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Endocrine and scavenging cell functions of a juvenile fish heart atrium: Fine 
structure aspects and translating conjectures 
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A B S T R A C T   

Background: The atrium of the juvenile teleost, smallmouth bass, Micropterus dolomieu Lacépède showed a pig-
mented endocardium. Our goal was to use fine structure to survey this fish heart tissues and verify the content 
responsible for this shrouding and discuss mammalian, translational conjectures about this cardiac structure. 
Methods: Using electron microscopy, heart pericardium, myocardium, and endocardium were analyzed, 
including atrial peptide immunolabeling. 
Results: The endocardium endothelial cells of the atrium revealed pinocytosis and endocytosis activities that 
resulted in accumulated electron-contrasted secondary lysosomes and lipofuscin bodies not found in the ventricle 
endocardium. This endothelium contacted subjacent atrial and ventricular myocardial cells producing immu-
nolabeled atrial peptide-containing vesicles. Other migrating cells, including melano-macrophages, were noticed 
in the atrial sub endocardium. 
Conclusions: The endocardium functioned as a potent blood-heart barrier where transcytosis and dispatching of 
numerous materials, including those atrial peptides, between myocardium and the circulation occur. Peculiarly, 
this juvenile endothelium revealed abundant lysosomal processing of scavenged circulation materials like in a 
reticuloendothelial tissue. These juvenile cell’s accumulated ‘aging’ lipofuscin bodies as organized deposits into a 
network with other organelles, especially mitochondria without evident disposal. Additionally, other cells, 
including melano-macrophages roamed both sub endocardium and ventricle; those also can influence the viewed 
pigmentation. Some of these data comforted the endocardial mesodermal lineage, still sketchy for all vertebrates 
while fish heart development is still used. These observations could raise questions: Does turnover of lipofuscin 
and associated captures make endocardial cells to model other mammalian pathologies, including those asso-
ciated with heart failure?   

1. Introduction 

During comparative studies of cardiac structures and development 
dealing with atrial structures and peptides [1–6] and cardiomyopathy 
[7], If our curiosity made us lo survey the expression of cardiac peptides 
(abbreviated ANF or ANP) in the cardiac tissues of the smallmouth bass, 
a teleost fish, a peculiar internal brownish hue was observed. A cursory 
light microscopy appraisal made us realize that, like in many other fish 
freshwater and seawater species, a series of research reports had 

described the endocardium endothelium, the thin serous membrane of 
the heart, to be often the main tissue pigmented and surveyed with light 
microscopy and histochemistry. However, those studied dealt with adult 
fish, including some with interest as recreational species [8–22] and 
others that had interest in fisheries [10–12,16,18–22]. Other related 
studies revealed the endocardium scavenging features with or without 
fine structure that could involve nucleic acid [23] while most other 
authors have supported endocardial captures of circulating ferritin or 
other circulation products because of injections of hemal compounds 
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[24–35], a few had suggested hyaluronan capture by endocardium [34]. 
Furthermore, several of these reports also included another endocardial 
cell type, lining the endocardium, named melano-macrophage cells, and 
responsible for the heart pigmentation [24–32,35]. However, these 
cell’s location still bore confusions about the components of the endo-
cardium cells. 

Fish cardiovascular developmental and functional aspects have been 
reported [36–45] and, in recent years, fish models had and are still used 
to understand some of the early mammalian heart development, reca-
pitulating some primitive structures viewed in those models because the 
endocardium early development in vertebrates, including mammals, 
steered into crucial cardiac tissues that are still enduring unresolved 
questions in normal and pathology outlooks as well as those that regard 
homeostatic salt balance [44–60]. 

Our aim was thus to verify with fine structure the heart layers of a 
juvenile teleost, the smallmouth bass, to further describe the cells and 
the cytologic features responsible for its pigmentation, likely located at 
the endocardium level. 

This report revealed the species pericardium and the myocardial 
cytology. The myocardium is marked by the production of cardiac 
peptides while the endocardial endothelial cells had a peculiar content 
that resembled accumulated lipofuscin ‘aging’ bodies and constituted a 
pigmented inner cardiac layer. It developed from pinocytosis and 
endocytic captures of undisclosed circulation products out of lysosomal 
production and processing into secondary lysosomes, then stowed as 
lipofuscin-like bodies. It seemed to function as a sort of reticuloendo-
thelial tissue, creating excessive long term waste loads and/or a pro-
tective shield. Other wandering cells of the subendocardial endothelium 
were noted, including the so-called melano-macrophages whose or-
ganelles resembled melanosomes. 

2. Materials and methods 

2.1. Ethical concerns 

Procedure and sacrifice of fishes were approved through the Animal 
Ethic Committee of the College of Medicine (1987–1991) and the 
Department of Comparative Medicine of NEOUCOM (now NeoMED), 
Rootstown Ohio, USA. 

2.2. The fish collection 

Eight juvenile smallmouth bass fishes, Micropterus dolomieu 
Lacépède, a teleost Perciform, 9–10 cm long (about 11-month-old), were 
purchased from a private fish farm, Green Ohio, USA [60,61].. They 
were kept at the same freshwater and temperature as collected (between 
12 and 14 ◦C), in an insulated container for transport to a small labo-
ratory aquarium for a 2-day period adjustment before they were anes-
thetized by a 75 mg dose/L of according to specific consideration also 
noted in a U.S. Fish and Wildlife Service report [62–64]. 

2.3. Light (LM) and Transmission electron microscopy (TEM) 

Four of the small bass were intraventricularly perfused with a 0.1 M 
cacodylate buffered 3.5% glutaraldehyde solution (pH = 7.2) during 5- 
min. After heart excision, atria and ventricles were immersed 2-h long in 
the same fixative solution at 4 ◦C. Samples were washed for 1h duration 
in cacodylate buffer and postfixed for 2h in aqueous 2% osmium te-
troxide. After a wash of 1,5h in the same buffer samples were processed 
in PolyBed epoxy resin (Polysciences, Warrington, PA.). Examination of 
1-μm thin sections, stained with toluidine blue, allowed to select areas to 
cut ultrathin (50–65 nm) sections to be collected on 50 and 100 mesh 
hexagonal copper grids (SPI, West Chester, PA) and contrasted with 
uranyl acetate and lead citrate [1,2]. 

2.4. Immunoelectron microscopy 

Four fish specimens anesthetized as described above had heart 
excised and components fixed by 1% glutaraldehyde and 4% para-
formaldehyde in 0.1 M phosphate buffer (pH 7,2–73) for 2 h at room 
temperature before rinsed in the same buffer, dehydrated, and processed 
in LX11 embedding epoxy medium (Ladd Res Ind, Burlington VT). No 
osmium tetroxide post fixation was used. Ultrathin grey sections were 
cut, collected on nickel grids, and treated according to De Mey et al. [65, 
66]:; incubated for 1 h with normal goat serum diluted 1:3 by Tris-NaCl 
buffer, pH 8.2 and without rinsing, sections were immersed in rabbit 
ANF antiserum #10-5 (1:2000 dilution; 12 h at 4 ◦C). After rinsed with 
Tris buffer, the sections were now incubated 1h at room temperature in 
goat anti-rabbit IgG coupled with colloidal gold (15 nm average particle 
size; Janssen Pharmaceutica, Beerse Belgium) diluted 1:20 by 0.1 M Tris 
with 10% goat serum -NaCl buffer. Sections were then contrasted with 
uranyl acetate and lead citrate, and carbon-coated before they were 
observed with the electron microscope. Controls included substitution of 
the primary antiserum with #10-6 M atriopeptin III (5-25) or with 
alpha-human ANF (Bachem AG, Bubendorf, Switzerland). In addition, 
substitution of the primary antiserum by rabbit anti-VIP, -NPY, -sub-
stance P, or -CCK antisera did label atrial granules or of any part of the 
sarcoplasms by immunogold particles. Preabsorption of the antibody 
with synthetic ANF(1–28) or substitution of the primary antiserum by 
normal rabbit serum resulted in the absence of immunogold labeling 
[4–6]. The ANF antiserum #10-5: Anti-ANF serum was obtained by 
immunization of a rabbit with synthetic atrrial natriuretic peptide (rat 
5–28; Bachem AG) that was coupled to keyhole limpet hemocyanin via 
1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide-HCl [67]. The anti-
serum (10#5) recognizes atrial natriuretic peptide(5–15), ANF (1-28) 
and beta-rANF (17–48). These data suggested that the antiserum #10-5 
binds to the free active ANF hormone as well as to ANF portion of the 
free active precursor molecule. Because the antibody does not recognize 
the ANF fragment (18–28), it is suggested that an intact cystine bridge is 
required for binding or the portion of the peptide close to the N-terminus 
is the site that is recognized by the antibody [4,5]. 

2.5. Ultrastructure analyses 

Examination of ultrathin sections were done after all were contrasted 
with both uranyl acetate and lead citrate. prior to examination in a Jeol 
100 S 100S (Jeol Inc, Peabody, MA USA) electron microscope and a 
Siemens Elmiskop (Mechelen, Belgium). From both ultrastructure ob-
servations, Kodak 4489 EM negative films were printed, and digitized 
images were recorded with an Epson V550 home scanner for our 
collection. 

3. Results 

3.1. The teleost cardiovascular functional anatomy 

The cardiovascular functional anatomy of a teleost fish can be 
summarized as made of two main chambers, the atrium, and a ventricle. 
When venous blood arrives from the body with both common cardinal 
and hepatic veins, it first reaches a thin-walled confluent sinus venosus 
that carries it into the atrium and then the ventricle where it is pumped 
to the bulbous arteriosus and out, it reaches the gills capillary beds 
before distributed to the general capillary beds of the body tissues. 
Anatomically, the young bass ventricle wall is the thickest of all struc-
tures considered as verified with histology and fine structure. The 
collected micrographs were organized into panes to suggest sequentially 
the dynamics about the intracellular cytology of intracellular stowage, 
unusually kept in this juvenile tissue. 
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3.2. The juvenile smallmouth bass heart histology and ANF 
immunolabeling 

The atrial histology appeared fragile and more finely trabeculated 
than that of the ventricle, especially when one considered its internal 
muscle composition of thicker fascicles in cardiomyocytes (Fig.. 1A and 
2A vs Fig. 1 E and F). Even though the tissues collected are still under-
going growth, considering the age of the animal (less than 1-year old), 
one can recognize with both light microscopy and at a low ultrastructure 
magnification that these cardiac walls encompassed all the three tissue 
layers of the heart of all the vertebrates from outside in: epicardium, 
myocardium, and endocardium (Fig.. 1A and 2 A). Each layer contains 
their proper cell types and both epithelial inner and outer layer show 
their basement membrane, consisting of both basal laminae and con-
nective components issued with the network of organized car-
diomyocytes myocytes from the developed mesoderm. We shall describe 
our observations from outside to inside structures, as the paragraphs to 
follow. 

3.2.1. The pericardium or pericardial layer 
The extension of a mesothelium layer corresponded with the outer-

most squamous epithelium that typically covered the heart, encom-
passed by a thickness comprised between 0.9 and 3 0.5 μm. It covered a 
connective layer that ranged from 5.0 to 9.0 μm in thickness that 
comprised connective fibrillar and fibrous collagenic bundles where 
sustaining cells, the telocytes, can be found in most random sections. 
These cells can be recognized within the pericardial layer by their 

peculiar stroma morphology, nucleus and perinuclear cytoplasm dis-
played a triangular to ovoid shape radiating slim, moniliform cyto-
plasmic extensions or telopodes where thin segments (podomeres) and 
dilated portions (podoms) reached out a fibrous connective matrix in the 
epicardial fibrous layer (Fig.. 1D and 2A). 

3.2.2. The myocardium or myocardial layer and the atrial natriuretic 
peptide or factor (ANF) 

The myocardial layer contained cardiomyocytes whose morphologic 
aspects were always recognizable in random sections, either illustrated 
by sarcomere segments of myofibrils that revealed typical myofiber 
aspect: a central nucleus, surrounded by organelles and sleeves of 
myofibrils that demonstrated their sarcomere components and inter-
cellular junctions (tight, desmosome-like and gap junctions) in diverse 
orientations, according to random planes of sectioning whether for 
atrium (Fig.. 1 D, 2 B-D) or ventricle (Fig. 2 E, F, 11E and H). All the 
atrium wall myocytes were organized into delicate, trabecular bundles, 
and with random sections, appeared sticking out into the heart blood 
circulation lumen. They displayed round to oblong mitochondria pro-
files amongst and between myofibrils along with dispersed glycogen and 
ribonucleoprotein granules. 

In comparison to the atrium, the ventricle myocardium is seemingly 
contructed by complex, thick, entwined trabecules apparently devoid of 
protruding extensions. The cardiomyocytes typically depicted a central 
sarcoplasm region where large number of elongated mitochondria 
packed, surrounded by one or two myofibril sleeves. These cells did not 
show lysosome-related structures and deposits. 

Fig. 1A-D. Heart of juvenile smallmouth bass 
(Micropterus dolomieu Lacépède). A-B: One-µm epoxy 
thick sections, toluidine-blue stained of cardiac 
atrium wall in cross and oblique sections. Note the 
muscular trabeculated aspect of the myocardium. C- 
D: Fine structure featured endocardial pinocytosis, 
pseudopodia (black arrows) and vacuoles formed by 
endocytosis. D reveals the ultrastructure of part of A 
and series of small arrows mark atrial hormone- 
containing vesicles. E: endocardium, Ep: Epicar-
dium, L: lumen/blood space with erythrocytes; My: 
myocardium cardiomyocytes; T: Telocyte; v: vascular 
structure.   
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According to random sectioning, both atrium and ventricle myocytes 
contained variable numbers of round to and oblong electron dense 
vesicles that reached 50–200 nm in diameter; they scattered in the free 
subsarcolemma or the intermyofibrillar sarcoplasm. These vesicles 
recognized as atrial ‘granules’ contained the natriuretic peptide or factor 
(abbreviated ANF; Fig. 2A–C) produced by the Golgi apparatus to be 
released in the circulation. Their content was also identified by the 
immunogold labeled antibodies against the atrial natriuretic peptide or 
factor (both Fig. 2D and E, insert E and F). 

3.2.3. The endocardial endothelium 
Classically, the most inner heart endothelial layer or blood-heart 

barrier is constituted as a simple squamous-like cell layer. In this fish, 
eyesight view showed a darkened, almost blackish layer and this feature 
appeared with light microscopy as tall, cuboidal-like cells with a large 
subcentral nucleus perikaryal zone decorated with unusually contrasted 
organelles. Low magnification ultrastructure verified that most cells 
prominently bulged into the circulation space or lumina (Fig. 1A–D, 2A, 
3 A-B) and higher magnifications made these electron dense ones to 
show either vacuolated or massively contrasted contents, as in lipofuscin 
bodies. Golgi apparati were noticed and other organelles surrounded by 
innumerable ribonucleoproteins or fixed as rough ER, where glycogen 
stores remained undetected, compared with an abundant stowage of the 
adjacent cardiomyocytes (Fig. 7B). The subsurface zones of the same 
endocardial cells featured both pinocytosis and endocytosis structures. 
Numerous tubular-like parts of the smooth endoplasm reticulum were 
issued from the rough one and the reticulum also connected few 

mitochondria outer membrane along with some altered ones (Fig. 5A–B, 
7B). Morphology alone without markers showed the Golgi distal sac-
cules clearly formed primary lysosomes as well as diverse vesicles. The 
small ones populated the subsurface cell regions and after capture some 
circulation products constituted secondary lysosomes, and residual 
bodies, revealed as those heavily contrasted oblong-shaped ones with 
complex content, classically described as lipofuscin bodies in eukaryote 
cells. These organelles were parts of cell’s narrow extensions (0.2–0.6 
μm in thickness) and contacted similar adjacent cells by slender cell 
edges with poorly defined junctional complexes (Fig. 2A) and the same 
cells bore delicate extensions, almost appearing as ‘invadosomes’ that 
ran underneath endocardial adjacent cells (i.e., Fig. 3A). Mitochondria, 
and, among them, some appeared altered. Scattered particles as ribo-
nucleoproteins (ribosomes} appeared throughout without glycogen, 
unless part as dispersed, with similar size as the isolated ribosomes 
found in myocytes where the clumped glycogen and dispersed showed in 
discrete zones (Fig. 5C). Ribosomes showed as strings along mRNA 
throughout the cytoplasm (Fig.. 5D and 6A and B). or attached to the 
endoplasmic reticulum as RER (Fig.. 5D and 6A, C) that sometimes 
extended into smooth ER (Fig. 6C). In all the observations, the basal 
lamina was poorly or not clearly detected (Fig. 4 B–C, 5 A-B, 6, 7 S, 11 D, 
E, G); instead, a poorly contrasted meshwork of fibrillar materials or an 
occasionally thick bundle of collagen bundle was seen surrounded by 
endocardial extensions and telocytes that, altogether, depicted a sepa-
ration between this endocardium from the myocardium. (Fig. 11 E). In 
comparison, the endothelial endocardial layer covering the ventricle 
myocardium, was slim (0.1–0.5 μm and did not reveal those intracellular 

Fig. 2A-F. TEM views of parts of the trabeculated, 
atrial myocardium of the young smallmouth bass 
(Micropterus dolomieu Lacépède). A-D: The spongy, 
finely branching myocardium (My) is surrounded by 
a narrow endocardium layer (m) with dense vesicles 
and surface projections toward the lumen supported 
by the epicardial (Ep) collagen bundled fibres con-
taining telocytes (T) Specific atrial vesicles said 
‘granules’ are shown in B-D amongst ribonucleopro-
teins in myocyte’s sarcoplasm; in D, ANF content of 2 
adjacent vesicles, almost similar to those viewed in C, 
immunolabeled by 15nm gold particles (My). E-F: 
Ventricular myocytes: tightly packed mitochondria in 
their cores with loosely groups of glycogen granules; 
there, typical sarcomere specialization contacts (* 
and white arrows). L: blood lumina lined by a thin 
endocardial layer (E) devoid of electron dense bodies. 
Note ventricular myocyte atrial vesicles (arrows) and 
insert with example of one ventricle vesicle content 
as immunolabeled.   
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deposits (Fig. 2E–F). Other sub endocardial wandering cells are 
described in Fig. 11 B–H and in a further paragraph. 

3.2.4. The endocardial endothelium phagocytosis activities 

3.2.4.1. Pinocytosis. Light microscopy revealed numerous round profile 
vesicles (Fig. 1B), and, with fine structure, the same endocardial su-
perficial cytoplasm revealed countless small vesicles that ranged from 
15 to 25 nm in diameter issued from the plasma membrane rim as pits 
with or without coat. According to random observations, a cell section 
can contain several hundred of them while adjacent cells had few. (Fig.. 
4 A, 6, 7A, B and C). 

3.2.4.2. Endocytosis. Some light and fine structure micrographs 
revealed extended endocardial cell pseudopodia into the circulation 
swooping fluid content and creating endosome wide to narrow invagi-
nated grooves or coves that made phagosome vesicles (Fig. 4 A, B and C) 
with the contribution of membranes out of the Golgi apparatus (Fig. 5-B. 
7B) and clear lysosome formation and growth (Fig.. 4A, 5A-B, 6A, 7D). 

3.2.4.3. Processing, lysosomes, and deposits. Merged pinocytotic vesicles 
and other wide vacuoles resulted in electron contrasted bodies, made of 
heterogeneous floccular and granular content that haphazardly filled in 
part these vacuoles, delineated by a typical (double leaflet) plasma 
membrane, and ranged from 50 to 1800 nm in diameter as endosomes. 
These also appeared out of the Golgi apparatus zones, made of 3 or more 
evident cisterna distributed as more or less pileups or stacks. Toward 
these zones, vesicles can be seen and reached cis sides while from the 
outermost edges of trans cisternae erupted other vesicles either emptied- 
like or, like cherries, lysosomes bore an electron dense contrast out of 

Fig. 3A-B. TEM aspects of endocardial cells (E) of atrium of juvenile smallmouth bass covering the myocardium whose content in endocytosis activities were verified 
by large lysosomal bodies and vacuoles resulted from captures from circulation components (thick arrows). Junctions between endocardium and myocardium are 
noted by thin arrows. L: atrial lumina. 

Fig. 4A-C. TEM enlarged aspects of subsurface parts of endocardial cells of a 
juvenile smallmouth bass. A: Numerous pinocytosis activities (small arrows) 
and B-C: vacuoles with diverse inner content (e for endosome, and some open 
arrows), resulting from endocytosis captures among contrasted lysosomal 
bodies. In C: ag: atrial granules of cardiac peptide; My: cardiomyocyte; L: 
blood lumen. 
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their acidic pH content (Fig. 7C–D). 
The observed endosomes seemed originated from the poorly con-

trasted Golgi vesicles that filled up progressively with contrasted com-
pounds captured from the circulation joined by pinocytosis and 
endocytosis. These events can make with fine structure a partly granular 
to cloudy electron dense components with large surroundings of the 
vacuoles that resulted from these captured circulating plasma com-
pounds (Fig.. 1 D and 4 A-C). Meanwhile, these large, poorly filled 
vesicles, appeared as endosomes (Fig. 1B -D, 2A, 3B, 4A-C, 6A, 8A). Can 
these become progressively filled to appear later with light to heavily 
contrasted, round, and elongated bodies that ranged from 30 to 750 nm 
? (Fig. 5 A-B, 6A, 7A, C and D). Some views could suggest their expan-
sion from fusion between small ones and small ones with large ones 
(Figs.. 4A, 6A and 7A). In most endocardial endothelial cells, out of these 
endocytosis activities lysosomes as primary ones, through their ‘diges-
tive’ activities became entirely filled secondary lysosomes; they showed 
with high electron contrast as round to oblong, fusiform profiles that can 
reach from about 100 nm to 4.5 μm in size (Fig.. 3A, 5A-B, 6A, 7C-D). 
Among these huge, contrasted secondary lysosomes, some bodies can 
become named lipofuscin bodies for some that contained 50 nm wide, 
round, opaque droplets [Fig.. 6A and 7A, C and D, 8A-B, 9A-D) and 
further heterogeneous low contrast, fibrillar-like line up packed struc-
tures that either straighten out, bent, or twisted along the axis parts of 
the deposits; each with less than 10 nm in thickness (Fig.. 8A and 9 A-D). 
Particulate and round internal contrasted parts of the deposits usually 
located in the outskirts of these contrasted bodies (Fig.. 3A, 5B and 8 A- 

B, and 9 A-D). All the organelles, especially mitochondria with all the 
lysosomal bodies and those that can appear as lipofuscin bodies, dis-
played connections with one another through membrane-like channels, 
as a contiguous and continuous networks, as exemplified in Figs. 3A, 5B 
and 6A and C, 7C, 8A-B, 9 A-D. In 8 A and B, one can see the complex 
interconnected assemblies of phagosomes that could facilitated fusion 
with one another, as suggested by curved arrows, producing further 
enlargement of these lipofuscin, heterogeneous bodies. A diagrammatic 
representation of the viewed pinocytosis and cytophagocytosis is 
attached Fig. 10. 

4. Other sub endocardial cells, including the melano- 
macrophages 

Even though the circulating cells of the juvenile smallmouth bass 
were not the topic of our investigation, loitered cells in the vicinity of the 
endocardium can be reported here. Few leukocytes, possibly lympho-
cytes, were noted within the blood circulation compartment (Fig. 11 A). 
Other cells were found in the sub endocardial lining that were like the 
plasma cells of other fishes, depicting a large network of rough endo-
plasmic reticulum throughout the perikaryal regions, sometimes with 
dilated aspect (Fig. 11B–C). Further cells were either single or grouped, 
could be named lymphocytic microphages, like the one exemplified in A, 
contained lysosome bodies that have accrued intercellular materials 
(Fig. 11D–E). Lastly, and depicted in Fig. 11 F to H and Fig. 12, wan-
dering cells that contained lysosomal-like bodies with quasi whorls, like 
the melanogenic depots and melanosomes of higher vertebrates, were 
also in the sub endothelial spaces. They differed from the endothelial 
cells that never contained such coiled aspect associated with fibrillar and 
other components that congregated into vesicles constituted by a sort of 
polymerization, into an eye sighted ‘black’ pigment. 

Fig. 5A-D. TEM of an endocardial endothelial cell of juvenile smallmouth bass 
(Micropterus dolomieui Lacépède). A: Bulging cytoplasm loaded by lysosomal 
bodies and extensions covering subjacent myocardial fibers (My). B: Enlarged 
view of A demonstrating the prominent perikaryal zone (N: nucleus) filled by 
crowded organelles: rough and smooth endoplasmic reticulum (open arrows) 
squeezed among a Golgi (G) forming out of lysosomes secondary lysosomes. 
Coated tiny pinocytotic and some pitted invaginations (black arrows accumu-
lated as electron-dense bodies (curved arrows), of heterogeneous content that 
showed oblong shapes. C: Enlargement of glycogen reserves displaying aggre-
gates of diverse size in kept apart cytoplasm zones of endocardial cells (in 6A) 
while, in D: Ribosomes of endocardial cells appeared either attached to endo-
plasm to become RER or to strings of mRNA making polyribosomes. 

Fig. 6A-C. Smallmouth bass oblong, interconnected lipofuscin-like bodies in 
the endocardial endothelium cytoplasm, in close contact with an adjacent 
myocardial fiber (My), marked by the white open arrow. Note the abundant 
rough endoplasmic reticulum and glycogen (gly) associated with dense vesicles 
among mitochondrial profiles and an endosome (e) that captured some endo-
cytosed compounds carried by coated vesicles (e.g., small arrows). 
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5. Discussion 

The smallmouth bass is a benthopelagic freshwater fish, Actino-
pterygian Perciform, out of Centrarchidae family (Sunfishes); it usually 
inhabits shallow rocky-or gravel-bottom runs near flowing pools of 
rivers, or other streams and reservoirs fed by such streams. Juvenile bass 
feed on plankton and insect larvae while adult become carnivorous 
[60–62]. Juvenile fish organs, especially dealing with fine structure 
have yet to be compared to aged ones, like in mammals. 

The opportunity of investigating the cardiac fine structure and atrial 
peptides of this young smallmouth bass, a Teleost fish, made us able to 
describe and identify this peptide secretion in this low vertebrate organ 
and to reveal about the pericardium, myocardium, and endocardium 
components, and to go beyond in revealing peculiar structures that 
could relate to still unresolved mammalian homology. Heart and other 

vascular structures have been studied, reported in Refs. [36–44], and 
recalled some of the initial cardiovascular development of the mammals, 
including humans. If the pericardium showed a typical and similar 
general histology of any vertebrate, both atrium and ventricle revealed 
some new features and could favor other translational research studies 
especially pertaining to the endocardium heart-blood barrier, its 
development and maturation, and those other derived key functional 
specializations, such as the conducting system, and the valves [45–47]. 
For these developmental aspects and for some clarifications deemed of 
interest for mammals, a couple fish species had and are still more 
favorable used, such as the so-called zebrafish (Danio rerio) and the 
Japanese Medaka (Oryzias latipes) [e.g., 9, 16, 42, 46, 49, 51, 52, 53, 54, 
55, 56, 57, 58, 59]. 

5.1. Pericardium 

This cardiac layer, as a mesothelium component, did show similar 
components as those noted in mammals [68–74] or fish species [75–77] 
and, if one considers all proportions and size, the cell’s connective 
constituents had telocytes [78]. This fish pericardial connective tissue 
should be fused with that of the depressor-pharyngeal muscles, the body 
wall muscles or the peritoneum. and this semi-rigid ‘box-like’ and may 
not allow inwards cardiac bulge during systole but, instead. into the 
pericardial cavity [75,79,80]. The pericardium could function as in 

Fig. 7A-D. Ultrastructural aspects of the endocardial endothelium cells of ju-
venile smallmouth (bass) fish (Micropterus dolomieu Lacépède) and its phago-
cytotic content. A: Thin endocardial endothelial aspect whose extensions 
covered subjacent cardiomyocytes (M). B: A large perikaryon (n: nucleus) Golgi 
apparatus part is noted by its cis wide, adjacent piled cisternae where a series of 
constitutive vesicles erupted. C: Numerous small, coated vesicles and lysosomes 
(ly) fused as multivesicular bodies forming progressively enlarged, heteroge-
neous, phagosomes. D: Lysosomes issued out trans Golgi complex (matured like 
suspended by the neck of narrowed cistern; arrows) formed secondary lyso-
somes or phagosomes network out of fusion with small, coated vesicles and 
other transfer of endocytosis vesicles. 

Fig. 8A-B. TEM aspects of endocardial endothelial cells loaded with secondary 
lysosomes in juvenile Micropterus dolomieu Lacépède. A: Pinocytosis (small ar-
rows) and a large endosome (e) with loosely contrasted accumulation. Large 
accumulated secondary lysosomes, with increased electron density, surrounded 
by scattered ribonucleoproteins, and smooth endoplasmic reticulum seen in 
both A with B, extended as interconnecting channels between organelles, 
including lipofuscin bodies (curved arrows) where a thick arrow marks an 
example of mature body containing a centrally located score of poorly con-
trasted bundle, also found in Fig. 9. E: endocardial endothelial cell nucleus; li: 
lipid droplet; My: cardiomyocyte. B: Phagosomes suggested size and content 
thickened and channel (curved arrow), caused their electron dense, heteroge-
neous content. Small contact zones with adjacent sarcoplasm of an adjacent 
myocyte are viewed (small arrows). Arrowheads in adjacent cardiomyocyte 
(My) contained cardiac atrial granules. 
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mammals as protective, mechanical, and related sensing device, ruled by 
the Frank-Starling mechanism [79–81] but little is known [81]. 

5.2. Myocardium and natriuretic peptide hormones 

This muscular layer wall of the heart atrium is delicately trabecu-
lated with only, at the found stage of growth, made of 2–6 myocytes 
thick versus the ventricle where at least 5 to 20 myocytes constructed 
the chamber wall thickness. In both atrium and ventricle, car-
diomyocytes linked with specialized, intercalated junctions as described 
classically as in mammals [e. g., Refs. [82–86]] with little endomysium 
and a perimysium and epimysium equivalent made by the telocytes and 
the associated connective fibers and extracellular matrix associated as 
found in the pericardium layer [78]. No clear elastin components were 
noted in these juvenile hearts. Most cardiomyocytes reveal tiny to 
elongated gap-like junctions with the endocardial layer, as already 
described [e, g., [55,87]], and also reviewed in Ref. [55]. 

In fishes, the gills, the kidneys, and the digestive tract are the main 
organs involved in the maintenance of body fluid balance or osmoreg-
ulation that are controlled by interconnected endocrine and autocrine 
feedbacks [88–95]. Among those organs, the gills, acting as a high 
vertebrate ‘lung’, can be modulated by local innervation [96,97] as well 
as, in the freshwater species, by the activities of 
thyroid-prolactin-cortisol hormonal interactions [95,98,99]. Further-
more, the heart, like in all vertebrates, acts as a pump [36–41,47] and 
functions also as an autocrine and endocrine organ, secreting its hor-
mones toward those above-cited organs involved in electrolyte homeo-
stasis [93,98,99]. One can think about the Na+/K + ATPases as the most 
important ion pumps essentials to provide homeostatic balance for the 
maintenance of many organ cells that included the cardiac myocytes in 
normal development and growth, including in fish [94,98,100,101]. 
This Na+/K+ balance included the influences of the cardiac endocrine 
and autocrine secretions, discovered as atrial peptides or ‘factors’ in the 
rodent heart atrium by both Canadian groups of De Bold and Cantin 
[102–106] that have shown clues by hormone’s blood levels with car-
diac regulation and atrial normal and pathology conditions [107–110]. 

The secretory content of these cardiomyocyte vesicles shows a 
co-location of a A-form as ‘atrial’ abbreviated ANP co-expressed with a 
‘brain peptide’ or B- peptide abbreviated BNP, found in the pig brain 
[102,107,109] can be produced in excess in failing mammalian and 
human heart, especially atrium and ventricle peculiar re-expression [1, 
100,104,107,109,110]. Both A and B, made by the myocyte’s Golgi 
apparatus, can be delivered as secretory pro-hormones according to 
blood and osmotic pressure of the cardiac surrounding fluids and asso-
ciated tissues [3,4]. It is after transcytosis via the endocardium [3,4] or 
any other endothelial barriers of the intravascular and lymphatics that 
the final, shorter active peptide can be recognized by its respective 
distant or and auto-receptors [4]. If A-form is essentially made in the 
mature normal, mammalian heart right ventricle myocytes [102], 
B-form can be found in lower vertebrates, including fish [5,111–116]. 
Another C-form (C for ‘for cytoplasmic’ or sarcoplasm) noted as 4 CNPs 
are produced by the fish heart atrium and ventricle [112–117]; they can 
regulate body osmolarity homeostasis and have heart autocrine in-
fluences. The B-type can modulate autocrine and autonomic functions 
[118,117]. Meanwhile, autocrine functions cannot be ignored for the 
sake of translational applications into clinics as this C-peptide exhibits 
other favorable modulating actions on cardiac structure and functions, 
including post-trauma fibrous healing [118,117], of autonomic system, 
the central nervous system, osteochondral system, and vascular system 
[119], as shown in fish [120–123]. 

5.2.1. The endocardium layer 
Most fishes, like in this juvenile one, the atrium wall is thinner than 

all the other cardiac walls [36–41,44] and the endocardial endothelium 
of the atrium, whether examined with light or electron microscopy 
should have resembled a typical squamous tissue as a ‘blood-heart 
barrier’, like most of the other vascular endothelia, but instead is thicker 
[8–12,19]. One can recall that this layer constitutes a selective and 
potent homeostatic control fence for circulating compounds as well for 
endocrine transcytosis, including making the necessary processing 
passageway for the atrial peptides towards the circulation, as we had 
described with immunolabels previously in an adult mammal [1–4]. 

Fig. 9A-D. Enlarged random view of 50 nm thick 
section of some of the mature lipofuscin bodies in 
endocardial cells of a juvenile smallmouth bass fish 
(Micropterus dolomieu Lacépède). A: Adjacent endo-
cardial cells revealed phagosome heterogeneous 
content and shapes. In the largest bodies, fibrous 
bundles were centrally located, surrounded by 
disseminated heavily contrasted particulate bodies. 
B: Another view of a similar body as in A where an 
insert depicts the details of the fibrillar-like structure, 
made of less than 10 nm thick material appearing as 
fibrils or plate-like components, marked by white 
arrows. C: Lipofuscin or residual phagosome with 
multiple fibrous bundles; Both C and D: Fibrillar 
bundles across lipofuscin bodies, including twisted 
one (arrows). Note that some round content parts, 
revealed at outskirts heavily contrasted content that 
could suggest lipid components (open and black ar-
rows) admixed and getting coalesced into the ‘black’ 
pigment aspect seen at low magnifications.   
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Some aspects of endocardium endothelium studied in development 
with fine structure in both fish, mammalian heart, including human, 
showed discontinuities [1,124–128], incurred with cardiomyopathy 
[127] can show interest for further studies about permeability of 
endothelium and pathology [126,127,129,130] and as a selective filter 
and a capture wall for circulating compounds after development 
[130–139], unless damaged in myopathy [126–130]. Out of all 
mentioned above, fish models have been and is astonishingly used for 
progress in understanding mammalian development and lineage 
[42–45,49–55,136,139–141] for pacemaker (Purkinje) cells [48], valves 
[46–50,52,131,132,134,135,142,143], the coronary endothelium and 
pericytes, arteriogenesis after myocardial infarct, and the resulted, 
healed interstitium fibrogenesis and adipogenesis [132,135,144–146] 
and even myocardium [143]. Many aspects are still in need for further 
clarification, especially considering the complexity of the ‘barrier’ 
components [134,137–139], the involvement in the embryonal endo-
cardium to grow the liver vasculature and some hematopoietic aspects 
[132,142–147]. Altogether, this topic may also bring interest with new 
SARS pandemics [148,149]. However, the basic life cycle and renewal of 

developed endocardium is poorly known [142] and appeared to last 
almost the entire life in mice [150]. 

This ‘barrier’ is also formed and located along the ventricle but there, 
it developed without revealing prominent cell size and those peculiar 
intracellular deposits [138], as in Fig. 2 E-F. 

Furthermore, as we illustrated, the fish sub endocardial region 
revealed delicate, telocytes as final support of matrix as in mammalian 
heart [126,127], as Gherghiceanu [151], These cells extended in the 
matrix between myocytes as ‘endomysium-like’ and can also contain 
other wandering cells and, among them, those named 
melano-macrophages (see 4th paragraph). 

5.2.2. Accumulated residual bodies aka lipofuscin bodies: aging wastes or 
valuable products? 

Similarly, as many other authors cited in the Introduction, our ob-
servations fitted with the repeated scheme found in many fish species 
previously studied, that captures by the layer of endocardial cells of the 
heart contributed to retain or eliminate foreign circulating particles, 
altered blood cells, other increased amounts of circulating ionic or 
macromolecular species as in reticuloendothelial tissues [8–19]. These 
observations [17,18,20,21,23] or experiments [24,27–29] comforted 
those and can bring about translational aspects to understand how, in 
animal and human pathology, circulating compounds could favor some 
atrial alterations and pathologies as found in other vertebrates, 
including mammals and thus, humans. In overload cardiomyopathies. 

The fish atrial endocardium contained abundant electron dense 
bodies [74]. These were associated with few mitochondria and because 
glycogen stores were not found here, compared with an abundant 
stowage of the adjacent cardiomyocytes, the endocardium lining would 
get nutrients through diffusion of circulated nutrients, making unwar-
ranted (or warranted) storage of basic foodstuffs. Golgi saccules noted 
were providing diverse cell’s vesicles and, with the endoplasmic retic-
ulum, constituted an active vacuome that consisted in innumerable 
pinocytotic coated and uncoated vesicles, (i.e., receptor-mediated 
endocytosis [152]) associated with typical endocytosis viewed as cell’s 
extensions formed by the apical surfaces. Both pinocytosis (the tiny 
vacuome parts) and endocytosis (the largest protrusions) activities got 
collected in endosomes, located deep in the perikaryon, as first 
described [153], with co-operation of Golgi [153,154], and further 
reviewed with molecular aspects [155–161], including morphologic 
aspects [153,157–167]. In our observations, the endosomes featured as 
dilated vacuoles with small, contrasted content. These structures prob-
ably accommodated heavily osmotic species that could include iron 
(hemal or ferritin) species - where granular content appeared to fit with - 
due to possible, diverse metabolism along with other circulated, organic 
chelated metals as shown by many experiments [18–35], similar to iron 
found with microanalyses that seemed to stabilize the lipofuscin de-
posits [168,169]. Issued from residues of intracellular ‘digestive’ pro-
cessing [159,160,167,170] as captured compounds can be used by the 
cell’s stomachs, i.e., the lysosomes, as addressed by transporting signals 
to be degraded as found with biochemistry [159–163] and ultrastructure 
[160,164–167] or as it seemed for many cells, remained ‘undigested’ 
that lead to accumulated contrasted bodies after involvement of the 
Golgi apparatus that evidently formed these primary lysosomes. Because 
these bodies whether small or large did not bore a double or concentric 
surrounding membrane, thus were not the result of autophagosome 
processing. Instead, bodies could be suggested out of in vivo ‘dehydra-
tion’ and fusion with lysosomes formed in their perikaryal proximities, 
after capture of some circulation products both pinocytosis and endo-
cytotic small vesicles, constituted and managed by the coated cyto-
skeleton in a reverse transport towards captures [153,158], thus making 
them secondary lysosomes [158–161], and, later, as stowed, residual 
bodies or lipofuscin bodies, revealed as those heavily oblong-shaped 
contrasted ones with complex content as those classically described in 
eukaryote cells by DeDuve and others [162–167]. Similar heterogeneous 
lipofuscin bodies, loaded with cholesteric compounds were noted 

Fig. 10. Diagrammatic representation of endocardial cells with both pinocy-
tosis and endocytosis resulting in phagosomes and lipofuscin bodies. The 
former are small vesicles while the latter are the result of cell’s extensions 
captures that form content highlighted with grey to black and eventually stri-
ped. G: Golgi; L: circulation lumen; ly: lysosome; n: nucleus. 
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previously as additional intracellular and captured turnover lipid spe-
cies probably resulted in round-shaped internal contrasted substructures 
within the lipofuscin bodies (sphingosine ceramides?) as in Refs. 
[171–178] and other saturated or non-polar lipids contents (cholesterol 
metabolites, would form the other fibrillar-like, poorly contrasted and 
striated components that made long linear to twisted components as 
found in complex lipofuscin bodies elsewhere [165,176–179]. These 
poorly or ‘undigested’ components could recall about lesser active 
lysosome enzymatic species such as lipases as reported in Refs. 
[161–164,166,180,181], thus resulting in lipid-like ‘islands’ [179] 
within lipofuscin bodies. 

5.2.3. Lipofuscin, a cardiac scourge in mammals but a bearable waste in a 
juvenile teleost? 

Known to be formed out of accumulated products resulting from 
reactive oxygen species (ROS) cytotoxic activities that included meta-
bolic ‘injuries’ of proteins, associated with overloads of proteosomes and 
lysosomes (as noted above) and, thus, linked to ageing in cardiac tissues, 

known deposits in the cardiomyocytes [170,182–185]. Mainly caused 
by mitochondrial degradations [185–188], along with similar deposits 
found in other tissues with ageing [171,173–178,188–194], these 
accumulated residual bodies, issued from ‘maturation’ of secondary ly-
sosomes, connected through a network of structured channels linking 
them with smooth ER as well as mitochondrial outer membranes 
[195–197]. These verified that not only contiguity, but certainly with 
free functional, spatial continuity between organelles in the endocardial 
cells. These fine structures do not appeared artifacts and found and 
preserved throughout all the endothelial cells. This morpho-structural 
network aspect has been part subject of others [198], including the 
book of Reinert [199]. Further interdisciplinary research could be con-
ducted to understand heart cell’s functions and other associated pa-
thologies involving organelle interactions with channels as 
biochemistry, including molecular ones [200–204] because among 
membrane (i.e. microsomal) fractions or supernatants from broths of 
organelles are analyzed, in bulk, without considering some of these 
submicroscopic associations. Nowadays, the advent of experienced 

Fig. 11A-H. TEM of smallmouth bass blood and sub endocardium cells A: Circulating leucocyte (L); B and C: plasma cells; E: endocardial endothelium. In D: group of 
wandering macrophages and single one under the endocardium lining (E). in F, G and H: melano-macrophage cells. 
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molecular analyses and specific markers could further reveal some of 
those missing ‘links.’ [Strangely, peroxisomes have not been recognized 
with fine structure throughout, as we had compared our data with others 
that have dealt with fish tissues besides only a few ancient biochemistry 
studies (available, but not cited) that have dealt with fish peroxisome 
activities [205,206]. 

Can these waste collections expel from these juvenile cells [207] ? 
Out of all collected micrographs, we have not observed any, considering 
the tissue processing, one cannot be sure, as these events could be 
speedy. Only one recent report [208] (not peer reviewed) has claimed 
such process however, according to the micrographs of the report, the 
process seemed slow to occur. 

Thus, if these deposits can become cytotoxic [e.g., Refs. [174,175, 
180,192,194,209,210]] and favor a cell death claimed as necroptosis 
[211] there was no such event found in the tissue examined. Alterna-
tively, could parts of these stowed, even ‘apparently’ waste products be 
useful to still be used for some energy source for the cells? Can these 
accumulated products really alter the normal functions of these juvenile 
cells and tissues? [212] If the tenet can hold in this young fish structure, 
juveniles, collected at random from a fish farm tank, holding hundreds 
of similar ones, that would survive and usually grow as adult, and 
populate fishponds, what do we know about these cells turn over? 
Nothing, and the same for most other animals but a handful [142,150]. 

5.2.4. The lipofuscin and atrial peptides 
If the atrial peptides made by the myocyte’s Golgi apparatus can be 

secreted pro-hormones according to homeostatic osmotic pressure of the 
cardiac surrounding fluids and bodily tissues [3,4], the obligated 
transcytosis via the saturated endocardial cells with lipofuscin and the 
other endothelial barriers of the intravascular and lymphatics of the 
heart of a long peptide to obtain the final, shorter active peptides do not 
appear to be altered, considering the fish growth in the wild or in 
freshwater ponds. But in human, would an altered or pathologic atrial 
lining function adequately or not? Studies in old (with lipofuscin -the 
so-called aged pigment- or altered) mammalian endocardium are yet to 
be observed and published. 

6. Cells of the sub endocardium 

If the heart endothelium as endocardium captures and stows in a 
same manner of a reticuloendothelial tissue (see Introduction and e.g., 
[213–217]], some other cells have been noted wandering in the con-
nective layer from the circulation with fine morphology different than 

all endocardial cells [35,218–221]. Be as it may, one has compared them 
with those of specialists in fish investigations and recognized to be 
circulating leucocyte, plasma cells, in view of their nucleus/cytoplasm 
[219,220,222–224]. However, among those wandering cells, those one 
were called melano-macrophage cells [e.g., Refs. [17–19,21–23,29,30, 
34,35,214,215,220]] have facilitated their identification by their 
abundant organelles whose organelle’s content (derived from early ly-
sosomes) revealed whorl-like depots resembling those of found in 
melanogenesis and melanosomes [51,225–227]. They are always 
located under the endocardial endothelium and certainly would 
contribute to the pigmentation of the same atrium wall. However, be-
sides showing fine structure differences from the surface endocardium 
layer, they were not investigated further. They likely contribute to form 
a screen pigmentation of heart structures originate from developmental 
stages involving the neural crest [45,46,49,228,229] building a ‘pro-
tective’ layer against excess UV B radiation while the maturing juveniles 
inhabit shallow waters [60–62] were melanic pigments can be associ-
ated with other functions [229–231], including pathology [232] as well 
as in human [51–56,200–204,228,233–236] where fish has been used 
because some features, such as those associated with the endocardium 
unknown deposits could also associate with heart development or fail-
ure and its complications [231,232,237–239] 

7. Conclusions: translational aspects of endocardium changes 
and cardiac pathology 

In view of the complex functionalities of an endothelium barrier and 
its specializations found in the heart, where most clinical data arose 
from clinics, one can mention pathologies can occur in young mammals 
and human hearts can also result from accumulated deposits still 
uncharacterized of endocardium. At the same time, the atrial peptides, 
markers for heart functions or defects, after production of precursors by 
and in the cardiomyocytes need to be dispatched across the endocar-
dium to circulate [4]. If the endocardium ‘intact’ functions get 
compromised by perturbing deposits [239–241], can these peptides 
secrete in the circulation with normal flow and levels? As fish heart 
development can be easily studied, would this low vertebrate still a 
far-fetched model for some mammalian defects? 

In all things of nature there is, you see, something amazing. 
Ἐν πᾶσι γὰρ τοῖς φυσικοῖς ἔνεστί τι θαυμαστόν [242]. 
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Lacepède): interactive effect of temperature, spawning date, and growth 
autocorrelation, Biol Ecol Freshwater Fish 4 (1995) 28–36. 

[62] T.G. Brown, B. Runciman, S. Pollard, A.D.A. Grant, et al., Biological synopsis of 
smallmouth bass (Micropterus dolomieu), Fisheries and Aquatic Sciences Canada 
2887 (2009) 1–50. Cat Fs 97-4/2887E; ISSN 0706-6473. 

[63] L.M. Laird, R.L. Oswald, A note on the use of benzocaine (ethyl para- 
aminobenzoate) as a fish anaesthetic, J Inst Fish Mgmt 6 (4) (1975) 92. 

[64] V.K. Dawson, P.A. Gilderhus, Ethyl-p-aminobenzoate (Benzocaine): Efficacy as an 
Anesthetic for Five Species of Freshwater Fish. Investigations in Fish Control, 
Series 87, Upper Midwest Environmental Sciences Center, LaCrosse WI, 1979. 

[65] J. De Mey, M. Moeremans, G. Geuens, et al., High-resolution light and electron 
microscopic localization of tubulin with the IGS (Immune Gold Staining) method, 
Cell Biol. Int. Rep. 5 (9) (1981) 889–899, https://doi.org/10.1016/0309-1651 
(81)90204-6. 

[66] J. De Mey, A critical review of light and electron microscopic 
immunocytochemical techniques used in neurobiology, J. Neurosci. Methods 7 
(1) (1983) 1–18, https://doi.org/10.1016/0165-0270(83)90014-6. 

[67] L. Jennes, W.E. Stumpf, Preparation and use of specific antibodies for 
immunochemistry of neuropeptides, in: P.M. Conn (Ed.), Methods in Enzymology, 
vol. 103, Academic Press, New York, 1983, pp. 448–459, https://doi.org/ 
10.1016/s0076-6879(83)03031-1. 

[68] T. Kluge, T. Hovig, The ultrastructure of human and rat pericardium. I. Parietal 
and visceral mesothelium, Acta Pathol. Microbiol. Scand. 71 (4) (1967) 529–546. 

[69] [a] T. Kluge, T. Hovig, The ultrastructure of human and rat pericardium. II. 
Intercellular spaces and junctions, Acta Pathol. Microbiol. Scand. 71 (4) (1967) 
547–563; 
[b] J.P. Holt, The normal pericardium, Am. J. Cardiol. 26 (5) (1970) 455–465. 
PMID: 499128. 

[70] T. Ishihara, V.J. Ferrans, M. Jones, S.W. Boyce, O. Kawanami, W.C. Roberts, 
Histologic and ultrastructural features of normal human parietal pericardium, 

Am. J. Cardiol. 46 (5) (1980) 744–753, https://doi.org/10.1016/0002-9149(80) 
90424-5. 

[71] K.N. Michailova, K.G. Usunoff, Serosal membranes (pleura, pericardium, 
peritoneum). Normal structure, development, and experimental pathology, Adv. 
Anat. Embryol. Cell Biol. 183 (2006) i-vii, 1-144. PMID: 16570866. 

[72] E.R. Rodriguez, C.D. Tan, Structure and anatomy of the human pericardium, 
Prog. Cardiovasc. Dis. 59 (4) (2017) 327–340, https://doi.org/10.1016/j. 
pcad.2016.12.010. 

[73] W.L. Wagner, Y. Zheng, A. Pierce, M. Ackermann, H. Horstmann, T. Kuner, 
P. Ronchi, Y. Schwab, P. Konietzke, F. Wünnemann, M.O. Wielpütz, H. 
U. Kauczor, S.J. Mentzer Mesopolysaccharides, The extracellular surface layer of 
visceral organs, PLoS One 15 (9) (2020), e0238798, https://doi.org/10.1371/ 
journal.pone.0238798. 

[74] R. Johansen, T. Poppe Pericarditis and myocarditis in farmed Atlantic halibut 
Hippoglossus hippoglossus, Dis. Aquat. Org. 49 (2002) 77–81. 

[75] I.L. Leknes, Ultrastructure of the parietal pericardium in teleosts, J. Anat. 138 (Pt 
4) (1984), 7031984, 12. PMID: 6746406. 

[76] I.L. Leknes, Structural and histochemical studies on the teleostean bulbus 
arteriosus, Anat. Histol. Embryol. 38 (6) (2009) 424–428, https://doi.org/ 
10.1111/j.1439-0264.2009.00963.x. 
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[131] B.J. Damon, M.C. Rémond, M.R. Bigelow, T.C. Trusk, et al., Patterns of muscular 
strain in the embryonic heart wall, Dev Dyn 238 (6) (2009) 1535–1546, https:// 
doi.org/10.1002/dvdy.21958. 

[132] H. Zhang, K.O. Lui, B. Zhou, Endocardial cell plasticity in cardiac development, 
diseases and regeneration, Circ. Res. 122 (2018) 774–789, https://doi.org/ 
10.1161/CIRCRESAHA.117.312136. 

[133] E. Page, J. Upshaw-Earley, G. Goings, Permeability of rat atrial endocardium, 
epicardium, and myocardium to large molecules. Stretch-dependent effects, Circ. 
Res. 71 (1992) 159–173. 
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[192] I. Benito-Cuesta, H. Diez, L. Ordoñez, F. Wandosell, Assessment of autophagy in 
neurons and brain tissue, Cells 6 (3) (2017) 25, https://doi.org/10.3390/ 
cells6030025. 

[193] A. Moreno-García, A. Kun, O. Calero, M. Medina, et al., An overview of the role of 
lipofuscin in age-related neurodegeneration, Front. Neurosci. 12 (2018) 464, 
https://doi.org/10.3389/fnins.2018.00464. 

[194] E. Islimye, V. Girard, A.P. Gould, Functions of stress-induced lipid droplets in the 
nervous system, Front. Cell Dev. Biol. 10 (2022), 863907, https://doi.org/ 
10.3389/fcell.2022.863907. 

[195] Q.A. Soltow, D.P. Jones, D.E. Promislow, A network perspective on metabolism 
and aging, Integr Comp Biol. Nov 50 (5) (2010) 844–854, https://doi.org/ 
10.1093/icb/icq094. 

[196] A.A. Cohen, Complex systems dynamics in aging: new evidence, continuing 
questions, Biogerontology 17 (1) (2016) 205–220, https://doi.org/10.1007/ 
s10522-015-9584-x. 

[197] J. Reinert, H. Ursprung, Cytoplasmic structures: origin and continuity of cell 
organelles, in: Results and Problems in Cell Differentiation, vol. 2, Springer- 
Verlag, NewYork, 1971, p. 342, https://doi.org/10.1007/978-3-540-36396-5. I- 
xiii. 

[198] O.D. Ilie, A. Ciobica, S. Riga, N. Dhunn, et al., Continuities between mitochondria 
and endoplasmic reticulum in the mammalian ovary, Development 97 (1969) 
30–37, https://doi.org/10.1007/BF00331868. 
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