqΨ pyq ´ x p¨q
´

pp¨qΘ̂px̂‹q p¨q ` c p¨qψ‹
¯

´γ p¨q ` c p¨q p1` ŝ‹ p¨qqΨ pyq ` x p¨q c p¨qψ‹

¸

for all z “ px, yq
T
P X, where Ψ pvq “

ż amax

0
v pbqP ‹ pbq db and ψ‹ “ Ψpi‹q.

Using the fact that γ p¨q and c p¨q are bounded and 1` ŝ‹ paq ď 1 one can show
that dN̂ px̂eq is bounded. Moreover it is a linear operator.

Step 6: The nonlinear semigroup generated by the operator A ` N̂ is Fréchet
differentiable. This is the case if the nonlinear operator N̂ is Fréchet differen-
tiable at x̂e and that pS ptqqtě0 depends continuously on the initial conditions.
First, one can notice, using Definition 7.4.2, that N̂ is Fréchet differentiable at
x̂‹ if there exists a bounded linear operator DN̂ px̂‹q : X Ñ X such that, for

all h “ ph1, h2q
T
P X, lim

hÑ0

}N̂ px̂‹ ` hq ´ N̂ px̂‹q ´DN̂ px̂‹qh}

}h}
“ 0. It can be

shown that dN̂ px̂‹q is convenient. Indeed, }N̂ px̂‹ ` hq ´ N̂ px̂‹q ´ dN̂ px̂‹qh}

“ 2
ż amax

0
|c paqh1 paqΨ ph2q |da. When this is divided by }h}, it can be shown

that it is smaller than K}h1}1 which tends to 0. Therefore, N̂ is Fréchet dif-
ferentiable.
Moreover, considering the change of variables x̃ “ x̂´x̂‹, the following abstract
differential equation is obtained,

"

9̃x “ Ax̃` Ñ px̃q

x̃ p0q “ x̃0

where Ñ : X Ñ X is given by Ñ px̃q “ N̂ px̃` x̂‹q ´ N̂ px̂‹q and A is the
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infinitesimal generator of a semigroup of contraction pT ptqqtě0 . Therefore, with
x̃ptq “ Sptqx̃0,

}x̃ptq} ď }T ptq x̃0} `

ż t

0
}T pt´ sq }}Ñ ps, x̃ psqq }ds

ď }x̃0} `

ż t

0
}N̂ px̃` x̂‹q ´ N̂ px̂‹q }ds

ď }x̃0} `K

ż t

0
}x̃psq}ds.

Hence, }x̃ptq} ď }x̃0}e
Kt by Grönwall’s inequality.

Step 7: The conclusion follows from the previous steps by using Theorem 7.4.1.
˝

Linearisation

The following analysis is inspired by the articles (Inaba (1990)) and (Inaba
(2006)) but where an additional input is considered. The analysis is performed
on Model (8.1) where θpt, aq is assumed given by a bounded Lipschitz contin-
uous state feedback law θpt, aq “ Θ pxpt, aqq.

The NPIDE model (8.1) can be rewritten via an abstract Cauchy problem
"

9x “ Ax`N pxq

x p0q “ x0
(8.12)

where x “ ps, iqT and

A “

¨

˚

˝

´
d¨

da
0

0 ´
d¨

da

˛

‹

‚

(8.13)

on the domain D pAq “ tx P X such that s, i P AC r0, amaxs and s p0q “ 1, i p0q “ 0u.
Moreover N : D pN q Ñ X is defined for all x P X by

N pxq “

¨

˚

˚

˝

´

ˆ

pp¨qΘ pxq p¨q ` c p¨q
ż amax

0
ipbqP ‹ pbq db

˙

s p¨q

´γ p¨q i p¨q ` c p¨q s p¨q

ż amax

0
ipbqP ‹ pbq db

˛

‹

‹

‚

where D pN q “ tx P X : 0 ď s, i ď 1 a.e. on r0, amaxsu .
As mentioned in Theorem 7.4.1, the Gâteaux linearized dynamics of (8.12) is
given by

"

9u “ pA` Equ

u p0q “ x0 ´ x
‹ “ u0

(8.14)
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where u “ pu1, u2q
T “ ps´ s‹, i´ i‹qT , A is given by (8.13) on the domain

D pAq “
!

u P L1 p0, amaxq ˆ L1 p0, amaxq : ui P AC r0, amaxs , u p0q “ p0, 0qT
)

.
Furthermore, E “ dN px‹q , the Gâteaux derivative of N at x‹ “ ps‹, i‹qT and
is given by

Eu “

¨

˝

´
`

p p¨qΘu pu
‹q p¨q ` β̄‹ p¨q

˘

u1 p¨q ´ pFu2q p¨q s
‹ p¨q

β̄‹ p¨qu1 p¨q ´ γ p¨qu2 p¨q ` pFu2q p¨q s
‹ p¨q

˛

‚

where Θupuq “ Θpu ` ps‹, i‹qq, β̄‹paq “ c paqψ‹ and F is a bounded linear
operator on L1 p0, amaxq given by

pFuq paq “

ż amax

0
c paqP ‹ pbqu pbq db “ c paqΨpuq.

Stability analysis

In view of Proposition 8.2.1, the stability analysis can be performed for
the linearised system (8.14). Hence, thanks to Proposition 7.4.1 it suffices
to find the growth bound of the semigroup generated by A ` E, ω0 pA` Eq

and if it is negative then the equilibrium u equals 0 is globally exponentially
asymptotically stable. Therefore, this holds locally for the NPIDE model (8.1).

Several results introduced in Chapter 7 will be helpful to find this growth
bound. For the sake of clarity, the main steps of the methodology are high-
lighted.

Step 1: Link the growth bound ω0pA` Eq to the point spectrum PσpA` Eq.

First, let us introduce the following lemma which shows that the operator
F is compact. This property will be useful in the sequel. The proof is based
on Proposition 7.5.4.

Lemma 8.2.1
Let c p¨q P L8 p0, amaxq. Then, the operator F is compact.

Proof.
Let v P L1 p0, amaxq.
By definition of ImF , v P ImF ô there exists u P L1 p0, amaxq such that v “
Fu. By using the definition of F , this means that there exists u P L1 p0, amaxq
such that vp¨q “ cp¨qΨpuq, where Ψpuq P R and c p¨q P L8 p0, amaxq. Hence,
ImF “ span tcu, which is finite-dimensional. Therefore, F is a finite-rank
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operator, so by Proposition 7.5.4 it is compact. ˝

The following result, using Proposition 7.5.9, shows that the growth bound
ω0pA`Eq of the linear operator A`E can be obtained by finding the spectral
bound spA` Eq of this operator.

Proposition 8.2.2

ω0pA` Eq “ spA` Eq “: sup tRe λ : λ P σpA` Equ

Proof. The semigroup pT ptqqtě0 generated by A ` E is an eventually norm-
continuous semigroup. Indeed, A`E can be rewritten as pA` E1q `E2 to be
able to apply Theorem 7.5.2, with

E1u “

ˆ

´
`

p p¨qΘu pu
‹q p¨q ` β̄‹ p¨q

˘

u1 p¨q

β̄‹ p¨qu1 p¨q ´ γ p¨qu2 p¨q

˙

and E2u “

ˆ

´pFu2q p¨q s
‹ p¨q

pFu2q p¨q s
‹ p¨q

˙

.

This rewriting is needed because E is not compact. Indeed, identity operators
in infinite dimensional spaces are not compact.
By using the method of characteristics, the C0-semigroup generated by A`E1

is given, accordingly to Proposition 7.1.2, by pS ptqqtě0 “

ˆ

S11 ptq 0
S21 ptq S22 ptq

˙

where

pS11 ptqu1q paq “

$

’

’

&

’

’

%

0 if t ą a,

u10 pa´ tq exp
ˆ

´

ż a

a´t

ppηqΘu pu
‹q pηq ` β̄‹ pηq dη

˙

if t ď a,

pS22 ptqu2q paq “

$

’

’

&

’

’

%

0 if t ą a,

u20 pa´ tq exp
ˆ

´

ż a

a´t

γ pηq dη

˙

if t ď a,

pS21 ptqu1q paq “

$

’

’

&

’

’

%

0 if t ą a,

ż t

0
S22 pt´ sq β̄

‹ paqS11 psqu1 paq ds if t ď a

Therefore A ` E1 is the generator of a nilpotent translation semigroup and,
as mentioned in Section 7.5, it is an eventually norm-continuous semigroup.
Since E2 is defined by the operator F which is a compact operator, as shown
in Lemma 8.2.1, the semigroup generated by A ` E is an eventually norm-
continuous semigroup by Theorem 7.5.2. Then applying Proposition 7.5.9, the
equality between the growth bound of A`E and its spectral bound follows. ˝
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Since the study of the spectral bound of A ` E requires the knowledge of
the spectrum of A ` E, σ pA` Eq, the next step is to link the spectrum of
A` E to the point spectrum of A` E, Pσ pA` Eq which is easier to find.

Proposition 8.2.3

σpA` Eq “ PσpA` Eq

Proof. To apply Proposition 7.5.2, one needs to show that the resolvent of
A` E, RλpA` Eq is compact. Hence, its expression is needed. It is found by
solving the resolvent equation

pλId´ pA` Eqqφ “ ψ,

where φ “ pφ1, φ2q
T
P D pAq , ψ “ pψ1, ψ2q

T
P L1 p0, amaxq ˆ L1 p0, amaxq , λ P

C. Both ODEs are linear so by the variation of constant formula, the solution
is given by, using expression (8.8) of s‹,

$

’

’

’

’

’

&

’

’

’

’

’

%

φ1 paq “ e´λas‹ paq

ż a

0
eλσ

ˆ

ψ1 pσq

s‹ pσq
´ pFφ2q pσq

˙

dσ, (8.15a)

φ2 paq “ e´λaΓ paq
ż a

0

eλσ

Γ pσq pψ2 pσq ` pFφ2q pσq s
‹ pσq

` β̄‹ pσqφ1 pσq
˘

dσ (8.15b)

This solution is unique and determined by the initial conditions of the problem.
However, φ2 is implicit so more calculations are needed. Multiplying both sides
of the equation (8.15b), evaluated in b, by s‹ paq c paqP ‹ pbq and then integrating
with respect to b from 0 to amax and using equation (8.15a), gives

s‹ paq pFφ2q paq “ s‹ paq

ż amax

0
c paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσqs

‹ pσq pFφ2q pσq

ˆ

˜

1´
ż b

σ

Γ pσq s‹ pηq
Γ pηq s‹ pσq β̄

‹ pηq dη

¸

looooooooooooooooooomooooooooooooooooooon

not.
“: Πpb,σq

dσdb` χ pλ, aq

where

χ pλ, aq “s‹ paq

ż amax

0
c paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσq

ˆ

ˆ

ψ2 pσq ` β̄
‹ pσq s‹ pσq

ż σ

0
e´λpσ´ηq

ψ1 pηq

s‹ pηq
dη

˙

dσdb.
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This equation can be rewritten in terms of operators as

pId´B pλqq pω paqq “ χ pλ, aq

with ω paq “ s‹ paq pFφ2q paq

and pB pλqωq paq “ s‹ paq

ż amax

0
c paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσqΠ pb, σqω pσq dσdb.

Remark that the resolvent equation is solvable if Id ´ B pλq is invertible in
L
`

L1 p0, amaxq
˘

. Then, the resolvent of A` E is

$

’

’

’

&

’

’

’

%

φ1 paq “ e´λas‹ paq

ż a

0
eλσ

˜

ψ1 pσq

s‹ pσq
´
pI ´B pλqq

´1
χ pλ, σq

s‹ pσq

¸

dσ,

φ2 paq “ e´λaΓ paq
ż a

0

eλσ

Γ pσq

´

ψ2 pσq ` pI ´B pλqq
´1
χ pλ, σq ` β̄‹ pσqφ1 pσq

¯

dσ.

It is easily shown that the family of linear operators B pλq on L1 p0, amaxq is a
family of compact operators. Indeed, let λ P C and define

pUλzq paq “

ż a

0
e´λpa´σq

Γ paq
Γ pσqΠ pa, σq z pσq dσ.

Uλ is a compact operator by Proposition 7.5.3 as it is a Volterra operator on
L1 p0, amaxq. Then, B pλq can be rewritten as

pBλωq paq “

ż amax

0
s‹ paq c paqP ‹ pbq pUλωq pbq db, (8.16)

“ H pUλωq paq

where pHzq paq “
ż amax

0
s‹ paq c paqP ‹ pbq z pbq db is compact hence bounded

because it has finite-rank, by using similar arguments to those in Lemma 8.2.1.
Therefore, B pλq is a compact operator by Proposition 7.5.5. By similar argu-
ments (notice that pI ´B pλqq´1 is bounded), the resolvent of A`E is compact.
Thus, Proposition 7.5.2 concludes that σ pA` Eq “ Pσ pA` Eq . ˝

To sum up, conclusions about stability could be made if the growth bound
ω0 pA` Eq is known. By the corollary of the Spectral Mapping theorem it
was shown that ω0 pA` Eq “ s pA` Eq “ sup tRe λ : λ P σ pA` Equ . Since
σ pA` Eq “ Pσ pA` Eq then, ω0 pA` Eq “ sup tRe λ : λ P Pσ pA` Equ.

Step 2: Characterize PσpA` Eq by computing the resolvant ρpA` Eq.

Now, the point spectrum of A` E is characterized to be able to study it.
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Proposition 8.2.4
Let B pλq defined in (8.16). Then,

Pσ pA` Eq “ tλ P C : Id´B pλq is not invertibleu

“

!

λ P C : λ is pole of pId´B pλqq´1
)

:“ Σ

Proof. First, one can notice that if Id´ B pλq is invertible, then the resolvent
equation is solvable.
Furthermore, ρ pA` Eq “

!

λ P C : pλId´ pA` Eqq´1 exists in L
`

L1 p0, amaxq
˘

)

.
Moreover, by the previous proof, it can be observed that

pλId´ pA` Eqq
´1 exists ô pId´B pλqq

´1 exists

and pId´B pλqq´1
P L

`

L1 p0, amaxq
˘

ñ pλId´ pA` Eqq
´1
P L

`

L1 p0, amaxq
˘

Thus, this means that
 

λ P C : Id´B pλq is invertible in L
`

L1 p0, amaxq
˘(

Ă ρ pA` Eq

ô
` 

λ P C : Id´B pλq is invertible in L
`

L1 p0, amaxq
˘(˘C

Ą pρ pA` Eqq
C

ôtλ P C : Id´B pλq is not invertible u Ą σ pA` Eq “ Pσ pA` Eq ,

by previous reasoning.
It remains to show that tλ P C : Id´B pλq is not invertibleu Ă Pσ pA` Eq .

Let λ P C such that Id´B pλq is not invertible and show that λ is an eigenvalue
of A`E. Since B pλq is an analytic family of compact operators and Id´B pλq
is invertible for λ with sufficiently large real part. Indeed, B pλq is compact,
hence bounded and }B pλq } ă 1 because B pλq Ñ 0 for Re λ large enough.
Therefore, by Proposition 7.5.6, pId´B pλqq´1 is meromorphic with respect
to λ. However, by assumption, Id ´ B pλq is not invertible for some λ. Thus,
λ is a pole of the meromorphic family pId´B pλqq´1 and so, by the definition
of pλId´ pA` Eqq´1, λ is a pole of the resolvent of A` E. Proposition 7.5.1
implies that λ is an eigenvalue of A` E.
The second part of the proposition, immediately follows from the fact that
pId´B pλqq

´1 is meromorphic. Indeed, since pId´B pλqq´1 is meromorphic,

Pσ pA` Eq “ tλ P C : Id´B pλq is not invertibleu

“

!

λ P C : λ is pole of pId´B pλqq´1
)

:“ Σ

˝
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Step 3: Show that ω0pA` Eq is such that rpBpω0qq is equal to 1, and conclude.

First, one can show that there exists one and only one λ0 P R X Σ such that
r pB pλ0qq “ 1. Later, it will be proved that λ0 corresponds to ω0 pA` Eq .

Therefore, in the following part, λ will be assumed to be real.

A preliminary result, stating that the operator B pλq is non-supporting, is in-
troduced.

Lemma 8.2.2
Assume that there exists a number ε ą 0 such that c paq ě ε for almost
all a P r0, amaxs and assume that β̄‹ is sufficiently small such that the
following inequality holds,

1´ exp
ˆ

´

ż amax

0
ppσqΘu pσq ´ γ pσq dσ

˙

˜

1´ exp
˜

´

ż b

σ

β̄‹ pσq dσ

¸¸

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“:κ

ą 0.

Then, the operator B pλq, defined in (8.16), is non-supporting.

Proof. Let λ P R. In view of the definition of B pλq, the operator is positive, if
Πpb, σq is positive. Since Π pb, σq ą κ, which is positive by assumption, hence
B pλq is a positive. Moreover, it is a compact operator. Furthermore, B pλq is
also non-supporting. Indeed,

pB pλqxq paq ą κ pT pλqxq paq

where pT pλqxq paq “ s‹ paq

ż amax

0
c paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσqx pσq dσdb. So it

suffices to show that T pλq is non-supporting. To conclude, a recursive proof
is used. Let Ψ P X`z t0u and F P X 1`z t0u, where X` is the positive cone of
L1p0, amaxq ˆ L1p0, amaxq.
For n “ 1,

pT pλqψq paq ě s‹ paq ε

ż b

0
e´λpb´σq

Γ pbq
Γ pσqψ pσq dσdb,

“ rfλ, ψs g paq where g paq “ 1.

Now, consider the case n`1 and assume that pTn pλqψq paq ě rfλ, ψs rfλ, gsn´1
g paq .

It follows that
`

Tn`1 pλqψ
˘

paq “ pT pλqTn pλqψq paq ,
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ě rfλ, ψs rfλ, es
n´1

s‹ paq

ż amax

0
c paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσqg pσq dσdb,

ě rfλ, ψs rfλ, gs
n´1

rfλ, gs g paq ,

“ rfλ, ψs rfλ, gs
n
g paq .

Since fλ is a positive linear functional, for arbitrary F P X‹`z t0u, ψ P X`z t0u
and n ě 1, rF, Tn pλqψs ě rfλ, ψs rfλ, gsn´1

rF, gs ą 0. ˝

Proposition 8.2.5
Assume that there exists a number ε ą 0 such that c paq ě ε for almost
all a P r0, amaxs and assume that β̄‹ is sufficiently small such that the
following inequality holds,

1´ exp
ˆ

´

ż amax

0
ppσqΘu pσq ´ γ pσq dσ

˙

˜

1´ exp
˜

´

ż b

σ

β̄‹ pσq dσ

¸¸

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“:κ

ą 0

and let Bpλq be defined in (8.16). Then, there exists a unique λ0 P RXΣ
such that r pB pλ0qq “ 1.

Proof. Let Fλ be a positive eigenfunctional corresponding to the eigenvalue
r pB pλqq of B pλq (which exists by Theorem 7.5.1) and let g P X`. Then,

rFλ, B pλq gs “ r pB pλqq rFλ, gs

By previous developments, it was established that

pB pλqxq paq ą κ pT pλqxq paq ě κ rfλ, xs g paq .

So, with x “ g,
B pλq g ą κ rfλ, gs g

and then
rFλ, B pλq gs ą κ rfλ, gs rFλ, gs .

Since Fλ is positive, it follows that r pB pλqq ą κ rfλ, gs .

Therefore, lim
λÑ´8

r pB pλqq ą κ lim
λÑ´8

rfλ, gs “ 8. Thus, lim
λÑ´8

r pB pλqq “ 8.

Now, since c P L8 p0, amaxq, it can be shown that

B pλqx ď T pλqx ď rhλ, xs g

where rhλ, xs “ c̄

ż amax

0
s‹ paqP ‹ pbq

ż b

0
e´λpb´σq

Γ pbq
Γ pσqx pσq dσdb. Thus,

r pB pλqq rFλ, gs “ rFλ, B pλq gs ď rgλ, gs rFλ, gs .
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Therefore, lim
λÑ8

r pB pλqq ď lim
λÑ8

rhλ, gs “ 0.
Furthermore, Proposition 7.5.7 implies that r pB pλqq is strictly decreasing for
λ P R. Indeed, B pλq is a strictly decreasing family of operators. Hence, by the
monotonicity of B pλq, there exists a unique λ0 P RXΣ such that r pB pλ0qq “ 1.

˝

Proposition 8.2.6
Let λ0 P RX Σ be the unique value such that rpBpλ0qq “ 1. Then,

ω0pA` Eq “ λ0.

Proof. Recall that, from Proposition 8.2.2 and Proposition 8.2.3, ω0 pA` Eq “

sup tRe λ : λ P Pσ pA` Equ. Moreover, by Proposition 8.2.4, ω0 pA` Eq “

sup tRe λ : λ P Σu. Hence, it remains to demonstrate the dominant property
of λ0. Let λ P Σ “ tλ P C : Id´B pλq is not invertibleu so, λ is such that 1 is
an eigenvalue of B pλq. Therefore, there exists ψλ such that

B pλqψλ “ ψλ.

Moreover,
|ψλ| “ |B pλqψλ| ď B pRe λq |ψλ|.

Indeed, |B pλqψλ| ď
ż amax

0
c paqP ‹ pbq

ż b

0
|e´λpb´σq|
loooomoooon

“e´Re λpb´σq

Γ pbq
Γ pσqΠ pb, σq |ψλ| pσq dσdb “

B pRe λq |ψλ|. Therefore,

rFRe λ, B pRe λq |ψλ|s ě rFRe λ, |ψλ|s

ôr pB pRe λqq rFRe λ, |ψλ|s ě rFRe λ, |ψλ|s

ôr pB pRe λqq ě 1 “ r pB pλ0qq .

Since r pB pλqq is decreasing, that implies that λ0 ě Re λ @ λ P Σ. Hence, by
definition of ω0pA` Eq, one gets that it is equal to λ0. ˝

The following theorem is the main result of the stability analysis. It states the
stability of the equilibria, according to the case considered with respect to the
threshold.
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Theorem 8.2.1
Assume that there exists a number ε ą 0 such that c paq ě ε for almost
all a P r0, amaxs and assume that β̄‹ is sufficiently small such that the
following inequality holds,

1´ exp
ˆ

´

ż amax

0
ppσqΘu pσq ´ γ pσq dσ

˙

˜

1´ exp
˜

´

ż b

σ

β̄‹ pσq dσ

¸¸

looooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooon

“:κ

ą 0

and let Rp0q be defined by (8.11).
Then, if Rp0q ă 1, the disease-free equilibrium is locally stable and if
Rp0q ą 1, the disease-free equilibrium is locally unstable and the endemic
equilibrium is locally stable.

Proof. It can be shown that

pB p0qxq paq ď pT ‹xq paq

with pT ‹xq paq “ s‹ paq

ż amax

0
P ‹ pbq c paq

ż b

0

Γ pbq
Γ pσqx pσq dσdb.

Moreover, applying s‹ paqP ‹ pbq c paq to the both sides of equation (8.9) evalu-
ated in b and integrating from 0 to amax with respect to b gives

s‹
paq

ż amax

0
i‹ pbqP ‹

pbq c paq db “ s‹
paq

ż amax

0
P ‹
pbq c paqΓ pbq

ż b

0

β̄‹
pσq s‹

pσq

Γ pσq dσdb,

s‹
paq β̄‹

paq “ s‹
paq

ż amax

0
P ‹
pbq c paqΓ pbq

ż b

0

β̄‹
pσq s‹

pσq

Γ pσq dσdb,

s‹
paq β̄‹

paq “
`

T ‹
`

s‹β̄‹
˘˘

paq .

Therefore, s‹ paq β̄‹ paq is a positive eigenvector (if it is not equal to 0, that is
if it is not the disease-free equilibrium) of the operator T ‹ corresponding to
the eigenvalue 1. Since T ‹ is a compact and non-supporting operator (it is
proved by relatively similar arguments to those used for B pλq) then Proposi-
tion 7.5.8 implies that r pT ‹q is the only positive eigenvalue corresponding to
a positive eigenvector. So, r pT ‹q “ 1. By Proposition 7.5.7, since B p0q ď T ‹

then r pB p0qq ă r pT ‹q “ 1. Furthermore, since B pλq is decreasing and
RpBpλ0qq “ 1, it follows that λ0 ă 0. Therefore, by Proposition 8.2.6, the
non-trivial endemic steady-state is stable.

The previous arguments do not apply if i‹ equals zero. However, if i‹ is equal
to zero it can be shown that

`

B p0q
`

cΘ̃
˘˘

paq “ c paq Θ̃ paqR p0q
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where Θ̃ paq “ exp
ˆ

´

ż a

0
ppσqθ‹ pσq dσ

˙

.

So, R p0q is a positive eigenvalue associated to the positive eigenvector c paqΘ paq .
However, since B p0q is a compact and non-supporting operator, r pB p0qq is
the only positive eigenvalue corresponding to a positive eigenvector. Thus,
r pB p0qq “ R p0q. Therefore, if R p0q ă 1, then rpBp0qq ă 1, using the fact that
B pλq is decreasing and rpBpλ0qq “ 1, it follows that λ0 ă 0 and the disease-free
equilibrium is locally stable. However, if R p0q ą 1, the disease-free equilibrium
is locally unstable. ˝

In conclusion, a state feedback for which the closed-loop system is such that
Rp0q ă 1 is required in order to get disease eradication. However, this result
is local. So this feedback has to be applied at the beginning of the epidemic,
when the number of infected individuals is not too high.
Furthermore, notice that the method used in the analysis does not allow to con-
clude anything for Rp0q “ 1. That case could be studied, for instance following
the methodology in (Inaba (2006).)

8.3 Numerical simulations
Previous results are confirmed using numerical simulations where no con-

trol is considered. Most of parameters are taken from (Okuwa et al. (2019))
and the NPIDE Model (8.1) is used. First, note that amax is fixed to 1 in
order to normalize the age interval as r0, 1q. The age-specific death-rate is
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Figure 8.1 – The natural mortality rate µpaq and the contact coefficient cpaq
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Parameter Symbol Value
Maximum age amax 1
Time frame T 20
Time step size ∆t 0.001
Age step size ∆a 0.01

Table 8.1 – Model parameters and values

given by µpaq “
´

10 p1´ aq2
¯´1

with a P r0, 1r. Figure 8.1 (left graph) shows
that this choice corresponds to a mortality rate that increases with the indi-
viduals age. Therefore, lpaq “ exp p´a{ p10 p1´ aqqq , a P r0, 1q . If B is chosen
equals to 1{

ş1
0 lpaqda, B equals 1.2527 and the total population is normalized

(
ş1
0 Npaqda “ 1). In addition, the age-dependent recovery rate is defined by

γ paq “ 100, and the probability of successful vaccination, ppaq, is set to 1 for
all ages, meaning that the vaccination is perfect. Hence this is an ideal case,
but more realistic functions could be used. To be consistent with the following
analytical developments, the contact coefficient used is not the one in (Okuwa

et al. (2019)). Indeed, in Section 9.2, γpaq ` µpaq
cpaq

needs to be in C1 r0, amaxs.

Therefore cpaq has to be differentiable for all a P r0, amaxs which is not the
case in 0 for the choice in (Okuwa et al. (2019)). Thus, the contact coefficient

is defined as cpaq “ cp0q
ˆ

sinpaqe´2a `
1

100

˙

, with cp0q “ 600 or 800. This

choice is depicted in Figure 8.1 (right graph) for cp0q “ 800. One can observe
that the individuals with middle age have more contacts than the younger and
elder people. Moreover, the parameters that are used in the numerical simula-
tions are listed in Table 8.1. Observe that the age is normalized. Hence there
are no units for the age and no units are mentioned for the time. Finally, the
initial conditions are slightly modified from (Okuwa et al. (2019)) in order to
maintain consistency between initial conditions and boundary conditions (i.e
when a and t are equal to 0.) Therefore, we set s0paq “ 1 ´ i0paq, r0paq “ 0
and

i0paq “

"

î0 paq ´ î0 p0q if i0 paq ě 0
0 else

where î0 paq “
1
2e
´100

˜

a´
1
2

¸2

ˆ 10´3.

The numerical method used in simulation is a forward time - backward space
finite difference scheme. The stability of this scheme is ensured by the neces-
sary and sufficient condition of Courant-Friedrichs-Lewy which requires in this
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Figure 8.2 – Dynamics of the infected individuals from the NPIDE Model (8.1)
with Θ “ 0 for R p0q “ 0.8894

case that
ˇ

ˇ

ˇ

ˇ

∆t
∆a

ˇ

ˇ

ˇ

ˇ

ď 1, as mentioned in (Alexanderian et al. (2011)). This is the

case for the parameters used in the numerical simulations: see Table 8.1.
First, note that similar results as the ones shown in Figures 8.2 and 8.3, are
obtained using the PIDE Model (6.11). This suggests that numerical errors
between both models are negligible. Thus both systems can be used inter-
changeably. Second, in Figure 8.2, one can observe that the dynamics of the
proportion of the infected individuals tends to 0 as time increases. This is con-
sistent with the fact that there is only one stable equilibrium when R p0q ă 1,
which is the disease-free equilibrium. Contrariwise, in Figure 8.3, the dynam-
ics of infected individuals tends to an endemic equilibrium where there are still
infected individuals in the population when time increases.

Finally, in view of this result, it seems natural to aim at stabilizing the
disease-free equilibrium when R p0q ą 1 since this equilibrium is unstable for
the NPIDE model (8.1) and the goal is to eradicate the disease.
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Figure 8.3 – Dynamics of the infected individuals from the NPIDE Model (8.1)
with Θ “ 0 for R p0q “ 1.1859



Chapter 9
State feedback

This chapter is dedicated to the design of a state feedback law representing
the vaccination in the context of long-term diseases. At first, in Section 9.1,
an intermediate positively stabilizing state feedback law is performed for an
ODE model. This model is an approximation obtained via a discretization
of the PIDE system (6.11). Results on the global stability of the intermediate
control law and positivity of the solutions are obtained. The aim of this section
is to guide the design of a positively stabilizing state feedback law for the
PIDE model, which is described in Section 9.2. The stabilizing property of this
feedback is proven. In both sections, numerical simulations corroborate the
analytical results.

9.1 Finite dimensional model
As previously mentioned, the aim of this chapter is to design a feedback con-

trol law of vaccination θ pt, aq, for the PIDE model (6.11) such that, when it is
applied, the corresponding state trajectory converges towards the disease-free
equilibrium. Since, to the best of our knowledge, there is no available theory
about exact linearization by feedback for PIDE models, the idea to overcome
this difficulty is to use an age-discretized intermediate model to guess a feed-
back law for the PIDE model (6.11). Therefore, an intermediate feedback law,
detailed in this section, is obtained, using Isidori’s theory (Isidori, 1995, Chap-
ter 5), recalled in Section 2.5. Then, the vaccination law of interest, which is
explained in next section, is deduced from the intermediate design but acts on
the infinite dimensional system.
The current section is inspired by the methodology developed in (Alonso-
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Quesada et al. (2012)) for an SEIR model without age-dependency.

9.1.1 Age-discretized normalized model
Any of the previously introduced infinite dimensional models can be approx-

imated by using discretization by age. This yields a nonlinear finite dimensional
model that allows the design of a feedback law by using well-known methods
of nonlinear control design. This strategy will lead to an educated guess of
the structure of the state feedback law for the PIDE model (6.11). Inspired
by (Tudor (1985)), the PIDE Model (6.11) is discretized in na classes of age,
r0, a1q , ra1, a2q , ..., rana´1, amaxq. The proportion of susceptible individuals in
the kth class of age represents the fraction of individuals in class age k that is
susceptible at time t, which gives

sk ptq “

ż ak

ak´1

S pt, aq da

Nk
(9.1)

where, assuming that the population has reached a time-invariant age distribu-
tion (P pt, aq “ P ‹ paq), Nk “

ż amax

0
P ‹ paq da corresponds to the total number

of individuals in the kth class of age in the population. Similar relations hold
for the proportion of infected and recovered individuals in the kth class of age
at time t. Moreover, it is assumed that the continuous functions of age in
(6.11) are constants for a fixed class of age. In other words, it is assumed
that µ paq “ µk, γ paq “ γk, c paq “ ck and ppaq “ pk for a P rak´1, akq for all
k “ 1, ..., na. Note that these constants are taken, in numerical simulations, as
the mean values of the considered functions on this interval. Of course, other
choices could be made (e.g. the values of the functions at the beginning of the
interval). Remark that, since we are considering na quite large (even na that
tends to infinity for the design of the feedback for the PIDE model (6.11)),
this choice has no significant impact on the results. Moreover, the input is also
assumed to be independent of a P rak´1, akq and is given by θk ptq “ θ pt, akq

for all k “ 1, ..., na. In addition, the number of susceptible individuals that are
moving from the kth class of age to the pk`1qth at time t, S pt, akq, is assumed
to be proportional to the size of the kth class of age, i.e there exists a transfer
rate ρk such that S pt, akq “ ρkNksk ptq for k “ 1, ..., na. Remark that, since
amax is the maximum age, ρna equals 0. The transfer rate ρk is also used for
I pt, akq and R pt, akq.
As mentioned in (Tudor (1985)), integrating the equations of Model (6.11) with
respect to the age variable, from ak´1 to ak, for k “ 1, ..., na and using previ-
ous assumptions and initial conditions of (6.11), lead to the following system
of nonlinear ODEs:
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Nk
dsk ptq

dt
“ ρk´1Nk´1sk´1 ptq ´ pρk ` µk ` pkθk ptqqNksk ptq

´ ckNksk ptq
na
ÿ

j“1
Njij ptq `Bδ1k

Nk
dik ptq

dt
“ ρk´1Nk´1 ptq ik´1 ptq ´ pρk ` γk ` µkqNkik ptq ` ckNksk ptq

na
ÿ

j“1
Njij ptq

Nk
drk ptq

dt
“ ρk´1Nk´1rk´1 ptq ` γkNkik ptq ` pkθk ptqNksk ptq ´ pρk ` µkqNkrk ptq

for k “ 1, ..., na where ρ0 is chosen to be equal to 0 and δij denotes the Kro-
necker symbol.
Summing those equations gives the following relations:

B

N1
“ ρ1 ` µ1,

ρk´1
Nk´1

Nk
“ ρk ` µk, for k “ 2, ..., na,

with B the birth rate. This leads to the identity sk ` ik ` rk “ 1, k “ 1, ..., na.
Therefore, only 2na equations are needed. Moreover, using this last assumption
and the previous relations, and dividing the set of ODEs equations by Nk for
k “ 1, ..., na give a set of 2na ordinary differential equations:

dsk ptq

dt
“ Tksk´1 ptq ´

˜

Tk ` pkθk ptq ` ck

na
ÿ

j“1
Njij ptq

¸

sk ptq ,

dik ptq

dt
“ Tkik´1 ptq ´ pTk ` γkq ik ptq ` cksk ptq

na
ÿ

j“1
Njij ptq (9.2)

for k “ 1, ..., na, where Tk “ ρk ` µk, skp0q “ sk0 , ikp0q “ ik0 and by setting
s0 ptq “ 1 and i0 ptq “ 0. In the following, this model will be called the NODE
Model since it is an age discretized normalized model (involving proportions
as variables). The interpretations and units of the variables and parameters
involved in the NODE Model are summarized in Table 9.1.
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Variables Interpretation Range Unit
t Time R` day
amax Maximum age R` year

Nk
Total number of individuals
at age in rak´1, akq

R` Human

sk ptq
ik ptq
rk ptq

Proportion of susceptible, infected and
recovered individuals at age in rak´1, akq

r0, 1s no unit

θk ptq
Rate of vaccinated individuals
at age in rak´1, akq

R`
1

day
Parameters

µk
Per capita natural death rate
at age in rak´1, akq

R`
1

day

ck
Mean contact between all
infected and a susceptible individuals
at age in rak´1, akq

R`
1

Human.day

γk Recovery rate at age in rak´1, akq R`
1

day
ρk

Transfer rate from the kth class of
age to the pk ` 1qth R`

1
day

pk
Probability of successful vaccination
for individuals at age in rak´1, akq

p0, 1s no unit

Table 9.1 – Parameters and variables for the NODE model

Remark that the NODE model (9.2) is similar to the one introduced in
Chapter 4, except that it is an SIR model instead of an SIRD model. More-
over, contrary to Model (4.1), the NODE model (9.2) takes into account the
aging effect, allowing the transfer from one class of age to another. This is an
important effect that needs to be taken into account when studying long-term
diseases.

9.1.2 Well-posedness
In order to have a physical meaning, it is important that the variables in the

model remain between 0 and 1, since they are proportions. Inspired by (Tudor
(1985)), the following result highlights that this is the case if the feedback law
is nonnegative.
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Proposition 9.1.1
If θkptq ě 0 for all t ě 0 and k “ 1, ..., na, then the set

X “ tpi1, ..., ina , s1, ..., sna : ik ě 0, sk ě 0, sk ` ik ď 1 for k “ 1, ..., naqu

is positively invariant with respect to the NODE model (9.2).

Proof. Let t0 be the smallest t such that xpt0q P δX , where

δX “ tpi1, ..., ina , s1, ..., sna : ik “ 0 or sk “ 0 or sk ` ik “ 1qu .

Assume that smpt0q “ 0 (impt0q “ 0) for some m. By definition of t0, all the
other state components are such that skpt0q, ikpt0q ě 0 for k “ 1, ...,m´1,m`

1, ..., na. Therefore, using equations (9.2), dsm pt0q
dt

ě 0 and dim pt0q

dt
ě 0. On

the other hand, if impt0q ` smpt0q “ 1 for some m, then skpt0q, ikpt0q ě 0 and
skpt0q` ikpt0q ď 1 for k “ 1, ...,m´1,m`1, ...n. By equations (9.2), it follows
that
dpsm ` imqpt0q

dt
“ Tm psm´1pt0q ` im´1pt0q ´ 1q ´ γmimpt0q ´ pmθmpt0qsmpt0q

ď 0

˝

Observe that the nonnegativity is no longer guaranteed for all inputs of the
system when working with the discretized model, contrary to what is stated in
Proposition 8.1.1 for the infinite dimensional system. It requires the nonneg-
ativity of the input. This is consistent with the physical interpretation of the
input, as the vaccination rate. Nevertheless, in the sequel, no condition on the
feedback gains implying, a priori, the nonnegativity of the input are obtained.
Therefore, in practice, the feedback gains need to be chosen according to the
assumptions of Theorem 9.1.1 and then one has to check that the obtained
input is nonnegative. In this thesis, to bypass this choice of parameters that
ensures nonnegativity of the feedback (since there are 200 parameters to be
chosen) a saturated law (see (9.16)) is used in the numerical simulations. Ad-
ditional research is needed to ensure that this law recovers the performance of
(9.15) but numerical simulations seems to corroborate this fact. Remark that
when dealing with the PIDE model (6.11) in Section 9.2, conditions on the
feedback gains implying nonnegativity of the input are obtained.

9.1.3 Linearizing state feedback design
The approach developed in this part is similar to the one presented in Sub-

section 5.2.1 for a SIRD model. In that case, the aging effect is considered but
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there is no compartment for the dead individuals. The details are developed
below in order to be self-contained.

The equations of the NODE Model (9.2) can be written equivalently in the
state space form as a nonlinear control affine system

"

9x ptq = f px ptqq ` g px ptqqu ptq

y ptq = h px ptqq
(9.3a)

where x ptq “ ri1 ptq , ..., ina ptq , s1 ptq , ..., sna ptqs
T
P R2na , for all t ě 0 is

the state space vector, h px ptqq “ ri1 ptq , ..., ina ptqs
T
P Rna ,@t ě 0 is the

measurable output function, assumed equal to the infectious population and
u ptq “ rθ1 ptq , ..., θna ptqs

T
P Rna ,@t ě 0 is the input function. Moreover,

g px ptqq “

ˆ

0naˆna
´pkdiagpskqk“1,...,na

˙

(9.3b)

and

f px ptqq :“ pf1 px ptqq ¨ ¨ ¨ f2na px ptqqq
T (9.3c)

where

fk px ptqq “ Tkik´1 ptq ´ pTk ` γkq ik ptq ` cksk ptq
na
ÿ

j“1
Njij ptq ,

fna`k px ptqq “ Tksk´1 ptq ´ Tksk ptq ´ cksk ptq
na
ÿ

j“1
Njij ptq

for k “ 1, ..., na.
In this case the relative degree of the system is equal to the dimension of the

state space for any x P D “

#

x s.t sk ‰ 0 for k “ 1, ..., na and
na
ÿ

j“1
Njij ‰ 0

+

.

Therefore, by Lemma 2.5.1 the "state space exact linearization problem", men-
tioned in Problem 2.5.1 is feasible. Hence, the nonlinear invertible (for x P D)
coordinate change that is needed here is given by

īk ptq “ hk px ptqq “ ik ptq ,

s̄k ptq “ Lfhk px ptqq “ fkpxptqq (9.4)

for k “ 1, ..., na. Notice that in practice, x R D either if there is a class of age
where there is no more susceptible individuals or if there is no more infected
individual in the population. The first case is not a problem because, when
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it occurs this means that one can no longer vaccinate the given class of age.
Therefore this can be taken care by setting the vaccination to 0 in this case.
Moreover, it is reasonable to expect that this case will not happen before the
eradication of the disease. On the other hand, the second case will probably
occur because it means that the end of the epidemic is reached, which is the
goal of the feedback design. However, in numerical simulations, since we deal
with numbers of individuals which are real and not integer, the simulation
is stopped whenever there remains less than one infected individual in the
population. Thanks to this coordinate change, the system is written in its
normal form in the neighborhood of any x P D by

dīk ptq

dt
“ s̄k ptq ,

ds̄k ptq

dt
“ L2

fhk px ptqq ` LgkLfhk px ptqquk ptq

(9.5)

for k “ 1, ..., na. That allows the design of a feedback law that linearizes the
system in normal form. To do so, the following matrices are defined,

A px ptqq “ diag

˜

´ckpksk ptq
na
ÿ

j“1
Njij ptq

¸

k“1,...,na

(9.6)

v px ptqq “
`

v1 px ptqq ¨ ¨ ¨ vna px ptqq
˘T (9.7)

such that

vk px ptqq “ ´α
k
2fk px ptqq ´ α

k
1ik ptq , k “ 1, ..., na

where αk1 and αk2 are some free parameters that will be adjusted to yield sta-
bility. Moreover,

b px ptqq “
`

b1 px ptqq ¨ ¨ ¨ bna px ptqq
˘T
, (9.8)

where

bk px ptqq “ L2
fhk px ptqq

“ cksk ptq
na
ÿ

j“1
Njfj px ptqq ` Tkfk´1 px ptqq ´ pTk ` γkq fk px ptqq

` ckfna`k px ptqq
na
ÿ

j“1
Njij ptq . (9.9)
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Lemma 9.1.1
The state feedback control law defined by

u ptq “ A´1 px ptqq pv px ptqq ´ b px ptqqq , (9.10)

where A, b and v are given by (9.6)-(9.8), applied on system (9.3), induces
the linear output closed-loop dynamics given by

:y ptq ` Ã2 9y ptq ` Ã1y ptq “ 0. (9.11)

where Ã1 “ diagpαi1q and Ã2 “ diagpαi2q for i “ 1, ..., na.

Proof. Applying the control law (9.10) to the dynamics in normal form (9.5)
linearizes the equations and gives

9̄x ptq “

ˆ

0naˆna Idna
´Ã1 ´Ã2

˙

x̄ ptq :“ Āx̄ ptq

where x̄ ptq “
“

ī1 ptq ¨ ¨ ¨ īna ptq s̄1 ptq ¨ ¨ ¨ s̄na ptq
‰T . The solution of this ODE is

given by y ptq “ Cx̄ ptq “
`

ī1 ptq ¨ ¨ ¨ īna ptq
˘T .

Thus, a trivial computation gives :y ptq “ Ã1y ptq ` Ã2 9y ptq . ˝

Using this feedback on system (9.3), the closed-loop model is given by

9x ptq “ F px ptqq , (9.12a)

for x “ ri1 ¨ ¨ ¨ ina s1 ¨ ¨ ¨ snas
T and

F px ptqq “ rF1 px ptqq ¨ ¨ ¨F2na px ptqqs
T
, (9.12b)

where

Fk pxq “ fk pxq ,

Fna`k pxq “
1

ck

na
ÿ

j“1
Njij

`

fk pxq
`

Tk ` γk ´ α
k
2
˘

´αk1ik ´ Tkfk´1 pxq ´ cksk

na
ÿ

j“1
Njfj pxq

¸

(9.13)

for k “ 1, ..., na with f0 px ptqq “ 0.
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Moreover, in order to be effective, the feedback needs to ensure the eradi-
cation of the infected individuals in the population.

Theorem 9.1.1
Let the initial condition x0 P R

2na
` be given. Assume that the control

tuning parameters satisfy αkj ą 0 for j “ 1, 2 and k “ 1, ..., na.
Then the state feedback (9.10) implies the exponential convergence to-
wards zero of the infected population ikptq of NODE Model (9.2), for
k “ 1, ..., na, as time tends to infinity.

Proof. Since the closed-loop dynamics (9.11) is a system of decoupled ODEs it
can be written as

"

9̄xnew ptq “ Âx̄new ptq ,

y ptq “ Cx̄new ptq
(9.14)

with x̄new “
`

ī1 s̄1 ¨ ¨ ¨ īna s̄na
˘T
, Â “ blockdiagpĀkq, where

Āk “

ˆ

0 1
´αk1 ´αk2

˙

and C “
`

1 0 ¨ ¨ ¨ 1 0
˘T .

Therefore, Â is stable if all its eigenvalues are in the open left plane. However,
the eigenvalues of Â are those of the Āk’s matrices. Moreover, those eigenvalues
are the roots of the characteristic polynomial P psq “ DetpsI´Ākq “ s2´sαi2`

αi1. Since αk1 and αk2 are positive, then by the corollary of Lienard-Chipart
Theorem 2.5.2, the real parts of the eigenvalues of Â, are negative. Then the
control law exponentially stabilizes the model in normal form (9.5).
Therefore, x̄ ptq exponentially converges asymptotically to zero. It follows that
īk ptq “ ik ptq converges to zero as time goes to infinity for k “ 1, ..., na. ˝

Theorem 9.1.1 states that, regardless of the initial condition, the number of
infected individuals for each age group tends asymptotically to zero. However,
it is not possible to know the behavior of the other states, unlike what was
stated in Chapter 5.

Remark 9.1.1 The control law is well-defined for x P D. However, since the
aim is to eradicate the disease from the population, the infected population goes

to zero as time tends to infinity. This implies that
na
ÿ

j“1
Njij “

ż amax

0
I pt, aq da

tends to zero. Therefore, as explained in (Alonso-Quesada et al. (2012)), a
"switch-off" vaccination law is introduced, based on the fact that the disease is
considered as being eradicated from the population when the infected population
is greater than zero but small enough (for instance when there is numerically
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less than one individual in the population but more than zero). Therefore, a

threshold is defined such that 0 ă
ż amax

0
I pt, aq da ă δ ă 1. Hence, in a

practical situation, we use

us pt, aq “

$

&

%

u pt, aq for t ď t‹,

0 for t ą t‹
(9.15)

where t‹ “ min

"

t P R`|
ż amax

0
I pt, aq da ă δ for 0 ă δ ă 1

*

. Consequently,

Theorem 9.1.1 cannot be used directly. However, by similar arguments, we
know that the linearization of Lemma 9.1.1 is valid until t‹, when the total
number of infected individuals in the population is smaller than 1. Therefore,
until the time t‹, Theorem 9.1.1 can be applied, leading to the conclusion that
the infected population is exponentially globally decreasing until t‹. In practice,
this result is enough because the infected population is exponentially decaying

until
na
ÿ

j“1
Njij “

ż amax

0
I pt, aq da ă 1 which, in practical formulation, means

that there are no more infected individuals in the population, so no more epi-
demic.

9.1.4 Numerical simulations
Numerical simulations are performed to show that appropriate choices of

parameters can guarantee the eradication of the infected individuals. In the
simulations, parameters are taken from (Okuwa et al. (2019)) and described in
Section 8.3 but are adapted to the ODE case as mentioned in Section 9.1.1. In
this case 100 classes of age are considered. This number is chosen randomly,
but large enough, because in the numerical context, the NODE model (9.2) can
be viewed as a semi-discretization of the PIDE Model (6.11). Furthermore, a
large number of classes enables a smooth representation of the graphs, as it is
the case for the PIDE simulations. Moreover, the design control parameters
are set to αk1 “ 16000 and αk2 “ 280 for k “ 1, ..., 100. Simulations are stopped
when convergence is reached with a tolerance of 10´8. The code is performed
using finite difference in time with a time step equal to 0.001.
Remind that the vaccination variable should be nonnegative, as stated in Sub-
section 9.1.2. Therefore, based on results found in numerical simulations, a
new control law upsptq is designed where, for k “ 1, ..., na,

ups,k ptq “

"

0, if us,k ptq ă 0,
us,k ptq otherwise (9.16)
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Figure 9.1 – Dynamics of infected individuals from NODE Model (9.2) with
vaccination (9.16)

which is based on the control-law (9.15). Using this control law in numeri-
cal simulations shows that the stability of the system is conserved. In this
case, one can observe that the infected individuals converge to zero when the
control is applied. Moreover, the infected individuals remain nonnegative and
are smaller than 1. This is also the case for the proportion of susceptible in-
dividuals observed in Figure 9.2. Moreover, Figure 9.3 suggests to vaccinate
first individuals in the classes of age where the epidemic is absent and in a
second time to vaccinate individuals from classes of age around the ages where
individuals were initially infected.

9.2 Infinite dimensional model
This section is dedicated to the design of a stabilizing and linearizing feed-

back law for the PIDE Model (6.11). This law is obtained thanks to a formal
limit using (9.10). One main advantage of this new law compared to the one
of the ODE case is that conditions ensuring nonnegativity of the input are
obtained.

9.2.1 Feedback design
To discover a feedback design for the PIDE model (6.11), let us define a

new function
W pt, aq “ ppaqθ pt, aqS pt, aq . (9.17)
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Figure 9.2 – Dynamics of susceptible individuals from NODE Model (9.2) with
vaccination (9.16)

Figure 9.3 – Dynamics of vaccination (9.16)
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The goal is to link the law θ pt, aq to the law ukptq “ θkptq defined in (9.10).
Therefore, by introducing

wk ptq “
1
Nk

ż ak

ak´1

W pt, aq da, (9.18)

inspired by the change of variable (9.1) that links the PIDE variables to the
NODE variables and discretizing (6.11) with respect to the age, it can be shown
that wk ptq “ pkθk ptq sk ptq . Using relation (9.18) and the limit of the mean
value theorem for integral and assuming that a P rak´1, akq for all k P N,
implies that

W pt, aq “ lim
∆kÑ0

Nkwk ptq

∆k
, with ∆k “ ak ´ ak´1

ôppaqθ pt, aqS pt, aq “ lim
∆kÑ0

Nkpkθk ptq sk ptq

∆k
,

ôθ pt, aq “
1

ppaqS pt, aq
lim

∆kÑ0

Nkpkθk ptq sk ptq

∆k
.

Using relations of Section 9.1.1, the definition of the state feedback in finite
dimension, (9.10), and the definition of derivative in terms of limits give the
following candidate for a nonlinear state feedback control law that is continuous
in age

θ pt, aq “
1

ppaq
tpA`G`Hα̃qxpt, ¨qu paq (9.19)

where x “
`

S I
˘T , α̃ “

`

α̃1 α̃2
˘T
,

Axpt, aq “

ż amax

0
c paqS pt, aq da´ c paq }I}1 ´ 2µ paq ´ γ paq ,

Gxptq “ ´}I}´1
1

ż amax

0
K paq I pt, aq da

and Hα̃xpt, aq “ α̃2paq `
I pt, aq

´

α̃1 paq `K paq pK paq ´ α̃2 paqq
¯

c paqS pt, aq }I}1
where Kpaq denotes µ paq`γ paq. Note that in this feedback, there is a division

by }I}1 which is
ż amax

0
I pt, bq db, recalling the nonnegativity of Ipt, bq. However,

since the eradication of the epidemic is wanted, this quantity tends to zero.
Therefore, in practice a switching vaccination law is used, as it was done in
Remark 9.1.1. Hence, the control is defined as the one in (9.15).

9.2.2 Stabilizing law
The aim of this section is to show that the feedback law (9.19) stabilizes

the PIDE model (6.11).
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Inspired by the linearizing state feedback approach developed in Section 2.5,
the following nonlinear coordinate changes is made,

Ī pt, aq “ I pt, aq ,

S̄ pt, aq “ ´KpaqI pt, aq ` c paqS pt, aq

ż amax

0
I pt, bq db. (9.20)

Observe that the second change of coordinate is not invertible. This is taken
care of, in the implementation part, by using a "switch-off" vaccination law.
In this formulation the the two first equations of the open-loop Model (6.11)
becomes

pBt ` Baq Ī pt, aq “ S̄ pt, aq ,

pBt ` Baq S̄ pt, aq “ ´KpaqS̄ pt, aq ´ Ba pKpaqq Ī pt, aq `
“

S̄ pt, aq `KpaqĪ pt, aq
‰

ˆ

»

—

—

–

´ppaqθ pt, aq ´ µ paq ´ c paq

ż amax

0
Ī pt, bq db`

ż amax

0
S̄ pt, bq db

ż amax

0
Ī pt, bq db

`
Bac paq

c paq

fi

ffi

ffi

fl

(9.21)

under non-homogeneous boundary conditions

Ī pt, 0q “ 0, S̄ pt, 0q “ c p0qB
ż amax

0
Ī pt, bq db (9.22)

and initial conditions

Ī p0, aq “ I0 paq , S̄ p0, aq “ S̄0 paq . (9.23)

Moreover, the vaccination law (9.19) rewrites

θ pt, aq “
1

ppaq

$

’

’

&

’

’

%

α̃2 paq `

ż amax

0
S̄ pt, bq db

ż amax

0
Ī pt, bq db

´ 2µ paq ´ γ paq

´ c paq

ż amax

0
Ī pt, bq db`

Ī pt, aq

S̄ pt, aq `KpaqĪ pt, aq

`

α̃1 paq `Kpaq pKpaq ´ α̃2 paqq
˘

*

Therefore, the closed-loop system is given by the linear PDEs

pBt ` Baq Ī pt, aq “ S̄ pt, aq ,

pBt ` Baq S̄ pt, aq “ Ī pt, aq r´α̃1 paq ` g paqs ` S̄ pt, aq r´α̃2 paq ` h paqs (9.24)

where

g paq “ ´c paq
d

da

ˆ

Kpaq

c paq

˙

, (9.25)
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h paq “
1

c paq

d

da
c paq (9.26)

with boundary conditions (9.22) and initial conditions (9.23). The design pa-
rameters are denoted by α̃1 paq and α̃2 paq. We are going to show that they
can be properly chosen so as to have the stability and positivity of the system.
The other parameters (c, µ, γ) are given for a chosen model.
Therefore, similarly to the results of Section 2.5, a feedback that linearizes the
open-loop system (9.21) is found thanks to the appropriate coordinates change
(9.20).

It remains to show that the feedback (9.19) also stabilizes system (6.11). In the
following it is shown that the closed-loop system (9.24) is stable which implies
the asymptotic convergence to zero of the infected population. Hereafter we
denote

G paq “ ´α̃1 paq ` g paq and H paq “ ´α̃2 paq ` h paq .

With those notations, the state-space formulation of system (9.24) is given by

9̄x “ Āx̄
x̄ p0q “ x̄B0 (9.27)

where x̄ “
`

Ī , S̄
˘T
, Ā “

¨

˚

˝

´
d¨

da
Id

G paq Id ´
d¨

da
`H paq Id

˛

‹

‚

,

D
`

Ā
˘

“

"

x̄ P L1 p0, amaxq ˆ L1 p0, amaxq , x̄,
dx̄

da
P L1 p0, amaxq , x̄ p0q “ x̄B0

*

and x̄B0 “

¨

˝

0

c p0qB
ż amax

0
Ī pbq db

˛

‚.

Using the approach developed in (Fattorini (1968)) on boundary control sys-
tems and generalizing the results in (Tucsnak and Weiss, 2009, Chapter 10) to
Banach spaces, system (9.27) can be rewritten as follows:

9̄x “ Ā0x̄` B̃u

x̄ p0q “ p0, 0qT (9.28)

where Ā0 “ Ā with D
`

Ā0
˘

“
 

x̄ P L1 p0, amaxq ˆ L1 p0, amaxq : x̄,
dx̄

da
P L1 p0, amaxq , x̄0 “ p0, 0qT

*

.

Moreover B̃ “ δ0Id2 and u “ x̄B0.

Indeed, one can notice that none of the arguments developed in (Tucsnak and
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Weiss (2009)) requires a scalar product which is only defined on Hilbert space,
except for the computation of the adjoint operator. However, in L1 spaces, this
operator can be computed using duality bracket, which is the approach used
here. Therefore, according to the theory in (Tucsnak and Weiss (2009)), we
need to find the operator B̃ such that the system 9zptq “ Lzptq with G̃zptq “
zp0q “ uptq, with z P D pLq is equivalent to the system 9zptq “ Azptq ` B̃uptq.
This operator satisfies, for z P Z :“ W 1,1 p0, amaxq ˆW 1,1 p0, amaxq Ñ X :“
L1 p0, amaxq ˆ L1 p0, amaxq and ψ P D pA‹q,

rLz, ψs ´ rz,A‹ψs “
“

G̃z, B̃‹ψ
‰

. (9.29)

In order to apply this theory, System (9.27) can be rewritten as 9zptq “ Lzptq

with G̃zptq “ zp0q where z “
`

Ī , S̄
˘T , L “ Ā and G̃ : Z Ñ U :“ R2, where

W 1,1p0, amaxq denotes the Sobolev space of functions defined on r0, amaxs ,
which are in L1p0, amaxq and whose generalized derivatives up to order 1 are
in L1p0, amaxq. Hence, A is defined as L restricted to 1 X1 :“ Ker G̃. Thus,
A “ Ā0 : D

`

Ā0
˘

Ñ X. It remains to find the operator B̃ : U Ñ X´1 by using
relation (9.29).
First one can show that the adjoint of Ā0 with D

`

Ā0
˘

is given by

Ā‹0 “

¨

˚

˝

d¨

da
GpaqId

Id
d¨

da
`HpaqId

˛

‹

‚

with D
`

Ā‹0
˘

“ ty P L8 p0, amaxq ˆ L8 p0, amaxq : y1 pamaxq “ y2 pamaxq “ 0 and
rA¨, ys : L1 p0, amaxq ˆ L1 p0, amaxq Ñ K is bounded and linear

(

. The proof is
based on the Riesz representation theorem for L1 space (see (Rudin, 1974,

Theorem 6.16)) which implies that rAz, ys “
ż amax

0
xAz, yydλ for z P D pAq and

y P D pA‹q, where λ denotes the Lebesgue measure. Then, using relation (9.29)
and the Riesz representation theorem it follows that

xz p0q , B̃‹ψy “ xzp0q, ψp0qy.

Hence,

B̃‹ψ “ ψp0q
“

φ, B̃‹ψ
‰

“ rφ, ψp0qs

1. The space X1 and X´1 are defined in (Tucsnak and Weiss, 2009, Section 2.1). Let
A : DpAq Ñ X be a densely defined operator with ρpAq ‰ H. Then for every λ P ρpAq, the
space DpAq with the norm }x}X1 “ } pλId´Aqx} @x P DpAq is denoted X1. Moreover, X´1
is the completion of X with respect to the norm }x}X´1 “ } pλId´Aq

´1 x} @x P X.
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rBφ,ψs “ rφ, ψp0qs

Therefore, B̃ is given by δ0Id2. Finally, the assumptions needed in (Tucsnak
and Weiss (2009)) are satisfied since Ā0 is the infinitesimal generator of a
C0´semigroup.

Equivalently to (9.28) one can write

9̄x “
`

Ā0 ` D̄
˘

x̄

x̄ p0q “ p0, 0qT (9.30)

where D̄ “

¨

˝

0 0

δ0c p0qB
ż amax

0
¨ db 0

˛

‚.

An approximation of the Dirac delta δ0 is used so that D̄ is bounded. Re-
mark that this approximation allows to deal with a more realistic model since
there is no sense to vaccinate instantaneously at birth. Let define dk paq a term
of a Dirac sequence which satisfies the properties developed in (Hinrichsen and
Pritchard, 2010, Chapter 2, Section 3, Lemma 2.3.4) with 8 replaced with
amax. Therefore, (9.28) becomes

9̄xk “
`

Ā0 ` D̄k

˘

x̄k

x̄k p0q “ p0, 0qT (9.31)

with D̄k “

¨

˝

0 0

dk paq c p0qB
ż amax

0
¨ db 0

˛

‚.

In what follows, an approximation of model (9.30), where the unbounded op-
erator D is replaced by the bounded operator D̄k, is used in order to perform
the stability analysis.

Lemma 9.2.1
Ā0 is the infinitesimal generator of a C0´semigroup Ū ptq.

Proof. As in (Aksikas et al. (2007)) a similarity transformation is performed to
have an equivalent state space description as (9.31) with triangular infinitesimal
generator. Therefore,

J “

ˆ

Id 0
κ paq Id Id

˙

(9.32)
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is chosen where κ paq is a bounded C1 solution (i.e DK ą 0 such that κ paqq ď K

@ a P r0, amaxs) of the equation
dκ

da
` κ2 paq ´H paqκ paq `G paq “ 0.

The existence of such solution is established in (Aksikas et al. (2007)). Applying
this transformation to the operator Ā0, i.e J´1Ā0J , gives

Å “

¨

˚

˝

´
d¨

da
`G paqκ paq Id Id

0 ´
d¨

da
` pH paq ´ κ paqq Id

˛

‹

‚

where D
´

Å
¯

“ D
`

Ā0
˘

. Thanks to Proposition 7.1.2, Å is the infinitesimal
generator of a C0´semigroup

´

Ů ptq
¯

tě0
“

˜

Ů1 ptq Ů12 ptq

0 Ů2 ptq

¸

where
´

Ů12 ptqx
¯

paq “

ż t

0
Ů1 pt´ sq Å12Ů2 psqx paq ds. (9.33)

Using Proposition 7.1.3, it holds that Ā0 is the infinitesimal generator of a
C0´semigroup

`

Ū ptq
˘

tě0 “
´

JŮ ptq J´1
¯

tě0
.

˝

Theorem 9.2.1: Stability of Ā0 ` D̄k

The operator Ā0 ` D̄k is the infinitesimal generator of an exponentially
stable C0´semigroup

`

T̄k ptq
˘

tě0 with growth bound

ω0pT̄kq ă ´ pc2 `Kq ` p1`K pc1 ´ 1q ´ c2q cp0qB ă 0

provided that the gain functions α̃1paq and α̃2paq and the constants c1
and c2 are chosen such that

c1 ą max

#

1, sup
aPr0,Ls

pα̃1 paq ´ g paqq ,
cp0qB
K

+

, (9.34)

c2 ą max

#

0, cp0qB p1`Kc1q1` cp0qB ´K, sup
aPr0,Ls

pα̃2 paq ´ h paqq

+

, (9.35)

c2 ď K pc1 ´ 1q . (9.36)
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Proof. The semigroup generation is obtained thanks to the bounded perturba-
tion Theorem 7.1.1. Indeed, the linear operator D̄k is bounded on L1 p0, amaxqˆ
L1 p0, amaxq with norm }D̄k}LpL1ˆL1q “ c p0qB.Moreover, by Lemma 9.2.1, Ā0
is the infinitesimal generator of a C0´semigroup. Now, the exponential stabil-
ity can be established in few steps.

Step 1: Applying the transformation (9.32) to the operator Ā0 ` D̄k, gives
the operator Å` D̄k. The invariance of stability under system equivalence can
be used. Indeed, by Proposition 7.1.3, ω0pT̊kq “ ω0pT̄kq, where pT̊kptqqtě0 is
the C0´semigroup generated by Å` D̄k.

Step 2: Computation of a bound to the growth constant of the C0´semigroup
pŮptqqtě0 generated by Å.
By the method of characteristics, introduced in Section 7.3, one gets that

´

Ů1 ptqx01

¯

paq “

"

x01 pa´ tqEGκ pa´ t, aq , if t ď a,

0 if t ą a,
´

Ů2 ptqx02

¯

paq “

"

x02 pa´ tqEH´κ pa´ t, aq , if t ď a,

0 if t ą a

where Ef px, yq “ exp
ˆ
ż y

x

f pηq dη

˙

. Moreover, using identity (9.33), we find

that

´

Ů12 ptqx0

¯

paq “

$

’

’

&

’

’

%

x0 pa´ tq

ż t

0
EH´κ pa´ t, a´ t` sq

EGκ pa´ t, a´ sq ds if t ď a,

0 if t ą a.

Therefore, Å is the generator of a nilpotent semigroup, thus its growth bound
ω0 is equal to ´8. Hence, by Proposition 7.4.1 it is the infinitesimal generator
of an exponentially stable C0´semigroup. Let x0 “ px01, x02q

T . Since Å is
stable, then by Definition 7.4.3, there exist constants Mα ě 1 and α ą 0 such
that }Ů ptqx0} ďMαe

´αt}x0}.

Step 3: Identify α and Mα.

}Ů ptqx0} “

ż amax

0

ˇ

ˇ

ˇ

´

Ů1 ptqx01

¯

paq `
´

Ů12 ptqx02

¯

paq
ˇ

ˇ

ˇ
da

`

ż amax

0

ˇ

ˇ

ˇ

´

Ů2 ptqx02

¯

paq
ˇ

ˇ

ˇ
da

ď

ż amax

0
|x01 pηq |EGκ pη, η ` tq dη `

ż amax

0
|x02 pηq |

´

EH`κ pη, η ` tq
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`

ż t

0
EH`κ pη, η ` sqEGκ pη, η ` t´ sq ds

˙

dη

Using the fact that α̃1 ă gpaq ` c1 and α̃2 ă hpaq ` c2, for all a, by conditions
(9.34) and (9.35), it can be shown that

EGκ pη, η ` tq ď e´Kc1t and EH`κ pη, η ` tq ď e´pK`c2qt.

Thus,

}Ů ptqx0} ďe
´Kc1t}x01}1

`

ˆ

e´pK`c2qt ´ e´Kc1t

Kc1 ´ pK ` c2q
` e´pK`c2qt

˙

}x02}1

ďp1`K pc1 ´ 1q ´ c2q e´pc2`Kqt}x0}.

It follows that ω0pŮq ă ´pc2 `Kq ă 0, thanks to condition (9.35).

Step 4: Find ω0pT̊kq which is equal to ω0pT̄kq.

By the bounded perturbation Theorem 7.1.1 it follows that Å ` D̄k is the
infinitesimal generator of a C0´semigroup

´

T̊ ptq
¯

tě0
satisfying

}T̊ ptq } ďMαe
p´α`Mα}D̄k}qt

ô }T̊ ptq } ď p1`K pc1 ´ 1q ´ c2q

ep´pc2`Kq`p1`Kpc1´1q´c2qcp0qBqt. (9.37)

Using (9.35) and (9.36) implies that ω0pT̊ q “ ω0pT̄kq ă ´α `Mα}D̄k} ă 0.
Therefore, by Proposition 7.4.1 the C0-semigroup

`

T̄k ptq
˘

tě0 is exponentially
stable.
Note that the inequality (9.34) implies the feasibility of inequalities (9.35) and
(9.36). ˝

One can notice, in the first part of the proof, that the choice of the L1 norm,
combined with the dirac delta sequence whose integral is equal to one, is really
advantageous in this case because it implies that the norm of the operator D̄k

is independent of k. Hence, the exponential bound in (9.37) is also independent
of k.
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Theorem 9.2.2
Let x0 “ rI0, S0s

T
P L1 p0, amaxq ˆ L1 p0, amaxq be the vector of (age-

dependent) initial profiles of infected and susceptible individuals, respec-
tively. Assume that c1, c2, α̃1 paq and α̃2 paq are chosen such that con-
ditions (9.34) - (9.36) are satisfied. Consider the description (9.31) of
the PIDE model (6.11) with state feedback (9.19). Then, the first com-
ponent of the state xk of (9.31), that is the infected population Ikpt, aq,
converges to zero exponentially fast as time tends to infinity.
More specifically, there exist constants M ě 1 and α ą 0 such that, for
all t ě 0,

}Ikptq}1 ďM}I0}1e
´αt (9.38)

where the constants M “ 1 ` K pc1 ´ 1q ´ c2 and α “ ´pc2 `Kq `

p1`K pc1 ´ 1q ´ c2q cp0qB are independent of the sequence of operators
pD̄kq.

Proof. Since Theorem 9.2.1 shows the exponential stability of the C0´semigroup,
it follows that x̄k ptq exponentially converges to zero. Therefore, by relation
(9.20), Īk pt, aq “ Ik pt, aq exponentially tends to zero. ˝

Remark 9.2.1 In view of this analysis, we conjecture that Ipt, aq asymptoti-
cally exponentially converges to zero.
Intuitively, we have that Īk pt, aq and S̄k pt, aq tend to Ī pt, aq and S̄ pt, aq as k
tends to infinity. This idea can be shown by studying the limits of the error’s dy-
namics E pt, aq “

`

Īk pt, aq ´ Ī pt, aq , S̄k pt, aq ´ S̄ pt, aq
˘T which is given, using

(9.30) and (9.31) by

9E “ D̄x̄` D̄kx̄k

E p0q “ p0, 0qT .

This tends to 9E “ D̄E with E p0q “ p0, 0qT as k tends to infinity. The solu-
tion of this differential equation is E “ 0. Therefore we can hypothesize that
Ikpt, aq “ Īk pt, aq and S̄k pt, aq tend to I pt, aq “ Ī pt, aq and S̄ pt, aq as k tends
to infinity.
This intuition is reinforced by the fact that, as established in Theorem 9.2.2,
the exponential bound for the norm of Ik is independent of the Dirac sequence
pdkq introduced in (9.31). Therefore, if }Ikptq ´ Iptq}1 tends to zero as k tends
to infinity, it will follow from (9.38) that }Iptq}1 ď Me´αt}I0}1 for all t ě 0.
Note that this intuition is corroborated by numerical simulations.
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9.2.3 Nonnegativity of the feedback
In the following, some conditions on the design parameters are highlighted

in order to ensure nonnegativity of the vaccination law.

Theorem 9.2.3
Define ν “ sup

aPr0,amaxs
µpaq; Γ “ sup

aPr0,amaxs
γpaq and P̄ the total population.

Taking

α̃2paq “ 3ν ` 2Γ` cpaqP̄ (9.39)
α̃1paq “ ´Kpaq pKpaq ´ α̃2q (9.40)

yields the exponentially stable closed-loop system (9.24)-(9.26), (9.20)
with the nonnegative vaccination law (9.19).

Proof. The vaccination law (9.19) with definition (9.40) rewrites θpt, aq “
1

ppaq
tα̃2 `Axpt, aq `Gxptqqu . Moreover, since ν ě µpaq for all a P r0, amaxs,

Γ ě γpaq for all a P r0, amaxs and
ż amax

0
Ipt, bqdb ď P̄ , the following estimate

for the vaccination law is obtained,

θpt, aq ě
1

ppaq

"

α̃2 paq `

ż amax

0
c paqS pt, aq da´ 2ν ´ Γ´ cpaqP̄ ´ pν ` Γq

*

ě
1

ppaq

ż amax

0
c paqS pt, aq da

using definition (9.39). It follows that the vaccination law with those choices
of parameters is nonnegative. ˝

Therefore, in the PIDE case, there is no need to use a switching vaccination
law to ensure nonnegativity of the feedback.

9.2.4 Numerical simulations
Simulations are performed by using the same parameters and tolerance de-

fined in Sections 8.3 and 9.1.4. Furthermore, a forward time - backward space
finite difference scheme is used, as in Section 8.3. Moreover, notice that disease
eradication can be achieve regardless of the choice of the parameters. Indeed
as it can be viewed in Theorem 9.2.1, the choice of the design parameters only
impacts the convergence speed of the system. Therefore they can be tuned to
achieved a desired stability margin. However, in order to ensure that the vacci-
nation rate is nonnegative, the feedback gains are chosen according to Theorem



9.2. Infinite dimensional model 187

Figure 9.4 – Dynamics of infected individuals from NPIDE Model (8.1) with
vaccination (9.19)

9.2.3.
Figures 9.4 to 9.6 confirm the theoretical results. Indeed, Figure 9.4 shows
that the infected individuals tends to zero as time increases. In Figure 9.5, the
susceptible individuals trajectory remains nonnegative, so as the vaccination
that can be viewed in Figure 9.6. This vaccination law differs from the one
obtained for the ODE model. This can be explained by the large choice of
design parameters for both models. Since those parameters are not chosen in
the same way (randomly for the ODE case and to ensure nonnegativity of the
vaccination law in the PIDE case) differences occur. Moreover, there is no indi-
cation that the NODE model (9.2) is a good approximation of the PIDE model
(6.11), since the first one was just a tool to obtain the vaccination law for the
second one. The shape of Figure 9.6 suggests to vaccinate strongly individuals
at the beginning of the epidemic with less focus on young and old individuals.

Some questions remain open. First it can be noticed that no condition is
imposed a priori on the nonnegativity of the vaccination law for the NODE
model, which is essential to have physical meaning and nonnegativity of the
input. In numerical simulations a saturated law was used and seems to perform
well. This could be theoretically validated. Moreover, in the numerical simula-
tions, the feedback gains are chosen randomly in order to satisfy the positivity
and stability conditions. Another question could be the choice of those feed-
back gains in an optimal way, such as the minimization of the total number
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Figure 9.5 – Dynamics of susceptible individuals from NPIDE Model (8.1) with
vaccination (9.19)

Figure 9.6 – Dynamics of vaccination for the NPIDE Model (8.1) with vacci-
nation law (9.19)
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of infected individuals, for instance. Furthermore, the control law that was
designed is not applicable in practice since it requires the knowledge of all the
state variables as it is a state feedback law. This is rarely the case in real situ-
ations. A way to overcome this issue is to use a state observer to estimate the
whole state. The design of such an observer and the analysis of its performance
in connection with the state feedback laws is an important question for further
research. Finally it could be interesting to study a more complex model, for
instance an SIRS model, which will allow loss of immunity or a SIRD model to
fit best the fatal illness.
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Conclusion and perspectives

Conclusion
To conclude this thesis, let’s quote Shakuntala Devi, an indian woman,

prodigious mental calculator: "What is mathematics? It is only a systematic
effort of solving puzzles posed by nature". In this thesis, dedicated to the study
of a particular case of epidemic models, the age-structured compartmentalized
epidemic models, the aim is to understand the nature behavior in the field of
epidemic in order to be able to act on a disease to obtain the desired result of
disease eradication.

In order to understand the nature, one needs to express it in the mathematical
language. This can be done thanks to mathematical models. However, those
models need to be correctly developed to reflect reality. Chapter 1 is dedi-
cated to a brief overview of the models in epidemiology and details the ones
of interest in this thesis. Then, one objective of this thesis is to study those
considered models through their dynamical analysis. This is done in Chapter
4 for a nonlinear finite-dimensional SIRD model described by a set of ordinary
differential equations, but also in Chapter 8 for a nonlinear infinite-dimensional
SIR model described thanks to a set of partial integro-differential equations.
In those chapters, the question of existence of a unique solution for the models
is answered. If a model does not admit a solution, then it is not capable to
describe nature. A model with multiple solutions also fails to describe nature
since it is known that there is only one possible future. Therefore, ensur-
ing the existence and uniqueness of the solution allows to trust the models.
Furthermore, since the models deal with "physical" quantities, the question of
nonnegativity of the state variables is also studied. Moreover, the question of
stability is also addressed in order to make predictions about the future.

191
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Models by themselves are not enough to explain a natural phenomenon. Real
data are needed to allow the use of the models in real situation. This has been
done in Chapter 3 for the finite-dimensional model, using data on covid-19 in
Wallonia. Thanks to those data, the parameters of the model were calibrated.
Therefore, predictions of future behavior of the epidemic were obtained.

Finally, control theory allows to answer the challenging question of disease
eradication thanks to vaccination. For the finite-dimensional case, Chapter 5
proposed an observer-based output feedback that ensures disease eradication
while ensuring that the maximum number of infected individuals is lower than
without vaccination. The vaccination is chosen to be implementable in practice
in terms of nonnegativity and upper bound, since the number of vaccines per
day is limited. In Chapter 6, an optimal age-dependent vaccination law was
designed using model predictive control, in order to achieve disease eradication.
This law also satisfies some additional desirable constraints: the minimization
of the number of dead individuals in the population, ensuring that the peak
of the total number of infected individuals is not too high. As previously, this
vaccination law is ensured to be implementable in practice. Finally, the control
of the infinite-dimensional case was discussed in Chapter 9. A nonnegative vac-
cination law was designed thanks to a state feedback. The method proposed
in this Chapter is innovative and extends the known theory of linearizing state
feedback to the infinite-dimensional case.

To summarize, this thesis aims at answering some questions concerning the
dynamical analysis and control of nonlinear systems, in the field of epidemi-
ology. Throughout this thesis, theorems and proofs ensure that the results
obtained are valid for a wide range of applications. The proposed methods
can be used for other diseases than covid-19. However, the work is far from
being completed and lots of interesting questions still need to be tackled to
improve the field of control of epidemic models. Some of those improvements
are discussed in the following section.

Perspectives
Throughout this thesis, some open questions have been stated. Some of

those suggestions for future research are listed below.

• Concerning Chapter 3 and the model calibration, the choice of another
cost function, such as a negative binomial likelihood statistic could be
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investigated. Indeed, this statistic is best suited to deal with data that
are over-dispersed. Because, as mentioned in (Towers (2014)), "if in fact
the data are over-dispersed and the Poisson negative likelihood statistic
is used in parameter optimization, the assessment of the uncertainties
on the parameter estimates will be too low".

• The choice of the optimization algorithm in Chapter 3 can be discussed.
Indeed, instead of using a genetic algorithm, one could think of using the
Levenberg-Marquadt algorithm for instance. This is a gradient-based
optimization method often used to solve parameters optimization prob-
lem but with the disadvantage to sometimes get stuck in local minima.
Hence, a comparative study between both algorithms in the context of
parameters calibration in epidemiology could be very interesting.

• In Chapter 3, it could also be interesting to investigate the influence
of the choice of the starting time of the epidemic t0 in the parameter
calibration.

• Throughout the thesis, in order to capture the behavior of a disease at
best, it could be interesting to investigate models with more compart-
ments. The choice of the compartments can also be motivated by the
available data. Indeed, since only data about the hospitalized people
seem relevant, one could think to add an hospitalized compartment H
to the model for instance.
Furthermore, the models studied in this thesis rely on the strong as-
sumption that, once recovered, an individual cannot catch the disease
again. This assumption can be removed by considering systems such as
SIRS, SIRDS,... where the recovered individuals can lose some immu-
nity and become susceptible again. However, this additional term brings
an additional complexity to the model and has not been studied. Now
that some foundations have been developed for simple SIR and SIRD
models, the next step is to extend the results of this thesis to SIRS and
SIRDS models.

• Moreover the concept of age refers usually to the age of the individuals.
However, the attention can be focused on the last infection period for
instance, which can be viewed as the age of the disease. Several kinds of
age can be defined in this context: the most known is the infection-age
(ᾱ) which is the elapsed time since infection. In such context, other
age-structured models should be studied.

• In Chapter 5 it can be interesting to find how to select the feedback
gains of the observer-based output feedback in the best way possible.
For instance, by finding the parameters that minimize the number of
dead individuals. Then, the obtained results could be compared to the
ones of Chapter 6 where an age-dependent vaccination law is obtained
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thanks to model predictive control.
• Moreover, the approach proposed in Chapter 6 has been performed on a

discrete-time model. It could be interesting to apply the same method-
ology to a continuous-time model, e.g. by extending the analysis devel-
oped in the article (Sauerteig et al. (2022)) to the case of age-dependent
epidemic models.

• Concerning Chapter 9, it can be noticed that no condition is imposed a
priori on the nonnegativity of the vaccination law for the NODE model,
which is essential to have physical meaning and nonnegativity of the
input. In numerical simulations a saturated law was used and seems to
perform well. This could be theoretically validated.

• It could also be interesting, in Chapter 9, to study the possible con-
vergence of the NODE model to the PIDE model, in open-loop and in
closed-loop.

• Moreover, as for Chapter 5, the feedback gains of Chapter 9 could be
selected in an optimal way, for instance, by minimizing the maximum
number of infected individuals, in order to take into account the hospi-
tals bed capacity.

• In Chapter 8, the stability analysis is performed on the linearized sys-
tem. An approach using Lyapunov functions could be an interesting
alternative, as it was done in Chapter 6 for instance. The reference
(Haddad et al., 2010b, Chapter 2) could serve as a source of inspiration
for this task, where Lyapunov stability theory for nonnegative dynamical
systems is developed in the finite dimensional case.

• A key open question in Chapter 9 concerns the design of a control law
that is applicable in practice. Indeed, this is currently not the case since
the control law requires the knowledge of all the state variables, which
is rarely feasible in real situations. A way to overcome this issue is to
use a state observer to estimate the whole state. The design of such
an observer and the analysis of its performances in connection with
the state feedback laws is an important question for further research.
Results in Chapter 5 and work developed in (Kitsos et al. (2022)), but
without control, can serve as inspiration to tackle this question.

• In Chapter 9, a methodology to obtain a linearizing state feedback for
an infinite dimensional system is developed. This idea and the related
tools and results could possibly be extended to larger classes of systems,
under appropriate conditions.



Appendix A
Lipschitz property of the
saturated feedback

This chapter is dedicated to the proof of intermediate tools useful for the
proof of the Lipschitz property of the constrained feedback (5.13). The regions
(B1, B2 and B3) mentioned in the proof refer to Figure 5.1.

Lemma A.0.1
The function qk : Dompqkq “

“

S̃k, Nk
‰

ˆr0, Nksˆ¨ ¨ ¨ˆr0, Nksˆ
“

Ĩk, Nk
‰

ˆ

r0, Nks ˆ ¨ ¨ ¨ ˆ r0, Nks Ñ R, defined by (5.15) is Lipschitz.

Proof. Let zk “ pxk, y1, ¨ ¨ ¨ , yk, ¨ ¨ ¨ , ynaq
T and z1k “ px1k, y11, ¨ ¨ ¨ , y1k, ¨ ¨ ¨ , y1naq

T P

Dompqkq. Several situations can be identified.
— Assume that zk and z1k are such that xk, x1k ě

˜̃Sk and yk, y
1
k ě

˜̃Ik (zk
and z1k P B1). Therefore,

|qkpzkq ´ qkpz
1
kq| “ |1´ 1| “ 0 ď C1}zk ´ z

1
k}l1

for all C1 ą 0.

— Assume that zk and z1k are such that yk, y1k ă
˜̃Ik, yk ď

˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

xk ´ S̃k
˘

`

Ĩk and y1k ď
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

x1k ´ S̃k
˘

` Ĩk (zk and z1k P B2). Therefore,

ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ “
4
π

ˇ

ˇ

ˇ

ˇ

ˇ

arctan
˜

yk ´ Ĩk
˜̃Ik ´ Ĩk

¸

´ arctan
˜

y1k ´ Ĩk
˜̃Ik ´ Ĩk

¸
ˇ

ˇ

ˇ

ˇ

ˇ
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ď
4
π

ˇ

ˇ

ˇ

ˇ

ˇ

˜

yk ´ Ĩk
˜̃Ik ´ Ĩk

¸

´

˜

y1k ´ Ĩk
˜̃Ik ´ Ĩk

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“
4

π
´ ˜̃Ik ´ Ĩk

¯ |yk ´ y
1
k|

ď C2}zk ´ z
1
k}l1 ,

using the fact that arctan is a Lipschitz function with Lipschitz constant
1, and taking C2 equals 4

π
´ ˜̃Ik ´ Ĩk

¯ .

— Assume that zk and z1k are such that xk, x1k ă
˜̃Sk, yk ą

˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

xk ´ S̃k
˘

`

Ĩk and y1k ą
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

x1k ´ S̃k
˘

` Ĩk (zk and z1k P B3). By a similar rea-

soning as the previous case, it follows that
ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ ď C3}zk ´ z
1
k}l1 ,

with C3 “
4

π
´ ˜̃Sk ´ S̃k

¯ .

— Assume that zk and z1k are such that xk ě ˜̃Sk, yk ě ˜̃Ik, y1k ă
˜̃Ik and

y1k ď
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

x1k ´ S̃k
˘

` Ĩk (zk P B1 and z1k P B2). Therefore,

ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

1´ 4
π

arctan
˜

y1k ´ Ĩk
˜̃Ik ´ Ĩk

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

4
π

arctan p1q ´ 4
π

arctan
˜

y1k ´ Ĩk
˜̃Ik ´ Ĩk

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď
4
π

ˇ

ˇ

ˇ

ˇ

ˇ

1´
˜

y1k ´ Ĩk
˜̃Ik ´ Ĩk

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“
4

π
´ ˜̃Ik ´ Ĩk

¯

´ ˜̃Ik ´ y1k
¯

since y1k ă
˜̃Ik,

“ C2

´

yk ´ y
1
k `

˜̃Ik´yk
¯

ď C2
`

yk ´ y
1
k

˘

since yk ě ˜̃Ik,
ď C2}zk ´ z

1
k}l1 ,

— Assume that zk and z1k are such that xk ě ˜̃Sk, yk ě ˜̃Ik, x1k ă
˜̃Sk and

y1k ą
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

x1k ´ S̃k
˘

` Ĩk (zk P B1 and z1k P B3). A similar reasoning



197

as the previous one gives
ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ ď C3}zk ´ z
1
k}l1 .

— Assume that zk and z1k are such that yk ă ˜̃Ik and yk ď
˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

xk ´ S̃k
˘

`

Ĩk, x1k ă
˜̃Sk and y1k ą

˜̃Ik ´ Ĩk
˜̃Sk ´ S̃k

`

x1k ´ S̃k
˘

` Ĩk (zk P B2 and z1k P B3).

ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ “
4
π

ˇ

ˇ

ˇ

ˇ

ˇ

arctan
˜

yk ´ Ĩk
˜̃Ik ´ Ĩk

¸

´ arctan
˜

x1k ´ S̃k
˜̃Sk ´ S̃k

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď
4
π

ˇ

ˇ

ˇ

ˇ

ˇ

˜

yk ´ Ĩk
˜̃Ik ´ Ĩk

¸

´

˜

x1k ´ S̃k
˜̃Sk ´ S̃k

¸
ˇ

ˇ

ˇ

ˇ

ˇ

Introduce the new variables Īk “ ˜̃Ik´ Ĩk and S̄k “ ˜̃Sk´ S̃k and consider

two cases. If yk ´
˜̃Ik

Īk
ď
x1k ´

˜̃Sk
S̄k

, it follows that,

ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ ď
4
π

˜

x1k ´
˜̃Sk

S̄k
´
yk ´

˜̃Ik
Īk

¸

ď
4
π

˜

y1k ´
˜̃Ik

Īk
´
yk ´

˜̃Ik
Īk

¸

“ C2
`

y1k ´ yk
˘

ď C2}zk ´ z
1
k}l1 ,

where the fact that y1k ą
Īk

S̄k

´

x1k ´
˜̃Sk ´ S̄k

¯

`
˜̃Ik ´ Īk ô

y1k ´
˜̃Ik

Īk
ą

x1k ´
˜̃Sk

S̄k
was used.

Moreover, if yk ´
˜̃Ik

Īk
ą
x1k ´

˜̃Sk
S̄k

, it follows that,

ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ ď
4
π

˜

yk ´
˜̃Ik

Īk
´
x1k ´

˜̃Sk
S̄k

¸

ď
4
π

˜

xk ´
˜̃Sk

S̄k
´
x1k ´

˜̃Sk
S̄k

¸

“ C3
`

xk ´ x
1
k

˘

ď C3}zk ´ z
1
k}l1 ,
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where the fact that yk ď
Īk

S̄k

´

xk ´
˜̃Sk ´ S̄k

¯

`
˜̃Ik ´ Īk ô

yk ´
˜̃Ik

Īk
ď

xk ´
˜̃Sk

S̄k
was used.

Finally,
ˇ

ˇqkpzkq ´ qkpz
1
kq
ˇ

ˇ ď C}zk ´ z
1
k}l1 ,

with C “ max tC1, C2, C3u ą 0. ˝

Lemma A.0.2
The function θ̄k : Dompθ̄kq “

“

S̃k, Nk
‰

ˆr0, Nksˆ¨ ¨ ¨ˆr0, Nksˆ
“

Ĩk, Nk
‰

ˆ

r0, Nks ˆ ¨ ¨ ¨ ˆ r0, Nks Ñ R, defined by (5.14) is Lipschitz.

Proof. Let zk and z1k P Dompθ̄kq. As for the previous proof, several situations
can be identified.

— Assume that zk and z1k are such that θkpzkq, θkpz1kq ď θsup, it follows
that

ˇ

ˇθ̄kpzkq ´ θ̄kpz
1
kq
ˇ

ˇ “
ˇ

ˇθkpzkq ´ θkpz
1
kq
ˇ

ˇ ď K1}zk ´ z
1
k}

since θk, defined by (5.6), is Lipschitz on Dompθ̄kq.
— Assume that zk and z1k are such that θkpzkq, θkpz1kq ă θsup, then

ˇ

ˇθ̄kpzkq ´ θ̄kpz
1
kq
ˇ

ˇ “ |θsup ´ θsup| “ 0 ď K2}zk ´ z
1
k},

for all K2 ą 0.
— Assume that zk and z1k are such that θkpzkq ď θsup and θkpz1kq ą θsup.

Hence,
ˇ

ˇθ̄kpzkq ´ θ̄kpz
1
kq
ˇ

ˇ “ |θk pzkq ´ θsup|

“ θsup ´ θk pzkq since θk pzkq ď θsup,

ď θk
`

z1k
˘

´ θk pzkq since θk
`

z1k
˘

ă θsup

ď K1}zk ´ z
1
k}

where K1 is the Lipschitz constant of θk.
Thus, for all zk and z1k P Dompθ̄kq,

ˇ

ˇθ̄kpzkq ´ θ̄kpz
1
kq
ˇ

ˇ ď K}zk ´ z
1
k},

with K “ max tK1,K2u. ˝
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Proposition A.0.1
The function qkθ̄k : Dompqkθ̄kq “

“

S̃k, Nk
‰

ˆ r0, Nks ˆ ¨ ¨ ¨ ˆ r0, Nks ˆ
“

Ĩk, Nk
‰

ˆr0, Nksˆ¨ ¨ ¨ˆr0, Nks Ñ R is Lipschitz, with Lipschitz constant
L ą 0.

Proof. Let zk and z1k P Dompqkθ̄kq,
ˇ

ˇ

`

qkθ̄k
˘

pzkq ´
`

qkθ̄k
˘ `

z1k
˘
ˇ

ˇ ď
ˇ

ˇqk pzkq
`

θ̄k pzkq´θ̄k
`

z1k
˘˘
ˇ

ˇ

`
ˇ

ˇθ̄k
`

z1k
˘ `

qk pzkq ´ qk
`

z1k
˘˘
ˇ

ˇ

ď
ˇ

ˇθ̄k pzkq ´ θ̄k
`

z1k
˘
ˇ

ˇ` θsup
ˇ

ˇqk pzkq ´ qk
`

z1k
˘
ˇ

ˇ

ď K}zk ´ z
1
k} ` θsupC}zk ´ z

1
k}

ď L}zk ´ z
1
k}

using the two previous lemma, the fact that 0 ď qk ď 1, 0 ď θ̄k ď θsup and
defining L “ max tK, θsupCu. ˝
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