

THESIS / THÈSE

MASTER EN SCIENCES MATHÉMATIQUES

Analyse des erreurs d'arrondi dans les algorithmes de la transformée de Fourier rapide

Nys, Jacques; Parmentier, Jacques

Award date: 1978

Awarding institution: Universite de Namur

Link to publication

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ANALYSE DES ERREURS D'ARRONDI DANS LES ALGORITHMES DE LA TRANSFORMEE DE FOURIER RAPIDE

> Jacques NYS et Jacques PARMENTIER FTIBA 1978 6

6520 - 13241

La disponibilité et les conseils de Messieurs J.P. Thiran et Ph. Dontaine nous ont été précieux. Qu'ils trouvent ici l'expression de nos remerciements.

INTRODUCTION

Les algorithmes de la Transformée de Fourier Rapide décrits au chapitre 1 sont des méthodes efficaces pour calculer la Transformée de Fourier Discrète d'un signal de N nombres éventuellement complexes [1-4].

L'implémentation sur ordinateur de ces algorithmes entraîne inévitablement des erreurs numériques sur les résultats vu la représentation des nombres en longueur finie. Plusieurs travaux ont proposé une estimation de ces erreurs lorsque les algorithmes sont traités avec une arithmétique en virgule fixe [12,13,20] ou en virgule flottante [7,9,12,19]; le but de ce travail est de présenter les résultats les plus récents sur ce sujet [16,17].

Cette étude utilise une approche statistique dans laquelle les erreurs sont supposées aléatoires. Ces modèles statistiques sont présentés au chapitre 2. D'autre part les problèmes de l'exactitude du signal d'entrée et de la précision des coéfficients multiplicatifs dans les algorithmes ne sont pas traités; seules les erreurs causées par les opérations arithmétiques sont envisagées : le chapitre 3 analyse le cas de la virgule fixe, le chapitre 4 celui de la virgule flottante.

Le chapitre 5 est consacré à la programmation des algorithmes et à la comparaison des résultats théoriques et expérimentaux pour l'estimation des erreurs. Pour l'étude commune, le chapitre 1 a été rédigé par J. Nys et le chapitre 2 (paragraphe 2.1) par J. Parmentier. D'autre part les chapitres 2 (paragraphe 2.2), 3 et 5 (paragraphe 5.1) ont été rédigés par J. Parmentier et les chapitres 2 (paragraphe 2.3), 4 et 5 (paragraphe 5.2) par J. Nys.

TRANSFORMEE DE FOURIER

R A P I D E

1.1 TRANSFORMEE DE FOURIER DISCRETE

La Transformée de Fourier Discrète d'un signal $\{x(n), 0 \le n \le N-1\}$ composé de N échantillons, éventuellement complexes, est définie par :

$$y(k) = \sum_{n=0}^{N-1} x(n) \cdot \exp(-j2\pi nk/N) , k=0,1,\ldots,N-1$$
 (1.0)

où

$$j = (-1)^{1/2}$$

La transformée inverse est donnée par :

$$x(r) = \frac{1}{N} \sum_{k=0}^{N-1} y(k) \cdot \exp(j2\pi kr/N) , r=0,1,\ldots,N-1$$
 (1.1)

Insérant (1.0) dans le membre de droite de (1.1), on obtient en effet :

$$\frac{N-1}{\sqrt{\frac{N}{N-1}}} \sum_{n=0}^{N-1} x(n). \sum_{k=0}^{N-1} exp(j2\pi kr/N).exp(-j2\pi nk/N), r=0,1,...,N-1,$$

soient les nombres $x(r), r=0, 1, \ldots, N-1$, par la relation d'orthogonalité

$$\sum_{k=0}^{N-1} \exp(j2\pi kr/N) \cdot \exp(-j2\pi nk/N) = N\delta_{rn}$$

où

δ_{rn} est le symbôle de Kronecker.

Cette relation d'orthogonalité permet également de démontrer la relation de Parseval :

$$\sum_{k=0}^{N-1} |y(k)|^2 = N \sum_{n=0}^{N-1} |x(n)|^2$$
(1.2)

Dans la suite, on utilisera une forme plus compacte des transformées directe et inverse, en posant

 $W = \exp(-j2\pi/N)$,

$$y(k) = \sum_{n=0}^{N-1} x(n) \cdot W^{nk}, \quad k=0,1,\ldots,N-1$$
(1.3)

$$x(n) = \sum_{k=0}^{N-1} y(k) \cdot W^{-kn}, n=0,1,\ldots,N-1$$
(1.4)

Sous cette forme, le calcul de la Transformée de Fourier Discrète nécessite environ N^2 multiplications complexes, ce qui limite son utilisation à de faibles valeurs de N. Les algorithmes de Transformée de Fourier Rapide, les algorithmes FFT (Fast Fourier Transform), permettent d'obvier à cet inconvénient en réduisant considérablement le nombre d'opérations arithmétiques.

Remarque :

Comme les expressions (1.3) et (1.4) ont une forme semblable, on pourra utiliser les algorithmes de la Transformée de Fourier Discrète directe pour calculer la transformée inverse moyennant de légères modifications : changement du signe des exposants de W et division des résultats par N.

1. 2 ALGORITHMES FFT DANS LE CAS N = 2^{17}

Soit M un entier positif.

Puisque N = 2^{M} et que les indices n et k des expressions (1.3) et (1.4) varient entre 0 et N-1, ces indices peuvent se représenter chacun par un nombre binaire de M composantes : $(n_{M}, n_{M-1}, \dots, n_{1})$ et $(k_{M}, k_{M-1}, \dots, k_{1})$ tel que

 $k = \sum_{i=0}^{M-1} 2^{i}k_{i+1} , \quad k_{i} = 0 \text{ ou } 1$ $n = \sum_{i=0}^{M-1} 2^{i}n_{i+1} , \quad n_{i} = 0 \text{ ou } 1$ (1.5)

Il est alors très utile de prendre les notations

$$x(n) = x(n_M, n_{M-1}, ..., n_1)$$

$$y(k) = y(k_{M}, k_{M-1}, \dots, k_{1})$$

On remarque que les valeurs

 $x(n_1,...,n_{M-1},n_M) = x(\sum_{i=0}^{M-1} 2^i n_{M-i}), n=0,1,...,N-1$

$$y(k_1,...,k_{M-1},k_M) = y(\sum_{i=0}^{M-1} 2^i k_{M-i}), k=0,1,...,N-1$$

sont celles des tableaux ${x(n)}_{n=0}^{N-1}$ et ${y(k)}_{k=0}^{N-1}$, mais dans l'ordre binairement inversé.

La décomposition (1.5) des indices et les notations (1.6) permettent de transformer (1.3) en

7

(1.6)

$$y(k_{M}, k_{M-1}, \dots, k_{1}) = \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \dots \sum_{n_{M}=0}^{1} x(n_{M}, n_{M-1}, \dots, n_{1}) . W^{P}$$
(1.7)

$$p = \left(\sum_{i=0}^{M-1} 2^{i} k_{i+1}\right) \cdot \left(\sum_{l=0}^{M-1} 2^{l} n_{l+1}\right)$$
(1.8)

A ce stade, on peut décomposer le second membre de l'expression (1.8) de deux manières différentes, ce qui donnera lieu d'une part à l'algorithme de Cooley et Tukey [1-3] et d'autre part à l'algorithme de Sande et Tukey [1,4].

ALGORITHME DE COOLEY ET TUKEY

On considère d'abord la décomposition suivante :

$$p = k2^{M-1}n_M + k2^{M-2}n_{M-1} + \dots + k2n_2 + kn_1$$

On obtient

A

$$W^{P} = W^{k2^{M-1}n_{M}} W^{k2^{M-2}n_{M-1}} \dots W^{k2n_{2}} W^{kn_{1}}.$$

Comme $W^{2^{M}} = \exp(-j2\pi/N)^{N} = 1$, cela se réduit à $W^{p} = W^{2^{M-1}k_{1}n_{M}} W^{2^{M-2}(2k_{2}+k_{1})n_{M-1}} W^{2^{M-1}k_{M}+2^{M-2}k_{M-1}+\dots+k_{1})n_{1}},$

ce qui permet de remplacer (1.7) par

$$y(k_{M}, k_{M-1}, \dots, k_{1}) = \prod_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \dots \sum_{n_{M}=0}^{1} x(n_{M}, n_{M-1}, \dots, n_{1})$$

$$u^{2^{M-1}k_{1}n_{M}} . u^{(2k_{2}+k_{1})2^{M-2}n_{M-1}} \dots$$

$$(2^{M-1}k_{M} + 2^{M-2}k_{M-1} + \dots + k_{1}) n_{1}.$$

En exécutant chaque sommation séparément et en numérotant les résultats intermédiaires, on obtient finalement :

$$x_{0}(n_{M}, n_{M-1}, \dots, n_{1}) = x(n_{M}, n_{M-1}, \dots, n_{1})$$

$$x_{1}(k_{1}, n_{M-1}, \dots, n_{1}) = \sum_{n_{M}=0}^{1} x_{0}(n_{M}, n_{M-1}, \dots, n_{1}) W^{2^{M-1}k_{1}n_{M}}$$

$$x_{2}(k_{1}, k_{2}, n_{M-2}, \dots, n_{1}) = \sum_{n_{M-1}=0}^{1} x_{1}(k_{1}, n_{M-1}, \dots, n_{1}) W^{(2k_{2}+k_{1})2^{M-2}n_{M-1}}$$

$$\vdots$$

$$x_{M}(k_{1}, k_{2}, \dots, k_{M}) = \sum_{n_{M}=0}^{1} x_{M-1}(k_{1}, k_{2}, \dots, k_{M-1}, n_{1}) W^{(2^{M-1}k_{M}+\dots+k_{1})n_{1}}$$

 $y(k_{M},k_{M-1},\ldots,k_{1}) = x_{M}(k_{1},k_{2},\ldots,k_{M})$ (1.9)

Cet ensemble d'équations représente la formulation originale de Cooley et Tukey de l'algorithme de la Transformée de Fourier Rapide dans le cas où N = 2^{M} [1,3].

On peut constater aisément que le nombre d'opérations arithmétiques à effectuer a fortement diminué par rapport à celui nécessité par l'évaluation directe. En effet, on voit que le premier groupe de N équations ne nécessite aucune multiplication. Viennent ensuite M équations de sommation représentant chacune N équations qui ne nécessitent chacune qu'une seule multiplication car le premier facteur W a toujours un exposant nul. Cet algorithme ne nécessite donc que MN multiplications complexes puisque le dernier groupe d'équations consiste uniquement en une permutation binaire de l'ordre des résultats. On constate d'autre part, en consultant la figure 1 qui illustre cet algorithme dans le cas où M=3, que le nombre de multiplications complexes peut encore se réduire de moitié.

Figure 1. Algorithme de Cooley et Tukey quand $N = 2^3$. 10

En effet, la propriété $W^{r+N/2} = -W^r$ permet le calcul en "papillons" pour passer d'un tableau intermédiaire au suivant. On a donc :

$$i = 1, 2, ..., M$$

$$p \text{ tel que } p_{M-i+1} = 0$$

$$q = p + N/2^{i}$$

$$x_{i}(p) = x_{i-1}(p) + x_{i-1}(q) W^{r}$$

$$x_{i}(q) = x_{i-1}(p) - x_{i-1}(q) W^{r}$$
(1.10)

Le nombre de multiplications complexes se réduit donc à $\frac{1}{2}$ N \log_2 N. On constate de plus que les données doivent être introduites dans l'ordre direct, tandis que les résultats sont inversés binairement. Les exposants des facteurs W apparaissent eux aussi dans l'ordre binaire inverse.

Une forme tout à fait équivalente, mais plus usitée de cet algorithme peut s'obtenir en inversant binairement l'ordre dans les tableaux intermédiaires. Les données, cette fois, devront être inversées, mais les résultats et les exposants des facteurs W apparaîtront dans l'ordre direct.

Les équations (1.9) et (1.10) deviennent alors :

$$x_{0}(n_{1}, n_{2}, \dots, n_{M}) = x(n_{M}, n_{M-1}, \dots, n_{1})$$

$$x_{1}(n_{1}, n_{2}, \dots, n_{M-1}, k_{1}) = \sum_{n_{M}=0}^{1} x_{0}(n_{1}, n_{2}, \dots, n_{M}) W^{2^{M-1}n_{M}k_{1}}$$

$$x_{2}(n_{1}, \dots, n_{M-2}, k_{2}, k_{1}) = \sum_{n_{M-1}=0}^{1} x_{1}(n_{1}, \dots, n_{M-1}, k_{1}) W^{(2k_{2}+k_{1})2^{M-2}n_{M-1}}$$

$$x_{M}(k_{M},k_{M-1},\ldots,k_{1}) = \sum_{n_{1}=0}^{1} x_{M-1}(n_{1},k_{M-1},\ldots,k_{1}) W^{(2^{M-1}k_{M}+\ldots+k_{1})n_{1}}$$

$$y (k_{M}, k_{M-1}, \dots, k_{1}) = x_{M}(k_{M}, k_{M-1}, \dots, k_{1})$$

et
$$i = 1, 2, ..., M$$

p tel que $p_i = 0$
 $q = p + 2^{i-1}$
 $x_i(p) = x_{i-1}(p) + x_{i-1}(q) W^r$
 $x_i(q) = x_{i-1}(p) - x_{i-1}(q) W^r$ (1.12)

La figure 2 illustre cette forme de l'algorithme de Cooley et Tukey dans le cas où $N=2^3=8$.

Remarque :

Dans la littérature, les deux formes de cet algorithme sont souvent nommées "Decimation In Time" (DIT). Cela provient du fait que l'indice n du tableau d'entrée est appelé temps et que l'indice k du tableau de sortie est appelé fréquence; or dans la décomposition du second membre de (1.8), c'est le temps qui a été décomposé sous forme binaire.

Sande et Tukey ont également proposé un algorithme de Transformée de Fourier Rapide; ils ont, eux, décomposé la fréquence sous forme binaire dans la décomposition de (1.8). Leur algorithme est encore souvent appelé "Decimation in Frequency" (DIF).

(1.11)

 $x_0(.)$ $x_1(.)$ $x_2(.)$ $x_3(.)$

Figure 2. Algorithme de Cooley et Tukey quand $N = 2^3$.

ALGORITHME DE SANDE ET TUKEY

On considère la décomposition suivante du deuxième membre de (1.8) :

$$p = n2^{M-1}k_{M} + n2^{M-2}k_{M-1} + \dots + n2k_{2} + nk_{1}$$

On obtient

$$W^{p} = W^{n2^{M-1}k_{M}} . W^{n2^{M-2}k_{M-1}} W^{n2k_{2}} . W^{nk_{1}}$$

qui se réduit à :

B

$$W^{P} = W^{2^{M-1}n_{1}k_{M}} W^{(2n_{2}+n_{1})2^{M-2}k_{M-1}} W^{(2^{M-1}n_{M}+\dots+n_{1})k_{1}}$$

ce qui permet de remplacer (1.7) par :

$$y(k_{M}, k_{M-1}, \dots, k_{1}) = \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \dots \sum_{n_{M}=0}^{1} x(n_{M}, n_{M-1}, \dots, n_{1})$$

$$w^{(2^{M-1}n_{M} + \dots + n_{1})k_{1}}$$

$$w^{(2^{M-2}n_{M-1} + \dots + n_{1})2k_{2}}$$

$$\vdots$$

$$w^{M-1}n_{1}k_{M}$$

En effectuant ces sommations séparément et en numérotant les résultats intermédiaires, on obtient :

 $x_{0}(n_{M}, n_{M-1}, \dots, n_{1}) = x(n_{M}, n_{M-1}, \dots, n_{1})$ $x_{1}(k_{1}, n_{M-1}, \dots, n_{1}) = \left[\sum_{n_{M}=0}^{1} x_{0}(n_{M}, n_{M-1}, \dots, n_{1})W^{2^{M-1}n_{M}k_{1}}\right]$

$$W^{(2^{M-2}n_{M-1}+\ldots+n_{1})k_{1}}$$

$$x_{2}(k_{1},k_{2},n_{M-2},\ldots,n_{1}) = \begin{bmatrix} \sum_{n_{M-1}=0}^{1} x_{1}(k_{1},n_{M-1},\ldots,n_{1}) & W^{2n-1}n_{M-1}k_{2} \end{bmatrix}$$

$$x_{M} (2^{M-3}n_{M-2}+\ldots+n_{1}) 2k_{2}$$

×

$$x_{M}(k_{1},k_{2},...,k_{M}) = \sum_{n_{1}=0}^{1} x_{M-1}(k_{1},...,k_{M-1},n_{1}) W^{2^{M-1}n_{1}k_{M}}$$

 $y(k_{M}, k_{M-1}, \dots, k_{1}) = x_{M}(k_{1}, k_{2}, \dots, k_{M})$ (1.13)

Cet ensemble d'équations représente la formulation originale de Sande et Tukey de l'algorithme de la Transformée de Fourier Rapide dans le cas où N = 2^M [1,4].

On voit que, tout comme l'algorithme de Cooley et Tukey, celui-ci ne nécessite que $\frac{1}{2}$ N \log_2 N multiplications complexes et que le calcul d'un tableau intermédiaire à partir du précédent peut se faire en "papillons". En effet, on a :

$$i = 1, 2, ..., M$$

$$p \text{ tel que } p_{M-i+1} = 0$$

$$q = p + N/2^{i}$$

$$x_{i}(p) = x_{i-1}(p) + x_{i-1}(q)$$

$$x_{i}(q) = \{x_{i-1}(p) - x_{i-1}(q)\} W^{r}$$
(1.14)

On constate sur la figure 3 qui illustre cet algorithme dans le cas où M=3, que le tableau de données doit être introduit

 $x_0(.)$ $x_1(.)$ $x_2(.)$ $x_3(.)$

quand $N = 2^3$.

dans l'ordre direct, tandis que le tableau des résultats doit être inversé binairement. Les exposants des facteurs W apparaissent, eux, dans l'ordre direct.

Tout comme dans le cas de l'algorithme de Cooley et Tukey, on peut trouver une autre forme de l'algorithme de Sande et Tukey en inversant binairement l'ordre dans tous les tableaux intermédiaires; mais celle-ci fera apparaître les exposants des facteurs W dans l'ordre binaire inverse et en sera, dès lors, moins utilisée.

Les équations (1.13) et (1.14) deviennent alors :

 $x_0(n_1, n_2, ..., n_M) = x(n_M, n_{M-1}, ..., n_1)$

$$x_{1}(n_{1}, n_{2}, \dots, n_{M-1}, k_{1}) = \{ \sum_{\substack{n_{M}=0 \\ m_{M}=0}}^{1} x_{0}(n_{1}, n_{2}, \dots, n_{M}) W^{2^{M-1}} n_{M} k_{1} \}$$

$$\times W^{(2^{M-2}n_{M-1}+\dots+n_{1})k_{1}}$$

$$x_{2}(n_{1}, \dots, n_{M-2}, k_{2}, k_{1}) = \{ \sum_{\substack{n_{M-1}=0}^{1} x_{1}(n_{1}, \dots, n_{M-1}, k_{1}) \\ w^{(2^{M-3}n_{M-2}+\dots+n_{1})2k_{2}} \}$$

$$\sum_{k_{M}(k_{M},k_{M-1},\ldots,k_{1})}^{2^{M-1}k_{M}n_{1}} = \sum_{n_{1}=0}^{1} x_{M-1}(n_{1},k_{M-1},\ldots,k_{1}) W^{2^{M-1}k_{M}n_{1}}$$

 $y(k_{M}, k_{M-1}, \dots, k_{1}) = x_{M}(k_{M}, k_{M-1}, \dots, k_{1})$

et i = 1,2,...,M

p tel que $p_i = 0$

(1.15)

$$q = p + 2^{i}$$

$$x_{i}(p) = x_{i-1}(p) + x_{i-1}(q)$$

$$x_{i}(q) = \{ x_{i-1}(p) - x_{i-1}(q) \} W^{r}$$
(1.16)

La figure 4 illustre cette forme de l'algorithme de Sande et Tukey dans le cas où M=3.

 $x_0(.)$ $x_1(.)$ $x_2(.)$ $x_3(.)$

Figure 4. Algorithme de Sande et Tukey
quand
$$N = 2^3$$

1.3 ALGORITHMES FFT DANS LE CAS N = r^M

Ce paragraphe est une généralisation du précédent : il envisage le cas où N n'est plus puissance de 2, mais une puissance entière d'un nombre entier positif r plus grand que 2 [1,16,17].

On peut représenter les indices k et n des expressions (1.3) et (1.4) par $(k_M, k_{M-1}, \dots, k_1)$ et $(n_M, n_{M-1}, \dots, n_1)$, tels que :

$$k = \sum_{i=1}^{M} k_{i}r^{i-1} , k_{i} \in \{0, 1, \dots, r-1\}$$

$$n = \sum_{i=1}^{M} n_{i}r^{i-1} , n_{i} \in \{0, 1, \dots, r-1\}$$
(1.17)

La décomposition (1.17) des indices et les notations

$$x(n) = x(n_{M}, n_{M-1}, \dots, n_{1})$$

$$y(k) = y(k_{M}, k_{M-1}, \dots, k_{1})$$
(1.18)

permettent de transformer (1.3) en :

$$y(k_{M}, k_{M-1}, \dots, k_{1}) = \sum_{\substack{n_{M} \\ n_{M} \\ n_{M-1} \\ m_{M-1} \\ m_{1} \\ m_{1}$$

où

La factorisation du second membre de (1.21) peut se faire de deux manières différentes, comme dans le paragraphe précédent, ce qui donne lieu à deux algorithmes différents.

A ALGORITHME DE COOLEY ET TUKEY

La décomposition du temps n dans le second membre de (1.21)et la propriété $W^N = 1$ permettent de transformer (1.19) en l'algorithme suivant :

 $x_0(n_1, n_2, ..., n_M) = x(n_M, n_{M-1}, ..., n_1)$

$$x_{m}(n_{1}, \dots, n_{M-m}, k_{m}, \dots, k_{1}) = \sum_{\substack{m-1 \\ n_{M-m+1}}} x_{m-1}(n_{1}, \dots, n_{M-m+1}, k_{m-1}, \dots, k_{1})$$

×
$$\exp\{-j2\pi n_{M-m+1}(\sum_{i=1}^{m} k_i r^{i-1})/r^{m}\}$$

m = 1,2,...,M

 $y(k_{M}, k_{M-1}, \dots, k_{1}) = x_{M}(k_{M}, k_{M-1}, \dots, k_{1})$ (1.22)

Cet algorithme réduit le nombre de multiplications complexes au moins à $(r-1)Mr^M$. On observe que (1.22) est une généralisation de (1.11).

Il est intéressant, dans le cadre de cet algorithme, d'utiliser la notation suivante :

$$x_{m}(lr^{m}+s) = x_{m}(n_{1}, \dots, n_{M-m}, k_{m}, \dots, k_{1})$$
 (1.23)

où

$$1 = \sum_{i=1}^{M-m} n_i r^{M-m-i}$$

 $s = \sum_{i=1}^{m} k_i r^{i-1}$

L'ensemble $\{x_m(lr^m+s)\}_{s=0}^{r^m-1}$ est appelé le l^{ième} bloc à l'étape m. Il y en a r^{M-m} à l'étape m. Le sous-ensemble $\{x_0(lr^m+s)\}_{s=0}^{r^m-1}$ du tableau d'entrée est appelé bloc correspondant au l^{ième} bloc à l'étape m. Chacun des blocs à l'étape m se déduit de son bloc correspondant par la même séquence d'opérations :

Proposition 1.1

Il existe une relation de Transformée de Fourier Discrète inverse entre chaque bloc à l'étape m et son bloc correspondant. Démonstration_:

$$x_{m}(n_{1}, \dots, n_{M-m}, k_{m}, \dots, k_{1}) = \sum_{\substack{n_{M-m+1}}} x_{m-1}(n_{1}, \dots, n_{M-m+1}, k_{m-1}, \dots, k_{1})$$

$$\times \exp\{-j2\pi n_{M-m+1}(\sum_{i=1}^{m} k_{i}r^{i-1})/r^{m}\}$$

$$= \sum_{\substack{n_{M-m+1}}} \dots \sum_{\substack{n_{M}}} x_{0}(n_{1}, \dots, n_{M}) W_{M}^{p}$$
où
$$W_{M} = \exp(-j2\pi/r^{M})$$

$$p = \sum_{\substack{i=1\\i=1}}^{m} n_{M-i+1}r^{M-i}(\sum_{\substack{i=1\\i=1}}^{i} k_{1}r^{1-1})$$
Donc
$$p = r^{M-m} \dots \sum_{\substack{i=1\\i=1}}^{m} \sum_{\substack{i=1\\i=1}}^{i} n_{M-i+1} k_{1}r^{m-i+1-1}$$

On peut, à ce stade, ajouter les valeurs de l \geq i+1 car elles feront intervenir des facteurs 1 uniquement.

$$p = r^{M-m} \cdot \sum_{i=1}^{m} \sum_{l=1}^{m} n_{M-i+1} k_{l} r^{m-i+l-1}$$

$$= r^{M-m} \cdot \sum_{i=1}^{m} \sum_{l=1}^{m} n_{M-m+i} k_{l} r^{l+i-2}$$

$$= r^{M-m} \cdot \left(\sum_{i=1}^{m} n_{M-m+i} r^{i-1} \right) \cdot \left(\sum_{l=1}^{m} k_{l} r^{l-1} \right)$$

En conclusion, on obtient :

$$x_{m}(lr^{m}+s) = \sum_{n_{M-m+1}} \dots \sum_{n_{M}} x_{0}(lr^{m}+\tilde{u}) W_{m}^{su}$$
$$W_{m} = \exp(-j2\pi/r^{m}) ,$$

où

$$u = \sum_{i=1}^{m} n_{M-m+i} r^{i-1} ,$$

$$u = \sum_{i=1}^{m} n_{M-m+i} r^{m-i} ,$$

ce qui démontre la proposition.

Ces notions de blocs et de correspondance se voient aisément sur la figure 2 .

ALGORITHME DE SANDE ET TUKEY

La décomposition de la fréquence k dans le second membre de(1.21) et la propriété W^N = 1 permettent de transformer (1.19) en l'algorithme suivant :

$$x_0(n_M, n_{M-1}, \dots, n_1) = x(n_M, n_{M-1}, \dots, n_1)$$

 $x_{m}(k_{1},...,k_{m},n_{M-m},...,n_{1})$

B

 $= \left[\sum_{\substack{n_{M-m+1} \\ x \in m} \in m} x_{m-1}(k_{1}, \dots, k_{m-1}, n_{M-m+1}, \dots, n_{1}) \cdot \exp(-j2\pi n_{M-m+1}k_{m}/r)\right]$ $\times \exp\{-j2\pi k_{m}(\sum_{i=1}^{M-m} n_{i}r^{i-1})/r^{M-m+1}\}, m=1,2,\dots,M$

$$y(k_{M},k_{M-1},\ldots,k_{1}) = x_{M}(k_{1},k_{2},\ldots,k_{M})$$
 (1.24)

Cet algorithme réduit le nombre de multiplications complexes au moins à (r-1)Mr^M. On observe que (1.24) est une généralisation de (1.13).

Il est intéressant, dans le cadre de cet algorithme, de prendre la notation suivante :

$$x_{m}(lr^{M-m}+s) = x_{m}(k_{1}, \dots, k_{m}, n_{M-m}, \dots, n_{1})$$
(1.25)
où
$$l = \sum_{i=1}^{m} k_{i}r^{m-i}$$

$$s = \sum_{i=1}^{M-m} n_{i}r^{i-1}$$
L'ensemble
$$\{x_{m}(lr^{M-m}+s)\}_{s=0}^{r^{M-m}-1} \text{ est appelé l}^{ième} \text{ bloc à}$$
l'étape m. Il y en a r^m à l'étape m. Le sous-ensemble

 ${x_{M}(lr^{M-m}+s)}_{s=0}^{r^{M-m}-1}$ du tableau de sortie est appelé bloc correspondant au l^{ième} bloc à l'étape m. Chacun des blocs à l'étape m permet de calculer son bloc correspondant par la même séquence d'opérations :

Proposition 1.2

Il existe une relation de Transformée de Fourier Discrète entre chaque bloc à l'étape m et son bloc correspondant.

La démonstration de cette proposition est semblable à celle de la proposition 1.1.

Ces notions de blocs et de correspondance se voient aisément sur la figure 3.

1.4 ALGORITHMES FFT DANS LE CAS N = r1.r2

Supposant que le nombre de points N satisfait la relation N= $r_1 \cdot r_2$ où r_1 et r_2 sont des entiers positifs, on peut exprimer les indices k et n des expressions (1.3) et (1.4) comme suit :

- $k = k_2 r_1 + k_1$
- $n = n_2 r_2 + n_1$
- où k_2 et $n_1 \in \{0, 1, \dots, r_2 1\}$

 $k_1 \text{ et } n_2 \in \{0, 1, \dots, r_1 - 1\}$

On prend alors les notations suivantes :

 $x(n_2, n_1) = x(n)$

 $y(k_{2},k_{1}) = y(k)$

(1.27)

(1.26)

A ALGORITHME DE COOLEY ET TUKEY

Les expressions (1.26) et les notations (1.27) permettent de transformer (1.3) en :

 $y(k_{2},k_{1}) = \sum_{n_{1}=0}^{r_{2}-1} \left[\sum_{n_{2}=0}^{r_{1}-1} x(n_{2},n_{1}) W^{k_{1}} \right]^{k_{1}} W^{n_{1}},$

ce qui donne lieu à l'algorithme suivant :

 $x_0(n_2,n_1) = x(n_2,n_1)$

$$x_{1}(k_{1},n_{1}) = \prod_{n_{2}=0}^{r_{1}} x_{0}(n_{2},n_{1}) \quad W^{k_{1}n_{2}r_{2}}$$

$$x_{2}(k_{1},k_{2}) = \prod_{n_{1}=0}^{r_{2}} x_{1}(k_{1},n_{1}) \quad W^{(k_{2}r_{1}+k_{1})n_{1}}$$

$$y(k_{2},k_{1}) = x_{2}(k_{1},k_{2}) \qquad (1.28)$$

Cet algorithme réduit le nombre de multiplications complexes au moins à $N(r_1+r_2-2)$.

ALGORITHME DE SANDE ET TUKEY

В

Les expressions (1.26) et les notations (1.27) permettent de transformer (1.3) en :

$$\mathbf{y}(k_{2},k_{1}) = \sum_{\substack{n_{1}=0\\n_{1}=0}}^{r_{2}-1} \begin{bmatrix} r_{1}-1\\ r_{2}=0\\n_{2}=0 \end{bmatrix} \mathbf{x}(n_{2},n_{1}) \quad \mathbf{W}^{(n_{2}r_{2}+n_{1})k_{1}} \end{bmatrix} \mathbf{W}^{n_{1}k_{2}r_{1}},$$

ce qui conne lieu à l'algorithme suivant :

$$x_{0}(n_{2},n_{1}) = x(n_{2},n_{1})$$

$$x_{1}(k_{1},n_{1}) = \left\{ \begin{array}{c} r_{1} \sum_{n_{2}=0}^{1} & x_{0}(n_{2},n_{1}) & W^{n_{2}k_{1}r_{2}} \right\} & W^{n_{1}k_{1}} \\ x_{2}(k_{1},k_{2}) &= \begin{array}{c} r_{2} \sum_{n_{1}=0}^{1} & x_{1}(k_{1},n_{1}) & W^{n_{1}k_{2}r_{1}} \\ n_{1}=0 & x_{1}(k_{1},n_{1}) & W^{n_{1}k_{2}r_{1}} \end{array}$$

$$y(k_{2},k_{1}) = x_{2}(k_{1},k_{2}) \qquad (1.29)$$

Cet algorithme réduit le nombre de multiplications complexes au moins à $N(r_1+r_2-2)$.

27

MODELES STATISTIQUES

POUR LES

ERREURS NUMERIQUES

2 . 1 THEORIE STATISTIQUE ELEMENTAIRE DES ERREURS NUMERIOUES

2.1.1. INTRODUCTION

Dans l'implémentation des différents algorithmes de la FFT, les erreurs produites par la représentation de longueur finie des nombres sur l'ordinateur peuvent être interprétées comme un signal aléatoire à ajouter aux nombres traités. Ces considérations donnent lieu aux deux schémas équivalents suivants :

Dans ces deux figures : - x désigne le nombre dont la représentation doit être réduite

- \hat{x} = L (x), ce nombre après réduction de

la représentation

- e (x), l'erreur produite par cette

opération.

Pour connaître de façon précise le nombre \hat{x} , il faut évaluer l'erreur e (x). Il est commode de supposer ces signaux aléatoires. Ils sont décrits par des quantités faisant partie du domaine de la statistique, comme la moyenne et la variance. Ce paragraphe a pour but d'introduire les notions qui seront utiles par la suite.

2.1.2 PROCESSUS ALEATOIRES

On appelle processus aléatoire une famille indexée de variables aléatoires notées (X_n); une variable aléatoire est le résultat numérique d'une expérience aléatoire oui peut être répétée plusieurs fois sous les mêmes conditions (cette définition est suffisante pour l'analyse qui va suivre). La famille (X_n) est caractérisée par un ensemble de fonctions de distribution qui, en général, dépendent de l'indice n, souvent associé au temps.

Un processus aléatoire est décrit par :

- la moyenne notée E $[X_n]$ ou encore m_{X_n}

où E représente l'espérance mathématique

- la variance notée V [X_n] ou encore $\sigma_{X_n}^2$

où $\sigma_{X_{n}}$ est la déviation standard de X_{n}

- la fonction d'autocorrélation notée et définie comme suit :

$$\phi_{xx}(n,m) = E \left[X_n X_m^T \right]$$

où X[†]_m est le nombre complexe conjugué de X_m

- la fonction de corrélation mutuelle notée ϕ_{xy} (n,m) et définie de la manière suivante, (X_n) et (Y_m) étant des processus aléatoires

$$\phi_{xy}$$
 (n,m) = E $[X_n Y_m^{\dagger}]$

Lorsque les variables aléatoires du processus (X_n) ne sont pas corrélées, la fonction d'autocorrélation prend la forme suivante :

$$\phi_{xx} (n, n+k) = \begin{cases} E [X_n^2] & \text{si } k = 0 \\ E [X_n] \cdot E [X_{n+k}] & \text{si } k \neq 0 \end{cases}$$

En définissant la fonction d'autocovariance par

 γ_{xx} (n,m) = ϕ_{xx} (n,m) - E [X_n].E [X_m]

on obtient

Y _{XX}	(n,n+k)	=	$\int \sigma_{\mathbf{x}}^2$	si	k	=	0
			lo ⁿ	si	k	ŧ	0

Un tel processus aléatoire est appelé "bruit blanc". Dans le cas où toutes les fonctions de distribution sont indépendantes d'un déplacement de l'origine du temps, le processus aléatoire est appelé stationnaire. Les propriétés suivantes sont alors vérifiées :

- la moyenne et la variance sont constantes et notées respectivement m_{χ} et σ_{χ}^2

- la fonction d'autocorrélation ne dépend que de la différence entre les temps m et n. Si m = n + k on notera

 ϕ_{xx} (n, n+k) = ϕ_{xx} (k)

Un bruit blanc stationnaire est caractérisé par les relations suivantes :

φ _{xx}	(n,	n+k)	=	ϕ_{xx}	(k)=	$\begin{cases} \sigma_{\mathbf{X}}^{2} \\ m_{\mathbf{X}}^{2} \\ \mathbf{x} \end{cases}$	+	m ² X·	si si	k k	= ‡	0 0
Υ _{xx}	(n,	n+k)	н	Υ _{xx} (k) =	$\int_{X}^{\sigma^2}$			si	k	=	0	
					0			si	k	ŧ	0	

Remarque :

Si chacune des variables aléatoires d'un processus $\begin{pmatrix} X_n \end{pmatrix}$ prend la valeur $X_n (x_n)$ notée X(n), l'ensemble des valeurs $\begin{pmatrix} X(n) \end{pmatrix} - \infty < n < \infty$ est une réalisation du processus appelée suite d'échantillons du processus aléatoire.

31

2.1.3 MODELE STATISTIQUE POUR LES ERREURS NUMERIQUES

A l'aide des notions précédentes plusieurs hypothèses vont être formulées à propos des erreurs commises par la représentation de longueur finie des nombres.

Si \hat{x} (n),- ∞ < n < + ∞ , désigne la représentation de x(n), et e(n) l'erreur commise sur ce nombre, on a :

 $x(n) = \hat{x}(n) + e(n)$ (2.1) L'hypothèse de base de la théorie qui sera présentée est que les erreurs produites par la représentation des nombres sont des variables aléatoires. En réalité, ces erreurs sont des évènements tout-à-fait déterminés : l'exécution d'un algorithme produira les mêmes erreurs pour des données identiques. Il est donc théoriquement possible de calculer au préalable chacun des termes e(n) de la relation (2.1). Toutefois, comme ces erreurs dépendent des données d'une manière très compliquée, on pourra supposer qu'elles sont des évènements aléatoires. Ce raisonnement peut être illustré par l'exemple classique du jet d'un dé : en théorie, en prédire le résultat est possible grâce aux lois de l'attraction universelle. En pratique, c'est impossible étant donné la dépendance très complexe de cette expérience par rapport aux conditions initiales.

Il est habituel de formuler les hypothèses suivantes :

1) la suite des erreurs forme un processus aléatoire stationnaire appelé "processus d'erreur";

2) la suite des erreurs ne dépend pas de la suite des valeurs exactes des nombres traités;

3) les variables aléatoires du processus d'erreur ne sont pas mises en corrélation, l'erreur est un bruit blanc;

4) la distribution de probabilité de chacune des variables aléatoires du processus d'erreur est uniforme sur son domaine de définition.

32

Remarques :

 Comme les erreurs sont des variables aléatoires, la suite (e(n)) sera envisagée comme une réalisation de la suite de ces variables aléatoires.

2. Les hypothèses adoptées conduisent à une analyse assez simple des erreurs. Il est aisé de trouver des exemples où elles sont prises en défaut; par exemple si les nombres x(n) sont construits de la façon suivante : soit x_a (t) une fonction de saut

$$\mathbf{x}_{a} (t) = \begin{cases} 0 & \text{sit} < a \\ 1 & \text{sit} > a \end{cases}$$

et $x(n) = x_a(nT)$ où T est un réel.

Il est clair qu'il est impossible de vérifier toutes les hypothèses et notamment la troisième. Par contre, quand le signal dont proviennent les nombres x(n) varie rapidement d'une manière complexe, les hypothèses deviennent plus acceptables. Ce serait le cas pour le signal de la parole ou de la musique.

2 . 2. ANALYSE DES ERREURS EN VIRGULE FIXE

2.2.1. ARITHMETIQUE EN VIRGULE FIXE

A REPRESENTATION DES NOMBRES BINAIRES

Dans l'analyse qui suit, un nombre sera représenté par une suite de t + 1 chiffres binaires appelés "bits" :

 $\begin{array}{cccc} b_0 & b_1 \cdots & b_t & b_i = 0 \text{ ou } 1 \text{ ; } i = 0, 1, \dots, t (2.2) \\ \text{où } b_0 \text{ est le bit de signe, égal à 0 pour le signe + et égal } \\ \text{à 1 pour le signe -.} \end{array}$

Ainsi, pour $b_0 = 0$, le nombre correspondant à la représentation (2.2) vaut

La virgule est située à gauche des t derniers bits. Trois méthodes sont utilisées pour représenter les nombres binaires négatifs.

- La première est appelée "signe et grandeur". Le nombre (2.2) avec b₀ = 1 est égal à

$$-\sum_{i=1}^{b_i} b_i^{-1}$$

Par exemple : 0.011 représente 3/8

1.011 représente - 3/8

- La seconde est appelée "complément à deux". La grandeur du nombre, c'est-à-dire le nombre positif, est retranchée de deux qui s'écrit 10.0 en binaire. Par exemple : 3/8 est représenté par 0.011

-3/8 est représenté par 10.000-0.011 = 1.101

- La troisième est appelée "complément à un". La grandeur du nombre est retranchée du plus grand nombre représentable dans le registre choisi de (t + 1) bits, c'est-à-dire lorsque $b_0 = b_1 = \dots b_+ = 1$.

Par exemple : -3/8 est représenté par 1.111-0.011 = 1.100. Dans la première représentation, changer le signe du nombre n'affecte que le bit de tête, tandis que dans les deux suivantes tous les bits sont affectés.

OPERATIONS ELEMENTAIRES

В

Par la convention prise sur l'écriture des nombres binaires, ceux-ci sont tous inférieurs à l'unité en valeur absolue. Donc le produit de deux de ces nombres sera toujours inférieur à l'unité en valeur absolue et d'autre part la longueur de sa représentation sera généralement 2t + 1 bits dui seront réduits à t + 1 bits à cause de la limitation sur la longueur de l'écriture des nombres en machine. Cette réduction s'effectue soit en tronquant le nombre, c'est-à-dire en écartant les t derniers bits, soit en l'arrondissant, c'est-à-dire en l'approchant par le nombre de t + 1 bits le plus proche.

La somme de deux nombres de t + 1 bits sera un nombre de t + 1 bits si toutefois il peut être représenté dans ce registre. En effet, il peut se produire un dépassement de la manière suivante la somme de 0.1101 et 0.1000 est 1.0101. Ce nombre ne peut être contenu dans un registre de (4 + 1) bits choisi au départ. Il y a un report dans la partie entière du nombre. Cette limitation sur le domaine des nombres représentables peut être levée en utilisant l'arithmétique en virgule flottante. Pour continuer à utiliser l'arithmétique en virgule fixe, un artifice sera employé : il consiste à déplacer chaque nombre d'un bit vers la droite, ce qui revient à le diviser par deux. Cette opération portera le nom de déplacement.

En résumé, les sources d'erreurs dans les opérations proviendront de l'arrondi ou de la troncature pour la multiplication et du dépassement pour l'addition.

ERREURS PRODUITES PAR LA TRONCATURE OU L'ARRONDI

En vertu des conventions prises dans le premier paragraphe, un "1" dans le dernier bit d'un nombre positif représente une valeur numérique de 2^{-t}. Cette quantité est le plus petit écart entre deux nombres représentables dans le registre choisi. Comme les nombres positifs sont décrits d'une façon unique, les erreurs seront identiques pour les trois méthodes de représentation.

1° Erreurs produites par la troncature

Soient x et T(x) le nombre avant et après la troncature et soient t₁ et t, le nombre de bits qu'ils comportent respectivement. (t₁ > t)

L'effet de la troncature est d'éliminer les (t₁ - t) derniers bits. L'erreur de troncature est :

 $E_T = T (x) - x$ Pour les nombres positifs :

 $E_T \leq 0$ avec E_T maximale si tous les bits écartés sont égaux à "1". La valeur de E_T est alors - (2^{-t} - 2^{-t1}). On obtient :

 $-(2^{-t} - 2^{-t_1}) \leq E_T \leq 0$ pour des nombres positifs (2.3)

Pour des nombres négatifs en "signe et grandeur"

E_T ≥ 0

On obtient donc :

$$\leq E_m \leq (2^{-\tau} - 2^{-\tau})$$

(2.4)

Pour des nombres négatifs représentés en "complément - à - deux", soit $x = 1.a_1a_2 \dots a_{t_1}$ dont la valeur absolue est

A₁ = 2.0-x₁
Dù
$$x_1 = 1 + \sum_{i=1}^{t_1} a_i 2^{-i}$$

Comme T(x) = 1. $a_1 a_2^{i=1}$. a_t , sa valeur absolue est

$$x_2 = 1 + \sum_{i=1}^{t} a_i 2^{-i}$$

où

 $A_2 = 2.0 - x_2$

F.

C

On peut définir la variation de valeur absolue :

 $\Delta A = \Lambda_2 - \Lambda_1 = \sum_{i=t+1}^{t_1} a_i 2^{-i}$ $0 \leq \Delta A \leq 2^{-t} - 2^{-t_1}$

où

L'effet de la troncature produit dans ce cas un accroissement de la valeur absolue.

Donc

$$-(2^{-t} - 2^{-t}1) \leq E_T \leq 0$$
 (2.5)

Pour les nombres négatifs représentés en "complément à un", en conservant les mêmes notations pour $x,T(x), x_1, x_2$, on obtient :

 $A_2 = 2.0 - 2^{-t} - x_2$ et la variation de valeur absolue est

 $A_1 = 2.0 - 2^{-t_1} - x_1$

$$\Delta A = A_2 - A_1 = -(2^{-t} - 2^{-t}) - \sum_{i=t+1}^{t_1} a_i 2^{-i}$$

où

- $(2^{-t} - 2^{-t}) \leq \Delta A \leq 0$

Donc, la valeur absolue décroît. Par conséquent :

$$\leq E_{\rm m} \leq (2^{-t} - 2^{-t})$$
 (2.6)

2° Erreurs produites par l'arrondi

Par la définition de l'arrondi, l'erreur E_A est comprise entre les bornes suivantes :

 $-1/2 (2^{-t} - 2^{-t_1}) \in E_A \in 1/2 (2^{-t} - 2^{-t_1})$ (2.7) Si on considère que 2^{-t_1} est négligeable face à 2^{-t} , en reprenant les inégalités précédentes (2.3) à (2.7), on peut dresser le tableau suivant :

Remarques

 Pour la représentation en "complément - à - deux", les bornes de l'erreur de troncature ne changent pas avec le signe du nombre. C'est pourquoi elle sera utilisée par la suite car il devient justifiable de supposer que l'erreur est indépendante des nombres traités.

2. Dans le cas de l'arrondi, il faut encore définir une méthode lorsque le nombre de t₁ bits se situe exactement au milieu des deux nombres de t bits qui l'entourent. On peut soit toujours arrondir au nombre supérieur, soit toujours arrondir au nombre inférieur, soit arrondir à l'un ou à l'autre de manière aléatoire. C'est cette dernière méthode qui sera choisie car il sera légitime de supposer nulle la moyenne de l'erreur d'arrondi, quels que soient les nombres traités. Dans le cas d'un dépassement du registre, les nombres seront déplacés d'un bit vers la droite avant d'effectuer les calculs.

Deux éventualités peuvent se présenter; le dernier bit est perdu, ou il est arrondi de manière aléatoire.

Dans le premier cas, il suffit de modifier les résultats établis pour la troncature. Si l'on considère égales les probabilités d'avoir le dernier bit soit "0", soit "1", on obtient :

$$E_{D} = \begin{cases} 0 & \text{avec probabilité 1/2} \\ -2^{-t} & \text{avec probabilité 1/2} \end{cases}$$
 (2.10a)

pour les nombres positifs et les nombres négatifs de "complément - à - deux".

$$E_{\rm D} = \begin{bmatrix} 0 & \text{avec probabilité 1/2} \\ 2^{-t} & \text{avec probabilité 1/2} \end{bmatrix}$$

pour les nombres négatifs représentés en "signe et grandeur" ou en "complément - à - un".

Dans le second cas, il suffit également de modifier les résultats établis pour l'arrondi. On obtient :

$$E_{D} = \begin{cases} 0 & \text{avec probabilité 1/2} \\ -2^{-t}/2 & \text{avec probabilité 1/4} \\ +2^{-t}/2 & \text{avec probabilité 1/4} \end{cases}$$
(2.10b)

2.2.2. APPLICATION DES HYPOTHESES DU MODELE STATISTIQUE

Comme les erreurs sont distribuées uniformément, la moyenne et la variance peuvent être calculées. Pour l'arrondi, par (2.9) la fonction de densité de E_A devient

$$f_{A}(x) = \begin{cases} 1/2^{-t} & \text{si} -2^{-t}/2 \leq x \leq 2^{-t}/2 \\ 0 & \text{ailleurs} \end{cases}$$

La moyenne et la variance sont respectivement

$$m_{A} = 0$$
 (2.11)
 $\sigma_{A}^{2} = 2^{-2t}/12$ (2.12)

De la même façon, pour la troncature et la représentation en "complément - à - deux", par (2.8) on obtient :

$$f_{T}(x) = \begin{cases} 1/2^{-t} & \text{si} -2^{-t} < x < 0 \\ 0 & \text{ailleurs} \end{cases}$$

$$m_{T} = -2^{-t}/2 \qquad (2.13)$$

$$\sigma_{T}^{2} = 2^{-2t}/12 \qquad (2.14)$$

De plus, pour le dépassement, pour la représentation en "complémentà - deux", par (2.10a) devient :

$$m_{\rm D} = -2^{-t}/2$$
(2.15)

$$\sigma_{\rm D}^2 = 2^{-2t}/4$$
(2.16)

40

2.3 ANALYSE DES ERREURS EN VIRGULE FLOTTANTE

2.3.1 ARITHMETIQUE ET BORNES D'ERREUR

A REPRESENTATION NUMERIQUE EN VIRGULE FLOTTANTE

Arithmétique

Sur ordinateur, un nombre réel non nul se représente, en virgule flottante, par

sign b^a.mant

où sign est le signe du nombre x,

- b est la base de l'arithmétique de l'ordinateur,
- a est la valeur de l'exposant du nombre x, relativement
 à la base b (nombre entier),

mant est la mantisse du nombre x, relativement à la base b; mant est un nombre réel positif tel que $b^{-1} \leq mant \leq 1 - b^{-t}$ où t est le nombre de chiffres,

relatifs à la base b, qui composent la mantisse.

Ce modèle de représentation est appelé "format de signe et de grandeur".

Remarques :

1- Les chiffres qui composent la mantisse sont des chiffres binaires en cas de base 2, des chiffres décimaux en cas de base 10, ou encore des chiffres hexadécimaux en cas de base 16. Par la suite, on utilisera les mots "exposant", "mantisse" et "chiffre" sans plus jamais spécifier qu'ils sont relatifs à une base b. 2- Les ordinateurs Siemens 4004 et IBM 360 travaillent tous deux en base 16 avec une mantisse de 6 chiffres en simple précision et une mantisse de 14 chiffres en double précision. De plus, le format utilisé est celui de signe et de grandeur.

Bornes d'erreur

La représentation en virgule flottante entraîne inévitablement des erreurs, vu que la mantisse est réduite à un nombre fini t de chiffres.

Contrairement au cas de la virgule fixe, le cas de la virgule flottante est basé sur l'analyse de l'erreur relative ε , définie par :

$$fl(x) = x(1+\varepsilon)$$

où x est un nombre réel non nul, et

fl(x) = sign b^a.mant est sa représentation numérique.

Les erreurs de représentation numérique sont différentes pour les deux modes d'arithmétique : l'arrondi

la troncature.

Erreur d'arrondi

L'erreur absolue ex est bornée de la manière suivante :

$$-b^{a} \cdot \frac{b^{-t}}{2} \leq \epsilon x \leq b^{a} \cdot \frac{b^{-t}}{2}$$

et comme $b^{a-1} \leq |x| < b^a$, on a :

$$-\frac{b^{-t+1}}{2} \leq \varepsilon \leq \frac{b^{-t+1}}{2}.$$

Erreur de troncature

L'erreur absolue ex est bornée de la manière suivante :

 $-b^{a}.b^{-t} < \varepsilon x \leq 0$ si x > 0,

 $b^{a}.b^{-t} > \varepsilon x \ge 0$ si x < 0

et comme $b^{a-1} \leq |x| < b^{a}$, on a :

 $-b^{-t+1} < \varepsilon \leq 0$.

B MULTIPLICATION A L'AIDE D'UN REGISTRE DE LONGUEUR DOUBLE

Arithmétique

Le processus de multiplication à l'aide d'un registre de longueur double est le suivant :

- Le produit de deux nombres réels non nuls x₁ et x₂ qui sont supposés être représentés exactement en machine respectivement par sign₁ b^{a1}.mant₁ et sign₂ b^{a2}.mant₂, est représenté par sign b^a.mant, où

 $sign = (sign_1)(sign_2),$ $a = a_1 + a_2 - L$

le produit des deux mantisses mant₁ et mant₂ se fait de manière exacte dans un registre de longueur 2t (longueur double); puis le résultat est normalisé (on déplace la mantisse de L places vers la gauche) et, ensuite, est arrondi ou tronqué, suivant l'arithmétique de l'ordinateur, à t chiffres et placé dans mant.

- Le produit de deux nombres réels, dont l'un au moins est nul, est nul.

Remarque :

L'ordinateur Siemens 4004 utilise cette méthode de multiplication, avec le mode de troncature, dans le cas de la simple précision.

Bornes d'erreur

Ce processus de multiplication calcule la valeur exacte du produit des mantisses (puisque le registre est de longueur double), puis l'arrondit ou la tronque à t chiffres. Donc, l'erreur est semblable à celle produite par la représentation numérique, et, si on définit

 $fl(x_1x_2) = x_1x_2(1+\beta)$

où x_1x_2 est le produit des nombres x_1 et x_2 , supposés représentables exactement en machine,

fl(x₁x₂) est la représentation de ce produit, on obtient : en cas d'arrondi $-\frac{b^{-t+1}}{2} \le \beta \le \frac{b^{-t+1}}{2}$,

en cas de troncature $-b^{-t+1} < \beta \leq 0$.
ADDITION A L'AIDE DE CHIFFRES DE GARDE

Arithmétique

C

Le processus d'addition à l'aide de g chiffres de garde est le suivant :

Si l'un des deux nombres est nul, la somme égale directement et exactement l'autre nombre.

Dans le cas contraire, on peut toujours supposer que les nombres réels non nuls, représentés exactement en machine respectivement par $\operatorname{sign}_{1} \operatorname{b}^{a_{1}}.mant_{1}$ et $\operatorname{sign}_{2} \operatorname{b}^{a_{2}}.mant_{2}$ sont tels que $a_{2} > a_{1}$

ou $a_2 = a_1$ et $|mant_1| \ge |mant_2|$.

La mantisse mant₁ est d'abord déplacée de $a_2 - a_1$ places vers la droite, puis est arrondie ou tronquée à t + g chiffres (g chiffres de garde), ce qui entraîne une erreur absolue ε_1 . Puis, la valeur ainsi obtenue, affectée du signe sign₁, est additionnée dans un registre de t + g chiffres à la mantisse mant₂, affectée du signe sign₂. Le résultat est alors normalisé en déplaçant la mantisse de L places vers la gauche, puis arrondi ou tronqué à t chiffres et assigné à mant, ce qui entraîne une erreur absolue ε_2 . Le résultat de l'addition est : a_2^{-L} .mant.

Remarque :

L'ordinateur Siemens 4004 utilise cette méthode d'addition, avec le mode de troncature, dans le cas de la simple précision (g = 1).

Bornes d'erreur

J.P. Thiran calcule des bornes exactes de l'erreur engendrée par cette méthode d'addition [15]. Il définit l'erreur relative α par :

 $fl(x_1+x_2) = (x_1+x_2)(1+\alpha)$

où $x_1 + x_2$ est la somme des nombres x_1 et x_2 , supposés représentables exactement en machine,

fl(x1+x2) est la valeur calculée de cette somme,

et il obtient :

en cas d'arrondi :
$$-\frac{b^{-t+1}}{2} < \alpha < \frac{b^{-t+1}}{2} (1 + b^{-g}) (2.17)$$

en cas de troncature : $-1 \leq \alpha \leq u$ (2.18)

où
$$l = b^{-t+1} \frac{1 - b^{-t}}{1 + b^{-t+1}(1 - b^{-t})}$$

$$u = b^{-t-g+1} \frac{1 - b^{-t}}{1 - b^{-t-g+1}(1 - b^{-t})}$$

Cependant, à toutes fins pratiques, il conseille de remplacer (2.17) par : $-\frac{b^{-t+1}}{2} < \alpha < \frac{b^{-t+1}}{2}$

et (2.18) par : $-b^{-t+1} < \alpha < b^{-t-g+1}$,

ce qui constitue une approximation d'autant meilleure que la base b de l'arithmétique est grande.

2.3.2 MODELES STATISTIQUES POUR LES ERREURS

Comme on l'a montré au paragraphe 2.3.1, l'erreur relative ne dépend ni du signe du nombre exact, ni de la valeur de l'exposant dans la décomposition en format de signe et de grandeur. On pourra donc se limiter ici à étudier l'erreur relative

$$\varepsilon = \frac{fl(x) - x}{x} = \frac{\delta}{x}$$

où $b^{-1} \leq x < 1$, et

δ est l'erreur absolue.

D'un point de vue non déterministe, on peut considérer l'erreur relative comme la variable aléatoire quotient des variables aléatoires indépendantes & et x (voir paragraphe 2.1).

Dans ce cas, pour pouvoir déterminer la fonction de densité ε, on devra se servir du théorème suivant : de

Théorème ([6], paragraphe 6.2)

Etant données deux variables aléatoires indépendantes X et Y, si leurs fonctions de densité sont respectivement $f_{\chi}(x)$ et $f_{y}(y)$, la fonction de densité de la variable aléatoire $W = \frac{\Lambda}{V}$ est donnée par :

$$f_{W}(w) = \int_{-\infty}^{\infty} |y| f_{X}(wy) f_{Y}(y) dy.$$

Les résultats présentés dans les paragraphes suivants à propos des erreurs relatives sont obtenus par Kaneko et Liu 8.

A DISTRIBUTION DE LA MANTISSE

Hamming a proposé un modèle propre à la représentation des nombres en virgule flottante [5]. Il considère que la mantisse d'un nombre flottant suit une distribution réciproque. En fait, la fonction de densité est :

$$\mathbf{r}(\mathbf{x}) = \frac{1}{\mathbf{x} \cdot \ln \mathbf{b}} , \mathbf{b}^{-1} \leq \mathbf{x} \leq 1.$$

où b est la base de l'arithmétique.

Ce modèle est appuyé par des résultats expérimentaux et par la persistance de cette distribution à travers des opérations arithmétiques simples.

B ERREUR DE REPPESENTATION NUMERIQUE

Comme on considère que l'erreur absolue & admet une distribution uniforme sur l'intervalle

 $\left[-\frac{b^{-t}}{2}, \frac{b^{-t}}{2}\right]$ dans le cas d'arrondi et

[- b^{-t}, 0] dans le cas de troncature, on peut énoncer les propositions suivantes :

Proposition 2.1

En cas d'arrondi, l'erreur relative de représentation numérique admet la fonction de densité suivante :

$$f_{A}(u) = \begin{cases} 0 & \text{si } |u| > \frac{b^{-t+1}}{2} \\ (b-1)/b^{-t+1} \ln b & \text{si } |u| < \frac{b^{-t}}{2} \\ (b^{-t+1}-2u)/2ub^{-t+1} \ln b & \text{si } \frac{b^{-t}}{2} \le u \le \frac{b^{-t+1}}{2} \\ (-b^{-t+1}-2u)/2ub^{-t+1} \ln b & \text{si } -\frac{b^{-t+1}}{2} \le u \le -\frac{b^{-t}}{2} \end{cases}$$

Démonstration :

En appliquant le théorème avec A = $\frac{X}{Y}$, X = δ , Y = mantisse, on obtient :

$$\begin{split} f_{A}(u) &= \int_{-\infty}^{\infty} |v| f_{X}(uv) f_{Y}(v) \, dv \\ &= \int_{S_{u}} \frac{1}{b^{-t} \cdot v \ln b} |v| \, dv \\ \text{où} \quad S_{u} &= \{ v \text{ tel que } v \in [b^{-1}, 1] \text{ et } uv \in [-\frac{b^{-t}}{2}, \frac{b^{-t}}{2}] \} \, . \\ \text{Si} \quad |u| \, > \, \frac{b^{-t+1}}{2} \quad \text{alors } S_{u} &= \phi \quad \text{et } f_{A}(u) = 0 \, . \\ \text{Si} \quad |u| \, < \, \frac{b^{-t}}{2} \quad \text{alors } \left\{ \begin{array}{c} S_{u} &= [b^{-1}, 1] \quad \text{et} \\ f_{A}(u) &= (b^{-1})/b^{-t+1} \ln b \, . \end{array} \right. \\ \text{Si} \quad \frac{b^{-t}}{2} \leq u \leq \frac{b^{-t+1}}{2} \quad \text{alors } \left\{ \begin{array}{c} S_{u} &= [b^{-1}, \frac{b^{-t}}{2u} \end{bmatrix} \right\} \, et \\ f_{A}(u) &= (b^{-t+1} - 2u)/2ub^{-t+1} \ln b \, . \end{split} \end{split}$$

49

Si
$$-\frac{b^{-t}}{2} \ge u \ge -\frac{b^{-t+1}}{2}$$
 alors $\begin{bmatrix} S_u = \begin{bmatrix} b^{-1}, -\frac{b^{-t}}{2u} \end{bmatrix}$ et
 $f_A(u) = (-b^{-t+1}-2u)/2ub^{-t+1}$ lnb.

Proposition 2.2

En cas de troncature, l'erreur relative de représentation numérique admet la fonction de densité suivante :

$$f_{T}(u) = \begin{cases} 0 & \text{si } u > 0 & \text{ou } u \leq -b^{-t+1} \\ (b-1)/b^{-t+1} \ln b & \text{si } -b^{-t} < u \leq 0 \\ (-b^{-t+1}-u)/ub^{-t+1} \ln b & \text{si } -b^{-t+1} < u \leq -b^{-t} \end{cases}$$

Démonstration :

En appliquant le théorème avec $T=\frac{X}{Y}$, X = $\delta,$ Y = mantisse, on obtient :

$$\begin{split} f_{T}(u) &= \int_{-\infty}^{\infty} |v| f_{X}(uy) f_{Y}(v) \, dy \\ &= \int_{S_{u}} \frac{b^{t}}{v \cdot \ln b^{-}} |y| \, dy \\ od \quad S_{u} &= \{ y \text{ tel que } y \in [b^{-1}, 1] \text{ et } uy \in [-b^{-t}, 0] \} . \\ si \quad u > 0 \qquad \text{ alors } S_{u} &= \phi \text{ et } f_{T}(u) = 0. \\ si \quad u < -b^{-t+1} \qquad \text{ alors } S_{u} &= \phi \text{ et } f_{T}(u) = 0. \\ si \quad -b^{-t} < u \leq 0 \qquad \text{ alors } \begin{bmatrix} S_{u} &= [b^{-1}, 1] & et \\ f_{T}(u) &= (b-1)/b^{-t+1} \ln b. \end{bmatrix} \end{split}$$

Si
$$-b^{-t+1} \leq u \leq -b^{-t}$$
 alors $\begin{bmatrix} S_u = \begin{bmatrix} b^{-1}, -\frac{b^{-t}}{u} \end{bmatrix}$ et
 $f_T(u) = (-b^{-t+1}-u)/ub^{-t+1} \ln b.$

Remarque :

Comme dans le cas où b = 2 et t est suffisamment grand, $(b-1)/lnb \approx 1.44$ et $b^{-t} \approx b^{-t+1}$,

on peut considérer que l'erreur relative est distribuée uniformément sur l'intervalle

 $[-2^{-t}, 2^{-t}]$ dans le cas d'arrondi et $[-2^{-t+1}, 0]$ dans le cas de troncature.

ERREUR DE MULTIPLICATION

Etant donné que l'erreur produite par une multiplication utilisant un registre de longueur double est tout à fait semblable à celle produite par la représentation numérique, on obtient ici exactement les mêmes résultats qu'au paragraphe précédent.

Si on définit $\delta_x = E(\varepsilon)$

$$\Delta_{z}^{2} = var(\varepsilon)$$

on a :

С

si b = 2 $\delta_x = \begin{bmatrix} 0 & en cas d'arrondi \\ -2^{-t} & en cas de troncature \\ \Delta_x^2 = \frac{1}{3} 2^{-2t}$.

(2.19)

si b > 2 $\delta_x = \begin{bmatrix} 0 & \text{en cas d'arrondi} \\ -b^{-t}(b-1)/2\ln b & \text{en cas de troncature} \end{bmatrix}$ $\Delta_x^2 = \begin{bmatrix} b^{-2t}(b^2-1)/24\ln b & \text{en cas d'arrondi} \\ b^{-2t}(b^2-1)/6\ln b - b^{-2t}(b-1)^2/(2\ln b)^2 \\ & \text{en cas de troncature.} \end{bmatrix}$

D ERREUR D'ADDITION

Le cas de l'erreur d'addition est un peu plus compliqué que les précédents. En effet, l'erreur absolue n'est plus considérée comme uniformément distribuée.

Tout d'abord, Kaneko et Liu [8] se basent sur un article de Sweeney [14] pour négliger l'erreur absolue ε_1 . Ils affirment d'autre part qu'il y a une grande probabilité que $\varepsilon_2 = 0$. Ceci arrive en fait quand :

> (1) $a_2 = a_1$ et $sign_1 = -sign_2$ (2) $a_2 = a_1$ et $sign_1 = sign_2$ mais L = 0(3) $a_2 = a_1 + 1$ et L = 1

Soit p_0 la probabilité que $\epsilon_2 = 0$. On obtient donc pour ϵ_2 une densité de probabilité constituée de deux composantes : une fonction delta d'amplitude p_0 à l'origine et une distribution uniforme sur

> $\left[-\frac{b^{-t}}{2}, \frac{b^{-t}}{2}\right]$ en cas d'arrondi $\left[-b^{-t+1}, 0\right]$ en cas de troncature.

D'une manière tout à fait similaire à celle du paragraphe précédent, on obtient les propositions suivantes :

Proposition 2.3

En cas d'arrondi, l'erreur relative ε admet la fonction de densité suivante :

$$f_{A}(u) = \begin{cases} 0 & \text{si } |u| \ge \frac{b^{-t+1}}{2} \\ p_{0}\delta(u) + (1-p_{0})(b-1)/b^{-t+1} \ln b & \text{si } |u| \le \frac{b^{-t}}{2} \\ (1-p_{0})(b^{-t+1}-2u)/2ub^{-t+1} \ln b & \text{si } \frac{b^{-t}}{2} < u < \frac{b^{-t+1}}{2} \\ (1-p_{0})(-b^{-t+1}-2u)/2ub^{-t+1} \ln b & \text{si } -\frac{b^{-t+1}}{2} < u < -\frac{b^{-t}}{2} \end{cases}$$

Proposition 2.4

En cas de troncature, l'erreur relative ε admet la fonction de densité suivante :

$$f_{T}(u) = \begin{cases} 0 & \text{si } u > 0 \text{ ou } u < -b^{-t+1} \\ p_{0}\delta(u) + (1-p_{0})(b-1)/b^{-t+1} \ln b & \text{si } -b^{-t} \le u \le 0 \\ (1-p_{0})(-b^{-t+1}-u)/ub^{-t+1} \ln b & \text{si } -b^{-t+1} \le u \le -b^{-t} \end{cases}$$

Remarques :

1- La valeur p_0 dépend de la base de l'arithmétique et des données des additions. Elle varie de 0.3 à 0.8 [8].

2- Dans le cas où b = 2 et t est suffisamment grand, on peut considérer que l'erreur relative admet la fonction de densité suivante :

$$f_{A}(u) = \begin{bmatrix} 0 & \sin |u| > 2^{-t} \\ p_{0}\delta(u) + (1-p_{0})/2^{-t+1} & \sin |u| < 2^{-t} \end{bmatrix}$$

en cas d'arrondi, et

$$f_{T}(u) = \begin{bmatrix} 0 & \sin u > 0 \text{ ou } u < -2^{-t+1} \\ p_{0}\delta(u) + (1-p_{0})/2^{-t+1} & \sin -2^{-t+1} \le u \le 0 \end{bmatrix}$$

en cas de troncature.

Si on définit
$$\delta_+ = E(\epsilon)$$

 $\Delta^2 = var(\epsilon)$ (2.20)

on a :
si
$$b = 2$$
 $\delta_{+} = \begin{bmatrix} 0 & en \text{ cas d'arrondi} \\ -(1-p_0)2^{-t} & en \text{ cas de troncature} \end{bmatrix}$
 $\Delta_{+}^2 = \begin{bmatrix} (1-p_0)2^{-2t}/3 & en \text{ cas d'arrondi} \\ 4(1-p_0)2^{-2t}/3-(1-p_0)^22^{-2t} & en \text{ cas de troncature} \end{bmatrix}$
si $b > 2$ $\delta_{+} = \begin{bmatrix} 0 & en \text{ cas d'arrondi} \\ -b^{-t}(1-p_0)(b-1)/2\ln b & en \text{ cas de troncature} \end{bmatrix}$

 $\Delta_{+}^{2} = \begin{bmatrix} (1-D_{o})b^{-2t}(b^{2}-1)/24\ln b & \text{en cas d'arrondi} \\ (1-D_{o})b^{-2t}(b^{2}-1)/6\ln b - (1-D_{o})^{2}b^{-2t}(b-1)^{2}/(2\ln b)^{2} \end{bmatrix}$

en cas de troncature.

ANALYSE DES ERREURS NUMERIQUES

DANS LES

ALGORITHMES DE LA TRANSFORMEE

DE FOURIER RAPIDE

EN ====

VIRGULE FIXE

INTRODUCTION

Les erreurs numériques des algorithmes de Cooley et Tukey et de Sande et Tukey sont présentées dans ce chapitre avec l'hypothèse de l'arithmétique en virgule fixe et de la représentation binaire en "complément - à - deux". La plupart des estimations sont données pour les algorithmes en base 2 aux paragraphes 3.1 et 3.2. Quelques résultats sont indiqués pour les algorithmes dans une base composite au paragraphe 3.3.

Les nombres sont représentés par une suite de t+1 bits, dont le premier est le signe; leur valeur absolue est inférieure à l'unité. Le résultat d'un produit est soit arrondi, soit tronqué, sauf dans le cas des multiplications réelles par \pm 1, pour lesquelles aucune opération n'est effectuée. Deux procédés permettent d'éviter un dépassement après une addition. Le premier consiste à diviser le signal d'entrée par le nombre de ses composantes, le second à diviser par 2 les résultats avant d'effectuer les calculs de chaque étape.

La moyenne et le total des carrés des erreurs sont prédits au moyen du modèle statistique décrit dans la sous-division 3.1.1. Les paragraphes 3.1 et 3.2 traitent l'arrondi et la troncature avec ou sans déplacement à chaque étape; le paragraphe 3.3 envisage seulement l'arrondi sans déplacement. Cette analyse est complétée au chapitre 5 (paragraphe 5.1) par les résultats expérimentaux. Comme les nombres y sont représentés en "signe et grandeur", le modèle statistique est modifié de manière à annuler les moyennes des erreurs. La bonne correspondance entre les résultats expérimentaux et les valeurs prédites par la théorie confirme le choix du modèle modifié et du modèle initial décrit en 3.1.1. Une question demeure ouverte. Un déplacement peut n'être effectué que lors d'un dépassement. Cette méthode produit des erreurs moindres que le déplacement à chaque étape qui en est le pire cas. Il est nécessaire de tenir compte du signal d'entrée dont dépend le nombre de déplacement. Ce problème a été abordé par Weinstein [18]

3.1 RESULTATS DE L'ANALYSE DE L'ALGORITHME DE COOLEY ET TUKEY

3.1.1 MODELE STATISTIQUE

Le calcul élémentaire de l'algorithme de Cooley et Tukey est un "papillon" de la forme indiquée en (1.12) . Le modèle statistique de l'erreur de discrétisation numérique s'établit en associant à chaque multiplication un signal d'erreur de type aléatoire.

Le schéma habituel d'un "papillon" sera remplacé par celui indiqué à la figure (8a) dans laquelle $\varepsilon(i,q)$ représente l'erreur complexe introduite dans le calcul du (i + 1)-ème tableau et plus précisément dans la multiplication du q-ème élément par un coefficient complexe.

Fig. 8a

Le produit des deux nombres complexes $z_1 = x_1 + jy_1$ et $z_2 = x_2 + jy_2$ est généralement effectué de la manière suivante : L $[z_1z_2] = L [x_1 x_2] + L [-y_1 y_2]$

+ j (L $[y_1 x_2]$ + L $[x_1 y_2]$) où le symbôle L [.] désigne soit l'arrondi, soit la troncature. Une autre méthode a été proposée par Liu et Peled [10] :

L $[z_1 \ z_2] = L [x_1 \ x_2 - y_1 \ y_2] + j L [y_1 \ x_2 + x_1 \ y_2]$ (2) Dans le premier cas, quatre erreurs de discrétisation numérique sont introduites, dans le second cas deux seulement. Rappelons et précisons les hypothèses du modèle statistique décrit au paragraphe 2.1.3.

1) L'erreur de discrétisation numérique provenant d'une multiplication entre nombre réels est distribuée uniformément. Elle est caractérisée par les relations (2.11) à (2.14).

2) Toutes les erreurs provenant des multiplications entre nombres réels ne sont pas corrélées. Par conséquent, la variance de l'erreur introduite par une multiplication entre nombres complexes est :

$$x (2^{-2\tau}/12)$$
 (3.1)

où α vaut 4 pour le schéma de multiplication (1) et 2 pour le schéma (2).

En outre, en désignant par e(i,p) l'erreur numérique introduite dans le calcul de x_{i+1} (p), $0 \le i \le M-1$, les processus aléatoires

(e(i,p), i fixé, p = 0,1,..., N-1)
constituent des bruits blancs. De plus, les variables aléatoires
de deux de ces processus ne sont pas corrélées.

3) Les erreurs dues aux multiplications ne sont pas corrélées avec le signal d'entrée. Donc :

E [e(i,p). X_n] = E [e(i,p)] . E [X_n] où i = 0, 1, ... M-1 ; n,p = 0, 1, ... N-1 et où l'élément x(n) du signal d'entrée est une réalisation particulière de la variable aléatoire X_n .

Il faut encore empêcher un dépassement éventuel du registre. Des relations (1.12) on déduit les inégalités

 $\max \{ [x_i(p)], [x_i(1)] \} \le \max \{ [x_{i+1}(p)], [x_{i+1}(1)] \}$

< 2 max ([x; (p)] , [x; (l)]) (3.2)

59

Par conséquent, il est clair que la condition |y(p)| < 1 p = 0, 1, ..., N-1suffit pour éviter tout dépassement. On obtient

$$|y(p)| = |\sum_{n=0}^{N-1} x(n) W^{np}| < N \max_{n} (|x(n)|)$$

Il suffit donc d'exiger que

$$|\mathbf{x}(n)| < 1/N$$
 $n = 0, 1, ..., N-1$ (3.

Une seconde méthode est basée sur l'inégalité

$$|x_i(p)| < 1/2$$
 $p = 0, 1, \dots, N-1$

qui suffit pour éviter tout dépassement à l'étape suivante. Le signal d'entrée est soumis à la contrainte

$$|\mathbf{x}(n)| < 1$$
 $n = 0, 1, \dots, N-1$ (3.4)

De plus, avant toute opération il faut diviser par deux les éléments de chaque tableau. La fig. (8a) devient :

Le modèle statistique est complété par une quatrième hypothèse

4) Les erreurs dues aux déplacements sont distribuées uniformément et caractérisées par les relations (23.6) et (23.7).

Elles ne sont corrélées ni entre elles, ni avec le signal d'entrée, dans le sens défini pour les hypothèses 2 et 4. Elles ne sont également pas corrélées avec les erreurs de discrétisation numérique :

E[d(i,p), e(j,q)] = E[d(i,p)] E[e(j,q)]

où i,j=0,1,...,M-1 ; p,q=0,1,...,N-1 et où d(i,p) désigne

3)

l'erreur aléatoire introduite par le déplacement pendant le calcul de x_{i+1} (p)

Remarques

1) Une troisième méthode pour éviter le dépassement du registre est de n'effectuer une division par 2 que lorsqu'un dépassement est détecté. Le calcul est alors repris après avoir divisé l'entièreté du tableau par 2.

2) La seconde hypothèse du modèle statistique est contredit par le fait que les erreurs commises sur deux éléments d'un même "papillon" sont de signes opposés : de la fig. 8a on déduit immédiatement que e(i,p) = e(i,q) = ε (i,q). Comme ces erreurs se propagent ensuite suivant les chemins qui ne se coupent pas, cette corrélation ne perturbe pas le calcul des variances.

3.1.2 PROPRIETES DE L'ALGORITHME DE COOLEY ET TUKEY

Les relations (1.11) qui définissent l'algorithme peuvent être écrites sous la forme suivante :

$$x_{m}(n_{1}, \dots, n_{M-m}, p_{m}, \dots, p_{1})$$

$$= \sum_{n_{M-m+1}}^{1} = 0 \qquad x_{m-1} (n_{1}, \dots, n_{M-m+1}, p_{m-1}, \dots, p_{1})$$

$$\cdot \exp \left[-j 2 \pi n_{M-m+1} (p_{m} 2^{m-1} + \dots + p_{1})/2^{m}\right]$$

$$x_{0} (n_{1}, \dots, n_{M}) = x(n)$$

où n = $\sum_{i=1}^{M} n_i 2^{i-1}$ et p = $\sum_{i=1}^{M} p_i 2^{i-1}$ (3.5)

Les relations (1.23) définissent le s-ème élément du l-ème bloc de l'étape m. Il suffit de poser r=2.

Proposition 3.1

Une erreur de variance Δ^2 introduite dans le calcul du tableau x_m d'une TFR de N = 2^M échantillons donne lieu à une erreur de variance Δ^2 dans 2^{M-m} élément du tableau des résultats de la TFR.

Démonstration

L'algorithme de Cooley et Tukey est représenté par un graphique en structure d'arbre dont les branches se dédoublent successivement. En particulier, un élément du m-ème étage des calculs sera relié à deux éléments du tableau x_{m+1} , quatre du tableau $x_{m+2}, \ldots, 2^{M-m}$ du tableau x_{M} (fig. 9a). L'erreur qui affecte ces 2^{M-m} éléments est toujours de variance Δ^{2} ,

puisqu'elle n'est multipliée que par des nombres complexes de grandeur unité.

Proposition 3.2

La variance de l'erreur de discrétion sur chaque résultat de l'algorithme est la somme de N-1 variances d'erreur dont 2^{M-m} d'entre elles proviennent des erreurs introduites dans le calcul du tableau x_m.

Démonstration

Un élément du tableau final x_M est relié à deux éléments du tableau $x_{M-1}, \ldots, 2^{M-m}$ du tableau $x_m, \ldots, 2^{M-1}$ du tableau x_1 par une structure

Fig. 9a

63

Fig. 9b

64

d'arbre (fig.9b).

Aucune erreur d'arrondi ou de troncature n'est commise sur le tableau initial. Le nombre de contributions est donc égal à

$$\sum_{i=1}^{M} 2^{M-i} = N-1$$

Il suffit de les additionner puisque les erreurs sont non corrélées

Remarque

L'erreur due aux déplacements n'a pas encore été envisagée. Par les hypothèses de non corrélation, il suffit de cumuler les contributions des erreurs numériques provenant des déplacements et de la discrétisation pour obtenir l'erreur totale.

Proposition 3.3

Dans l'hypothèse d'un déplacement à chaque étape, la contribution de l'erreur ainsi créée est N(N-1) $2^{-2t}/2$ pour chaque élément du tableau final.

Démonstration

A chaque étape de l'algorithme, le déplacement est introduit avant toute opération. Une erreur de variance $2.(2^{-2t}/4).2^{2m}$ affecte chaque élément du tableau x_m. Le facteur 2 tient compte des erreurs sur les parties réelles et imaginaires, le facteur $2^{-2t}/4$ est la variance de l'erreur introduite et le facteur 2^{2m} tient compte des déplacements précédents.

Par un raisonnement analogue à celui de la proposition 3.2, chaque élément du tableau final reçoit une erreur de variance égale à

 $2^{-2t}/2 \sum_{m=0}^{M} 2^{M-m} \cdot 2^{2m} = (2^{-2t}/2) N(N-1)$

La somme débute à l'étape 0 et se termine à l'étape M-1 car le tableau initial subit un déplacement mais pas le tableau final.

Proposition 3.4

Il existe une relation de transformée de Fourier discrète inverse entre les éléments d'un bloc de l'étape m et les éléments correspondants du tableau initial.

La démonstration a été donnée dans le premier chapitre par la proposition 1.1 dans le cas où N = r^{M} , r > 2. Les éléments du tableau initial correspondants au bloc $\left\{x_{m}(12^{m} + s)\right\}_{s=0}^{2^{m}-1}$ sont $\left\{x_{0}(12^{m} + s)\right\}_{s=0}^{2^{m}-1}$

3.1.3 ETUDE DES ERREUPS NUMERIQUES

3.1.3.1 ARRONDI - SANS DEPLACEMENT

Tout d'abord, par (2.11), il est évident que

E[e(p)] = 0; e(p) désigne l'erreur commise sur y (p).

Ensuite pour évaluer le total du carré des erreurs, il faut remarquer que les deux premières étapes qui ne comportent que des multiplications par ± 1 ou ± j sont effectuées sans erreur.

De plus, à chaque étape suivante, N multiplications complexes sont calculées dans les 2^{N-m} blocs. Toutefois dans chacun d'eux quatre multiplications par $\stackrel{+}{=}$ 1 ou $\stackrel{+}{=}$ j n'entraînent pas d'erreur. Par la proposition 3.1 et par (3.1), on obtient :

$$\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{A} = \alpha (2^{-2t}/12) \cdot \sum_{m=3}^{M} (N-4 \cdot 2^{M-m}) 2^{M-m}$$
$$= \alpha (2^{-2t}/12) (N^{2}/6 - N + 4/3) \quad (2.6)$$

Tous les résultats ne reçoivent pas la même contribution d'erreur. Pour évaluer chacun des termes de (3.6) il est nécessaire de décomposer l'indice p en :

$$p = \sum_{i=1}^{M} p_i 2^{i-1}$$

Dans ce développement si m est le premier indice pour lequel apparaisse un "1", on a m = min (i : $p_i = 1$). Par (3.5), à l'étape m les éléments reliés à y (p) sont multipliés par -1, à l'étape m + 1, ils sont multipliés par ⁺ j. Dans toutes les étapes ultérieures les multiplications entraînent des erreurs, c'est-à-dire à partir de l'étape s (p) définie par s (p) = 2 + min (i : $p_i = 1$) Par la proposition 53.2) on obtient :

$$E[|e(p)|^{2}] = \sum_{m=s(p)}^{M} \alpha (2^{-2t}/2) 2^{M-m}$$
$$= \alpha (2^{-2t}/2) [N/2^{s(p)-1} - 1]$$

D'autre part, il est immédiat que y (p) est calculé sans erreur pour les indices p = 0, N/4, N/2, 3N/4. Le résultat final est donc

$$(E[|e(p)|^{2}])_{A} = \begin{cases} 0 & p = 0, N/4, N/2, 3N/4 \\ \alpha & (2^{-2t}/2)[N/2^{s}(p)^{-1}] - 1 \end{cases}$$
(3.7)

autrement.

Le résultat établi en (3.6) peut être retrouvé à partir de (3.7). En effet :

$$\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{A} = \sum_{p=1}^{N-1} \alpha(2^{-2t}/2)(N/2^{s(p)-1} - 1)$$
(3.8)

où p = N/4, N/2, 3N/4

Seule la somme suivante pose des problèmes :

$$\sum_{p=1}^{N-1} \frac{1}{2} s(p) - 1 = \frac{1}{2} \sum_{p=1}^{N-1} \frac{1}{2} \min\{i, pi = i\} \quad p \neq N/4, N/2, 3N/4$$

$$(3, 9)$$

Elle peut être décomposée suivant les indices

$$p = 12^{0}$$
; $p = 12^{1}$;; $p = 12^{M-2}$; $p = 12^{M-1}$

où l est impair et min (i : p_i = 1) vaut respectivement 1, 2,...M. En remarquant que les indices à rejeter sont :

 $p = 1.2^{M-1}$, l impair, qui équivaut à $p = 2^{M-1}$

p = 12^{M-2} , l impair, qui équivaut à p = 2^{M-2} ou p = $3 \cdot 2^{M-2}$ la somme (3.9) devient

$$\frac{M-3}{1/2} \sum_{k=0}^{M-3} \sum_{p=12^{K}; l=2r+1} 2^{-k-1}$$

Comme l'ensemble ($p=12^k$; l=2r+1),où $1 \le p \le N-1$,compte $N/2^{k+1}$ éléments on obtient

$$N/2 \sum_{k=0}^{M-3} 2^{-2k-2} = N/6 \cdot (1-16/N^2)$$

L'expression (3.8) devient

$$\sum_{p=0}^{N-1} (E[|e(p)|^2])_A = \alpha (2^{-2t}/2) [(N^2/6 - 8/3) - (N-4)]$$

qui est le résultat établi en (3.6).

3.1.3.2 TRONCATURE - SANS DEPLACEMENT

La relation (2.1.3)indique que la moyenne de l'erreur n'est pas nulle. Pour l'évaluer, il est nécessaire de détailler le calcul d'un "papillon";

 $x_{m}(r) = x_{m-1}(r) + x_{m-1}(s). U$ $x_{m}(s) = x_{m-1}(r) - x_{m-1}(s). U$ On déduit de (3.5) que $r = \sum_{i=1}^{M-m} n_{i} 2^{M-i} + \sum_{i=1}^{m} p_{i} 2^{i-1} \quad \text{avec } p_{m} = 0$ $s = r + 2^{m-1}$ $U = \exp \left[-j2\pi \cdot \sum_{i=1}^{m-1} p_{i} 2^{i-1}/2^{m} \right]$

où m varie de 1 à M. Habituellement x_{m-1} (s).U est d'abord calculé et tronqué à t bits avant d'être utilisé dans les calculs La moyenne de l'erreur est donc :

$$-2^{-t-1} \cdot \alpha/2 (1+j) \qquad \text{sur } x_{m} (r) \qquad (1)$$

$$+2^{-t-1} \cdot \alpha/2 (1+j) \qquad \text{sur } x_{m} (s) \qquad (2)$$

où les coefficients $\alpha/2$ et (1 + j) tiennent compte des $\alpha/2$ multiplications réelles nécessaires au calcul des parties réelle et imaginaire. A l'étape m, chaque bloc est composé de 2^m éléments dont la première moitié reçoit l'erreur indiquée en (1) et la seconde reçoit celle indiquée en (2).

Par la proposition (3.4) ces erreurs peuvent être ramenées à des erreurs équivalentes sur le signal d'entrée. Pour un bloc du tableau x_m, elles s'obtiennent en prenant la transformée de Fourier inverse des 2^m échantillons suivants :

$$E_{i} = \begin{cases} 0 & i = 0, P/4, P/2, 3P/4 \\ A & 0 < i \le P/2 - 1 \\ -A & P/2 \le i \le P-1 \end{cases}$$
(3.10)

70

où $A = -2^{-t-1} (\alpha/2) (1 + j)$ et $P = 2^m$ Les indices i = 0, P/4, P/2, 3P/4 correspondent à des éléments calculés sans erreur. Les erreurs équivalentes des éléments de ce bloc sont donc :

$$e_{k} = 1/P. \sum_{i=0}^{p-1} E_{i} W_{p}^{ik^{\dagger}}$$
$$W_{p} = exp(j2\pi/P) \qquad et 0 \leq k \leq P-1$$

En tenant compte de (3.10) on a

$$e_{k^{\dagger}} = 1/P \left[\begin{array}{c} P/2-1 \\ \sum E_{i} W_{p}^{ik^{\dagger}} & \sum E_{i} W_{p}^{(P/2+i)k^{\dagger}} \\ i=0 & i=0 \end{array} \right]$$

$$= 1/P \sum_{i=0}^{P/2-1} E_{i} W_{p}^{ik^{\dagger}} \left[1 - W_{p}^{P/2k^{\dagger}} \right]$$

 $P/2.k^{\dagger}$ k^{\dagger} où W_p = (-1)

où

Dans le cas où k^{\dagger} est pair on obtient $e_{k}^{\dagger} = 0$ Dans le cas où k^{\dagger} est impair, en tenant compte des termes nuls, on obtient :

$$\mathbf{e}_{\mathbf{k}^{\dagger}} = (2A/P) \begin{bmatrix} \sum_{i=0}^{P/2-1} W_{p}^{ik^{\dagger}} - W_{p}^{i0} & -W_{p}^{P/4.k^{\dagger}} \end{bmatrix}$$

où
$$\sum_{i=0}^{P/2-1} W_{p}^{ik^{\dagger}} = 2/(1-W_{p}^{k^{\dagger}})$$
 et $W_{p}^{P/4 \cdot k^{\dagger}} = j^{k^{\dagger}}$

Si k^{\dagger} est le nombre binaire inversé de k,l'erreur équivalente sur le k-ème élément du bloc correspondant du tableau initial noté $x_0(12^m + k)$ est donc :

$$\begin{bmatrix} -2/2^{m} \cdot 2^{-t-1} \cdot (1+j) & \alpha/2 \cdot \left[(1+W_{m}^{k^{\dagger}})/(1-W_{m}^{k^{\dagger}}) - j^{k^{\dagger}} \right] \text{si } k^{\dagger} \text{est impair}$$

Comme $x_0(12^m+k) = x_0(n_1, ..., n_M)$ les indices k et k⁺ sont représentés respectivement par :

$$\sum_{i=1}^{m} n_{M-i+1} 2^{i-1} \text{ et } \sum_{i=1}^{m} n_{M-m+i} 2^{i-1}$$

Puisque k^{\dagger} dépend de n et m on peut le désigner par f(n,m) qui sera pair ou impair suivant que n_{m-m+1} vaut 0 ou 1. Si f (n,m) est impair, on constate que j^{f(n,m)} vaut +j ou-j suivant que n_{M-m+2} vaut 0 ou 1.

L'expression (3.11) devient :

$$n_{M-m+1} \left[-2/2^{m} \cdot 2^{-t-1} \cdot (1+j) \alpha / 2 \right]$$
$$\cdot \left[(1+W_{m}^{f(n,m)})/(1-W_{m}^{f(n,m)}) - j(-1)^{n} M^{-m+2} \right] \quad (3.12)$$

L'erreur qui affecte y (p) est le p-ème résultat de la TFD des N échantillons déterminés par la somme des contributions (3.12) pour m = 3,...M puisque les deux premières étapes ne comportent pas d'erreur.

(3.11)

En tenant compte des résultats y (p), p = 0, N/4, N/2, 3N/4, qui sont calculés sans erreur on obtient finalement :

$$(\mathbf{E} | \mathbf{e}(\mathbf{p}) |)_{\mathrm{T}} = \begin{bmatrix} 0 & p = 0, N/4, N/2, 3N/4 \\ -\alpha. 2^{-t}/2. (1+j) & \\ \cdot (\mathrm{TFD} \left(\sum_{m=3}^{M} n_{\mathrm{M-m+1}} \cdot (1/2^{m}) \\ \cdot \left[(1+W_{\mathrm{m}}^{\mathrm{f}(\mathbf{n},\mathbf{m})})/(1-W_{\mathrm{m}}^{\mathrm{f}(\mathbf{n},\mathbf{m})} \right] \\ - j(-1)^{n_{\mathrm{M-m+2}}} \end{bmatrix}_{n=0,\ldots,N-1}$$

autrement

(3.13)

où -TFD { . } désigne la transformée de Fourier discrète des N échantillons de la suite{ . } n

-(TFD (.)) en désigne le p-ème résultat.

La variance des erreurs numériques ne change pas, que la troncature (2.14) ou l'arrondi (2.12) soit utilisé. Donc :

$$\sum_{p=0}^{N-1} (E\left[|e(p)|^2\right])_T = \sum_{p=0}^{N-1} (E\left[|e(p)|^2\right]) + \sum_{p=0}^{N-1} |E\left[e(p)\right]|^2$$

où E [e (p)] est détaillé par (3.13).

Par la relation de Parseval (1.2) on obtient :

$$\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{T} = \sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{A}$$

+ α^2 . $2^{-2t/2}$. N $(\sum_{n=0}^{N-1} | \sum_{m=3}^{M} n_{M-m+1})$

$$\left[(1+W_{m}^{f(n,m)})/(1-W_{m}^{f(n,m)}) - j (-1)^{n}M-m+2 \right] \cdot 1/2^{m} \Big|^{2}$$

(3.14)

3.1.3.3 ARRONDI - DEPLACEMENT A CHAQUE ETAPE

la variance des erreurs dues aux déplacements est donnée par la proposition (3.3). Celle des erreurs d'arrondi est

$$\begin{pmatrix} 0 & p=0, N/4, N/2, 3N/ \\ \alpha \cdot 2^{-2t}/12 \cdot \sum_{m=s(p)}^{M} 2^{M-m} \cdot 2^{2m} & autrement \end{pmatrix}$$

où le facteur 2^{2m} est dû aux déplacements.

En effet l'arrondi s'effectue sur des nombres qui ont été précédemment divisés m fois par 2. Il faut donc multiplier les erreurs par 2^m pour qu'elles correspondent aux véritables résultats d'une transformée de Fourier appliquée au signal d'entrée. Les erreurs d'arrondi et de déplacement étant non corrélées par la quatrième hypothèse du modèle statistique, la variance de l'erreur commise sur y (p) est :

$$V [e(p)] = 2^{-2t}/12. N(N-1) + \begin{bmatrix} 0 & p = 0, N/4, N/2, 3N/2, 3N/2 \\ \alpha \cdot 2^{-2t}/12. N[2N - 2^{s(p)}] \end{bmatrix}$$

(3.15)

où $s(p) = 2 + min (i: p_i = 1)$

La moyenne des erreurs dues aux déplacements reste à déterminer. Comme le déplacement du tableau x_m a lieu avant de calculer x_{m+1} , chaque élément de x_m , m = 0, ... M-1 est affecté d'une erreur de moyenne -(1+j) 2^{-b-1+m} . Par la proposition (3.4), l'erreur équivalente sur les termes x_0 (1_2^m) , l = 0,... $2^{M-m}-1$ possède une moyenne égale à $-(1+j) 2^{-b-1+m}$.

Il faut effectuer la somme des contributions provenant des étapes m = 0, ..., M-1. Désignant l'erreur équivalente reportée sur l'élément $x_0 (l_2^m)$ par $\mu_e [x_0(l2^m)]$ on obtient :

$$\mu_{e} [x_{0}(12^{m})] = - (1+j) 2^{-b-1+m}$$

où $0 \le 1 \le 2^{M-m} - 1$ et $0 \le m \le M-1$ Par conséquent :

$$\mu_{e}[x_{0}(i)] = \sum_{(m:12^{m}=i)} [-(1+j)] 2^{-b-1+m} (3.16)$$

Si i est nul, la somme débute, à m = 0 et se termine à m = M-1. Donc

$$\mu_{e} [x_{0}(0)] = -(1+j) 2^{-b-1} (N-1)$$

Si i n'est pas nul, on peut le décomposer en :

$$i = \sum_{k=1}^{M} i_k 2^{k-1} = 2^{k-1} \sum_{k=K}^{M} i_k 2^{k-K}$$

où K = min (k : i_k = 1, 1 ≤ k ≤ M) L'ensemble des indices de sommation de (3.16) est

$$m : 12^m = i; 0 < 1 < 2^{M-m} - 1$$

qui est identique à

(m: 0 ≤ m ≤ K − 1)

Donc, dans le cas où i n'est pas nul, (3.16) devient

$$\mu_{e} [x_{0}(i)] = \sum_{m=0}^{K-1} - (1+j) 2^{-t-1+m}$$
$$= -2^{-t-1} (1+j) (2^{K}-1)$$

Comme x_0 (i) = x(n) avec

$$n = \sum_{k=1}^{M} n_k 2^{k-1} = \sum_{k=1}^{M} i_{M-k+1} 2^{k-1}$$

On obtient $K = \min\{k : i_k = 1\} = M + 1 - \max\{k : n_k - 1\}$ La relation (3.16) s'écrit finalement :

$$\mu_{e} [x(n)] = -2^{-t-1} (1+j) (2^{g(n)} - 1)$$
[M

où $g(n) = \begin{bmatrix} n \\ M \end{bmatrix}$

$$1 + 1 - \max(k : n_k = 1)$$
 autrement

On en conclut que :

 $E[e(p)] = 2^{-t}/2 \cdot (1+j) (TFD (2^{g(n)}-1) n=0,...,N-1)p$

On établit par (3.15) :

$$(E [|e(p)|^{2}])_{AD} = |E [e(p)]|^{2} + 2^{-2t}/2 \cdot N(N-1)$$

$$+ \begin{pmatrix} 0 & p = 0, N/4, N/2, 3N/4 \\ \alpha \cdot 2^{-2t}/12 \cdot N & [2N-2^{s}(p)] \text{ autrement} \end{pmatrix}$$

Par la relation de Parseval (1.2) appliquée à (3.17) on obtient :

$$\sum_{p=0}^{N-1} |E[e(p)]|^2 = 2^{-2t}/2 N \cdot \sum_{n=0}^{N-1} |2^{g(n)} - 1|^2$$

Puisque max $(m : n_m = 1) = k$ équivaut à $2^{k-1} \le n \le 2^k - 1$ et que $1 \le n \le N-1$ équivaut à $1 \le k \le M$ on a

$$\sum_{n=0}^{N-1} |2^{g(n)} - 1|^{2} = \sum_{k=1}^{M} (2^{k} - 2^{k-1}) (2^{M+1-k} - 1)^{2} + (2^{M} - 1)^{2}$$

$$= (N-1) 3N - 2MN$$

Par conséquent :

$$\sum_{p=0}^{N-1} | E[e(p)] |^2 = 2^{-2t}/2 \cdot N [3(N-1)N - 2MN]$$
P=0

(3.18)

D'autre part, il est évident que

$$\sum_{P=0}^{N-1} (2^{-2t}/2) N(N-1) = N^2 (N-1) 2^{-2t}/2$$
(3.19)

Par un raisonnement semblable à celui qui a servi à développer l'expression (3.9) on obtient :

$$\sum_{p=0}^{N-1} 2^{s(p)} = 4N (M-2)$$

avec $p \neq 0, N/4, N/2, 3N/4$ Pour $p \neq 0, N/4, N/2, 3N/4$ on trouve

$$\sum_{p=0}^{N-1} \alpha \cdot (2^{-2t}/12) N | 2N - 2^{s(p)}|$$

$$= \alpha \left(\frac{2^{-2t}}{12} \right) N^2 \left(2N - 4M \right)$$
(3.20)

Par (3.18), (3.19) et (3.20)

$$\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{AD} = 2^{-2t} [(2+\alpha/6)N^{3} - 2 + M + (\alpha/3)M N^{2}]$$

(3.21)
3.1.3.4 TRONCATURE - DEPLACEMENT A CHAQUE ETAPE

Les résultats sont dérivés des paragraphes 3132 et 3133. Pour tenir compte des effets des déplacements il faut multiplier la relation (3.12) par 2^m. En y ajoutant la moyenne de l'erreur due aux déplacements indiquée en (3.17), on obtient :

$$E [e(p)] = -2^{-t}/2 (1+j). (TFD\{ 2^{g(n)}-1 + \alpha \sum_{m=3}^{M} n_{M-m+1} \\ \cdot \left[1+W_{m}^{f(n,m)} \right)/(1-W_{m}^{f(n,m)}) \\ -j(-1)^{n_{M-m+2}} \right]_{n=0,...,N-1}p$$
(3.22)

La variance des erreurs pour la troncature est donnée par (3.15). Par conséquent :

$$(E[|e(p)|^{2}])_{TD} = |E[e(p)]|^{2} + 2^{-2t} N.(N-1)$$

$$+ \begin{bmatrix} 0 & p = 0, N/4, N/2, 3N/4 \\ \alpha & (2^{-2t}/12)N(2N-2^{s}(p)) \\ a & autrement \end{bmatrix}$$

où E [e (p)] est détaillé par (3.22) En utilisant (3.19), (3.20) et la relation de Parseval on trouve

$$\begin{split} \sum_{p=0}^{N-1} & (E[|e(p)|^{2}])_{TD} = 2^{-2t} \cdot [N^{3}(\alpha/6 + 1/2) - N^{2}(M\alpha/3 + 1/2) \\ & +(2^{-2t}/2)N \sum |2^{g(n)} - 1 + \alpha \sum_{m=3}^{M} n_{M-m+1} \\ & \cdot \left[(1 + W_{m}^{f(n,m)})/(1 - W_{m}^{f(n,m)}) - j (-1)^{n_{M-m+2}} \right] |^{2} \end{split}$$

(3.23)

3.1.3.5 REMARQUES

Comme on pouvait s'y attendre, les relations (3.6), (3. (3.21),(3.14), (3.23) montrent que le total du carré des erreurs est supérieur dans l'hypothèse d'un déplacement à chaque étape. Toutefois, cette méthode est plus avantageuse car elle garde le signal plus élevé pendant les opérations et diminue de cette façon le rapport :

$$\sum_{p=0}^{N-1} E\left[\left|e(p)\right|^{2}\right] / \sum_{p=0}^{N-1} |y(p)|^{2}$$

appelé rapport du bruit au signal. En effet, sans déplacement, la condition imposée est |x(n)| < 1/N n = 0, 1, ..., N-1. Le rapport minimal du bruit au signal est alors de l'ordre de N^2 . Dans l'hypothèse d'un déplacement à chaque étape la condition imposée est|x(n)| < 1 et le rapport minimal du bruit au signal est de l'ordre de N.

Dans les analyses précédentes de l'algorithme de Coolev et Tukey, il n'est pas tenu compte de toutes les multiplications effectuées sans erreur. Weinstein [18] et Welch [20] se sont limités au cas de l'arrondi. Les estimations du total des carrés des erreurs qu'ils ont établies sont évidemment supérieures au résultat établi en (3.6) : en supposant que toutes les multiplications produisent des erreurs, Weinstein obtient $\alpha . 2^{-2t} N^2/12$.

D'autre part, en remarquant que les trois premières étapes sont effectuées sans erreur, Welch aboutit à $\alpha \cdot 2^{-2t} = N^2/64$ en ne retenant que les termes de l'ordre de N².

3. 2 RESULTATS DE L'ANALYSE DE L'ALGORITHME DE SANDE ET TUKEY

3.2.1 MODELE STATISTIQUE

Le calcul élémentaire de l'algorithme de Sande et Tukey est un "papillon" de la forme (1.14). Malgré les différences avec l'algorithme de Cooley et Tukey, les hypothèses 1) à 4) des pages

53 et 60 seront adoptées. En conservant les notations du paragraphe 3.1.1, les schémas modifiés des "papillons" sont représentés à la figure 10a s'il n'y a aucun déplacement et à la figure 10b dans l'hypothèse d'un déplacement à chaque étape.

Fig. 10a

Fig. 10b

3.2.2 PROPRIETES DE L'ALGORITHME DE SANDE ET TUKEY

Les relations (1.13) qui définissent l'algorithme peuvent être mises sous la forme suivante :

$$x_{m} (p_{1}, \dots, p_{m}, n_{M-m}, \dots, n_{1})$$

$$= \left(\sum_{n_{M-m+1}=0}^{1} x_{m-1} (p_{1}, \dots, p_{m-1}, n_{M-m+1}, \dots, n_{1}) \right)$$

$$.exp (-j2\pi n_{M-m+1} P_{m}/2)$$

$$.exp \left[-j2\pi p_{m} 2^{m-1} (n_{M-m}, 2^{M-m-1} + \dots + n_{1})/N \right]$$

$$x_0(n_M, ..., n_1) = x(n)$$
 (3.24)

où n et p sont définis comme pour (3.5) Les relations (1.25) définissent le s-ème élément du l-ème bloc de l'étape m. Il suffit de poser r = 2.

Les propositions 3.1, 3.2 et 3.3 demeurent valables. Seule la proposition 3.4 est modifiée et devient la proposition suivante.

Proposition 3.5

Il existe une relation de transformée de Fourier discrète entre les éléments d'un bloc à l'étape m et les éléments correspondants du tableau final.

Cette proposition est un cas particulier de la proposition 1.2. Les éléments du bloc $(x_m (12^{M-m} + s))$ correspondent aux éléments $(x_M (12^{M-m} + s))$ où $0 \le s \le 2^{M-m} - 1$. Corollaire

Toutes les erreurs qui affectent les éléments d'un bloc de l'étape m se propagent à tous les résultats qui leur correspondent. La démonstration découle des propositions 3.2 et 3.5.

3.2.3 ETUDE DES ERREURS NUMERIOUES

Dans l'algorithme de Sande et Tukev, le passage de l'étape m-1 à l'étape m décompose un bloc de longueur 2^{M-m+1} en deux blocs de longueur 2^{M-m} . Le calcul est donné par :

$$x_{m}(r) = x_{m-1}(r) + x_{m-1}(s)$$

$$x_{m}$$
 (s) = $(x_{m-1} (r) - x_{m-1} (s))$ U

avec, par (3.24),

$$r = \sum_{i=1}^{m} p_{i} 2^{M-i} + \sum_{i=1}^{M-m} n_{i} 2^{i-1} \text{ avec } p_{m} = 0$$

$$s = r + 2^{M-m}$$

$$U = \exp \left[-j2\pi 2^{m-1} \sum_{i=1}^{M-m} n_{i} 2^{i-1} / N \right] \qquad (3.25)$$

où m varie de 1 à M.

On remarque que la première relation d'un "papillon" est calculée sans erreur numérique. Elle est caractérisée par $p_m = 0$.

3.2.3.1 ARRONDI-SANS DEPLACEMENT

On déduit de (2.11) que la moyenne des erreurs sur les résultats est nulle.

A l'étape m, 2^m blocs sont calculés, dont la moitié avec des erreurs d'arrondi. Pour chacun d'eux, on déduit de l'expression (3.25) des coefficients U que deux éléments sont obtenus sans erreur. Le nombre de multiplications qui produisent des erreurs à l'étape m est donc égal à N/2 - 2. 2^{m-1} . Par conséquent :

 $\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{A} = \alpha \cdot 2^{-2t} / 12 \cdot \sum_{m=1}^{M-2} (N/2 - 2 \cdot 2^{m-1}) 2^{M-m}$

car les étapes M-1 et M ne produisent pas d'erreur. On trouve finalement

$$\sum_{p=0}^{N-1} (E[|e(p)|^2])_{A} = \alpha \cdot 2^{-2t}/12 \cdot N(N/2-M)$$
(3.26)

En examinant la relation (3.24) on constate que chaque bloc caractérisé par $p_m = 0$, est calculé sans erreur. En tenant compte des deux multiplications sans erreur de chaque bloc on a par le corollaire :

$$(E[|e(p)|^{2}])_{A} = \alpha \cdot 2^{-2t}/12 \sum_{n=1}^{M-2} p_{m} (2^{M-m}-2)$$
 (3.27)

La relation (3.26) peut être retrouvée facilement à partir de(3.27). Il suffit de constater que pour m fixé on a :

$$\sum_{p=0}^{N-1} P_m = N/2$$
 (3.28)

Par conséquent :

$$\frac{M-2}{\sum_{m=1}^{N-1} p=0} P_{m} = (M-2) N/2 \text{ et } \sum_{m=1}^{M-2} \sum_{p=0}^{N-1} P_{m} 2^{-m} = N/2 - 2$$

La relation (3.26) en découle immédiatement.

3.2.3.2. TRONCATURE - SANS DEPLACEMENT

Pour évaluer la moyenne de l'erreur de troncature, on remarque que les blocs caractérisés par $p_m = 1$ sont calculés avec une erreur de moyenne égale à - $\alpha/2$ (1+j) 2^{-b-1} . Les éléments zéro et 2^{M-m-1} de chacun de ces blocs sont obtenus sans erreur.

Par la proposition 3.5, les erreurs commises sur un bloc peuvent être reportées en erreurs équivalentes sur le tableau final. Il suffit de prendre la transformée de Fourier des 2^{M-m} échantillons suivants : E_{i} i = 0, P/2

autrement

où $A = -\alpha/2$. $(1 + j) 2^{-t-1}$ et $P = 2^{M-m}$ Les erreurs équivalentes pour ce bloc sont :

$$e_{k^{\dagger}} = \sum_{i=0}^{p-1} E_{i} W^{ik^{\dagger}}$$

où W = exp $(-j2\pi/P)$ et $0 \le k^{\dagger} \le P-1$

Si k[†] est nul il est évident que $e_0 = (P-2)A$

Si k[†] n'est pas nul on obtient :

$$e_{k^{\dagger}} = A \sum_{i=0}^{P-1} W^{ik^{\dagger}} - A (W^{0} + W^{k^{\dagger}P/2})$$
$$= -A (1 + (-1)^{k^{\dagger}})$$

L'erreur équivalente e est située à la k-ème place du tableau final, k[†] étant le nombre binaire inversé de k. L'erreur équivalente sur $x_{M} (12^{M-m} + k)$ est donc

$$-\alpha /2.(1+j) 2^{-t-1} (2^{M-m} - 2) \qquad si k^{\dagger} = 0$$

$$\alpha /2.(1+j) 2^{-t-1} (1 + (-1)^{k^{\dagger}}) \qquad si k^{\dagger} \neq 0$$

Comme $x_m (12^{M-m} + k) = y (p_1, \dots, p_M)$, les indices k et k[†] sont représentés respectivement par :

$$\sum_{i=1}^{M-m} P_{M-i+1} 2^{i-1} \quad \text{et} \quad \sum_{i=1}^{M-m} P_{m+i} 2^{i-1}$$

On remarque que $(-1)^{k^{\dagger}} = (-1)^{p_{m+1}}$. D'autre part, en désignant $x_{m} (12^{M-m} + k)$ par $x_{m} (q)$, $k^{\dagger} = 0 = k$ équivaut à min $\{i : q_{i} = 1\}$ = M - m + 1. Comme q est le nombre binaire inversé de p, $k^{\dagger} = 0$ équivant à max $\{i : p_{i} = 1\} = m$.

L'erreur commise sur y (p) est la somme des contributions provenant des étapes m = 1, ..., M-2. Sa moyenne est égale à :

$$(E[e(p)])_{T} = \begin{cases} 0 & \text{si } p = 0 \\ -\alpha/2.2^{-t}/2(1+j)\sum_{m=1}^{M-2} P_{m} \\ N2^{-m} \delta(m,t(p)) - 1 - (-1)^{P_{M+1}} \end{vmatrix} \quad \text{autremen}$$

(3.29)

où &(.,.)est le symbole de Kronecker et t(p) est donné par

$$t(p) = \begin{cases} 0 & \text{sip} = 0 \\ \\ max \{ i : p_i = 1 \} & \text{autrement} \end{cases}$$

On en tire immédiatement :

 $(E[|e(p)|^{2}])_{T} = (E[|e(p)|^{2}])_{A} + |(E[e(p)])_{T}|^{2}$

Il suffit de faire la somme de ces relations pour p = 0,..., N-1 et on obtient le total du carré des erreurs.

3.2.3.3 ARRONDI - DEPLACEMENT A CHAQUE ETAPE

Puisque le tableau x_m subit un déplacement avant que le tableau x_{m+1} soit calculé, chaque élément x_m (i), i = 0,...,N-1 reçoit une erreur de moyenne égale à $-(1+j)2^{-b-1+m}$. En appliquant la proposition 3.5, chaque élément A_M (12^{M-m}) , l = 0,..., 2^m -1 reçoit une erreur équivalente égale à $-(1+j) 2^{-t-1+m}$. 2^{M-m} . En désignant par μ_e $[x_M$ (r)] le total des erreurs équivalentes qui atteignent l'élément x_M (r), on obtient :

 $\mu_{e} [x_{M}(r)] = \sum_{\{m:12^{M-m} = r\}} -(1+j) 2^{-t-1} \cdot 2^{M}$

Pour que r soit égal à 12^{M-m} , il faut qu'il soit divisible par 2^m . Si min{ i : $r_i = 1$ } = K, r est au plus divisible par 2^{K-1} et x_m (r) recevra K-1 contributions d'erreurs équivalentes. Comme r est le nombre binaire inversé de p on trouve :

$$K = \min (i : r_i = 1) = M - \max \{i : p_i = 1\} + 1$$

Par conséquent

$$E[e(p)]_{AD} = -(1+j) 2^{-t}/2 . N (M-t(p))$$
(3.30)

où t(p) a été défini pour établir la relation (3.29) De (3.27), et de la proposition 3.3, on déduit :

$$(E[|e(p)|^{2}])_{AD} = |E[e(p)]|^{2} + 2^{-2t}/2 \cdot N(N-1) + \alpha 2^{-2t}/2 \sum_{m=1}^{M-2} p_{m} \cdot (2^{M-m}-2) \cdot 2^{2m}$$
(3.31)

où.le facteur 2^{2m} est dû aux déplacements.

. E [e(p)] est donné par la relation (3.30)

Il reste à effectuer la somme des relations (3.31) pour les indices p = 0, ..., N-1.

D'abord, pour évaluer la somme des erreurs $| E [e(p)] |^2$ il est nécessaire de connaître

$$\sum_{p=0}^{N-1} t(p) = \sum_{l=1}^{M} \sum_{p \in S} l$$

où pes est équivalent à max $(i : p_i = 1) = 1$

Donc $\sum_{p=0}^{N-1} t(p) = \sum_{l=1}^{M} 2^{l-1} \cdot l$

$$= NM - N+1$$

ainsi que

 $\sum_{p=0}^{N-1} (t(p))^{2} = \sum_{l=1}^{M} 2^{l-1} \cdot 1^{2}$ $= NM^{2} - 2MN + 3N - 3$

Par conséquent :

$$\sum_{p=0}^{N-1} |E[e(p)]|^2 = 2^{-2t}/2 \cdot N^2 (3N-2M-3)$$
(3.32)

D'autre part, en utilisant(3.28) on obtient

 $\sum_{p=0}^{N-1} \sum_{m=1}^{M-2} p_m (2^{M-m} - 2) 2^{2m} = N^3/6 - N^2 - 4N/3 (3.33)$

Par (3.19), (3.32) et (3.33) on a que :

 $\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{AD} = 2^{-2t} [N^{3} (2 + \alpha/72) - N^{2}(2+M+\alpha/12) + N.\alpha/9]$

(3.34)

3.2.3.4 TRONCATURE - DEPLACEMENT A CHAQUE ETAPE

Les résultats s'obtiennent à partir des paragraphes 3.2.3.2.et 3.2.3.3. La moyenne de l'erreur est la somme de l'erreur de déplacement (3.30) et de l'erreur de troncature, donnée par la relation (3.29) multipliée par un facteur 2^m. Donc on a que :

$$E[e(p)] = -2^{-t}/2 ((1+j) N (M-t(p))) + \alpha/2 \sum_{m=1}^{M-2} p_m [N \delta(m,t(p)) - (1+(-1)^{P_m+1})2^m])$$

La variance de l'erreur s'obtient par la somme de (3.27) et de la variance de l'erreur de déplacement. Par conséquent :

$$(E[|e(p)|^{2}])_{TD} = |E[e(p)]|^{2} + 2^{-2t}/2 \cdot N (N-1)$$
$$+\alpha \cdot 2^{-2t}/12 \cdot \sum_{m=1}^{M-2} p_{m} (2^{M-m} - 2) 2^{2m}$$

A l'aide de (3.19) et (3.33) on déduit :

$$\sum_{p=0}^{N-1} (E[|e(p)|^{2}])_{TD} = \sum_{p=0}^{N-1} |E[e(p)]|^{2}$$

+ $2^{-2t}/2[N^{3}(1+\alpha/36)-N^{2}(1+\alpha/6)]$

+ $2\alpha/9N$] (3.35)

3.3 ALGORITHMES POUR DES BASES COMPOSITES

3.3.1 ALGORITHME DE COOLEY ET TUKEY

Dans l'hypothèse où N = c^{M_1} . d^{M-M_1} , l'algorithme de Cooley et Tykey s'établit en combinant les démarches développées dans les paragraphes 1.3 et 1.4. On pose

$$p = \begin{pmatrix} M - M_{1} \\ \sum P_{M_{1}} + i \\ i = 1 \end{pmatrix} c^{M_{1}} + \sum_{i=1}^{M_{1}} P_{i} c^{i-1}$$
(3.40)

$$n = \begin{pmatrix} M_{1} & n_{M-M_{1}} + i \cdot c^{i-1} \\ i=1 & & \\$$

$$\begin{array}{l} \begin{array}{c} \begin{array}{c} n_{M}, \dots, n_{M-M_{1}} + 1, \\ \end{array} = 0, 1, \dots, c-1 \\ \end{array} \\ \begin{array}{c} n_{M-M_{1}}, \dots, n_{1} \\ \end{array} = 0, 1, \dots, d-1 \\ \end{array} \\ \begin{array}{c} P_{M}, \dots, P_{M_{1}} + 1 \\ \end{array} = 0, 1, \dots, d-1 \\ \end{array} \\ \begin{array}{c} P_{M_{1}}, \dots, P_{1} \\ \end{array} = 0, 1, \dots, c-1 \end{array}$$

On obtient l'algorithme suivant :

0

$$x_{m} (lc^{m} + p_{m} c^{m-1} + q)$$

$$= \sum_{i=0}^{c-1} x_{m-1} (lc^{m} + ic^{m-1} + q)$$

$$\cdot exp [- j2 \pi i(p_{m}c^{m-1} + q)/c^{m}]$$

$$m=1, \dots, M_{1}$$

où l=0,..., (N/c^m) - 1, $P_m = 0, ..., c-1$ et q=0,... c^{m-1} - 1

$$x_{m} (le^{M_{1}} d^{M-M_{1}} + p_{m} e^{M_{1}} d^{M-1-M_{1}} + a)$$

$$= \sum_{i=0}^{d-1} x_{m-1} (le^{M_{1}} d^{m-M_{1}} + ie^{M_{1}} d^{m-1-M_{1}} + a)$$

$$\cdot exp [-j2\pi i (p_{m} e^{M_{1}} d^{m-1-M_{1}} + a)/(e^{M_{1}} d^{M-M_{1}})]$$

$$m = M_{1} + 1, \dots, M \qquad (3.43)$$

où l = 0,..., $d^{M-m} - 1$, $p_m = 0,..., d-1$ et $a=0,..., c^{M_1} d^{m-1-M_1} - 1$

Le calcul de chaque élément $x_m(.)$ nécessite (c-1) ou (d-1) multiplications complexes. Comme c et d sont arbitraires, on suppose que toutes les multiplications produisent des erreurs. Toutefois, dans le cas où p_m et q sont nuls aucune multiplication n'est requise. Pour la relation (3.42), N/c^m éléments sont calculés sans erreur; pour la relation (3.43) il y en a d^{M-m}. En utilisant l'argument qui a servi à établir (3.6) on a dans le cas de l'arrondi :

$$\sum_{p=0}^{N-1} E\left[\left|e(p)\right|^{2}\right] = \alpha \cdot 2^{-2t}/12 \left[\left[\sum_{m=1}^{M_{1}} e^{M_{1}-M} (N-N/e^{m})\right] d^{M-M_{1}}\right]$$
$$\cdot (e^{-1}) + \left[\sum_{m=M_{1}+1}^{M} d^{M-m} (N-d^{M-m})\right] (d-1)$$

(3.44)

où les facteurs (c-1) et (d-1) tiennent compte du nombre de multiplications, les facteurs c^{M_1-m}, d^{M-m} sont des facteurs de propagation et d^{M-M_1} est un facteur de propagation des erreurs de (3.42) à travers (3.43). En effectuant les différentes sommes de (3.44), on trouve

$$\sum_{p=0}^{N-1} E\left[|e(p)|^{2} \right] = \alpha \cdot 2^{-2t}/12 \left[N(N-1) - (N^{2}/c^{2M}1) + (c^{2M}1) - (c^{2M}1) - (c^{2M}1) + (c^{2M}1)$$

Par le raisonnement qui a conduit à la relation (3.7) on obtient

$$E\left[\left|e(\dot{p})\right|^{2}\right] = \alpha \cdot 2^{-2t}/12 \left[\begin{array}{c} (c-1) & \sum_{m=q(p)}^{M_{1}} & N/c^{n} \\ & & \\ +(d-1) & \sum_{m=r(p)}^{M} d^{M}/d^{m} \end{array}\right]$$

$$ou -q(p) = \begin{cases} M + 1 \\ min (i : p_i \neq 0) \end{cases}$$

$$si p = 0$$

autrement

Les termes des deux sommes sont les facteurs de propagation des erreurs.

3.3.2 ALGORITHME DE SANDE ET TUKEY

Les indices p et n étant décomposés suivant (3.40) et (3.41), l'algorithme de Sande et Tukey est défini par :

$$x_{m} (1.N/c^{m-1} + p_{m}. N/c^{m} + q)$$

$$= \begin{bmatrix} c^{-1} \\ \sum \\ i=0 \end{bmatrix} x_{m-1} (1. N/c^{m-1} + i. N/c^{m} + q)$$

$$. \exp(-j2\pi i p_{m}/c) \end{bmatrix} . \exp(-j2\pi p_{m}qc^{m-1}/N)$$

$$m = 1, ..., M_{1}$$
(3.45)

où l = 0, ...,
$$c^{M-1}-1$$
, $p_m = 0, ..., c-1$ et $q = 0, ..., N/c^M - 1$
 $x_m (ld^{M-m+1} + p_m d^{M-m} + q)$
 $= \begin{bmatrix} \frac{d-1}{\sum} x_{m-1} (ld^{M-m+1} + id^{M-m} + q) \\ i=0 \end{bmatrix}$
 $exp (-j2\pi i p_m/d) = exp (-j2\pi p_m q/d^{M-m+1})$

 $m = M_1 + 1, ..., M$ où l = 0,..., (N/d^{M-m+1})-1, $p_m = 0,..., d-1$ et $q = 0,..., d^{M-m} - 1$

$$\sum_{p=0}^{N-1} E\left[|e(p)|^{2}\right] = \alpha 2^{-2t}/12 \sum_{m=1}^{M1} e^{M_{1}-m} d^{M-M_{1}}$$

$$\cdot \left[\frac{c-1}{c} (N-c^{m}) + (c-1) N \frac{c-1}{c}\right]$$

$$+ \sum_{m=M_{1}+1}^{M} d^{M-m}.$$

$$\cdot \left[\frac{d-1}{d} (N-d^{-M_{1}}, d^{m}) + (d-1) N \frac{d-1}{d}\right]$$

$$(3.47)$$

où le premier terme de chaque somme est dû à la seconde exponentielle des expressions (3.45) et (3.46) et où le second terme est dû à la première exponentielle.

La relation (3.47) peut être mise sous la forme :

$$\sum_{p=0}^{N-1} E\left[| e(p) |^{2} \right] = \alpha (2^{-2t}/12) \cdot N\left[(N-1) - M_{1}(c-1)/c - (M-M_{1}) (d-1)/d \right]$$

Toujours en suivant la démarche du paragraphe 3.2.3.1, on trouve

$$E\left[\left|e(p)\right|^{2}\right] = \alpha 2^{-2t}/12 \left[\sum_{m=1}^{M1} u(p_{m})\right]$$
$$\cdot \left[\left(N/c^{m}-1\right) + N/c^{m} \cdot (c-1)\right]$$
$$+ \sum_{m=M_{1}+1}^{M} u(p_{m}) \left[\left(d^{M-m}-1\right) + d^{M-m}(d-1)\right]\right]$$

où u $(p_m) = \begin{cases} 0 & \text{si } p_m = 0 \\ 1 & \text{si non} \end{cases}$

Par conséquent :

$$E\left[\left|e(p)\right|^{2}\right] = \alpha \cdot 2^{-2\frac{1}{2}}/12\left[\prod_{m=1}^{M} u(p_{m}) (cN/c^{m} - 1)\right]$$
$$+ \prod_{m=M_{1}+1}^{M} u(p_{m}) (d^{M-m+1} - 1)\right]$$

ANALYSE DES ERREURS NUMERIQUES

DANS LES

ALGORITHMES DE LA TRANSFORMEE

DE FOURIER RAPIDE

EN

VIRGULE FLOTTANTE

4.1 GENERALITES

L'implémentation sur ordinateur des algorithmes de la Transformée de Fourier Rapide engendre inévitablement plusieurs types d'erreurs :

- des erreurs de représentation numérique des valeurs du tableau d'entrée,
- des erreurs d'estimation des facteurs W^P,
- des erreurs d'addition et de multiplication au cours de l'algorithme lui-même.

On s'intéressera dans ce chapitre uniquement à ces dernières erreurs. On supposera donc pour cette étude que les valeurs d'entrée et les facteurs W^D sont représentés exactement sur l'ordinateur. On suppose également vérifiées les hypothèses générales pour un modèle de l'erreur (voir au paragraphe 2.1).

Tran-Thong et Bede Liu [17] ont établi des expressions pour le rapport bruit à signal, défini par

où

E{.} est l'espérance mathématique,

y(k) sont les valeurs exactes de sortie de l'algorithme, y'(k) sont les valeurs calculées de sortie de l'algorithme. On suppose de plus que l'arithmétique choisie correspond au format de signe et de grandeur. Les résultats de ce chapitre sont exprimés en termes d'espérances et de variances des erreurs locales, à savoir δ_x , δ_+ , Δ_x^2 , Δ_+^2 (voir paragraphe 2.3.2).

Ces valeurs dépendent de la base et de l'arithmétique.

Si b=2
$$\delta_{\mathbf{x}} = \begin{bmatrix} 0 & \text{en cas d'arrondi} \\ -2^{-t} & \text{en cas de troncature} \end{bmatrix}$$

 $\delta_{+} = (1-p_{0})\delta_{\mathbf{x}}$
 $\Delta_{\mathbf{x}}^{2} = 2^{-2t}/3$
 $\Delta_{\mathbf{x}}^{2} = 2^{-2t}/3$ en cas d'arrondi
 $4(1-p_{0})2^{-2t}/3 = (1-p_{0})^{2}2^{-2t}$ en cas de troncature

Si b>2
$$\delta_{x} = \begin{bmatrix} 0 & \text{en cas d'arrondi} \\ -b^{-t}(b-1)/2\ln b & \text{en cas de troncature} \end{bmatrix}$$

 $\delta_{+} = (1-p_{0})\delta_{x}$
 $\Delta_{x}^{2} = \begin{bmatrix} b^{-2t}(b^{2}-1)/24\ln b & \text{en cas d'arrondi} \\ b^{-2t}(b^{2}-1)/6\ln b-b^{-2t}(b-1)^{2}/(2\ln b)^{2} \\ \text{en cas de troncature} \end{bmatrix}$

$$\Delta_{+}^{2} = \begin{cases} (1-D_{o})b^{-2t}(b^{2}-1)/24 \ln b & \text{en cas d'arrondi} \\ (1-D_{o})b^{-2t}(b^{2}-1)/6 \ln b - (1-P_{o})^{2}b^{-2t}(b-1)^{2}/(2\ln b)^{2} \\ & \text{en cas de troncature} \end{cases}$$
(4.3)

Remarque :

La valeur de p_o dépend de la base de l'arithmétique et des données du problème [8]. Dans ce cas-ci, Tran-Thong et Bede Liu [17] l'estiment à 0.7 pour la famille d'ordinateurs IBM 360/370.

A ce stade, il est intéressant de développer un modèle d'erreurs pour la multiplication et l'addition de nombres complexes.

Soient A , B , C des nombres complexes.

Dans la mesure où seules les espérances mathématiques et les variances sont envisagées, on peut montrer qu'en négligeant les termes de second ordre, on obtient :

 $fl(A + B) = (A + B)(1 + \alpha)$ fl(AC) = (AC)(1 + B)(4.4)

avec
$$E(\alpha) = \delta$$

 $var(\alpha) = \Delta_{+}^{2}$ $E(\beta) = \delta_{x} + \delta_{+}$ $var(\beta) = \Delta_{x}^{2} + \Delta_{+}^{2}$

(4.5)

où les erreurs relatives α et β sont des nombres complexes et les nombres réels δ_x , δ_+ , Δ_x^2 , Δ_+^2 sont donnés par (4.2) ou (4.3).

4 . 2 ALGORITHME DE COOLEY ET TUKEY

En utilisant la notion de bloc définie au paragraphe 1.3.A, on établit des expressions et des bornes pour le rapport bruit à signal, défini par (4.1), dans le cas de l'algorithme de Cooley et Tukey quand $N = 2^{M}$ (voir paragraphe 1.2.A).

On suppose, tout d'abord, introduire une erreur en calculant $x_m(D)$ et que, de plus, la valeur réellement calculée est de la forme

 $x'_{m}(D) = x_{m}(D) + a(D), \gamma$.

Cette erreur affecte le résultat final selon les trois propositions suivantes :

Proposition 4.1

Une erreur introduite à l'étape m se propage à 2^{M-m} éléments du résultat. La variance de l'erreur du résultat est égale, en chacun des 2^{M-m} éléments affectés, à la variance de l'erreur à l'étape m.

Démonstration :

La première partie de cette proposition est évidente (voir figure 2 au paragraphe 1.2)

En négligeant les effets de second ordre et en notant que l'erreur n'est multipliée que par des facteurs de module unité, la variance de l'erreur en chacun des 2^{M-m} éléments vaut :

$var \{ |v'(k) - v(k)| \} = |\{ \prod_{i=m+1}^{M} W_i \} a(p)|^2 . var(\gamma) \\ = |a(p)|^2 . var(\gamma) \\ = var \{ |x'_m(p) - x_m(p)| \},$

où les W_i sont des puissances entières de $W = \exp(-j2\pi/N)$.

Proposition 4.2

Si à l'étape m, tous les éléments du l^{ième} bloc ont une erreur relative γ_{α} :

$$x'_{m}(12^{m}+a) = x_{m}(12^{m}+a) \cdot (1+\gamma_{q})$$

où $q = 0, 1, \dots, 2^m - 1,$

et que la variance de q_q est indépendante de q, c'est-à-dire

 $var(\gamma_0) = d^2$,

alors la contribution de toutes les erreurs dans le l^{ième} bloc à l'étape m à la variance normalisée de l'erreur à la sortie vaut :

$$\frac{\sum_{k=0}^{N-1} \operatorname{var}\{|\mathbf{y}'(k)-\mathbf{y}(k)|\}}{\sum_{k=0}^{N-1} |\mathbf{y}(k)|^2} = \frac{d^2}{\sum_{n=0}^{N-1} |\mathbf{x}(n)|^2} \sum_{q=0}^{2^m-1} |\mathbf{x}_0(12^m+q)|^2$$

Démonstration :

Par la proposition 4.1, la contribution vaut :

$$\frac{d^2}{\sum_{\substack{k=0\\k=0}}^{N-1} |v(k)|^2} 2^{M-m} \sum_{\substack{q=0\\q=0}}^{2^m-1} |x_m(12^m+q)|^2.$$

Par la proposition 1.1 et la relation de Parseval (1.2), on obtient :

$$\frac{\sum_{k=0}^{N-1} \operatorname{var}\{|\mathbf{v}'(k) - \mathbf{v}(k)|\}}{\sum_{k=0}^{N-1} |\mathbf{v}(k)|^{2}} = \frac{d^{2}}{\sum_{n=0}^{N-1} |\mathbf{x}(n)|^{2}} 2^{M-m}$$

$$\times \left[2^{m} \sum_{q=0}^{2^{m}-1} |\mathbf{x}_{0}(12^{m}+q)|^{2} \right]$$

$$= \frac{d^{2}}{\sum_{n=0}^{N-1} |\mathbf{x}(n)|^{2}} \sum_{q=0}^{2^{m}-1} |\mathbf{x}_{0}(12^{m}+q)|^{2}.$$

Proposition 4.3

Si à l'étape m, les éléments du l^{ième} bloc sont tels que $x'_{m}(12^{m}+q) = x_{m}(12^{m}+q) + x_{m-1}(12^{m}+2^{m-1}+q) \cdot \gamma_{q}$ $x'_{m}(12^{m}+2^{m-1}+q) = x_{m}(12^{m}+2^{m-1}+q) + x_{m-1}(12^{m}+2^{m-1}+q) \cdot \gamma_{q}$ où q = 0,1,..., $2^{m-1}-1$, et que la variance de γ_{q} est indépendante de q , c'est-à-dire $var(\gamma_{q}) = d^{2}$,

alors la contribution de toutes les erreurs dans le l^{ième} bloc

à l'étape m à la variance normalisée de l'erreur à la sortie vaut :

$$\frac{\sum_{\substack{k=0 \\ k=0}}^{N-1} \operatorname{var}\{|v'(k)-v(k)|\}}{\sum_{\substack{k=0 \\ k=0}}^{N-1} |v(k)|^2} = \frac{n_{M-m+1} d^2}{\sum_{\substack{n=0 \\ n=0}}^{N-1} |x(n)|^2} \sum_{\substack{q=0 \\ q=0}}^{2^{m-1}-1} |x_0(1'2^{m-1}+q)|^2$$

où
$$1' = \sum_{i=1}^{M-m+1} n_i 2^{M-i-m+1}$$

Démonstration :

On a : $var{|x_m'(12^m+q)-x_m(12^m+q)|}$

$$= |x_{m-1}(12^{m}+2^{m-1}+a)|^{2} d^{2}$$

$$= n_{M-m+1} \cdot |x_{m-1}(1'2^{m-1}+a)|^{2} d^{2}$$
et
$$var\{|x_{m}'(12^{m}+2^{m-1}+a)-x_{m}(12^{m}+2^{m-1}+a)|\}$$

$$= |x_{m-1}(12^{m}+2^{m-1}+a)|^{2} d^{2}$$

$$= n_{M-m+1} \cdot |x_{m-1}(1'2^{m-1}+a)|^{2} d^{2}.$$

Donc,

$$\frac{N-1}{\sum_{k=0}^{N-1} |v(k)|^2} = \frac{n_{M-m+1}}{\sum_{k=0}^{N-1} |v(k)|^2} 2^{M-m} \cdot 2 \cdot \sum_{q=0}^{2^{m-1}-1} |x_{m-1}(1'2^{m-1}+q)|^2$$

$$= \frac{n_{M-m+1}}{\sum_{n=0}^{N-1} |x(n)|^2} \frac{2^{m-1}-1}{\sum_{q=0}^{N-1} |x_0(1'2^{m-1}+q)|^2}$$

ANALYSE DES OPERATIONS ARITHMETIQUES DANS L'ALGORITHME

Le calcul du l^{ième} bloc à l'étape m par les "papillons" définis en (1.12) sont :

$$x_{m}(12^{m}+a') = x_{m-1}(12^{m}+a') + x_{m-1}(12^{m}+2^{m-1}+a').exp(-j2\pi a'/2^{m})$$

$$x_{m}(12^{m}+2^{m-1}+a') = x_{m-1}(12^{m}+a') - x_{m-1}(12^{m}+2^{m-1}+a')$$

$$x exp(-j2\pi a'/2^{m})$$

$$x exp(-j2\pi a'/2^{m})$$

$$x exp(-j2\pi a'/2^{m})$$

$$(4.6)$$

Les expressions (4.6) sont illustrées à la figure 11. Dès que l'on introduit les erreurs selon (4.4), il faut considérer la figure 12. Ici, ß correspond à une erreur complexe de multiplication et α_1 , α_2 à des erreurs complexes d'addition.

Figure 11. "Papillon" de la Transformée de Fourier Rapide (DIT) où $k = 12^{m}+q'$ f = $k+2^{m-1}$

 $W = \exp(-j2\pi a'/2^m)$

Figure 12. "Papillon de la DIT avec modèle d'erreur.

Fn fait, si on inclut l'erreur aux expressions (4.6) et que l'on prend les notations de la figure 11, on obtient :

$$x'_{m}(k) - x_{m}(k) = x_{m}(k) \cdot \alpha_{1} + x_{m-1}(f) \cdot W \cdot (\beta + \beta \alpha_{1})$$

$$x'_{m}(f) - x_{m}(f) = x_{m}(k) \cdot \alpha_{2} - x_{m-1}(f) \cdot W \cdot (\beta + \beta \alpha_{2})$$

$$q' = \sum_{i=1}^{m-1} k_{i} 2^{i-1} , k_{i} = 0 \text{ ou } 1$$
(4.7)

Pour calculer l'erreur totale à la sortie de l'algorithme, on somme toutes les différentes contributions. D'autre part, on traite les contributions des erreurs d'addition et de multiplication séparément vu que leur interaction ne se marque qu'au second ordre qui est négligé ici.

CAS DE L'ARPONDI

La contribution des erreurs d'addition à l'étape m au rapport bruit à signal vaut, en accord avec la proposition 4.2 et les expressions (4.5) et (4.7) :

$$\frac{\Delta_{+}^{2}}{\sum_{n=0}^{N-1} |x(n)|^{2}} = \Delta_{+}^{2}.$$

La contribution des erreurs de multiplication à l'étape m au rapport bruit à signal vaut, en accord avec la proposition (4.3) et les expressions (4.5) et (4.7) :

$$\frac{\Delta_{+}^{2} + \Delta_{x}^{2}}{\sum_{n=0}^{N-1} |x(n)|^{2}} \sum_{n=0}^{N-1} n_{M-m+1} \cdot |x(n)|^{2} \quad \text{si } m \neq 1,2$$

En effet, pour m = 1 ou 2, les facteurs multiplicatifs valent tous ± 1 ou $\pm j$, ce qui ne cause aucune erreur.

Toutes ces contributions sont sommées sur m pour donner le rapport bruit à signal :

$$\left(\frac{B}{S}\right) = \frac{1}{\sum_{n=0}^{N-1} |x(n)|^2} \sum_{n=0}^{N-1} |x(n)|^2 \left[\sum_{m=1}^{M} \Delta_+^2 + \sum_{m=3}^{M} n_{M-m+1} \cdot \{\Delta_x^2 + \Delta_+^2\}\right],$$

ce qui peut encore s'écrire, en réarrangeant les termes :

$$\left(\frac{B}{S}\right)_{A} = M\Lambda_{+}^{2} + \frac{\Lambda_{\times}^{2} + \Lambda_{+}^{2}}{\sum_{n} |x(n)|^{2}} \sum_{n=1}^{N-1} f(n) \cdot |x(n)|^{2}$$
(4.8)

où l'indice A signifie arrondi, $\sum_{n} = \sum_{n=0}^{N-1} ,$ $f(n) = \sum_{i=1}^{M-2} n_{i} .$

(4.9)

CAS DE LA TRONCATURE

La somme des variances normalisées est bien sûr donnée par (4.8), mais pour obtenir le rapport bruit à signal à la sortie de l'algorithme de la Transformée de Fourier Rapide, il faut encore y ajouter la somme normalisée des carrés des espérances de l'erreur :

$$\frac{\sum_{k=0}^{N-1} \{E \{ |y'(k) - y(k)| \} \}^2}{\sum_{k=0}^{N-1} |y(k)|^2}$$

Pour déterminer quelles entrées produiraient les mêmes valeurs à la sortie si toutes les opérations arithmétiques se faisaient sans erreur, on remplace β , α_1 et α_2 par leurs espérances dans la figure 12. Pour obtenir le même résultat à la sortie, il faut donc multiplier le n^{ième} élément, x(n), du tableau d'entrée par {1 + (δ_x + δ_+). n_{M-m+1} + δ_+ } pour m=3,.. ..,M, et par {1 + δ_+ } pour m=1,2, puisque les facteurs multiplicatifs sont tous ±1 ou ±j.

Négligeant les effets de second ordre, l'espérance de l'erreur sur l'élément de sortie y(k) peut être causé par l'entrée $\{x'(n)\}_{n=0}^{N-1}$ définie par :

 $x'(n) = x(n) \cdot \{1 + f(n) \cdot (\delta_x + \delta_+) + M \cdot \delta_+\}$

où f(n) est donné par (4.9). L'erreur ainsi engendrée vaut :

$$x'(n) - x(n) = x(n) \cdot \{f(n) \cdot (\delta_x + \delta_+) + M \cdot \delta_+\}$$
 (4.10)

Comme l'espérance des erreurs à la sortie est juste la Transformée de Fourier Discrète des erreurs données en (4.10), on obtient, par la relation de Parseval (1.2) :

$$\frac{\sum_{k=0}^{N-1} \{E\{|y'(k)-y(k)|\}\}^{2}}{\sum_{k=0}^{N-1} |y(k)|^{2}} = \frac{\sum_{n=0}^{N-1} |x(n)|^{2} \cdot \{f(n) \cdot (\delta_{x} + \delta_{+}) + M \cdot \delta_{+}\}^{2}}{\sum_{k=0}^{N-1} |y(k)|^{2}}$$

Ajoutant ceci à (4.8), on obtient le rapport bruit à signal :

$$\left(\frac{B}{S}\right)_{T} = \left(\frac{B}{S}\right)_{A} + \frac{1}{\sum_{n=0}^{N-1} |x(n)|^{2}} \sum_{n=0}^{N-1} \{f(n) \cdot (\delta_{x} + \delta_{+}) + M \cdot \delta_{+}\}^{2} \cdot |x(n)|^{2}$$

$$(4.11)$$

où l'indice T signifie troncature,

 $\left(\frac{B}{S}\right)_A$ est donné par (4.8).

CALCUL DES BORNES

Comme $0 \leq f(n) \leq M-2$ pour tout n appartenant à l'ensemble $\{0, 1, \ldots, N-1\}$, on peut déterminer des bornes inférieures et supérieures indépendantes du tableau des données :

$$M \cdot \Delta_{+}^{2} \leq \left(\frac{B}{S}\right)_{A} \leq (M-2)\Delta_{\times}^{2} + (2M-2)\Delta_{+}^{2}$$
 (4.12)

$$M \cdot \Delta_{+}^{2} + M^{2} \cdot \delta_{+}^{2} \leq \left(\frac{B}{S}\right)_{T} \leq (M-2)\Delta_{x}^{2} + (2M-2)\Delta_{+}^{2} + \left\{(M-2)\delta_{x} + (2M-2)\delta_{+}\right\}^{2} \quad (4.13)$$

Ces bornes sont des généralisations de celles proposées par Kaneko et Liu ([9], expressions (11) et (12)).

4 . 3 ALGORITHME DE SANDE ET TUKEY

En utilisant la notion de bloc définie au paragraphe 1.3.B, on établit des expressions et des bornes pour le rapport bruit à signal dans le cas de l'algorithme de Sande et Tukey quand $N = 2^{M}$ (voir paragraphe 1.2.B).

Dans ce cas, la proposition 4.1 reste valable (voir la figure 3 au paragraphe 1.2), mais les autres doivent être remplacées par :

Proposition 4.4

Si à l'étape m, tous les éléments du l^{ième} bloc ont une erreur relative γ_{α} :

$$x'_{m}(12^{M-m}+q) = x_{m}(12^{M-m}+q).(1+\gamma_{q})$$

où q = $0, 1, \dots, 2^{M-m} - 1$,

et que la variance γ_q est indépendante de q , c'est-à-dire

 $var(\gamma_q) = d^2$,

alors la contribution de toutes les erreurs dans le l^{ième} bloc à l'étape m à la variance normalisée de l'erreur à la sortie vaut :

$$\frac{\sum_{k=0}^{N-1} \operatorname{var}\{|v'(k)-v(k)|\}}{\sum_{k=0}^{N-1} |v(k)|^{2}} = \frac{d^{2}}{\sum_{k=0}^{N-1} |v(k)|^{2}} \sum_{q=0}^{2^{M-m}-1} |x_{M}(12^{M-m}+q)|^{2}} \sum_{k=0}^{2^{M-m}-1} |x_{M}(12^{M-m}+q)|^{2}$$

Démonstration :

Par la proposition 4.1, on a :

$$\frac{\sum_{k=0}^{N-1} \operatorname{var}\{|v'(k)-v(k)|\}}{\sum_{k=0}^{N-1} |v(k)|^{2}} = \frac{d^{2}}{\sum_{k=0}^{N-1} |v(k)|^{2}} 2^{M-m} \sum_{q=0}^{2^{M-m}-1} |x_{m}(12^{M-m}+q)|^{2},$$

ce qui donne, par la proposition 1.2 et la relation de Parseval (1.2) :

$$= \frac{d^2}{\sum_{\substack{k=0 \\ k=0}}^{N-1} |v(k)|^2} \sum_{\substack{q=0 \\ q=0}}^{2^{M-m}-1} |x_M(12^{M-m}+q)|^2.$$

ANALYSE DES OPERATIONS ARITHMETIQUES DANS L'ALGORITHME

Le calcul d'un même bloc à l'étape m par les "papillons" définis en (1.14) peut s'écrire de la manière suivante :

$$\begin{aligned} x_{m}(1'2^{M-m+1}+q) &= x_{m-1}(1'2^{M-m+1}+q) + x_{m-1}(1'2^{M-m+1}+2^{M-m}+q) \\ x_{m}(1'2^{M-m+1}+2^{M-m}+q) &= \{x_{m-1}(1'2^{M-m+1}+q) - x_{m-1}(1'2^{M-m+1}+2^{M-m}+q)\} \\ &\quad \times \exp(-j2\pi q/2^{M-m+1}) \end{aligned}$$

$$1' = \sum_{i=1}^{m-1} k_i 2^{m-i-1}$$
$$q = \sum_{i=1}^{M-m} n_i 2^{i-1}$$

(4.14)

Les expressions (4.14) sont illustrées à la figure 13. Dès que l'on introduit les erreurs selon (4.4), il faut considérer la figure 14. Ici aussi, l'erreur complexe β est dûe à la multiplication et les erreurs complexes α_1 et α_2 sont dûes aux additions. Négligeant les effets de second ordre, on peut combiner les erreurs comme sur la figure 15.

<u>Figure 13</u>. "Papillon" de la Transformée de Fourier Rapide (DIF) où s = $1'2^{M-m+1}+q$ t = $s+2^{M-m}$ W = $exp(-j2\pi q/2^{M-m+1})$.

Figure 14. "Papillon" de la DIF avec modèle d'erreur.

Figure 15. "Papillon" de la DIF avec erreurs combinées.

En fait, si on inclut l'erreur aux expressions (4.14) et que l'on prend les notations de la figure 13, on obtient :

$$x'_{m}(s) = x_{m}(s) \cdot (1 + \alpha_{1})$$

$$x'_{m}(t) = x_{m}(t) \cdot (1 + \beta + \alpha_{2} + \beta \alpha_{2})$$

$$1' = \sum_{i=1}^{m-1} k_{i} 2^{m-i-1}$$

$$q = \sum_{i=1}^{M-m} n_{i} 2^{i-1}$$
(4.15)

Comme dans le cas précédent, on va sommer toutes les contributions en séparant les erreurs de multiplication et d'addition et en négligeant le second ordre.

CAS DE L'ARRONDI

Comme $x_m(s)$ et $x_m(t)$ sont dans des blocs différents à l'étape m, on peut appliquer la proposition 4.4 pour obtenir la contribution des erreurs à l'étape m au rapport bruit à signal.

Elle vaut :

$$\frac{1}{\sum_{\substack{k=0}}^{N-1} |v(k)|^2} \sum_{\substack{k=0\\k=0}}^{N-1} \{k_m(\Delta_x^2 + \Delta_+^2) + \Delta_+^2\} \cdot |y(k)|^2$$

En sommant sut tous les m et en notant que les étapes M-1 et M n'engendrent pas d'erreurs de multiplication, on obtient :

$$\left(\frac{B}{S}\right)_{A} = M \cdot \Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{x}^{2}}{\sum_{k=0}^{N-1} |y(k)|^{2}} \sum_{k=1}^{N-1} f(k) \cdot |y(k)|^{2}$$
(4.16)

où l'indice A signifie arrondi,

f(k) est défini en (4.9).

CAS DE LA TRONCATURE

La contribution des variances des erreurs au rapport bruit à signal est donnée par (4.16). Pour calculer la contribution dûe aux espérances, il suffit de se référer à la figure 15.

Pour un bloc de type s, $k_m = 0$ et la contribution des erreurs à l'étape m à chaque élément du bloc correspondant vaut $\delta_+ \cdot v(k)$; pour un bloc de type t, $k_m = 1$ et la contribution vaut $(2\delta_+ + \delta_x) \cdot v(k)$. A partir de ces remarques, on obtient aisément que :

$$\left(\frac{B}{S}\right)_{T} = \left(\frac{B}{S}\right)_{A} + \frac{1}{\sum_{\substack{k=0 \\ k=0}}^{N-1} |v(k)|^{2}} \sum_{\substack{k=0 \\ k=0}}^{N-1} \{f(k) \cdot (\delta_{x} + \delta_{+}) + M \cdot \delta_{+}\}^{2} \cdot |v(k)|^{2}$$

$$(4.17)$$

l'indice T signifie troncature,

 $\left(\frac{B}{S}\right)_A$ est donné par (4.16).

CALCUL DES BORNES

où

On trouve les mêmes bornes que celles pour l'algorithme de Coolev et Tukey. Elles sont des généralisations de celles proposées par Kaneko et Liu ([7], expressions (18) et (19)).
4.4 CAS PARTICULIERS

Dans ce paragraphe, on détermine des expressions pour le rapport bruit à signal lorsque le signal d'entrée de la Transformée de Fourier Papide est un bruit blanc tel que :

$$E\{x(n)\} = 0$$

$$E\{x(n).x^{*}(m)\} = \begin{cases} N_{0} & \text{si } n = m \\ 0 & \text{sinon.} \end{cases}$$
(4.18)

où x*(m) est le nombre complexe conjugué de x(m).

Dans les expressions du rapport bruit à signal, les valeurs $|x(n)|^2$ et $|v(k)|^2$ sont à remplacer par leurs espérances, à savoir N_0 et NN_0 .

On analyse les algorithmes de Coolev et Tukey et ceux de Sande et Tukey quand N = r_1^M [17] et quand N = $r_1 \cdot r_2$.

A

CAS DE L'APRONDI

On peut interpréter les expressions (4.8) et (4.16) en tenant compte de (4.18). On obtient dans les deux cas :

$$\begin{pmatrix} \frac{B}{S} \end{pmatrix}_{A} = M\Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{x}^{2}}{N} \qquad \begin{array}{c} N-1 \\ n=1 \end{array} f(n) \\ = M\Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{x}^{2}}{N} \qquad \begin{array}{c} N-1 & M-2 \\ n=1 & i=1 \end{array} n_{i} \\ = M\Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{x}^{2}}{N} \qquad (M-2)2^{M-1} \\ = \frac{3M-2}{2} \qquad \Delta_{+}^{2} + \frac{M-2}{2} \qquad \Delta_{x}^{2} \end{array} .$$

Cependant, cette expression ne tient compte des multiplications sans erreur qu'à deux étapes de l'algorithme, alors qu'il v en a à chaque étape. Ce fait n'a pas pu s'utiliser dans l'étude précédente vu que les valeurs intermédiaires $x_m(.)$ étaient inconnues; mais dans le cas particulier (4.18), on sait que

$$E\{|x_{m}(.)|^{2}\} = 2^{m}N_{0}$$

En appliquant directement la proposition 4.1 à l'algorithme de Cooley et Tukev, on obtient

$$\left(\frac{B}{S}\right)_{A} = M\Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{\times}^{2}}{N^{2} \cdot N_{0}} \sum_{m=2}^{M} 2^{M-m} \cdot (N-4 \cdot 2^{M-m}) \cdot 2^{m-1}N_{0}$$

où l'indice A signifie arrondi,

$$\begin{split} & \mathsf{M} \Delta_{+}^{2} & \text{est la contribution des erreurs d'addition,} \\ & \Delta_{+}^{2} + \Delta_{\times}^{2} & \text{est la variance d'une erreur de multiplication,} \\ & 2^{\mathsf{M}-\mathsf{m}} & \text{est le facteur de propagation de la proposition 4.1,} \\ & 4.2^{\mathsf{M}-\mathsf{m}} & \text{est le nombre de multiplications par ±1 et ±j à} \\ & 1'étabe m, \\ & 2^{\mathsf{m}-1}\mathsf{N}_{0} & \text{est la variance de } \mathsf{x}_{\mathsf{m}-1}(.). \end{split}$$
Tenant combte du fait que $\begin{aligned} & \sum_{i=0}^{\mathsf{p}} 2^{i} = 2^{\mathsf{p}+1}-1 \end{aligned} \tag{4.19}$

l'expression ci-dessus devient :

$$\left(\frac{B}{S}\right)_{A} = \left\{\frac{3M-3}{2} + \frac{2}{N}\right\} \Lambda_{+}^{2} + \left\{\frac{M-3}{2} + \frac{2}{N}\right\} \Lambda_{\times}^{2} \qquad (4.20)$$

En appliquant directement la proposition 4.1 à l'algorithme de Sande et Tukev, on obtient :

$$\left(\frac{B}{S}\right)_{A} = M\Delta_{+}^{2} + \frac{\Delta_{+}^{2} + \Delta_{\times}^{2}}{N^{2} \cdot N_{0}} \sum_{m=1}^{M-2} 2^{M-m} \cdot \left\{\frac{N}{2} - 2 \cdot 2^{m-1}\right\} \cdot 2^{m} N_{0}$$

où

l'indice A signifie arrondi,

MΔ²₊ est la contribution des erreurs d'addition,
Δ²₊ + Δ²_× est la variance d'une erreue de multiplication,
2^{M-m} est le facteur de propagation de la proposition 4.1,
2.2^{m-1} est le nombre de multiplications par ±1 et ±j à
l'étape m,

 $2^{m}N_{0}$ est la variance de $x_{m}(.)$.

Tenant compte de (4.19), cette expression se réduit à (4.20). Les deux algorithmes de la Transformée de Fourier Rapide admettent donc le même rapport bruit à signal (4.20) dans le cas d'arrondi et pour le problème particulier (4.18)

B CAS DE LA TRONCATURE

Dans ce cas, il faut encore ajouter les effets des espérances des erreurs. Pour ce faire, on reprend les expressions (4.11) et (4.17) où cette fois-ci, $\left(\frac{B}{S}\right)_A$ est la valeur donnée en (4.20). En remplaçant $|x(.)|^2$ et $|y(.)|^2$ par N₀ et NN₀, on obtient pour chacune des deux expressions :

$$\left(\frac{B}{S}\right)_{T} = \left(\frac{B}{S}\right)_{A} + \frac{1}{N} \sum_{n=0}^{N-1} \left\{f(n) \cdot \left(\delta_{+} + \delta_{\times}\right) + M\delta_{+}\right\}^{2}$$

où l'indice T signifie troncature, f(n) est donné en (4.9).

En développant cette dernière expression, on a :

$$\left(\frac{B}{S}\right)_{T} = \left(\frac{B}{S}\right)_{A} + \frac{1}{N} \left[\sum_{n=0}^{N-1} \{f(n)\}^{2} \right] \cdot \left(\delta_{+} + \delta_{x}\right)^{2} + M^{2} \delta_{x}^{2} + M^{2} \delta_{x}^{2} + (M-2)M\delta_{+}\left(\delta_{+} + \delta_{x}\right)^{2} + M^{2} \delta_{x}^{2} + (M-2)M\delta_{+}\left(\delta_{+} + \delta_{x}\right)^{2} + M^{2} \delta_{x}^{2} + (M-2)M\delta_{+}\left(\delta_{+} + \delta_{x}\right)^{2} + M^{2} \delta_{x}^{2} + M$$

l'expression devient :

$$\left(\frac{B}{S}\right)_{T} = \left(\frac{B}{S}\right)_{A} + \frac{M^{2}}{4} \left\{9\delta_{+}^{2} + \delta_{x}^{2} + 6\delta_{x}\delta_{+}\right\}$$

$$- \frac{M}{4} \left\{3\delta_{x}^{2} + 11\delta_{+}^{2} + 14\delta_{x}\delta_{+}\right\}$$

$$+ \frac{1}{2} \left\{\delta_{x} + \delta_{+}\right\}^{2}$$

$$(4.21)$$

où l'indice T signifie troncature,

 $\left(\frac{B}{S}\right)_{A}$ est donné en (4.20).

En cas de troncature, les deux algorithmes de la Transformée de Fourier Rapide admettent donc aussi la même expression (4.21) du rapport bruit à signal pour le problème particulier (4.18).

Remarque :

Les expressions (4.20) et (4.21) sont des généralisations d'expressions proposées pour le rapport bruit à signal par Kaneko et Liu [7], expressions (22) et (24),

[9], expressions (14) et (15).

4.4.2 $N = r^{M}$, r quelconque

On détermine ici des expressions pour le rapport bruit à signal dans le cas d'arrondi pour le problème particulier (4.18) Le cas de la troncature est nettement plus compliqué et ne sera pas traité.

Tout d'abord, on peut énoncer une propriété commune aux deux algorithmes définis respectivement en (1.22) et en (1.24).

Proposition 4.5

Une erreur introduite à l'étape m se propage à r^{M-m} éléments du résultat. La variance de l'erreur du résultat est égale, en chacun des r^{M-m} éléments affectés, à la variance de l'erreur à l'étape m.

La démonstration est semblable à celle de la proposition 4.1.

On constate d'autre part que $E\{|x_m(.)|^2\} = r^m N_0$.

A ALGORITHME DE COOLEY ET TUKEY

Le calcul du l^{ième} bloc à l'étape m peut se faire en "papillons". Par exemple, dans le cas où r=3, on a :

$$x_{m}(13^{m}+q')$$

$$= x_{m-1}(13^{m}+q') + x_{m-1}(13^{m}+3^{m-1}+q').exp(-j2\pi q'/3^{m})$$

$$+ x_{m-1}(13^{m}+2.3^{m-1}+q').exp(-j2\pi.2q'/3^{m})$$

$$\begin{aligned} x_{m}(13^{m}+3^{m-1}+q') \\ &= x_{m-1}(13^{m}+q') \\ &+ x_{m-1}(13^{m}+3^{m-1}+q') \cdot \exp(-j2\pi q'/3^{m}) \cdot \exp(-j2\pi/3) \\ &+ x_{m-1}(13^{m}+2\cdot3^{m-1}+q') \cdot \exp(-j2\pi\cdot2q'/3^{m}) \cdot \exp(-j2\pi\cdot2/3) \\ x_{m}(13^{m}+2\cdot3^{m-1}+q') \\ &= x_{m-1}(13^{m}+q') \\ &+ x_{m-1}(13^{m}+3^{m-1}+q') \cdot \exp(-j2\pi q'/3^{m}) \cdot \exp(-j2\pi\cdot2/3) \\ &+ x_{m-1}(13^{m}+2\cdot3^{m-1}+q') \cdot \exp(-j2\pi\cdot2q'/3^{m}) \cdot \exp(-j2\pi\cdot4/3) \\ q' &= \sum_{i=1}^{m-1} \kappa_{i}3^{i-1} \qquad (4.22) \end{aligned}$$

Les expressions (4.22) sont illustrées à la figure 16.

Figure 16. "Papillon" de la Transformée de Fourier Rapidepour N=3^M (DIT). $f = 13^{m}+q'$ $W = exp(-j2\pi q'/3^{m})$ $g = 13^{m}+3^{m-1}+q'$ $V = exp(-j2\pi/3)$ $h = 13^{m}+2.3^{m-1}+q'$

En prenant les notations de la figure 16, en introduisant les erreurs selon (4.4) et en négligeant les effets de second ordre, les expressions (4.22) deviennent :

$$x'_{m}(f) - x_{m}(f) = x_{m-1}(f) \cdot (\alpha_{1} + \alpha_{4}) + x_{m-1}(g) \cdot W \cdot (\beta_{1} + \alpha_{1} + \alpha_{4})$$

+ $x_{m-1}(h) \cdot W^{2} \cdot (\beta_{4} + \alpha_{4})$

$$x'_{m}(g) - x_{m}(g) = x_{m-1}(f) \cdot (\alpha_{2} + \alpha_{5}) + x_{m-1}(g) \cdot WV \cdot (\beta_{2} + \alpha_{2} + \alpha_{5}) + x_{m-1}(h) \cdot W^{2}V^{2} \cdot (\beta_{5} + \alpha_{5})$$

$$x'_{m}(h) - x_{m}(h) = x_{m-1}(f) \cdot (\alpha_{3} + \alpha_{6}) + x_{m-1}(g) \cdot WV^{2} \cdot (\beta_{3} + \alpha_{3} + \alpha_{6}) + x_{m-1}(h) \cdot W^{2}V^{4} \cdot (\beta_{6} + \alpha_{6}),$$

les a; sont les erreurs complexes d'addition, où

les B; sont les erreurs complexes de multiplication.

La contribution des erreurs d'addition au rapport bruit à signal vaut :

$$\frac{1}{\sum_{N=0}^{N-1}} \sum_{m=0}^{M-1} r^{M-m} \cdot r \cdot r^{m-1} N_0 \cdot s(n_{M-m+1}) \cdot \Delta_+^2$$

où

r

Δ2

r^{M-m} est le facteur de propagation de l'erreur (prop. 4.5), est le nombre de termes influençant l'erreur sur un élément à l'étape m,

$$r^{m-1}N_{0} \text{ est la variance de } x_{m-1}(.),$$

$$s(n_{i}) = \begin{cases} r-1 & si & n_{i} = 0 \\ r-n_{i} & si & n_{i} \neq 0 \end{cases}$$

est la variance d'une erreur d'addition.

On a donc : $\frac{1}{N} \sum_{m=1}^{M} \frac{N}{r} (r-1) \frac{(r+2)}{2} \Delta_{+}^{2}$.

La contribution des erreurs de multiplication au rapport bruit à signal vaut :

$$\frac{1}{\sum_{m=1}^{N^2} \sum_{m=1}^{M-m} r^{m-1} N_0 \cdot (r-1) \cdot (N-r^{M-m}) \cdot (\Delta_+^2 + \Delta_x^2)}$$

où r^{M-1}

est le facteur de propagation de l'erreur de la proposition 4.5,

- $r^{m-1}N_0$ est la variance de $x_{m-1}(.)$,
- (r-1) est le nombre de termes influençant l'erreur sur un élément à l'étape m,
- (N-r^{M-m}) est le nombre de facteurs multiplicatifs non égaux à 1 à l'étape m,

 $(\Delta_{+}^{2} + \Delta_{x}^{2})$ est la variance d'une erreur de multiplication.

On a donc :
$$\frac{1}{N} \sum_{m=1}^{M} \frac{r-1}{r} (N-r^{M-m}) \cdot (\Delta_{+}^{2} + \Delta_{\times}^{2}).$$

En sommant ces contributions, on obtient finalement, dans le cas de l'algorithme de Cooley et Tukey, le rapport bruit à signal :

$$\left(\frac{B}{S}\right)_{A} = \frac{\Delta_{x}^{2}}{r} \left\{ (r-1)M - 1 + \frac{1}{N} \right\} + \frac{\Delta_{+}^{2}}{r} \left\{ \frac{r^{2} + 3r - 4}{r} M - 1 + \frac{1}{N} \right\}$$

$$(4.23)$$

Remarque :

Cette expression n'est pas une généralisation de (4.20). On n'a en effet pas tenu compte des multiplications par -1 et ±j.

ALGORITHME DE SANDE ET TUKEY

В

Le calcul d'un bloc à l'étape m peut également se faire en "papillons". Par exemple, dans le cas où r=3, on a :

$$\begin{aligned} x_{m}(1^{*}3^{M-m+1}+\alpha) &= x_{m-1}(1^{*}3^{M-m+1}+\alpha) + x_{m-1}(1^{*}3^{M-m+1}+3^{M-m}+\alpha) \\ &+ x_{m-1}(1^{*}3^{M-m+1}+2\cdot 3^{M-m}+\alpha) \\ x_{m}(1^{*}3^{M-m+1}+3^{M-m}+\alpha) &= \left[x_{m-1}(1^{*}3^{M-m+1}+\alpha) + x_{m-1}(1^{*}3^{M-m+1}+3^{M-m}+\alpha)\cdot\exp(-j2\pi/3) \\ &+ x_{m-1}(1^{*}3^{M-m+1}+2\cdot 3^{M-m}+\alpha)\cdot\exp(-j2\pi\cdot 2/3) \right] \\ &\times \exp(-j2\pi\alpha/3^{M-m+1}) \\ x_{m}(1^{*}3^{M-m+1}+2\cdot 3^{M-m}+\alpha) &= \left[x_{m-1}(1^{*}3^{M-m+1}+\alpha) + x_{m-1}(1^{*}3^{M-m+1}+3^{M-m}+\alpha)\cdot\exp(-j2\pi\cdot 2/3) \\ &+ x_{m-1}(1^{*}3^{M-m+1}+2\cdot 3^{M-m}+\alpha)\cdot\exp(-j2\pi\cdot 2/3) \\ &+ x_{m-1}(1^{*}3^{M-m+1}+2\cdot 3^{M-m}+\alpha)\cdot\exp(-j2\pi\cdot 4/3) \right] \\ &\times \exp(-j2\pi\alpha\cdot 2/3^{M-m+1}) \\ 1^{*} &= \prod_{i=1}^{m-1} k_{i}3^{m-i-1} \\ q &= \prod_{i=1}^{M-m} n_{i}3^{i-1} \\ (4\cdot 24) \end{aligned}$$

Les expressions (4.24) sont illustrées à la figure 17.

Figure 17. "Papillon" de la Transformée de Fourier RapideDour N=3^M (DIF). $f = 1'3^{M-m+1}+q$ $W = \exp(-j2\pi q/3^{M-m+1})$ $g = 1'3^{M-m+1}+3^{M-m}+q$ $V = \exp(-j2\pi/3)$ $h = 1'3^{M-m+1}+2.3^{M-m}+q$

En prenant les notations de la figure 17, en introduisant les erreurs selon (4.4) et en négligeant les effets de second ordre, les expressions (4.24) deviennent :

$$\begin{aligned} x_{m}^{\prime}(f) - x_{m}^{\prime}(f) &= x_{m-1}^{\prime}(f) \cdot (\alpha_{1} + \alpha_{2}) + x_{m-1}^{\prime}(g) \cdot (\alpha_{1} + \alpha_{2}) \\ &+ x_{m-1}^{\prime}(h) \cdot \alpha_{2} \\ x_{m}^{\prime}(g) - x_{m}^{\prime}(g) &= \left[x_{m-1}^{\prime}(f) \cdot (\beta_{1} + \alpha_{3} + \alpha_{4}) + x_{m-1}^{\prime}(g) \cdot \nabla \cdot (\beta_{1} + \beta_{2} + \alpha_{3}) \\ &+ \alpha_{4}^{\prime} + x_{m-1}^{\prime}(h) \cdot \nabla^{2} \cdot (\beta_{1} + \beta_{3} + \alpha_{4}) \right] \times W \\ x_{m}^{\prime}(h) - x_{m}^{\prime}(h) &= \left[x_{m-1}^{\prime}(f) \cdot (\beta_{4} + \alpha_{5} + \alpha_{6}) + x_{m-1}^{\prime}(g) \cdot \nabla^{2} \cdot (\beta_{4} + \beta_{5} + \alpha_{5}) \\ &+ \alpha_{6}^{\prime} + x_{m-1}^{\prime}(h) \cdot \nabla^{4} \cdot (\beta_{4} + \beta_{6} + \alpha_{6}) \right] \times W^{2} \end{aligned}$$

où les α_i correspondent à des erreurs d'addition, les β_i correspondent à des erreurs de multiplication. On constate que la contribution des erreurs d'addition est la même que pour l'algorithme de Cooley et Tukey.

Par contre, la contribution des erreurs de multiplication par les facteurs de type V au rapport bruit à signal vaut :

$$\frac{1}{N^2 \cdot N_0} \sum_{m=1}^{M} r^{M-m} \cdot r^{m-1} N_0 \cdot (\Delta_x^2 + \Delta_+^2) \cdot (r-1)^2 r^{M-1}$$

où r^{M-m} est le facteur de propagation de l'erreur,
 $r^{m-1} N_0$ est la variance de $x_{m-1}(.)$,
 $\Delta_+^2 + \Delta_x^2$ est la variance d'une erreur de multiplication,
 $(r-1)^2 r^{M-1}$ est le nombre de multiplications par un facteur
de type V, à chaque étape.

La contribution des erreurs de multiplication par les facteurs de type W au rapport bruit à signal vaut :

$$\frac{1}{N^2 \cdot N_0} \sum_{m=1}^{M} r^{M-m} \cdot r^m N_0 \cdot (\Delta_x^2 + \Delta_+^2) \cdot (r-1) r^{-1} (N-r^m)$$

où r^{m-m} est le facteur de propagation de l'erreur, $r^{m}N_{0}$ est la variance des éléments du tableau intermédiaire, avant qu'ils ne soient multipliés par un facteur de type W à l'étape m, $(r-1)r^{-1}(N-r^{m})$ est le nombre de multiplications par un facteur de type W, non égal à 1, à l'étape m, $(\Delta_{x}^{2} + \Delta_{+}^{2})$ est la variance d'une erreur de multiplication En sommant toutes ces différentes contributions, on obtient finalement, dans le cas de l'algorithme de Sande et Tukey, le rapport bruit à signal :

$$\left(\frac{B}{S}\right)_{A} = \left[\frac{2r^{2}-3r+1}{r^{2}} - M - 1 + \frac{1}{N}\right] \Delta_{x}^{2} + \left[\frac{r^{3}+5r^{2}-8r+2}{2r^{2}} - M - 1 + \frac{1}{N}\right] \Delta_{+}^{2}$$
 (4.25)

Remarque :

Cette expression n'est pas une généralisation de (4.20) car, comme dans le cas de l'algorithme de Cooley et Tukey, on n'a pas tenu compte des multiplications par -1 et $\pm j$.

4.4.3 N = $r_1 \cdot r_2$, r_1 et r_2 quelconques

On détermine ici des expressions pour le rapport bruit à signal dans le cas d'arrondi pour le problème particulier (4.18). L'étude est semblable à celle des paragraphes précédents : elle est basée sur l'idée de Tran-Thong et Bede Liu [17], mais n'a encore jamais été publiée.

On peut tout d'abord énoncer une propriété commune aux deux algorithmes définis respectivement en (1.28) et en (1.29).

Proposition 4.6

Une erreur introduite à l'étape 1 se propage à r_2 éléments du résultat. La variance de l'erreur du résultat est égale, en chacun des r_2 éléments affectés, à la variance de l'erreur à l'étape 1.

La démonstration est semblable à celle de la proposition 4.1.

On constate d'autre part que $E\{|x_1(.)|^2\} = r_1 N_0$.

A ALGORITHME DE COOLEY ET TUKEY

On peut interpréter l'algorithme (1.28) comme suit :

- l'étape 1 consiste à calculer r_2 transformées de Fourier discrètes de r_1 éléments chacune,

- l'étape 2 consiste à calculer r₁ "quasi-transformées de Fourier discrètes" de r₂ éléments chacune, c'est-à-dire à effectuer des sommations pondérées de r₂ termes, comme pour une Transformée de Fourier Discrète, mais où les facteurs de poids ont été modifiés.

En introduisant les erreurs d'addition à la manière de (4.4) et en négligeant les effets de second ordre, la contribution des erreurs d'addition introduites à l'étape 1 au rapport bruit à signal vaut :

$$\frac{1}{N^2 N_0} r_2 \cdot \Lambda_+^2 \cdot r_1 \cdot \begin{bmatrix} r_1 - 1 \\ \sum s_1 (n_2) \\ n_2 = 0 \end{bmatrix} \cdot r_2 \cdot N_0$$

où r_2 est le nombre de transformées effectuées à l'étape 1, Λ^2_+ est la variance d'une erreur d'addition,

$$s_1(n_2) = \begin{bmatrix} r_1 - 1 & \sin n_2 = 0 \\ r_1 - n_2 & \sin n_2 \end{bmatrix}$$

r₁ est le nombre de termes influençant l'erreur sur un élément à l'étape 1,

- r₂ est le facteur de propagation de l'erreur de la proposition 4.6,
- N_0 est la variance de $x_0(.)$.

De manière semblable, la contribution des erreurs d'addition introduites à l'étape 2 vaut :

$$\frac{1}{N^2 N_0} r_1 \cdot \Lambda_+^2 \cdot r_2 \cdot \begin{bmatrix} r_2^{-1} \\ \sum s_2(n_1) \\ n_1^{=0} \end{bmatrix} \cdot r_1 N_0$$

où r₁ est le nombre de "quasi-transformées" effectuées à l'étape 2, Δ^2_1 est la variance d'une erreur d'addition,

$$s_2(n_1) = \begin{bmatrix} r_2 - 1 & si & n_1 = 0 \\ r_2 - n_1 & sinon, \end{bmatrix}$$

r₂ est le nombre de termes influençant l'erreur sur un élément à l'étape 2,

$$r_1N_0$$
 est la variance de $x_1(.)$.

D'autre part, en introduisant les erreurs de multiplication à la manière de (4.4) et en négligeant les effets de second ordre, la contribution des erreurs de multiplication introduites à l'étape 1 vaut :

$$\frac{1}{N^2 N_0} (\Delta_+^2 + \Delta_x^2) \cdot N_0 \cdot r_2 \cdot r_2 (r_1 - 1)^2$$

où $\Lambda_{+}^{2}+\Lambda_{x}^{2}$ est la variance d'une erreur de multiplication, N_{0} est la variance de $x_{0}(.)$, r_{2} est le facteur de propagation de l'erreur à l'étape 1,

 $r_2(r_1-1)^2$ est le nombre de multiplications par des facteurs non égaux à 1, à l'étape 1.

La contribution des erreurs de multiplication introduites à l'étape 2 vaut :

$$\frac{1}{N^2 N_0} r_1 N_0 \cdot (\Delta_x^2 + \Delta_y^2) \cdot (r_2 - 1) (N - 1)$$

où $r_1 N_0$ est la variance de $x_1(.)$,

 $\Delta_x^2 + \Delta_+^2$ est la variance d'une erreur de multiplication, (r_2^{-1})(N-1) est le nombre de multiplications par des facteurs non égaux à 1, à l'étape 2.

En sommant ces différentes contributions, on obtient finalement, dans le cas de l'algorithme de Cooley et Tukey, le rapport bruit à signal pour le problème particulier (4.18) :

Remarque :

B

Cette expression est une généralisation de (4.23), c'est-àdire que l'expression (4.26), prise avec $r_1 = r_2 = r$, se réduit à (4.23) où M = 2.

ALGORITHME DE SANDE ET TUKEY

L'algorithme (1.29) peut s'interpréter comme suit :
- l'étape 1 consiste à calculer r₂ transformées de Fourier discrètes de r₁ éléments chacune, puis à multiplier ces valeurs par des coéfficients complexes de module unité,
- l'étape 2 consiste à calculer r₁ transformées de Fourier discrètes de r₂ éléments chacune.

La contribution des erreurs d'addition au rapport bruit à signal est la même que dans le cas de l'algorithme de Cooley et Tukey.

Par contre, en négligeant les effets de second ordre, la contribution des erreurs de multiplication à l'étape 1 au rapport bruit à signal vaut :

$$\frac{1}{N^{2}N_{0}} \left(\Lambda_{x}^{2} + \Lambda_{+}^{2}\right) \cdot r_{2} \cdot \left[N_{0} \cdot r_{2}(r_{1} - 1)^{2} + N_{0}r_{1} \cdot (N - r_{1}) \frac{(r_{1} - 1)}{r_{1}}\right]$$

où $\Delta_x^2 + \Delta_+^2$ est la variance d'une erreur de multiplication, r_2 est le facteur de propagation de l'erreur à l'étape 1,

$$N_0$$
 est la variance de $x_0(.)$,

 $r_2(r_1-1)^2$ est le nombre de facteurs multiplicatifs non égaux à 1, dans les transformées à l'étape 1, N_0r_1 est la variance des éléments après les transformées de l'étape 1,

 $(N-r_1)\frac{(r_1-1)}{r_1}$ est le nombre de facteurs multiplicatifs non égaux à 1, intervenant après les transformées de l'étape 1.

Si on néglige les effets de second ordre, la contribution des erreurs de multiplication introduites à l'étape 2 vaut :

$$\frac{1}{N^2 N_0} (\Delta_x^2 + \Delta_+^2) \cdot r_1 (r_2 - 1)^2 \cdot N_0 r_1$$

où $\Delta_x^2 + \Delta_+^2$ est la variance d'une erreur de multiplication, $r_1(r_2-1)^2$ est le nombre de facteurs multiplicatifs non égaux à 1, à l'étape 2, N_0r_1 est la variance de $x_1(.)$.

En sommant ces différentes contributions, on obtient finalement, dans le cas de l'algorithme de Sande et Tukey, le rapport bruit à signal pour le problème particulier (4.18) :

Remarque :

Cette expression est une généralisation de (4.25), c'est-àdire que l'expression (4.27), évaluée avec $r_1 = r_2 = r$, se réduit à (4.25) où M = 2.

RESULTATS

NUMERIQUES

5.1

RESULTATS NUMERIQUES POUR LA VIRGULE FIXE

Les sous-programmes qui permettent d'effectuer les différentes opérations en utilisant une arithmétique en virgule fixe ont été écrits en ASSEMBLER.

L'idée de base est d'utiliser l'arithmétique en virgule flottante de l'ordinateur Siemens 4004. La longueur double a été choisie. Chaque nombre est représenté en "signe et grandeur" par une suite de 16 chiffres hexadécimaux : les deux premiers sont réservés au signe et à la caractéristique, les 14 suivants à la mantisse. Comme chaque chiffre hexadécimal est composé de 4 bits, il est aisé d'adapter cette représentation; en annulant la caractéristique; la mantisse coupée au nombre de bits désiré, traduit un nombre binaire avec virgule fixe. Par exemple, le nombre 0.1010111 est traduit par 40AD00000000000. Le passage de la représentation en virgule flottante à la représentation en virgule fixe n'est possible que si le nombre est compris entre -1 et +1. Par exemple, pour une longueur de (1+7) bits, COAFBE643F124C devient COAD00000000000 qui traduit -0.1010111.

La multiplication introduit une contrainte sur la taille maximale des nombres. Chacun d'eux pourrait être traduit par une suite de 56 bits. Toutefois, on se limite à 36 bits pour des raisons techniques. Le produit de deux nombres de 36 bits, x et y, est effectué en deux étapes.

En effet, le produit de x par y est formé de 72 bits qui ne peuvent être contenus dans une seule mantisse. On décompose y en y_1 , formé des 20 premiers bits de y et en y_2 , formé des 16 derniers. Le produit de x par y_1 compte 56 bits et peut être contenu dans une première mantisse. Le produit de x par y_2 compte 42 bits et peut être contenu dans une seconde mantisse dont la caractéristique retient un facteur 2^{-20} . Tous les bits du produit de x par y peuvent ainsi être retrouvés et le résultat est évalué et arrondi correctement : s'il est situé exactement entre deux nombres de la longueur choisie, t, il est de la forme $0.b_1...b_110...0$; le résultat arrondi est $0.b_1...b_t + 2^{-t}$ si $b_t = 1$ et $0.b_1...b_t$ si $b_t = 0$. A cause de la représentation en "signe et grandeur" le modèle statistique doit être légèrement modifié. Après un déplacement, l'arrondi est utilisé au lieu de la troncature. Par (2.10b) on obtient une erreur de moyenne nulle et de variance égale à $2^{-2t}/8$. Pour la troncature, l'erreur dépend du signe des nombres, comme l'indiquent les relations (2.3) et (2.4). Si le signal de départ est distribué de manière uniforme, on suppose nulle la moyenne de l'erreur de troncature. De cette manière, les relations (3.6) et (3.26) des algorithmes de Cooley et Tukey et de Sande et Tukey, sont valables pour l'arrondi et la troncature sans déplacement. Dans l'hypothèse d'un déplacement à chaque étape, les relations (3.21) et (3.34) de ces deux algorithmes deviennent respectivement

 $2^{-2t} [(1/4 + \alpha/6) \cdot N^{3} - (1/4 + \alpha/3)M) \cdot N^{2}] (5.1)$ $2^{-2t} [(1/4 + \alpha/72) \cdot N^{3} - (1/4 + \alpha/12) \cdot N^{2} + (\alpha/9) \cdot N] (5.2)$

et

Elles sont également valables pour l'arrondi et la troncature. Chacun des résultats présentés sont obtenus à partir de 50 signaux complexes dont les parties réelles et imaginaires sont des nombres aléatoires distribués uniformément dans l'intervalle $-1/\sqrt{2}$, $+1/\sqrt{2}$ La plupart de ces 50 estimations est proche des valeurs théoriques, quelques unes s'en écartent assez fort. Le total des carrés des erreurs ainsi que les valeurs prédites par la théorie sont indiqués à la fig.18 pour l'algorithme de Cooley et Tukey et à la fig.19 pour l'algorithme de Sande et Tukey. La longueur des nombres a été fixée à 15 bits, non compris le bit de signe; des résultats semblables ont été obtenus avec des longueurs différentes. Le coefficient α est égal à 4.

Le tableau 1 présente les différents résultats obtenus pour l'algorithme de Cooley et Tukey avec N = 16.

ALGORITHME DE COOLEY ET TUKEY

	Σ E [e(p) ²]
	théorique	expérimentale
Arrondi sans déplacement Troncature sans dépla-	$0.869.10^{-8}$ $0.869.10^{-8}$	$0.934.10^{-8}$ $0.257.10^{-8}$
Arrondi avec déplacement	0.184.10 ⁻⁵	0.456.10 ⁻⁵
Troncature sans dépla- cement	0.184.10 ⁻⁵	0.831.10 ⁻⁵

Tableau 1.

Remarques

Les relations (3.6) et (3.26), (5.1) et (5.2), ainsi que les fig.18 et 19 montrent que les erreurs numériques produites par l'algorithme de Cooley et Tukey sont inférieures à celles produites par l'algorithme de Sande et Tukey s'il n'y a pas de déplacement. Par contre, s'il y en a un à chaque étape la situation est renversée. Cela s'explique par le fait que les multiplications sans erreur sont concentrées au début de l'algorithme de Cooley et Tykey et à la fin de l'algorithme de Sande et Tukey. Sans déplacement le facteur de propagation de la proposition 3.1 est plus important pour les premières étapes que pour les dernières. Dans l'hypothèse d'un déplacement à chaque étape, ce facteur 2^{M-m} est multiplié par 2^{2m} et devient plus important dans les dernières étapes.

Le tableau 1 indique que pour la troncature, les estimations sont moins bonnes. Cela s'explique par l'hypothèse supplémentaire de la page 133. Si les nombres ne sont pas distribués de manière tout-àfait uniforme, la moyenne de l'erreur n'est pas nulle, ce qui altère les résultats expérimentaux.

 ALGORITHME DE COOLEY ET TUKEY

 ---- estimation théorique sans déplacement

 Σ |e(p)|²

 estimation théorique avec déplacement

 Résultats expérimentaux

- o arrondi sans déplacement
 - troncature sans déplacement
- arrondi avec déplacement

X

troncature avec déplacement

Fig. 18

ALGORITHME DE SANDE ET TUKEY

[|e(p)|²

estimation théorique sans déplacement estimation théorique avec déplacement

Résultats expérimentaux

arrondi sans déplacement troncature sans déplacement arrondi avec déplacement troncature avec déplacement

ANNEXE

Programmes et sous-programmes FORTRAN

1	6	PROGRAM FFTBI	Ν
4	C	CE DEACDAMME	ANT DESTANE & COMPADED LES DESHITATS DE
5	C	TRAN-THONG ET	LTH AVEC LE TOTAL DU CAPRE DES ERREURS
5	C	OBTENUES EXPE	RIMENTALEMENT.
6	C	OSTENOLO EN EL	
7	č	TABLE DES VAR	IAGLES
8	С	****	** * **
9	С	NOM TYPE	ROLE
10	С	X1 (C15)	SIGNAL D'ENTREE COMPLEXE QUI EST
11	С		TRANSFORME PAR LE SOUS-PROGRAMME
12	С		FFTDIT POUR OBTENIR LES RESULTATS
13	С		SUPPOSES EXACTS.
14	C	X2 (C16)	SIGNAL D'ENTREE COMPLEXE QUI EST
15	C		TRANSFORME PAR LE SOUS-PROGRAMME
16	C		DITHIN ET CONTENTENSUITE
11	C	VA DO	CONVERSE CARDES DES DESULTATS
10	C		SOMME DES CARRES DES RESOLTATS
20	C	NCD DR	PAPPORT DU BRUTT AU STONAL
21	C		SOMME THEOPTONE OLS CAPPES DES EDDENDS
27	C	RAF RS	RAPPORT THEORIQUE DU BRUTT AU SIGNAL
23	č	N 14	NOMBRE D'ECHANTILLONS DE LA TER
24	С	81T 14	LONGUEUR DES NOMBRES TRAITES PAR
25	с		L'ARITHMETIQUE EN VIRGULE FIXE
26	С	MODE 14	MODE D'ARRONDI OU DE TRONCATURE
27	С	ISHIF I4	VAUT 1 S'IL Y A UN DEPLACEMENT
53	С		A CHAQUE ETAPE ET O SINON
29	С	M I4	NOMBRE D'ETAGES DE LA TER
30	С	JERR 14	DEVIENT DIFFERENT DE O SI
31	C		UNE ERREUR EST PETECTEE
32	C	CONDIENTIC VI	(100/) X0/103/) T
30		DEAL *8 Y1 Y2	NSR S
35		REAL*8 DELT.	TU.V
36		REAL*8 RAP	
37		INTEGER BIT, J	IT1,BIT2,OVF1,OVF2
33	С	LECTURE ET IM	PRESSION DES DONNEES
39		RFAD 70, TX1, 1	X 2
40		READ 72, MODE	
41		READ 72, HIT	
42		RFAD 70, K, J, 1	P
43		PRINT 80	
44		IF (MODE.EQ.10	PRINT 81
45		IF(MODE.EQ.15	D PKINT 82
40	17	PRINI 80,811	
41	17	TE (TSHIE) 13	27.74
10	22	PRINT RZ	to be 7
50	~ ~	IDIST=10	
20			

51		GOTO 18
52	24	PRINT 84
53		IDIST=0
54		CALL INIT(BIT, MODE)
55	15	00 23 M=K, J, 1P
56		NUMIT=0
57		N=2**M
5.8		PRINT 85 N
50	C	CALCUL DE L'EVALUATION THEORIGHE
60	C	$V = 2 - DOO \neq D \in IOaT(AIT)$
61		DFLT=2-DOO**V
52		IF(ISHIF) 13.25.20
6.3	C	SANS DEPLACEMENT
64	25	$1 T H = (N \neq N / 6 H + 4 / 3) / (3 \neq D F + T)$
45	2.7	SOTO 27
56	C	AVEC DEPLACEMENT
67	20	$1 T H = (1 \pm N \times 3 = (3 \pm 1 \times 3 \times 1) \times N \times N) / (4 \ge 0 \times 0 \times 1 \times 1)$
12	27	
00		DE CTONANY DECENDENTS CONT TRATTES DANS CHAONIL CAS
70	11	ADMITTENDMITEL
74	14	$T_{S}(N)/MT_{CT}$ (5) COTO 23
73		PDTNT SQ NIMIT
77	C	TNITTALISATION ON STENAL DIENTOLE
74	L	DO 10 I=1 N
75		CALL RANDOM () X1 Y1 N TOTST)
76		CALL RANDOM (IX2 Y2 N TOIST)
77		v=1.000
7.2		TEXTSHIF EQ. () $V = V / D E O A T (N)$
79		S=Y1++2+Y2++
0		$TE(DSQRT(S) = CE_V)$ GOTO 15
31		T = DCMPLX(Y1,Y2)
32		CALL ENTERC(T.X1(T), BIT1, BIT2, OVE1, OVE2)
83		TE((OVE1-NE-O)-OR-(OVE2-NE-O)) GOTO 11
34		$x^{2}(1) = x^{4}(1)$
25	10	CONTINUE
80	r c	CALCUL DES REQUITATS SUPPOSES CORRECTS
37	C	CALL FETDIT(X1.M)
RR	C	CALCHE DES RESULTATS DAR L'ARTTHMETTONE EN VIRCH E ETYE
20	C	CALL NTTETN(V) M TEDD TOHTE BIT MONEN
00		$\mathbf{r} = (1 \in \mathbf{P} \setminus \mathbf{P} = \mathbf{O}) = (1 \in \mathbf{T} \cap \mathbf{T}$
91	C	CORRECTION DES RESULTATS QUAND IL Y A EU DES DEPLACEMENTS
92	C	IF(ISHIF, EQ. 0) GOTO 19
2 C		16 t=1 N
91		$Y_{1}=DREAL(Y_{2}(1))*N$
95		$Y = DTMAG(X = (1)) \times N$
96		$X^2(T) = D(MPLX(Y^1, Y^2))$
07	14	CONTINUE
93	C	CALCUL ET IMPRESSION DES RESULTATS EXPERIMENTAUX
20	19	v1=0.000
100	. /	Y2=0 000
100		

1. A. A.

101	DO 12 I=1.N
102	$x_{2}(I) = x_{2}(I) - x_{1}(I)$
103	Y1=Y1+CDABS(X1(I))**2
104	Y2=Y2+CDABS(X2(1)) **2
105 12	CONTINUE
104	NSR=Y2/Y1
107	V = Y 2 - LIU
103	RAF=LIU/Y1
109	S=NSR-RAP
110	PRINT 88, Y1, Y2, V, RAP, NSR, S
111	GOTO 14
112 C	IMPRESSION DES MESSAGES D'ERREUR
113 11	PRINT 90,I
114	GOTO 14
115 15	PRINT 91,I
116	GOTO 14
117 23	CONTINUE
113	GOTO 17
119 70	FORMAT(315)
120 72	FORMAT(213)
121 00	FORMAT(1H1,49X, ERREURS NUMERIQUES DANS LA T.F.R. ,
122	C2(/,50X,33('*')),5(/,1X),'*',/,1X,'* ',
123	C'MODE DE DISCRETISATION :")
124 81	FORMAT(1X, '*', 10X, 'TRONCATURE', /, 1X, '*')
125 82	FORMAT(1X, '*', 10X, 'ARRONDI ALEATOIRE', /, 1X, '*')
126 83	FORMAT(/1x,2(/1x,**), TRAITEMENT SANS DEPLACEMENT ,/1x, *)
127 04	FORMAT(/1x,2(/1x,'*'), TRAITEMENT AVEC DEPLACEMENT',/1x,'*')
123 35	FORMAT(/1X,2(/1X,**), NOMERE D'ECHANIILLONS',14,/1X,**)
129 80	FORMAT(/TX, 2(/TX, **), LONGUEUR DES NOMBRES : ,15,
130	
131 01	FORMAT(///X, 2(/1X, **'), PUISSANCE THEORIQUE DU BRUIT',
132	
133 00	FORMAT(//1X, "PUISSANCE DU SIGNAL :", D32.16,/1X,
134	CPUISSANCE DU BRUIT : ,D34.15,TUX, DIFFLKENCE : ,
135	CITE CORTONE AL ART AL AND ADDEL AL NON AL SON
150	(THEORIQUE : ,033.10,75%, KEEL : ,030.10,39%,
138 80	= OPMAT(5(1 + 1)) = OONNEES NUMEROF T(1 + 1))
120 00	ENDMAT(5(/ $1_{\rm Y})$) (AVED ELOW AE ENTEDO DAND FUTTATOET TE)
140 01	EORMAT(5(/ 1x) 'IE MODILE DU 'I''-EME ELEMENT EST > $OU = 1$ ')
1/1 12	STOP
142	END
143	
I T W	

		a second s	142
4		SUSPOLITINE & THINLY M LEEP ISHIE SIT MODE)	
2	C	SOBROOTINE DITOINCA, M, SERR, ISHIP, SIT, NOVE,	
3	č	CE SOUS-PROGRAMME EST DESTINE A CALCULER LA TER	
4	C	PAR L'ARITHMETIQUE EN VIRGULE FIXE	
5	С		
6	С	TARLE DES VARIABLES	
7	С	*** * * * * * * * * * * * * * * * * *	
S	С	NOP TYPE POLE	
9	С		
10	С	X (C16) SIGNAL D'ENTREE ET RESULTATS DE LA	IFR
11	C	U,W C13 COEFFICIENTS MULTIPLICATIES	
14	C	N 14 NUMBRES D'ECHANTILLUNS DE LA TER	
15	C	M 14 NUMBRE D'ETAGES DE LA TER TOUTE T/ VALLE 1 C'ETAGES DE LA TER	
14	c	A CHAQUE ETAPE ET O SINON	
16	C	MODE I4 MODE D'ARRONDI OU DE TRONCATURE	
17	C	BIT 14 LONGUFUR DES NUMBRES TRAITES PAR	
18	c	L'ARITHMETIQUE EN VIRGULE FIXE	
19	С		
20		COMPLEX*16 X(1), U, W, T, S	
21		REAL*8 X1, X2, V, R1, R2, EPS	
22		REAL*8 PI,AROI,ARO2	
23		INTEGER BIT, JITI, BIT2, OVF1, OVF2	
24		EPS=1.0-13	
20		$N = 2 \pi \pi M$ $P T = A = D (\pi + D A T A M (1 + D G))$	
20	C	INVERSION DH SIENAL D'ENTREE	
23	Ŭ	CALL INVETN(X.N)	
29	С	CALCUL DES ETAGES DE LA TER	
30		DO 30 L=1,M	
31	С	EXECUTION 053 DEPLACEMENTS	
32		IF(ISHIF.EQ.O) GOTU 13	
33		IERR=-1	
34		V=0.5000	
35		MODESH=16	
20		CALL INIT(BIT, MODLSH)	
31		X = D = A = (X = A)	
30		$y_2 = DTMAG(y(K))$	
40		CALL PRODUICX1, V, R1, APO1, OVE1)	
41		CALL PRODUCT (x 2 . V. R. C. ARO2. OVE2)	
42		IF((OVF1.NE.O).OR. (OVF2.NE.O)) GOTO 11	
43		X(K) = DCMPLX(R1,R2)	
44	16	CONTINUE	
45	13	LE=2**L	
46			
47			
40	C	W=DUMPLX(DUCS(PI/DFLOAT(LET)),-DSIN(PI/DFEOAT(LET)))	
49	L	DO 20 1-1 LET	
50			

51		00 10 I=J-N-LE
52		IP=I+LE1
53		IFRR=0
54		CALL PROCPL(X(IF), U, T, ARO1, ARO2, OVF1, OVF2, EPS)
55		IF((0VF1.NE.0).0R.(0VF2.NF.0)) GCTO 12
56		T=-T
57		1000-1
53		$CALL ADD(PL(\lambda(1) T X(1P) OVE1 OVE2)$
50		$\mathbf{T} \mathbf{E} \left((\Delta \mathbf{V} \mathbf{E}^{\dagger} \mathbf{N} \mathbf{E} \mathbf{O}) \right) = \left((\Delta \mathbf{V} \mathbf{E}^{\dagger} \mathbf{N} \mathbf{E} \mathbf{O}) \right) = \left((\Delta \mathbf{V} \mathbf{E}^{\dagger} \mathbf{N} \mathbf{E} \mathbf{O}) \right)$
29		T-T
60		11 TERR-2
27		CALL ADDCRL(Y(T) T = OVET (VE2)
01		$\mathbf{T}_{\mathbf{F}}(\mathbf{O}\mathbf{V}_{\mathbf{F}}^{\mathbf{F}}) = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V} = \mathbf{O}\mathbf{V}$
55		Y(1)-C
04	10	CONTINUE
46	10	
67	C	DEINITIALISATIAN SES COECTOTENTS NO TIDITCATTES
01	L	RELATION DES COCPECTENTS MOLTEPLICATION
00		R = DREAL(U)
09		K = -0 IMAG(0)
10		$r(R_{0}, 0) = 0$ (0) $R_{1}^{2} = R_{1}^{2}$
2		
77		
71	17	I_{r} (PA (T ELC) (T_{r} 20
14	11	
12		P 2-1 000
10		
11	20	$\frac{1}{R} \left(\frac{1}{R} \right) \left(1$
70	20	
20	10	DETURN
30	10	
27	: 1	
02		
22		PRINT OF, K, LENK RETURN
25	17	IERR=2
25	1	
00		
01		PRINT 80,L, IP, I, IEKK
00	25	RETURN RETURN
09	35	FURMATION, TX7, G(-\$-), OVERTLOW DANS DIBIN ', G(-\$-)//)
90	00	CIELEMENT NUMERO 1 TA AX TA 10X LIERD - 1 TA/Y
91	27	CONSTANT NUMERO $-14,40,14,100,100,-1700 = 17/4$
96	37	$\frac{1}{1}$
7.5		

1		SUBROUTINE FFTDIT(X,M)	
2	С		
ذ	С	CE SOUS-PROGRAMME EST DESTINE A CALCULER LES RESULTATS	
4	С	SUPPOSES EXACTS	
5	С		
6	С	TABLE DES VARIABLES	
7	С	***	
S	С	NOM TYPE ROLE	
9	С		
10	C	X (C16) SIGNAL D'ENTREE ET RESULTATS DE LA TER	
11	Č	U.W C16 COEFFICIENTS MULTIPLICATIES	
12	č	N I4 NOMBRES D'ECHANTILLONS DE LA TER	
15	C	M 14 NOMBRE D'ETAGES DE LA TER	
14	C		
15	U	COMPLEX*16 X (1024) . U.W.T	
16		REAL #8 R1_R2_EPS	
17		REAL *8 PT	
18		FPS=1.0-13	
10		N=2**M	
20	С	INVERSION DU SIGNAL D'ENTREE	
21		CALL INVEIN(X.N)	
22		$PT=4$, $DO \neq DATAU(1,00)$	
23	C	CALCUL DES ETAGES DE LA TER	
24	C	00 30 I = 1. M	
25		1 F= 2 ** 1	
26		1 = 1 = 1 = 1 = 2	
27		I = (1, 0, 0, 0, 0)	
28		$W = DCMPL \times (DCCS(PI/WELOAT(IE1)) - DSIN(PI/DELOAT(IE1)))$	
29	C	CALCHE DES "PAFILLONS"	
30	U	$20 \ 20 \ J=1 \ LF1$	
31		DO 10 I=J.N.IE	
32		TP=T+1F1	
33		$T = \chi (TP) \neq U$	
34		Y(IP) = Y(I) - T	
35	10	X(T) = X(T) + T	
36			
37	C	REINITIALISATION LES COEFFICIENTS MULTIPLICATIES	
33		R1=ORFAL(U)	
39		R2=DIMAG(U)	
40		IF(R2.GT.EPS) GUTO 17	
41		IF(R1.LT.0.DU0) R1=-R1	
42		R1=1.000	
43		R2=0.000	
44	17	IF(R1.GT.EPS) GUTU 20	
45		R1=0.000	
46		R?=1.000	
47		$IF(R_{2}-LT_{0},0.00) R_{2}=-R_{2}^{2}$	
6.2	20	CONTINUE	
40	30	CONTINUE	
50		RETURN	
51		END	
22			

1	C	SUBROUTINE PROCPL(X,Y,Z,APOZ1,AROZ2,OVFZ1,OVFZ2,EPS)	
3	č	CE SOUS-PROGRAMME EST DESTINE A EFFECTUER LES PRODUITS	PAR
4	С	LES COEFFICIENTS NULTIPLICATIFS DE LA TER	
5	С	IL SE BASE SUR LE SOUS-PROGRAMME PRODUI(X, Y, Z, ARO, OVF)	
U	С	AVEC: Z RESULTAT DU PRODUIT DE X PAR Y	
7	С	ARO ERREUR D'ARRONDI OU DE TRONCATURE	
3	С	OVE INDIQUE LES DEPASSEMENTS	
.9	C		
10		COMPLEX*16 X,Y,Z	
11		REALTS AROLI, ARULL, XI, XC, YI, YC, LI, LC, II, IL, ARUI, ARUL	
12		INTEGER OVEZ 1 OVEZ OVEL OVEZ	
14		INTEGER BIT. JVE	
15		QVFZ1=0	
16		OV FZ 2=0	
17		ARCZ1=0	
13		AR 0 Z 2=0	
19		x1=DREAL(X)	
50		X = 0 IMAG(X)	
21		Y1=DREAL(Y)	
22	6	Y2=DIMAG(Y)	
20	C	tests poor eviler d'erfectuer des multiflications par	
25	L	TE(DABS(DAES(YT)-T, DO) T, EES) GOTO 10	
26		$IF(DABS(DABS(Y_{1}) - 1, DO) - IT_EPS) GOTO 11$	
27	C	CALCUL DE LA PARTIE REELLE	
28	Ū	CALL PRODUICX1, Y1, T1, ARO1, CVF1)	
29		CALL PRODUI(X2,Y2,T2,ARO2,OVF2)	
30		IF((OVF: NE.O).OR. (OVF2.NE.O)) PRINT 33	
31		$T_{2} = -T_{2}$	
32		AROZ1=ARO1+ARO2	
33		CALL ADD(T1,T2,Z1,OVFZ1)	
34	~	IF (OVFZ1.NE.O) PRINT 80	
25	C	CALLUL DE LA FARILE IMAGINAIRE	
37		CALL PRODUCT(X, L, L, L, AROT, OVEN)	
32		AP072=AR01+AR02	
39		CALL ADD $(T1, T2, 72, 0)$	
40		IF (OV F72.NE.O) FRINT 81	
41		Z = DCMPLX(Z1, 22)	
42		RETURN	
43	С	MULTIPLICATIONS PAR + OU - 1 , + OU - J	
44	10	IF(Y1) 12,13,14	
45	12	T1=-X1	
46		T2=-X2	
47		Z = DCMPLX(T1, T2)	
48	1 7		
49	15		
20		KETUKN	

51	14	$Z = DCMPLX(X1, \lambda2)$
52		RFTURN
53	11	IF(Y2) 15,13,17
54	15	T1=X2
55		$T_{2}^{2} = -X_{1}^{2}$
56		Z = DCMFLX(T1, L2)
57		RETURN
53	17	$T_{1} = -X_{2}^{2}$
59		T?=X 9
00		$Z=DCMPLX(T^{1},T^{2})$
61		RETURN
62	30	FORMAT(/1x,5('\$'),'OVERFLOW DU PRODUIT DS DREAL',5('\$')/)
63	81	FORMAT(/1x,5('\$'), 'UVERFLOW DU PRODUIT DS DIMAG',5('\$')/)
64	83	FORMAT(/1X,5('\$'),'OVERFLOW DU PRODUIT DS CALCUL',5('\$')/)
65	34	FORMAT(/1x,5('\$'), 'INCOMPATIBILITE DU PTODUIT',5('\$'),2030,16/)
66	-	END
67		

1		SUBROUTINE AJDCPL(X, Y, Z, OVF1, OVF2)
2	С	
3	С	CE SOUS-PROGRAMME EST DESTINE A CALCULER LA SOMME
4	С	DE DEUX NOMBRES CUMPLEXES A PARTIR DU SOUS-PROGRAMME
5	С	ADD(X,Y,Z,OVF)
5	C	AVEC Z SUMME DE X ET Y
7	С	OVE INDIQUE LES DEPASSEMENTS
3	С	
9		COMPLEX*16 X.Y.Z
10		REAL*3 X1.X2.Y1.Y2.Z1.Z2
11		X1 = OPEAL(X)
12		x2=DIMAG(X)
13		Y1=DREAL(Y)
14		Y2=DIMAG(Y)
15	С	CALCUL DE LA PARTIE REELLE
10		CALL ADD(X1,Y1,Z1,OVF1)
17		IF(OVF1.NE.O) PRINT 80
13	C	CALCUL DE LA FARTIE IMAGINAIRE
19		CALL ADD(X2, Y2, 22, OVF2)
20		IF(OVF2.NE.O) PRINT 81
21		Z = DCMPLX(Z1,Z2)
22	20	FORMAT(/1x,5('\$'), UVERFLOW D''ADD DS DREAL'5('\$')/)
23	15	FORMAT(/1X,5('\$'), 'OVERFLOW D''ADD DS DIMAG'5('\$')/)
24		RETURN
25		END
26		
1		SUBROUTINE ENTERC(X,X0,BIT1,BIT2,OVF1,OVF2)
----	----	---
2	С	
3	С	CE SOUS-PROGRAMME PERMET DE REPRESENTER UN NOMBRE COMPLEXE
4	С	EN VIRGULE FIXE A L'AIDE DU SOUS-PROGRAMME ENTER(X, XD, BIT, OVF)
5	С	AVEC X NOMBRE A TRAITER
6		XD RESULTAT EN VIRGULE FIXE
7	С	OVE INDIQUE LES DEPASSEMENTS
3	С	
9		COMPLEX*16 X,XD
10		REAL*8 X1, X2, X10, X20
11		INTEGER BIT1, BIT2, OVF1, OVF2
12		X^{1} =DREAL(X)
13		X 2= DIMAG(X)
14	С	TRANSFOR ATION DE LA PARTIE REELLE
15		CALL ENTER(XI,XID,BIT1,OVF1)
16		IF(OVF1.NE.O) PRINT 80
17	С	TRANSFORMATION DE LA PARTIE IMAGINAIRE
13		CALL ENTER(X2,X2D,BIT2,OVF2)
19		IF(OVF2.NE.O) PRINT 81
20		xD = DCMPLx(x1), x2D)
21	00	FORMAT(/1x,5('\$'), 'UVERFLOW DS ENTER DE DREAL'5('\$')/)
22	81	FORMAT(/1X,5('\$'), 'OVERFLOW DS ENTER DE DIMAG'5('\$')/)
23		PETURN
24		END
25		
26		

12	с	SUBROUTINE INVEIN(X,N)		
3	C	CE SOUS-PROGRAMME PERMET D'INVERSER UN TABLEAU C	OMDIEVE	v
4	С	DE N COMPOSANTES	UNFLEXC	^
5	Ċ.	be a com comine		
6 7		COMPLEX*16 X(1),T NV?=N/2		
3		NM ? = N - 1		
9		J = 1		
10		00 7 I=1,NM1 IF(I.GE.J) GUTU 5		
12		T=X(J)		
13		X(1) = X(1)		
14		X(I) = T		
15	5	K=NV ?		
16	0	IF(K.GF.J) GUTC 7		
17		1=1-K		
18		K = K/2		
19		COTO 5		
20	7			
21	1	RETURN		
22		END		
23		P. M. M.		

1 2 C	SUBROUTINE RANLOM(IX, YFL, N, IOIST)
3 C 4 C	CE SOUS-PROGRAMME PERMET D'OUTENIR LES NOMBRES ALEATOIRES
5	REAL*3 YFL
ó	1X=1X*65539
7	IF(IX.GE.O) GOTU o
3	IX = IX + 2147483647 + 1
9 6	YFL=OFLOAT(IX)
10	YFL=YFL*0.45503136-09
11 12	IF(IDIST.EQ.0) YFL=(YFL*2.000-1.000)/DSQRT(2.000) IF(IDIST.EQ.10) YFL=(YFL*2.000-1.000)/(DSQRT(2.000)*N)
13 14	RETURN END
15	

5.2 RESULTATS NUMERIOUES POUR LA VIRGULE FLOTTANTE

Ce chapitre présente la manière dont on a implémenté certains algorithmes de la Transformée de Fourier Rapide sur ordinateur et commente les résultats numériques obtenus pour les valeurs théoriques et expérimentales des rapports bruit à signal pour ces algorithmes. On propose en fin de chapitre une annexe dans laquelle sont présentées les différentes listes des programmes et sous-programmes FORTRAN utilisés.

Les résultats numériques de ce chapitre ont été obtenus sur l'ordinateur Siemens 4004, avec les hypothèses expérimentales suivantes :

- seules les opérations arithmétiques exécutées en simple précision sont des sources d'erreur,
- H : les valeurs obtenues et exprimées en double précision sont supposées exactes.

De plus, comme cet ordinateur utilise le mode de troncature pour les opérations arithmétiques en simple précision, seules les valeurs théoriques proposées en (4.11), (4.16) et (4.21) ont pu être comparées à des valeurs expérimentales. C'est pour cette raison que l'on a programmé uniquement les algorithmes de la Transformée de Fourier Rapide dans le cas où $N = 2^{M}$.

Ces algorithmes ont été programmés en langage FORTRAN : SDIT Algorithme de Coolev et Tukey

avec exécution des opérations arithmétiques en simple précision,

DDJT Algorithme de Cooley et Tukey avec exécution des opérations arithmétiques en double précision,

SDIF Algorithme de Sande et Tukev avec exécution des opérations arithmétiques en simple précision,

DDIF Algorithme de Sande et Tukey avec exécution des opérations arithmétiques en double précision.

Remarques_:

1- Ces algorithmes n'ont pas été implémentés de manière à minimiser le temps de calcul ou la place utilisée en mémoire, mais plutôt de manière à s'identifier le mieux possible aux figures présentées au chapitre 1 :

SDIT et DDIT s'identifient à la figure 2,

SDIF et DDIF s'identifient à la figure 3.

2- Ces algorithmes ont été programmés de manière à pouvoir exécuter aussi bien la transformée inverse que la transformée directe.

3- A l'entrée de ces algorithmes, on suppose que le tableau des résultats a été initialisé au tableau des données.

Les hypothèses H, énoncées ci-dessus, conduisent à la démarche suivante pour comparer les valeurs théoriques et expérimentales du rapport bruit à signal :

soient X,Y,W,Z quatre tableaux de nombres complexes en double précision :

- on évalue les espérances et les variances des erreurs locales en double précision,

- on évalue les bornes théoriques en double précision,

- le tableau Y est la transformée du tableau X, effectuée en simple précision (algorithme SDIT ou SDIF),

- le tableau Z est la transformée du tableau W = X, effectuée en double précision (algorithme DDIT ou DDIF),

- on calcule la valeur théorique du rapport bruit à signal en utilisant les valeurs des tableaux W et Z et en exécutant les opérations arithmétiques en double précision,

- on calcule la valeur expérimentale du rapport bruit à signal, à savoir

$$\frac{\sum_{k=0}^{N-1} |Z(k) - Y(k)|^2}{\sum_{k=0}^{N-1} |Z(k)|^2}$$

en exécutant les opérations arithmétiques en double précision.

A ce stade, il faut encore remarquer que le problème, tel qu'il a été posé au chapitre 4, suppose que les données de l'algorithme sont représentées exactement sur l'ordinateur, de même que les facteurs multiplicatifs intervenant dans l'algorithme. On doit donc :

- considérer le tableau X en simple précision et le tableau W en double précision,

- évaluer les facteurs multiplicatifs en double précision.

Toutes ces considérations ont permis d'établir trois programmes FORTRAN :

1- Le programme DITDIF traite le cas général :

pour M=2,3,...,9, on évalue

- les bornes données en (4.13),

- les valeurs théoriques des rapports bruit à signal donnés en (4.11) et (4.16),

- les valeurs expérimentales des rapports bruit à signal pour un algorithme de Cooley et Tukey et pour un algorithme de Sande et Tukey quand $N = 2^{M}$.

Les résultats de ce programme sont présentés dans les tableaux 2 et 3.

2- Le programme FFT traite le problème particulier (4.18) : on considère des données complexes dont les parties réelles et imaginaires forment des suites pseudo-aléatoires distribuées uniformément entre -1 et +1.

Pour M=2,3,...,9, on évalue

- la valeur théorique du rapport bruit à signal donné en (4.21),

- la moyenne de 50 valeurs expérimentales du rapport bruit à signal pour l'algorithme de Cooley et Tukey et pour l'algorithme de Sande et Tukey quand $N = 2^{"}$.

Les résultats de ce programme sont présentés dans le tableau 4.

Pemarque :

Pour chaque valeur de M, les 50 valeurs expérimentales pour chaque algorithme sont peu dispersées. Aussi présente-t-on ici uniquement la moyenne de ces 50 valeurs, ce qui permet d'alléger fortement le texte, sans toutefois perdre trop d'information.

3- Le programme ARROND traite le cas d'arrondi : pour M=2,3,...,9, on évalue

- les bornes données en (4.12),

- la valeur théorique du rapport bruit à signal donné en (4.20).

Les résultats de ce programme sont comparés à ceux des deux autres dans les tableaux 5 et 6.

L'analyse des tableaux 2,3 et 4 conduit aux considérations suivantes :

- les valeurs expérimentales sont comprises entre les bornes théoriques, sauf dans le cas où N=4,

- les valeurs expérimentales sont du même ordre de grandeur que les valeurs théoriques, mais elles sont affectées d'un coéfficient généralement supérieur,

- les valeurs expérimentales pour l'algorithme de Sande et Tukey sont généralement plus élevées que celles pour l'algorithme de Cooley et Tukey, quoique la théorie prévoie le contraire,

- toutes ces valeurs croissent avec le nombre de points N; en parcourant les tableaux de M=2 à M=9, on passe d'un ordre de grandeur au suivant,

- pour N=4, les deux algorithmes sont les mêmes, ce qui explique le fait que les valeurs expérimentales soient rigoureusement les mêmes,

- la théorie développée pour le problème particulier (4.18) semble mieux épouser la réalité que la théorie développée dans le cas général.

A l'analyse des tableaux 5 et 6, on constate que la théorie prévoit des valeurs pour le rapport bruit à signal nettement moins élevées dans le cas d'arrondi que dans le cas de troncature.

Parmi les explications possibles de l'écart entre les valeurs expérimentales et les valeurs théoriques, on note que :

- la valeur de p, a peut-être été mal évaluée,

- les effets de second ordre ont été négligés dans la théorie développée au chapitre 4,

- les hypothèses générales d'indépendance à propos des erreurs locales ne sont pas vérifiées,

- les valeurs considérées comme exactes ne le sont pas en réalité puisque la double précision est également source d'erreurs,

- on n'a pas tenu compte de toutes les multiplications sans erreur pour établir les expressions (4.11) et (4.16).

N	BORNES		VALEURS	VALEURS	
N	INFERIEURES	SUPERIEURES	THEORIQUES	EXPERIMENTALES	
4	.3735428746D-13	.3735428746D-13	.3735428746D-13	.4008281573D-12	1
8	.6305043688D-13	.2102753356D-12	.2090486123D-12	.1180268259D-12	
16	.9342592342D-13	.5162975287D-12	.2439830681D-12	.1186920972D-12	
32	.1284807470D-12	.9554208667D-12	.3142197481D-12	.3304829053D-12	
64	.1682149078D-12	.1527645349D-11	.3746213838D-12	.2948374578D-12	
128	.2126284058D-12	.2232970977D-11	.4391836430D-12	.6029845392D-12	
256	.2617212408D-12	.3071397749D-11	.5087739677D-12	.9598387510D-12	
512	.31549341300-12	.4042925667D-11	.5839905678D-12	.1654666552D-11	

Tableau 2. Tableau comparatif des rapports bruit à signal dans le cas général pour l'algorithme de Cooley et Tukey.

N	BORNES		VALEURS	VALEURS	
N	INFERIEURES	SUPERIEURES	THEORIQUES	EXPERIMENTALES	
4	.3735428746D-13	.3735428746D-13	.3735428746D-13	.4008281573D-12	
8	.6305043688D-13	.2102753356D-12	.1686414842D-12	.1314349838D-12	
16	.9342592342D-13	.5162975287D-12	.1913735459D-12	.1395671287D-12	
32	.1284807470D-12	.9554208667D-12	.2283043369D-12	.3796501186D-12	
64	.1682149078D-12	.1527645349D-11	.3009494837D-12	.4259324767D-12	
128	.2126284058D-12	.2232970977D-11	.3408688551D-12	.6678435809D-12	
256	.2617212408D-12	.3071397749D-11	.4128168867D-12	.9680440401D-12	
512	.3154934130D-12	.4042925667D-11	.4674608783D-12	.1718619533D-11	

Tableau 3. Tableau comparatif des rapports bruit à signal dans le cas général pour l'algorithme de Sande et Tukey.

N	VALEURS	VALEURS EXP	ERIMENTALES
N	THEORIQUES	DIT	DIF
4	.1298114004D-12	.1459438982D-12	.1459438982D-12
8	.2516537193D-12	.3173777318D-12	.3474280863D-12
16	.2404350981D-12	.5285683278D-12	.6219354588D-12
32	.4845860558D-12	.6888954767D-12	.8901062311D-12
64	.7801239795D-12	.8266575789D-12	.1061714493D-11
128	.1118121642D-11	.9672078757D-12	.1345874405D-11
256	.1294596433D-11	.1342969910D-11	.1872969349D-11
512	.1726440802D-11	.2115981261D-11	.2622420141D-11

Tableau 4. Tableau comparatif des rapports bruit à signal pour le problème particulier (4.18).

N		BORNES INFERIEURES		BORNES SUPERIEURES		
		ARRONDI	TRONCATURE	ARRONDI	TRONCATURE	
	4	.8168737584D-14	.3735428746D-13	.8168737584D-14	.3735428746D-13	
	8	.1225310637D-13	.6305043688D-13	.2995203781D-13	.2102753356D-12	
	16	.1633747516D-13	.9342592342D-13	.5173533803D-13	.5162975287D-12	
	32	.2042184396D-13	.1284807470D-12	.7351863826D-13	.9554208667D-12	
	64	.2450621275D-13	.1682149078D-12	.9530193848D-13	.1527645349D-11	
	128	.2859058154D-13	.2126284058D-12	.1170852387D-12	.2232970977D-11	
	256	.3267495033D-13	.2617212408D-12	.1388685389D-12	.3071397749D-11	
	512	.3675931913D-13	.3154934130D-12	.1606518391D-12	.4042925667D-11	

Tableau 5. Tableau comparatif des bornes pour le rapport bruit à signal en cas d'arrondi et de troncature.

N	VALEURS	THEORIQUES
14	ARRONDI	TRONCATURE
4	.4084368792D-14	.1298114004D-12
8	.1225310637D-13	.2516537193D-12
16	.1633747516D-13	.2404350981D-12
32	.3812077539D-13	.4845860558D-12
64	.4220514418D-13	.7801239795D-12
128	.6398844441D-13	.1118121642D-11
256	.6807281320D-13	.1294596433D-11
512	.8985611343D-13	.1726440802D-11

Tableau 6. Tableau comparatif des valeurs théoriques du rapport bruit à signal pour le problème (4.18) en cas d'arrondi et de troncature. En conclusion de ce chapitre, on peut estimer cette théorie assez satisfaisante puisqu'elle permet de trouver l'ordre de grandeur du rapport bruit à signal, qui est en quelque sorte une estimation moyenne du carré du module de l'erreur relative sur un élément du résultat à la sortie de l'algorithme. On a en effet pour le problème particulier (4.18) :

$$\frac{\sum_{k=0}^{N-1} E\{|y'(k)-y(k)|^2\}}{\sum_{k=0}^{N-1} E\{|y(k)|^2\}} = \frac{\frac{1}{N} \cdot \sum_{k=0}^{N-1} E\{|y'(k)-y(k)|^2\}}{N \cdot N_0}$$

$$\frac{|y'(.) - y(.)|^2}{|y(.)|^2}$$

ANNEXE

Programmes et sous-programmes FORTRAN

PROGRAM DITDIF CE PROGRAMME COMPARE LES VALEURS THEORIQUES ET EXPERIMENTALES DU RAPPORT BRUIT A SIGNAL POUR LES ALGORITHMES FFT DANS LE CAS OU h = 2 tranu.TABLE DES VARIABLES PRINCIPALES VARIABLE TYPE SIGNIFICATION TAPLEAU D'ENTREE DE LA TRANSFORMEE W COMPLEX#16 Z COMPLEX#16 TABLEAU DE SORTIE DE LA TRANSFORMEE TABLEAU D'ENTREE DE LA TRANSFORMEE Х COMPLEX#8 TAULEAU DE SORTIE DE LA TRANSFORMEE Y COMPLEX#8 N INTEGER NOMERE DE POINTS DE LA TRANSFORMEE Т INTEGER LE NOMERE DE CHIFFRES DE LA MANTISSE INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE SI FAUX, ALORS TEANSFORMEE DIRECTE PI LE NOMBRE PI REALS XI LA BASE DE L'ORDINATEUR REAL \$8 DELTAF REAL#8 ESPERANCE D'UNE ERREUR DE MULTIPLICATION DELTAP REAL#8 ESPERANCE D'UNE ERREUR D'ADDITION DELT2F REALto VARIANCE D'UNE EFREUR DE MULTIPLICATION DELT2P REAL#8 VARIANCE D'UNE ERREUR D'ADDITION NSRDTI REAL #8 VALEUR THEORIQUE DU RAPPORT BRUIT A SIGNAL POUR LA DIT NSRDFI REALS VALEUR THEORIQUE DU RAPPORT ERUIT A SIGNAL POUR LA DIF NSRDIT REAL #8 VALEUR EXPERIMENTALE DU RAPPORT BRUIT A SIGNAL POUR LA DIT NSRDIF REAL \$8 VALEUR EXPERIMENTALE DU RAPPORT BRUIT A SIGNAL POUR LA DIF BI REAL #8 BORNE INFERIEURE DONNEL EN (4.13) ES REAL #8 BORNE SUPERIEURE DONNEE EN (4.13) COMPLEX #8 x(1024), Y(1024) COMPLEX #16 W(1024), Z(1024) REAL *8 E,F,NSRDIT,NSRDIF,DELTAF,DELTAP,DELT2F,DELT2P,XI,LN,PO,PI REAL #8 D,G,H,NSRDTI,NSRDFI REALWS BI,BS INTEGER T.FI DIMENSION FI(1024) FI=3.1415926535897932 CALCUL DES ESPERANCES ET DES VARIANCES DES ERREURS LOCALES

1

7 C

8 C 9 C 10 C

11 C 12 C

13 C 14 C

15 C

16 C

17 C

18 C

19 C

21) C

21 C

22 C

23 C

24 C

25 C

27 C

28 C

29 C

30 C

31 C

32 C

33 C

34 C

35 C

36 C

38 C 39 C 40 C 41

37 C

42

43

44

45

46

47

48

49 C 50 C

20 C

5 C

```
165
  51 C
  52
             XI = 16 -
  53
            LN=DLOG(XI)
  54
            T = 6
  55
            P0=7-7
  56
            DEL TAF=-(XI-1)/(2*LN*(XI**T))
  57
            DELTAP= (1-PO) *DELTAF
  58
            DELT2F= (XI *#2-1)/(6*LN#(XI 4*(2*T)))
  59
            DELT2P=(1-PO) *DELT2F
  60
            DELT2F=DELT2F-(DELTAFw#2)
  61
            DELT2P=DELT2P-(DELTAP##2)
  62
            00 009 NU=2.9
  63
            N=2 **NU
  64
            00 001 K=1,N
  65
            FI(K) = IFT(K-1, NU)
  66
      001
            CONTINUE
  67
            READ(25)(X(J), J=1, N)
  68 C
  69 C
            CALCUL DES BORNES
  70 C
  71
            EI=NU #DEL T2P+ (NU ##2) # (DEL TAP # 2)
  72
            FS= (NU-2) &DEL T2F+(2 &NU-2) &DEL T2P+((NU-2) &DEL TAF+(2 &NU-2) &DEL TAP) **
  73
           12
  74 C
            CALCUL D'UN RAPPORT BRUIT A SIGNAL THEORIQUE ET DE SON
  75 C
            CORRESPONDANT EXPERIMENTAL POUR LA DIT
 76 C
 77 C
 78
            00 003 J=1,N
 79
            Y(J) = X(J)
 80
           W(J) = COBLE(X(J))
 81
           Z(J) = W(J)
 82
     003
           CONTINUE
 83
           CALL SDIT(NU, X, Y, N, PI, .FALSE .)
 84
           CALL DDIT(NU, W, Z, N, PI, . FALSE .)
 85
           D = 0.
 36
           E=0.
 87
           F=0.
 88
           6=0.
 89
           H=0.
 90
           00 004 K=1,N
 91
           D=D+FI(K)*(CDABS(W(K)))+*2
 92
           E=E+(CDABS(CDBLE(Y(K))-Z(K))) ##2
 93
           F=F+(CDABS(Z(K))) ##2
           C=G+((FI(K)*(DELTAF+DELTAP)+NU*DELTAP)**2)*((CDABS(W(K)))**2)
 94
 95
           H=H+(CDABS(W(K))) ##2
 96
     004
           CONTINUE
 97
           NSRDTI=NU*DELT2P+(DELT2P+DELT2F)*D/H+C/H
98
           NSKDIT=E/F
99 C
100 C
           CALCUL D'UN RAPPORT BRUIT A SIGNAL THEORIQUE ET DE SON
```

101	c c	CORRESPONDANT EXPERIMENTAL POUR LA DIF
103		00 005 J=1.N
104		Y(J) = X(J)
105		Z(J) = W(J)
106	065	CONTINUE
107		CALL SDIF (NU, X, Y, N, PI, FALSE)
108		CALL DDIF(NU, W.7. N. DT. FALSE
109		D=C.
110		E = 0 •
111		F=().
112		6=0.
113		DC 006 K=1,N
114		D=D+FI(K)*(CDABS(Z(K))) and 2
115		E = E + (CDABS(CDBLE(Y(K)) - 7(K))) = 0
116		F=F+(CDA3S(Z(K))) ##2
117		G=G+((FI(K) *(DELTAF+DELTAP)+NU *DELTAP)+*?) ((CONTACT A D)
118	006	CONTINUE
119		NSRDIF=E/F
120	<u>^</u>	NSRDFI=NU &DELT2P+ (DELT2P+DELT2F) *D/F+C/F
422	L C	
122	C	IMPRESSIONS
121	C	
125	007	PRINT JIT, N, BI, BS, NSRDTI, NSRDIT, NSRDFI, NSRDTF
126	007	FORMATCHHI, NOMBRE DE POINTS', 14,////.1x. BORNE INFERTEURS
127		10, //, IX, BORNE SUPERIEURE ', D4U. 16, ////, 1X, 20X, VALEURE , D4U. T
128		25 CUX, VALEURS EXPERIMENTALES ./// 1x DIT 2040 14 /// 4
129	1100	S (2040-10,///)
30	007	CONTINUE
31		
		C M N

PROGRAM FFT

CE PROGRAMME COMPARE LES VALEURS THEORIGUES ET EXPERIMENTALES DU RAPPORT BRUIT A SIGNAL POUR LES ALGORITHMES FFT DANS LE CAS OU N = 2**NU.

ON CONSIDERE LE PROBLEME PARTICULIER DU BRUIT BLANC : LE FICHIER 25 CONTIENT DES NOMBRES COMPLEXES DONT LES PARTIES REELLES ET IMAGINAIRES SONT DISTRIBUEES UNIFORMEMENT SUR L'INTERVALLE (-1, +1).

TABLE DES VARIABLES PRINCIPALES

VARIABLE TYPE

SIGNIFICATION

W	COMPLEX#16	TABLEAU D'ENTREE DE LA TRANSFORMEE
Z	COMPLEX#16	TABLEAU DE SORTIE DE LA TRANSFORMEE
Х	COMPLEX #8	TABLEAU D'ENTREE DE LA TRANSFORMEE
Y	COMPLEX #8	TABLEAU DE SORTIE DE LA TRANSFORMEE
N	INTEGER	NOMBRE DE POINTS DE LA TRANSFORMEE
Т	INTEGER	LE NOMBRE DE CHIFFRES DE LA MANTISSE
INVERS	LOGICAL	SI VRAI, ALORS TRANSFORMEE INVERSE
		SI FAUX, ALORS TRANSFORMEE DIRECTE
PI	REAL #8	LE NOMBRE PI
XI	REAL #8	LA BASE DE L'ORDINATEUR
DELTAF	REAL#8	ESPERANCE D'UNE ERREUR DE MULTIPLICATION
DELTAP	REAL #8	ESPERANCE D'UNE ERREUR D'ADDITION
DELT2F	REAL#8	VARIANCE D'UNE ERREUR DE MULTIPLICATION
DELT2P	REAL #8	VARIANCE D'UNE ERREUR D'ADDITION
NSRDIT	REAL#8	D'ABORD : VALEUR THEORIQUE DU RAPPORT
		PUIS : MOYENNE DES VALEURS EXPERIMENTA-
		ROUTT & STONAL DOUD LA DIT
NSRDIE	REAL 28	D'ARORD : VALEUR THEORIQUE DU RAPPORT
	HERE U	PUTS - MOVENNE DES VALEURS EXPERIMENTA-
		LES DIL RAPPORT
		BRUTT A STENAL POUR LA DIE

COMPLEX#8 X(1024),Y(1024) COMPLEX#16 W(1024),Z(1024) REAL#8 E,F,NSRDIT,NSRDIF,DELTAF,DELTAP,DELT2F,DELT2P,XI,LN,PO,PI INTEGER T PI=3.1415926535897932

CALCUL DES ESPERANCES ET DES VARIANCES DES ERREURS LOCALES

167

1 2 C 3 C 4 C 5 C С 6 7 C 8 C 9 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 28 C 29 C 3D C 31 C 32 C 33 C 34 C 35 C 36 C 37 C 38 C 39 C 40 C 41 C 42 C 43 C 44 45 46 47 48 49 C 50 C

		168
51	C	
52		x I = 16.
53		LN=DLOG(XI)
54		T=6
55		PC=0.7
56		DELTAF=-(XI-1)/(2sLN=(XIdsT))
57		DELTAP=(1-PO) DELTAF
58		DELT2F=(XI **2-1)/(6*LN*(XI**(2*T)))
59		DELT2P=(1-PO) #DELT2F
60		DELT2F=DFLT2F-(DELTAFdo2)
61		DELT2P=DELT2P-(DELTAP##2)
62		DO 009 NU=2,9
63		N=2 sh an U
64	С	
65	С	CALCUL DE LA VALEUR THEORIQUE DU RAPPORT BRUIT A SIGNAL
66	С	
67		$NSRDIT=((NU-3)/2+2/N) \oplus DELT2F+((3 \oplus NU-3)/2+2/N) \oplus DELT2P+(NU \oplus 2)/4 \oplus ((1 \oplus NU \oplus 2)/2)$
68		TELTAF ##2)+6 #DELTAF#DELTAP+9 #DELTAP ##2)-NU/4 # (3 #DELTAF ##2+14 #DELTA
69		2 # DEL TAF+11 #DEL TAP # #2)+((DEL TAF+DEL TAP) # #2)/2
70		NSRDIF=NSRDIT
11	C	
12	C	IMPRESSIONS
13	C	DETET GOG N
75	660	FRINT UDO,N FORMATINY INCHERE DE DOTATE - 1 1/ // 49 07/1-10////
76	uuc	DETNT DIG NCOATT NODATE
77	010	FRINT STUNSEDIT, NORDIF
78	c	TORMATCHA, VALEORS THEORIQUES ,2(040.10)///)
79	c	CALCHE DE LA MOYENNE DE 50 PARRORTS RELIT À STONAL EXPERTMENTARY
80	c	Checol be en abrenite be su nationio broit a sidnae exterinentada
84	C .	NSPATTER
82		NSRDIF=]_
83		00.001 I=1.50
84		READ(25)(X(J), J=1, N)
85		DO 003 J=1.N
86		Y(J) = X(J)
87		W(J) = COBLE(X(J))
88		Z(J) = W(J)
89	003	CONTINUE
90		CALL SDIT(NU, X, Y, N, PI, FALSE.)
91		CALL DDIT(NU, W, Z, N, PI, FALSED)
92		E=0.
93		F = C.
94		DO 004 K=1,N
95		E = E + (COABS(CDBLE(Y(K)) - Z(K))) a w 2
96		F=F+(CDABS(Z(K))) **2
97	004	CUNTINUE
98		NSRDIT=NSRDIT+E/F
99		CO 005 J=1,N
100		Y(J) = X(J)

101		Z(J) = W(J)
102	005	CUNTINUE
103		CALL SDIF(NU, X, Y, N, PI, FALSE.)
104		CALL DDIF(NU, W, Z, N, PI, .FALSE.)
105		F=0.
106		$F = C_{o}$
107		DO 036 K=1,N
108		E=E+(CDABS(CDELE(Y(K))-Z(K))) twi
109		F=F+(CDABS(Z(K))) ##2
110	006	CONTINUE
111		NSRDIF=NSRDIF+E/F
115	001	CONTINUE
113		NSRDIT=NSRDIT/DFLOAT(50)
114		NSRDIF=NSRDIF/DFLOAT(50)
115	С	
116	С	IMPRESSIONS
117	С	
118		FRINT 007, NSRDIT, NSRDIF
119	007	FORMAT(1x, 22x, 2040.16/)
120		REWIND 25
121	009	CONTINUE
122		STOP
123		END

170 PROGRAM ARROND 1 2 C 3 C 4 C CE PROGRAMME CALCULE LES BORNES INFERIEURES ET SUPERIEURES (4.12) 5 C 6 C POUR LE RAPPURT BRUIT A SIGNAL À LA SCRTIE DE L'ALGORITHME DE LA 7 C TRANSFORMEE DE FOURIER RAPIDE LORSQUE LE MODE D'ARRONDI EST 8 C UTILISE. IL CALCULE EGALEMENT LA VALEUR THEORIQUE DU RAPPORT 9 C BRUIT A SIGNAL PROPUSE EN (4.20). 10 C 11 C 12 C TABLE DES VARIABLES PRINCIPALES 13 C SIGNIFICATION 14 C VARIABLE TYPE 15 C 10 C INTEGER NOMBRE DE POINTS DE LA TRANSFORMEE N 17 C Т INTEGER LE NOMBRE DE CHIFFRES DE LA MANTISSE REAL*3 LA BASE DE L'ORDINATEUR 13 C XI 19 C DFLT2F REAL #3 VARIANCE D'UNE ERREUR DE MULTIPLICATION 20 0 DELT2P REAL*3 VARIANCE D'UNE ERREUR D'ADDITION 21 C RI REAL*J BORNE INFERIEURE DONNEE EN (4.12) REAL*8 BORNE SUPERIEURE DONNEE EN (4.12) 22 C BS VALEUR THEORIQUE DU RAPPORT BRUIT A SIGNAL 23 C NSR REAL *> DONNEE EN (4.20) 24 C 25 C 26 C 27 C 28 REAL*8 BI, BS, DELT2F, DELT2P, XI, PO, LN, NSR INTEGER T 29 30 C 31 C CALCUL DES VARIANCES DES ERREURS LOCALES 32 C 33 P0 = 0.734 XI = 16.35 LN=DLOG(XI)36 T=6 37 DELT2F=(XI**2-1)/(24*LN*(XI**(2*T))) 38 DFLT2P=(1-PO)*DELT2F 39 C 40 C IMPRESSIONS 41 C 42 PRINT 001 43 FORMAT(1H1, 'NBRE DE POINTS', 20X, 'BORNE INFERIEURE', 20X, 'BORNE SUPE 001 44 'RIEURE', 20X, 'VALEUR THEORIQUE'////) 00 009 NU=2,9 45 N=2**NU 40 47 C 48 C CALCUL DES BORNES 49 C 50 BI=NU*DELT2P

51	ES=(NU-2)*DELT2F+(2*NU-2)*DELT2P
52 C	THE PROPERTY PROPERTY PROVIDE A CLUMAL
53 C	CALCUL DE LA VALLUR THEORIQUE DU RAFPORT BRUIT A SIGNAL
54 C	EN CAS DE BRUIT BLANC
55 C	
56	NSP = ((NU-3)/2+2/N) * DELT2F+((3*NU-3)/2+2/N) * DELT2P
57 C	
58 C	IMFRESSIONS
59 C	
60	PRINT 002, N, 3I, BS, NSR
61 00?	FORMAT(1X, 110, 3040.16/)
62 009	CONTINUE
63	ST(P
64	END
1	

1 SUBROUTINE ODIT(NU, X, Y, N, PI, INVERS) 2 C 3 C 4 C 5 C CETTE SOUS-ROUTINE CALCULE LA TRANSFORMEE DE FOURIER DISCRETE EN DOUBLE PRECISION PAR L'ALGORITHME DE COOLEY ET TUKEY 6 C 7 C DANS LE CAS OU N = 2 WWNU 8 C 9 0 10 C TABLE DES VARIABLES PRINCIPALES 11 C 12 C SIGNIFICATION VARIABLE TYPE 13 C TABLEAU D'ENTREE DE LA TRANSFORMEE 14 C X COMPLEX#16 15 C TABLEAU DE SORTIE DE LA TRANSFORMEE Y COMPLEX#16 16 C N INTEGER NUMERE DE POINTS DE LA TRANSFORMEE 17 C PI REAL 48 LE NOMBRE PI 18 C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE 19 0 SI FAUX, ALORS TRANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX #16 X(1024), Y(1024), T, E 24 REAL #8 ARG, DC, DS, PI 25 LOGICAL INVERS 26 N2=1 27 C 28 C ON INVERSE BINAIREMENT L'ORDRE DES ENTREES 29 C 30 N1=N-1 31 DO 101 K=2,N1 32 K1=K-1 33 I = IBITR(K1, NU) + 134 IF(I.LE.K) GOTO 101 35 Y(K) = X(I)36 Y(I) = X(K)101 37 CONTINUE 38 00 103 NU1=1, NU 39 k = 1 40 KN2=K+N2 41 K1=K-1 108 42 DC 104 I=1,N2 43 L=LDIT(NU1,K1,N, INVERS) 44 IF (L.NE.0) GOTO 105 45 C 46 C LE FACTEUR MULTIPLICATIF = 1 47 C 48 T=Y(KN2)49 Y(KN2) = Y(K) - T50 Y(K) = Y(K) + T

```
51
           GOTO 106
           IF(IABS(L).NE.N/2) GOTO 111
     105
 52
 53 C
 54 C
           LE FACTEUR MULTIPLICATIF = -1
 55 C
           T=-Y(KN2)
 56
 57
           Y(KN2) = Y(K) - T
 58
           Y(K) = Y(K) + T
 59
           GOTO 106
           IF(IABS(L).NE. 3#N/4) GOTO 112
6)
     111
 61
    C
 62 C
           LE FACTEUR MULTIPLICATIF = J
 63 C
 64
           E = DCMPLX(0.00, 1.00)
 65
           IF(INVERS) E=DCMPLX(0.D0,-1.D0)
 66
           T=Y (KN2) WE
 67
           Y(KN2) = Y(K) - T
 68
           Y(K) = Y(K) + T
 69
           GOTO 1.35
 70
     112
           IF (IABS(L) NE N/4) GOTO 107
 71 C
 72 C
           LE FACTEUR MULTIPLICATIF = -J
 73 C
 74
           E = DCMPLX().00, -1.00)
 75
           IF(INVERS) E=DCMPLX(U.DO, 1.DO)
 70
           T=Y (KN2) #E
 77
           Y(KN2) = Y(K) - T
 78
           Y(K) = Y(K) + T
 79
           GOTO 106
 80 C
81 C
           LE FACTEUR MULTIPLICATIF EST QUELCQUONQUE
 82 C
83
     107
           ARG=2*PI*DFLOAT(L)/DFLOAT(N)
           DC = DCOS(ARG)
 84
 85
           DS=-DSIN(ARG)
 86
           E = DCMPLX(DC, DS)
 87
           T=Y(KN2) =E
 88
           Y(K) = Y(K) - T
89
           Y(K) = Y(K) + T
     106
9:)
           K=K+1
 91
           K1=K-1
 92
           KN2=KN2+1
93
     104
           CONTINUE
 94
           K=K+N2
95
           K1=K-1
96
           KN2=KN2+N2
97
           IF(KOLEON)
                         GOTO 103
98
           N2=N2 #2
99
     103
           CONTINUE
100
           IF( NOT INVERS) GOTO 100
```

101	С	
102	С	POUR CALCULER LA TRANSFORMEE INVERSE. IL FAUT DIVISER LES
103	C	RESULTATS PAP N
104	С	
105		DO 115 I=1,N
1 16		Y(I) = Y(I) / DFLOAT(N)
107	115	CONTINUE
108	100	FETURN
109		END

			175
1		SUBROUTINE SDIT(NU, X, Y, N, PI, INVERS)	
2	С		
3	C		
6	C		
5	C	CETTE SOUS-ROUTINE CALCULE LA TRANSFORMEE DE FOURTER DISCRET	r E
2	C	LN SINDLE DECISION DAG HEALCOLTENE DE COOLEN ET THEN	
7	L C	EN SIMPLE PRECISION PAR L'ALGURITAME DE COULET ET TURET	
(C	DANS LE CAS OU N = 2##NU	
8	С		
9	С		
10	С	TABLE DES VARIABLES PRINCIPALES	
11	С	그는 것 같은 것 같	
12	C	VARIABLE TYPE SIGNIFICATION	
13	C		
11	c	CONDIENOS TARICAN DIENTOLE DE LA TUNNERODURE	
45	~	COMPLEX NO TROLENU DE NORTE DE LA TRANSFORMEE	
1)	C	THE COMPLEX TO TABLEAU DE SORTIE DE LA TRANSFORMEE	
10	C	N INTEGER NUMBRE DE POINTS DE LA TRANSFORMEE	
17	C	PI REAL#8 LE NOMBRE PI	
13	C	INVERS LOGICAL SI VRA1, ALORS TRANSFORMED INVERSE	
19	С	SI FAUX, ALORS TRANSFORMEE DIRECTE	
20	С		
21	С		
22	C		
23		COMPLEX #8 x(1)24), y(1)24), T	
24		COMPLEX #16 E	
25		REAL #8 DC DS ARG PT	
20		LOGICAL INVERS	
27		N2-1	
20	c		
20	C	AL THREDGE DINATOCHENT A CONDERING AND ENTERED	
69	L	UN INVERSE MINAIREMENT L'URDRE DES ENTREES	
20	C		
51		N 7=N -1	
32		DO 201 K=2, N1	
33		K1=K-1	
34		I=IBITR(K1,NU)+1	
35		IF(I_LE_K) GOTO 201	
36		Y(K) = X(I)	
37		Y(I) = X(K)	
38	201	CONTINUE	
39		DO 203 NU1=1.NU	
40		K=1	
41		KN2=K+N2	
12			
46	200		
43	2(1)	LEINTTINUS VS N THUELON	
44		L=LDIT(NUT,KT,N,INVERS)	
45		IF (L.NE.0) GOTO 205	
46	С		
47	С	LE FACTEUR MULTIPLICATIF = 1	
48	C		
49		T=Y(KN2)	
50		Y(KN2) = Y(K) - T	

```
Y(K) = Y(K) + T
51
52
           COTO 206
53 205
           IF(IABS(L).NE.N/2) GOTO 211
54 C
55 C
           LE FACTEUR MULTIPLICATIE = -1
56 C
57
           T = -Y(KN2)
58
           Y(KN2) = Y(K) - T
59
           Y(K) = Y(K) + T
           60TO 2.16
60
     211
61
           IF(IABS(L) .NE. 3*N/4) COTO 212
62 C
63 C
           LE FACTEUR MULTIPLICATIF = J
64 C
65
           E = DCMPLX(J.00, 1.00)
           IF(INVERS) E=DCMPLX(0.DU, -1.DC)
66
67
           T=Y(KN2) TE
63
           Y(KN2) = Y(K) - T
69
           Y(K) = Y(K) + T
70
           CCTC 276
71
     212
           IF(IABS(L) .NE .N/4) GOTO 207
72 C
73 C
           LE FACTEUR MULTIPLICATIF = -J
74 C
75
           L=DCMPLX(J.DC, -1.DD)
           IF(INVERS) E=DCMPLX(0.D0,1.D0)
70
77
           T=Y(KN2) WE
73
           Y(KN2) = Y(K) - T
79
           Y(K) = Y(K) + T
80
           COTO 206
81 C
82 C
           LE FACTEUR MULTIFLICATIF EST QUELCQUONQUE
83 C
     207
84
           AKG=2*PI*DFLOAT(L)/DFLOAT(N)
85
           DC=DCOS(ARG)
86
           DS = -DSIN(ARG)
           E = DCMPLX(DC, DS)
37
88
           T=Y(KN2) *E
89
           Y(KN2) = Y(K) - T
90
           Y(K) = Y(K) + T
91
     206
           k = k + 1
92
           k1=K-1
93
           KN2=KN2+1
94
     204
           CONTINUE
95
           K = K + N 2
96
           k1=K-1
97
           KN2=KN2+N2
98
           IF(K.LE.N) GOTO 208
99
           N2=N2*2
100
     203
           CONTINUE
```

101		IF(.NOT.INVERS) GOTO 200
102	С	
103	С	FOUR CALCULER LA TRANSFORMEE INVERSE. IL FAUT DIVISER LES
104	С	RESULTATS PAR N
105	С	
106		UC 215 I=1.N
107		Y(I) = Y(I) / OFLOAT(N)
108	215	CONTINUE
109	200	RETURN
110		END

1		SUBROUTINE DDIF(NU, X, Y, N, PI, INVERS)
2	С	
3	С	
4	C	
5	С	CETTE SOUS-ROUTINE CALCULE LA TRANSFORMEE DE FOURIER DISCRETE
6	С	EN DOUBLE PRECISION PAR L'ALGORITHME DE SANDE ET TUKEY
7	С	DANS LE CAS OU N = 2#ANU
8	С	
9	С	
10	С	TABLE DES VARIABLES PRINCIPALES
11	С	
12	С	VARIABLE TYPE SIGNIFICATION
13	С	
14	С	X COMPLEXA16 TABLEAU D'ENTREE DE LA TRANSFORMEE
15	С	Y COMPLEX#16 TABLEAU DE SURTIE DE LA TRANSFORMEE
16	C	N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE
17	С	PI REAL#8 LE NUMBRE PI
18	С	INVERS LOGICAL SI VRAI, ALORS TRANSFORMET INVERSE
19	С	SI FAUX, ALORS TRANSFORMEE DIRECTE
511	С	
21	С	
22	с	
23		COMPLEX #16 X(1024), Y(1024), T, E
24		LOCICAL INVERS
25		RFAL#8 DC, DS, ARG, PI
20		N 2=N
21		10 4 11 NU1=1, NU
28		MIN = 1 - N2
29		N2=N2/2
20		NU2=2mu(NU1-1)
51		DO 402 I=1,NU2
36		MIN=MIN+24N2
22		AX = MIN + NZ - 1
34		DU 493 K=MIN, MAX
22		
50		KNZ=K+NZ
20		L=LOIF(NUT, KT, N, INVERS)
20		IF(L.NE.0) G010 405
39	C	
41	C	LE FACIEUR MULTIPLICATIF = 7
41	C	
46		
43		$\frac{1}{1} \frac{1}{1} \frac{1}$
44		
42	105	TECTARS(1) NE N/2) COTO /44
40	405	ITTTADOLLJANE ANICI GUTU 411
41	C	LE FACTEUR MULTIPLICATIE1
10	c	LE FACTEOR MOLTIFLICATIF 1
50	C	T = Y(K)
111		

```
51
          A(K) = I + A(KNS)
52
          Y(KN2) = Y(KN2) - T
 53
          GOTO 4 13
54 411
          IF(IAdS(L).NE. 3 #N/4) GOTO 412
55 C
 56 C
          LE FACTEUR MULTIPLICATIF = J
 57 C
58
          E = DCMPLX(0.D0, 1.D0)
59
          IF(INVERS) E=DCMPLX(0.DO, -1.DO)
60
          T=Y(K)
61
          Y(K) = T + Y(KN2)
          Y(KN2) = (T - Y(KN2)) *E
62
63
          GOTO 433
64
   412
          IF(IABS(L).NE.N/4) GOTO 407
65 C
          LE FACTEUR MULTIPLICATIF = -J
66 C
07 C
68
          E = D CMP L X (0.D0, -1.D0)
69
          IF(INVERS) = DCMPLX(0.D0, 1.D0)
70
          T=Y(K)
71
          Y(K) = T + Y(KN2)
 72
          Y(KN2) = (T - Y(KN2)) * E
 73
          GOTO 403
74 C
 75 C
          LE FACTEUR MULTIPLICATIF EST QUELCQUONQUE
 76 C
77
          ARG=2#PI *DFLOAT(L)/DFLOAT(N)
    407
 78
          DC=DCOS(ARG)
 79
          DS=-DSIN(ARG)
 80
          E = UCMPLX(DC, DS)
81
          T=Y(K)
 82
          Y(K) = T + Y(KN2)
 83
          Y(KN2)=(T-Y(KN2)) #E
    403
84
          CONTINUE
85
     402
          CONTINUE
 86
     461
          CONTINUE
 87
          IF( NOT. INVERS) GOTO 400
3 68
 89 C
          POUR CALCULER LA TRANSFORMEE INVERSE, IL FAUT DIVISER LES
 90 C
          RESULTATS PAR N
 91 C
92
          DO 410 I=1,N
 93
          Y(I) = Y(I) / OFLOAT(N)
94
     410
          CONTINUE
95 C
 96 C
          ON INVERSE BINAIREMENT L'ORDRE DES RESULTATS
97 C
    400 N1=N-1
98
99
          DU 494 K=2,N1
100
          K1=K-1
```

101		I=IBITR(K1,NU)+1
102		IF(I.LE.K) GOTO 404
103		T = Y (K)
104		Y(K) = Y(I)
105		Y (I) = T
106	404	CONTINUE
107		KETURN
108		END

2 C 3 C 4 C 5 C 5 C 5 C 6 C 6 C 6 C 6 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	1		SUPROUTINE SDIF (NU, X, Y, N, PI, INVERS)
3 C 4 C 4 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5	2	C	
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	5	c	
C CETTE SOUS-ROUTINF CALCULE LA TRANSFORMEE DE FOURIER DISCRETE C EN SIMPLE PRECISION PAR L'ALGCRITHME DE SANDF ET TUKEY C DANS LE CAS OU N = 2000 C C C TABLE DES VARIABLES PRINCIPALES C VARIABLE TYPE SIGNIFICATION C C X COMPLEXNS TABLEAU DE SONTIE DE LA TRANSFORMEE C C Y COMPLEXNS TABLEAU DE SONTIE DE LA TRANSFORMEE C C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE DIRECTE C C C C SI FAUX, ALORS TRANSFORMEE DIRECTE C C C C C SI FAUX, ALORS TRANSFORMEE DIRECTE C C C C C C C C C C C C C C C C C C C	4	ĉ	
6 C EN SIMPLE PRECISION PAR L'ALGGRITHME DE SANDE ET TUKEY 7 C DANS LE CAS OU N = 2000 9 C 9 C 10 C TABLE DES VARIABLES PEINCIPALES 11 C TABLE DES VARIABLES PEINCIPALES 12 C VARIABLE TYPE SIGNIFICATION 13 C 14 C X COMPLEX® TABLEAU D'ENTRLE DE LA TRANSFORMEE 16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL®S LLE NOMBRE DE POINTS DE LA TRANSFORMEE 18 C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TRANSFORMEE DIRECTE 20 C 21 C 22 C C 23 COMPLEX® X (1324),Y(1024),T 24 COMPLEX® S (1324),Y(1024),T 25 LOGICAL INVERS 26 FEAL® DC,DS,ARG,PI 27 H_2=N 28 DO SON NUI=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU222@X(NUI=1),NU 29 MIN=1NN2*N2 34 MAX=MIN+N2-1 35 DO SO2 I=1,NU2 35 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 DO SO3 FEMIN,MAX 36 F1=K-1 37 KN2=K+N2 38 LEDIF(NU1,K1,N,INVERS) 39 IF(L.NF.0) GOTO SO5 39 IF(L.NF.0) GOTO SO5 30 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 44 Y(K)=T+Y(KN2) 44 Y(K)=T+Y(KN2) 45 GCTO SO3 47 SU5 IF(IABS(L).NE.N/2) GOTO S11 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	5	č	CETTE SOUS-ROUTINE CALCULE LA TRANSFORMEE DE FOURIER DISCRETE
7 C DANS LE CAS OU N = 2 % ANU 8 C 9 C 17 C TABLE DES VARIABLES PEINCIPALES 11 C 12 C VARIABLE TYPE SIGNIFICATION 13 C 14 C X COMPLEX % TABLEAU D'ENTREE DE LA TRANSFORMEE 15 C Y COMPLEX % TABLEAU DE SORTIE DE LA TRANSFORMEE 16 C H INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL & LL NOMBRE PI 18 C INVERS LOGICAL SI VRA1, ALORS TRANSFORMEE INVERSE 29 C 21 C 22 C 23 COMPLEX % X(1324),Y(1024),T 24 COMPLEX % X(1324),Y(1024),T 25 LOGICAL INVERS 26 FEAL % DC,DS,ARG,PI 27 $n_{2}=N$ 28 D0 S01 NU1=1,NU 29 $MIN=1N2=1$ 20 $N2=N2/2$ 31 $NU2=2\pi*(NU1-1)$ 32 D0 S02 T=1,NU2 33 $MIN=MIN+2=1$ 34 $MAX=MIN+N2=1$ 35 LO SOS K=MIN,MAX 36 $Y=K=1$ 37 $FN2=K+N2$ 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO SOS 39 IF(L.NE.0) GOTO SOS 30 CT ==Y(K) 44 Y(K)=T+Y(KN2) 45 C C LE FACTEUR MULTIPLICATIF = 1 46 C CTO SO3 47 SUS IF(IABS(L).NE.N/2) GOTO S11 48 C	6	c	EN SIMPLE PRECISION PAR L'ALGORITHME DE SANDE ET TUKEY
<pre>s c c c c c c c c c c c c c c c c c c c</pre>	7	č	DANS LE CAS OU $N = 2k \neq NU$
TABLE DES VARIABLES PRINCIPALES TABLE DES VARIABLES PRINCIPALES TABLE DES VARIABLES PRINCIPALES TABLEAU DE SORTIE DE LA TRANSFORMEE C V COMPLEXAS TABLEAU DE SORTIE DE LA TRANSFORMEE C V COMPLEXAS TABLEAU DE SORTIE DE LA TRANSFORMEE TC PI REALAS LE NOMBRE DE POINTS DE LA TRANSFORMEE TC PI REALAS LE NOMBRE DE POINTS DE LA TRANSFORMEE TC PI REALAS LE NOMBRE DE INVERSE SI FAUX, ALORS TRANSFORMEE DIHECTE C C C C C C C C C C C C C C C C C C C	8	C	
TABLE DES VARIABLES PRINCIPALES TABLE DES VARIABLES PRINCIPALES TABLEAU D'ENTREE DE LA TRANSFORMEE VARIABLE TYPE SIGNIFICATION CUMPLEX18 TABLEAU D'ENTREE DE LA TRANSFORMEE CUMPLEX18 TABLEAU DE SORTIE DE LA TRANSFORMEE CUMPLEX18 TABLEAU DE SORTIE DE LA TRANSFORMEE CUMPLEX18 LE NOMBRE DE POINTS DE LA TRANSFORMEE DINECTE CUMPLEX18 LE NOMBRE DE POINTS DE LA TRANSFORMEE CUMPLEX18 LE NOMBRE DE POINTS DE LA TRANSFORMEE CUMPLEX18 LE NOMBRE DE POINTS DE LA TRANSFORMEE CUMPLEX18 LE NOMBRE DE LA TRANSFORMEE CUMPLEX18	9	c	
The formation of the f	10	C	TALLE DES VADIAGLES DETNETDALES
12 C VARIABLE TYPE SIGNIFICATION 13 C 14 C X COMPLEX''S TABLEAU D'ENTREE DE LA TRANSFORMEE 15 C Y COMPLEX''S TABLEAU DE SORTIE DE LA TRANSFORMEE 16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL & LE NOMBRE DE POINTS DE LA TRANSFORMEE 18 C INVERS LOGICAL SI VRA1, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TRANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX''S X(1324),Y(1024),T 24 COMPLEX''S X(1324),Y(1024),T 25 LOGICAL INVERS 26 FEAL ** DC,DS,ARG,PI 27 N2=N 28 D0 501 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2 π *(NU1-1) 32 D0 502 I=1,NU2 33 MIN=MIN+2=1 35 DU 503 K=MIN,MAX 36 K1=x-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF((.NF.O) GOTO 505 40 C 41 C LE FACTEUR MULTIFLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GUTO 503 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C	44	C	TODLE DES VARIABLES FRINCIFALES
12 C VARIABLE TIPE SIGNIFICATION 13 C 14 C X COMPLEX ** TABLEAU D'ENTREE DE LA TRANSFORMEE 15 C Y COMPLEX ** TABLEAU DE SORTIE DE LA TRANSFORMEE 16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL ** Le NOMBRE DE POINTS DE LA TRANSFORMEE 18 C INVERS LOGICAL SI VRA1, ALORS TRANSFORMEE INVERSE 20 C 21 C 22 C 23 COMPLEX ** X(1324),Y(1024),T 24 COMPLEX ** X(1324),Y(1024),T 25 LOGICAL INVERS 26 FEAL ** DC,DS,ARG,PI 27 N2=N 28 DO 501 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2 **(NU1-1) 32 DO 502 I=1,NU2 33 MIN=MIN+2×N2 34 MAX=MIN+2×N2 34 MAX=MIN+2×N2 35 DU 503 K=MIN,MAX 36 V1=K-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L,NE,J) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 CCTO 503 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C	12	C	VARIABLE TYPE SICHTETCATION
13 C 14 C X COMPLEX+8 TABLEAU D'ENTREE DE LA TRANSFORMEE 15 C Y COMPLEX+8 TABLEAU DE SORTIE DE LA TRANSFORMEE 16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL+88 LE NOMBRE DE POINTS DE LA TRANSFORMEE 18 C INVERS LOGICAL SI VRA1, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TPANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX+8 X(1024),Y(1024),T 24 COMPLEX+16 E 25 LOGICAL INVERS 26 FEAL+88 DC,DS,ARG,PI 27 N2=N 28 DO 501 NU1=1,NU 29 MIN=1-N2 30 N2=R2/2 31 NU2=2**(NU1-1) 32 DO 502 I=1,NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 DU 503 K=MIN,MAX 36 K1=K-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 COTO 503 47 SJ5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	47	C	VARIABLE TIPE SIGNIFICATION
14 C X COMPLEX AS TABLEAU DE SONTIE DE LA TRANSFORMEE 15 C Y COMPLEX AS TABLEAU DE SONTIE DE LA TRANSFORMEE 16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL AS LE NOMBRE DE POINTS DE LA TRANSFORMEE 18 C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX +8 X(1324),Y(1024),T 24 COMPLEX +10 E 25 LOGICAL INVERS 26 FEAL +8 DC,DS,ARG,PI 27 $h_2=N$ 28 D0 501 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2 A*(NU1-1) 32 D0 502 I=1,NU2 33 MIN=MIN+2 *N2 34 MAX=MIN+N2-1 35 D0 503 K=MIN,MAX 36 Y1=K-1 37 KN2=K+N2 38 L=DIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 SJ5 IF(IABS(L).NE.N/2) GOTO 511 48 C	13	C	CONDUCTION TALLED DE LA TRADEGERA
The complex was compl	14	C	X COMPLEX V8 TABLEAU D'ENTREE DE LA TRANSFORMEE
16 C N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE 17 C PI REAL#& LE NOMBRE PI 18 C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TPANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX## X(1324),Y(1024),T 24 COMPLEX#10 E 25 LOGICAL INVERS 26 FEAL#& DC,DS,ARG,PI 27 N2=N 28 DO 501 NU1=1,NU 29 FIN=1-N2 30 N2=N2/2 31 NU2=2 α (NU1-1) 32 DO 502 I=1,NU2 33 MIN=MIN+2 *N2 34 MAX=MIN+N2-1 35 DU 503 K=MIN,MAX 36 F1=K-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	15	C	Y COMPLEX®8 TABLEAU DE SORTIE DE LA TRANSFORMEE
17 C PI REAL #S LE NOMBRE PI 18 C INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TPANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX #K X(1)24),Y(1024),T 24 COMPLEX #Io E 25 LOGICAL INVERS 26 FEAL #8 DC,DS,ARG,PI 27 $h_2=N$ 28 D0 501 NU1=1,NU 29 MIN=1-N2 30 $N2=N2/2$ 31 $NU2=2 a*(NU1-1)$ 32 D0 502 I=1,NU2 33 MIN=MIN+2*N2 34 $hXx=MIN+N2-1$ 35 D0 503 K=MIN,MAX 36 $Y1=K-1$ 37 $KN2=K+N2$ 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(VN2)=T-Y(KN2) 46 CCTO 503 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	16	C	N INTEGER LE NOMBRE DE POINTS DE LA TRANSFORMEE
18 C INVERS LOGICAL SI VRA1, ALORS TRANSFORMEE INVERSE 19 C SI FAUX, ALORS TPANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX *** $x(1:324), y(1:024), T$ 24 COMPLEX *** $x(1:324), y(1:024), T$ 25 LOGICAL INVERS 26 FEAL*** DC, DS, ARG, PI 27 $n_2=N$ 28 D0 501 NU1=1, NU 29 MIN=1-N2 30 $N2=N2/2$ 31 $NU2=2**(NU1-1)$ 32 D0 502 I=1, NU2 33 MIN=MIN+2*N2 34 $MAx=MIN+N2-1$ 35 D0 503 K=MIN, MAX 36 $Y1=K-1$ 37 $KN2=K+N2$ 38 L=LDIF(NU1, K1, N, INVERS) 39 IF(L.NE.0) GOTO 505 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 CCUTO 503 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	11	C	PI REALWS LE NOMBRE PI
19 C SI FAUX, ALORS TPANSFORMEE DIRECTE 20 C 21 C 22 C 23 COMPLEX+8 $x(1324), y(1024), T$ 24 COMPLEX+8 $x(1324), y(1024), T$ 25 LOGICAL INVERS 26 FEAL+88 DC, DS, ARG, PI 27 $h_2 = N$ 28 DO SO1 NU1=1, NU 29 MIN=1-N2 30 $N2 = N2/2$ 31 $NU2 = 2 + (NU1-1)$ 32 DO SU2 I=1, NU2 33 MIN=MIN+2 = N2 34 $MAX = MIN + N2 = 1$ 35 DU SU3 K= MIN, MAX 36 $Y = K + 1$ 37 $KN2 = K + N2$ 38 L=LDIF(NU1, K1, N, INVERS) 39 IF(L.NE.0) GOTO SU5 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 $Y(K) = T + Y(KN2)$ 45 $Y(KN2) = T - Y(KN2)$ 46 C(TO SU3 47 SU5 IF(IABS(L).NE.N/2) GOTO S11 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	18	C	INVERS LOGICAL SI VRAI, ALORS TRANSFORMEE INVERSE
20 C 21 C 22 C 23 COMPLEX+8 X(1324),Y(1024),T 24 COMPLEX+8 X(1324),Y(1024),T 25 LOGICAL INVERS 26 FEAL+8 DC,DS,ARG,PI 27 h2=N 28 D0 SO1 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2*(NU1-1) 32 D0 S02 I=1,NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 D0 S03 K=MIN,MAX 36 Y1=K-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO S05 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 G(TO S03 47 SU5 IF(IABS(L).NE.N/2) GOTO S11 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	19	С	SI FAUX, ALORS TFANSFORMEE DIRECTE
21 C 22 C 23 COMPLEX+R X(1,324),Y(1024),T 24 COMPLEX+10 E 25 LOGICAL INVERS 26 FEAL*8 DC,DS,ARG,PI 27 $H_{2=N}$ 28 D0 501 NU1=1,NU 29 $MIN=1-N2$ 30 $N2=N2/2$ 31 $NU2=2*(NU1-1)$ 32 D0 502 I=1,NU2 33 $MIN=MIN+2*N2$ 34 $MAX=MIN+N2-1$ 35 DU 503 K=MIN,MAX 36 $Y1=K-1$ 37 $KN2=K+N2$ 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	20	С	
22 C 23 COMPLEX+8 X(1024),Y(1024),T 24 COMPLEX+16 E 25 LOGICAL INVERS 26 FEAL+8 DC,DS,ARG,PI 27 H2=N 28 D0 501 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2*(NU1-1) 32 D0 502 I=1,NU2 33 MIN=MIN+2=N2 34 MAX=MIN+N2-1 35 DU 503 K=MIN,MAX 36 Y1=K-1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NF.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	21	С	
23 COMPLEX ** X(1)24), Y(1)24), T 24 COMPLEX ** X(1)24), Y(1)24), T 25 LOGICAL INVERS 26 FEAL ** DC, DS, ARG, PI 27 $h_2 = N$ 28 DO 501 NU1=1, NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2**(NU1-1) 32 DO 502 I=1, NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 DU 503 K=MIN, MAX 36 K1=K-1 37 KN2=K+N2 38 L=LDIF(NU1, K1, N, INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 C(TO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	55	С	
24 COMPLEX #10 E 25 LOGICAL INVERS 26 FEAL #8 DC, DS, ARG, PI 27 $n_2 = N$ 28 D0 501 NU1=1, NU 29 MIN=1-N2 30 N2=N2/2 31 NU2= 2 * * (NU1-1) 32 D0 502 I=1, NU2 33 MIN=MIN+2 * N2 34 MAX=MIN+N2-1 35 D0 503 K=MIN, MAX 36 Y1=K-1 37 KN2=K+N2 38 L=LDIF(NU1, K1, N, INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)2=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 COTO 503 47 5U5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	23		COMPLEX *8 X(1024), Y(1024), T
<pre>25 LOGICAL INVERS 26 FEAL*8 DC,DS,ARG,PI 7 N2=N 28 D0 501 NU1=1,NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2**(NU1-1) 32 D0 502 I=1,NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2=1 35 D0 503 K=MIN,MAX 36 Y1=K+1 37 KN2=K+N2 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)2=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1</pre>	24		COMPLEX 10 E
26 FEAL*8 DC, DS, ARG, PI 27 $h_2=N$ 28 D0 501 NU1=1, NU 29 MIN=1-N2 30 N2=N2/2 31 NU2=2*(NU1-1) 32 D0 5U2 I=1, NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 DU 503 K=MIN, MAX 36 K1=K-1 37 KN2=K+N2 38 L=LDIF(NU1, K1, N, INVERS) 39 IF(L.NE.0) GOTO 5U5 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GCTO 5U3 47 SU5 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	25		LOGICAL INVERS
27 $h_2=N$ 28 $D0.501 NU1=1, NU$ 29 $MIN=1-N2$ 30 $N2=N2/2$ 31 $NU2=2 a*(NU1-1)$ 32 $D0.502 I=1, NU2$ 33 $MIN=MIN+2 * N2$ 34 $MAx=MIN+N2-1$ 35 $D0.503 K=MIN, MAX$ 36 $K1=K-1$ 37 $KN2=K+N2$ 38 $L=LDIF(NU1, K1, N, INVERS)$ 39 $IF(L.NE.0) GOTO.505$ 40 C 41 C $LE FACTEUR MULTIPLICATIF = 1$ 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 $GOTO.503$ 47 $SU5$ $IF(IABS(L).NE.N/2) GOTO.511$ 48 C 49 C $LE FACTEUR MULTIPLICATIF = -1$	26		FEAL *8 DC, DS, ARG, PI
28 D0 501 NU1=1, NU 29 $MIN=1-N2$ 30 $N2=N2/2$ 31 $NU2=2 \pm (NU1-1)$ 32 D0 502 I=1, NU2 33 $MIN=MIN+2 \pm N2$ 34 $MAX=MIN+N2-1$ 35 D0 503 K=MIN, MAX 36 $K^{1}=K-1$ 37 $KN2=K+N2$ 38 $L=LDIF(NU1, K1, N, INVERS)$ 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1	27		$N_2 = N$
29 $MIN=1-N2$ 30 $N2=N2/2$ 31 $NU2=2 a*(NU1-1)$ 32 $DO 502 I=1,NU2$ 33 $MIN=MIN+2*N2$ 34 $MAX=MIN+N2-1$ 35 $DO 503 K=MIN,MAX$ 36 $K1=K-1$ 37 $KN2=K+N2$ 38 $L=LDIF(NU1,K1,N,INVERS)$ 39 $IF(L.NE.0) GOTO 505$ 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 $COTO 503$ 47 $5U5$ $IF(IABS(L).NE.N/2) GOTO 511$ 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	28		DO 501 NU1=1, NU
$\begin{array}{llllllllllllllllllllllllllllllllllll$	29		MIN=1-N2
31 $NU2=2 \Rightarrow *(NU1-1)$ 32 $DO 502 I=1,NU2$ 33 $MIN=MIN+2 \Rightarrow N2$ 34 $MAX=MIN+N2-1$ 35 $DO 503 K=MIN,MAX$ 36 $F1=F-1$ 37 $KN2=K+N2$ 38 $L=LDIF(NU1,K1,N,INVERS)$ 39 $IF(L.NE.0) GOTO 505$ 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 $GOTO 503$ 47 505 $IF(IABS(L).NE.N/2) GOTO 511$ 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	30		N2=N2/2
32 D0 502 I=1,NU2 33 MIN=MIN+2*N2 34 MAX=MIN+N2-1 35 D0 503 K=MIN,MAX 36 $K_{1}=K-1$ 37 $K_{N}2=K+N2$ 38 L=LDIF(NU1,K1,N,INVERS) 39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	31		$NU2=2 \pi * (NU1-1)$
$\begin{array}{rcl} 33 & \text{MIN=MIN+2*N2} \\ 34 & \text{MAX=MIN+N2-1} \\ 35 & \text{DO} & 503 & \text{K=MIN, MAX} \\ 36 & \text{K1=K-1} \\ 37 & \text{KN2=K+N2} \\ 38 & \text{L=LDIF(NU1, K1, N, INVERS)} \\ 39 & \text{IF(L.NE.0) GOTO 505} \\ 40 & \text{C} \\ 41 & \text{C} & \text{LE FACTEUR MULTIPLICATIF} = 1 \\ 42 & \text{C} \\ 43 & \text{T=Y(K)} \\ 44 & \text{Y(K)=T+Y(KN2)} \\ 44 & \text{Y(K)=T+Y(KN2)} \\ 45 & \text{Y(KN2)=T-Y(KN2)} \\ 46 & \text{COTO 503} \\ 47 & \text{5U5 IF(IABS(L).NE.N/2) GOTO 511} \\ 48 & \text{C} \\ 49 & \text{C} & \text{LE FACTEUR MULTIPLICATIF} = -1 \\ 50 & \text{C} \end{array}$	32		DO 502 I=1,NU2
$\begin{array}{rcl} 34 & \text{MAX} = \text{MIN} + \text{N2} - 1 \\ 35 & \text{DU} & 503 & \text{K} = \text{MIN}, \text{MAX} \\ 36 & \text{K1} = \text{K} - 1 \\ 37 & \text{KN2} = \text{K} + \text{N2} \\ 38 & \text{L} = \text{LDIF}(\text{NU1}, \text{K1}, \text{N}, \text{INVERS}) \\ 39 & \text{IF}(\text{L} \cdot \text{NE} \cdot 0) & \text{GOTO} & 505 \\ 40 & \text{C} \\ 41 & \text{C} & \text{LE} & \text{FACTEUR} & \text{MULTIPLICATIF} = 1 \\ 42 & \text{C} \\ 43 & \text{T} = \text{Y}(\text{K}) \\ 44 & \text{Y}(\text{K}) = \text{T} + \text{Y}(\text{KN2}) \\ 45 & \text{Y}(\text{KN2}) = \text{T} - \text{Y}(\text{KN2}) \\ 46 & \text{GOTO} & 503 \\ 47 & 505 & \text{IF}(\text{IABS}(\text{L}) \cdot \text{NE} \cdot \text{N}/2) & \text{GOTO} & 511 \\ 48 & \text{C} \\ 49 & \text{C} & \text{LE} & \text{FACTEUR} & \text{MULTIPLICATIF} = -1 \\ 50 & \text{C} \end{array}$	33		MIN=MIN+2*N2
35 DU 503 K=MIN, MAX 36 $K = K - 1$ 37 $K = K + N2$ 38 $L = LD IF (NU1, K1, N, INVERS)$ 39 $IF (L \cdot NE \cdot 0) GOTO 505$ 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T = Y(K)$ 44 $Y(K) = T + Y(KN2)$ 45 $Y(KN2) = T - Y(KN2)$ 46 $GOTO 503$ 47 505 $IF (IABS(L) \cdot NE \cdot N/2) GOTO 511$ 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	34		MAX=MIN+N2-1
<pre>36</pre>	35		DU 503 K=MIN, MAX
37 $KN2=K+N2$ 38 $L=LDIF(NU1,K1,N,INVERS)$ 39 $IF(L.NE.0)$ GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 GOTO 503 47 505 $IF(IABS(L).NE.N/2)$ GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	36		K1=K-1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	37		KN2=K+N2
39 IF(L.NE.0) GOTO 505 40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	38		L=LDIF(NU1,K1,N, INVERS)
40 C 41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	39		IF(L.NE.0) GOTO 505
41 C LE FACTEUR MULTIPLICATIF = 1 42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	40	С	
42 C 43 T=Y(K) 44 Y(K)=T+Y(KN2) 45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	41	С	LE FACTEUR MULTIPLICATIF = 1
43 $T=Y(K)$ 44 $Y(K)=T+Y(KN2)$ 45 $Y(KN2)=T-Y(KN2)$ 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	42	с	
44 $Y(K) = T + Y(KN2)$ 45 $Y(KN2) = T - Y(KN2)$ 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	43		T=Y(K)
45 Y(KN2)=T-Y(KN2) 46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	44		Y(K) = T + Y(KN2)
46 GOTO 503 47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	45		Y(KN2) = T - Y(KN2)
47 505 IF(IABS(L).NE.N/2) GOTO 511 48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	46		GOTO 503
48 C 49 C LE FACTEUR MULTIPLICATIF = -1 50 C	47	5.15	IE(IABS(L) - NE - N/2) GOTO 511
$49 C \qquad LE FACTEUR MULTIPLICATIF = -1$ $50 C$	48	C	
50 C	49	c	LE FACTEUR MULTIPLICATIE = -1
	50	С	

182

51		
52		Y(K) = T + Y(KN2)
53		Y(KN2) = Y(KN2) - T
54		6010 5 13
55	511	TELLASCIT ME 3 MILL COTO 512
50	211	IFTIABSTLY NE STRV47 GUTU ST2
20	C	
57	C	LE FACTEUR MULTIPLICATIF = J
58	C	
50	Ŭ	E=0 (MPL x (0-00 1-00)
Al.		TECTIVEDS) E-DOMDLY (0 DO -1 DO)
00		
01		
62		Y(K) = T + Y(KN2)
63		Y(KN2) = (T - Y(KN2)) + E
64		GCT0 503
65	512	IF(IABS(L).NE.N/4) GOTO 507
66	С	
67	C	LE FACTEUR MULTIPLICATIE = -1
64	č	
00	L.	
09		$E = D(MPLX(J_0D), -1_0D(J)$
(1)		IF(INVERS) E=DCMPLX(U.DO, T.D())
71		Τ=Υ(Κ)
72		Y (K) = T + Y (KN 2)
73		$Y(KN2) = (T - Y(KN2)) \approx E$
74		COT0 593
75	C	
76	c	LE FACTEUR AU TIDITCATTE EST QUELCONONOUS
77	c	LE TACTEUR MULTIPLICATIF EST QUELCQUINQUE
11	L .	
18	507	ARG= 2 %PI >DFLOAT(L)/DFLOAT(N)
79		DC = DCOS(ARG)
80		DS = -DSIN(ARG)
81		E=DCMPLX(DC,DS)
82		T = Y(K)
83		Y(k) = T + Y(k + 2)
81		V(VND)=(T=V(VND)) #E
04	507	
0)	203	CONTINUE
80	205	CONTINUE
87	501	CONTINUE
88		IF (.NOT.INVERS) GOTO 500
89	С	
91	C	POUR CALCULER LA TRANSFORMEE INVERSE. IL FAUT DIVISER LES
91	C	RESULTATS PAR N
02	C	
07	·	NO 540 T-4 N
01		
74	540	T(I) = T(I)/DELOAT(N)
45	510	CONTINUE
96	С	
97	С	ON INVERSE BINAIREMENT L'ORDRE DES RESULTATS
98	С	
99	50.)	N1=N-1
100		60 514 K=2 N1
100		

101		k i=k-1
102		I=IBITR(K1,NU)+1
103		IF(I.LE.K) GOTO 504
104		T=Y(K)
105		Y(K) = Y(I)
106		Y(I) = T
107	564	CONTINUE
108		RETURN
109		END
1		FUNCTION INITE (J,NU)
----	-----	--
2	С	
3	С	
4	С	
5	С	CETTE FONCTION CALCULE LE NOMBRE BINAIRE INVERSE DE J,
6	С	PAR RAPPORT A NU COMPOSANTES
7	С	
8	С	
9	С	
10		J1=J
11		IEITR=J
12		DO 300 I=1, NU
13		J2=J1/2
14		161TR=181TR #2+(J1-2#J2)
15	300	J1=J2
16		RETURN
17		END

					185
1		FUNCTION	LDIT (NU1, K	I, N, INVERS)	
2	С				
3	С				
4	С				
5	С	CETTE FON	CTION SERT	A CALCULER LES EXPOSANTS DES FACTEURS	
6	С	MULTIPLIC	ATIFS DANS	L'ALGORITHME DE COOLEY ET TUKEY.	
7	С				
8	С				
9	С	TABLE DES	VARIABLES	PRINCIPALES	
10	С				
11	С	VARIABLE	TYPE	SIGNIFICATION	
12	С				
13	С	К1	INTEGER	REPERE LE PAPILLON TRAITE	
14	С	NU1	INTEGER	NUMERO DE L'ETAPE	
15	C	N	INTEGER	NOMBRE DE POINTS DE LA TRANSFORMEE	
16	С	INVERS	LOGICAL	SI VRAI, ALURS TRANSFORMEE INVERSE	
17	C	* a		SI FAUX, ALORS TRANSFORMEE DIRECTE	
18	C				
19	C				
20	C				
21		LOGICAL I	NVERS		
22		K 2=K 1*N/2	K 2=K 1 #N / 2 ##N U 1		
23		LDIT=MOD(LDIT=MOD(K2,N)		
24		IFCINVERS) $LDII=-LD$	1	
20		RETURN			
20		EKD			

FUNCTION LDIF(NU1, K1, N, INVERS)

1 2 C 3 C 4 C 5 C

6 C 7 C 8 C 9 C

10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 20 C 21

22

23

24

25

26

CETTE FONCTION SERT A CALCULER LES EXPOSANTS DES FACTEURS MULTIPLICATIFS DANS L'ALGOFITHME DE SANDE ET TUKEY

TABLE DES VARIABLES PRINCIPALES

VARIABLE	TYPE	SIGNIFICATION
ĸï	INTEGER	REPERE LE PAFILLON TRAITE
NU1	INTEGER	NUMERO DE'L'ETAPE
N	INTEGER	NOMBRE DE POINTS DE LA TRANSFORMEE
INVERS	LOGICAL	SI VRAI, ALORS TRANSFORMEE INVERSE
		ST FALLY. ALODS TRANSFORMER NIDECTE

LOGICAL INVERS K2=K14244(NU1-1) LDIF=MOD(K2,N) IF(INVERS) LDIF=-LDIF RETURN END 186

1		FUNCTION IFT(P.N)
2	C	
7	C	
5	C C	
4	С	
5	С	CETTE FONCTION CALCULE LA VALEUR DE LA FONCTION
6	С	F(P) DEFINIE EN (4.9)
7	С	
8	С	
9	c	
10	C	PF=P
44		
12		
12		$N \ge -N - \varepsilon$
13		IF(N2.LE.J) GOTO 603
14		D0 601 I=1,N2
15		FDEMI=PE/(24#I)
16		J=0
17		IF(PE.EQ.(2:#I) *PDEMI) GOTO 602
18		J=1
19		1=1+1
20	602	PF=PF-10200(1-1)
24	601	CONTINUE
27	607	
22	003	1FI=L
23		RETURN
24		END

BIBLIOGRAPHIE

- [1] E.O. Brigham, The Fast Fourier Transform, Englewood Cliffs,NJ : Prentice-Hall, 1974.
- [2] W.T. Cochran, et al., What Is The Fast Fourier Transform ?, IEEE Transactions on Audio Electroacoustics, vol. AU-15, pp. 45-55, June 1967.
- [3] J.W. Cooley & J.W. Tukev, An Algorithm For The Machine
 Calculation Of Complex Fourier Series, Math. Comp., vol.
 19, pp. 297-301, April 1965.
- [4] W.M. Gentleman & G. Sande, Fast Fourier Transform For Fun
 And Profit, in 1966 Fall Joint Computer Conf., AFIPS Conf.
 Proc., vol. 29, pp. 563-578.
- [5] R.W. Hamming, On The Distribution Of Numbers, Bell System Technical Journal, vol. 49, No 8, pp. 1609-1626, Oct. 1970.
- [6] Hoel, Port & Stone, Introduction To Probability Theory, Boston, Houghton Mifflin Company, 1971.
- [7] T. Kaneko & B. Liu, Accumulation Of Roundoff Error In Fast Fourier Transforms, Journal of the ACM, vol. 17, pp. 637-656, Oct. 1970.
- [8] T. Kaneko & B. Liu, On Local Roundoff Errors In Floating Point Arithmetic, Journal of the ACM, vol. 20, pp. 391-398, July 1973.
- [9] B. Liu & T. Kaneko, Roundoff Error In Fast Fourier Transforms (Decimation In Time), IEEE Proceedings, vol. 63, pp. 991-992, June 1975.

- [10] B. Liu & A. Peled, A New Hardware Realization Of High Speed Fast Fourier Transform, IEEE Trans. Acoustics Speech Signal Processing, vol. ASSP-23, pp. 543-547, Dec. 1975.
- [11] A.V. Oppenheim & R.W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ : Prentice-Hall, 1975.
- [12] A.V. Oppenheim & C.J. Weinstein, Effects Of Finite Register Length In Digital Filtering And The Fast Fourier Transform, Proc. IEEE, pp. 957-976, Aug. 1972.
- [13] M. Sundaramurthy & V. Umapathi Peddy, Some Results In Fixed-Point Fast Fourier Transform Error Analysis, IEEE Trans. on Computers, Correspondence, pp. 305-308, March 1977.
- [14] D.W. Sweeney, An Analysis Of Floating-Point Addition, IBM Syst. J., 4,1, pp. 31-42, 1965.
- [15] J.P. Thiran, Error Bounds For Floating-Point Addition Using Guard Digits, to be presented at the 1978 IEEE International Symposium on Circuits and Systems, New-York, May 1978.
- [16] Tran-Thong & B. Liu, Fixed-Point Fast Fourier Transform Error Analysis, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-24, No 46, pp. 563-573, Dec. 1976.
- [17] Tran-Thong & B. Liu, Accumulation Of Roundoff Errors In Floating-Point Fast Fourier Transform, IEEE Transactions on Circuits and Systems, vol. CAS-24, No 3, pp. 132-143, March 1977.
- [18] C.J. Weinstein, Quantization Effects In Digital Filters, Ph. D. Dissertation, Department of Electrical Engineering, M.I.T., July 1969.

- [19] C.J. Weinstein, Roundoff Noise In Floating-Point Fast Fourier Transform Computation, IEEE Transactions on Audio Electroacoustics, vol. AU-17, pp. 209-215, Sept. 1969.
- [20] P.D. Welch, A Fixed-Point Fast Fourier Transform Error Analysis, IEEE Transactions on Audio Electroacoustics, vol. AU-17, pp. 153-157, June 1969.

TABLE DES MATIERES

INTRODUCTION

1	TRAN	SFORMEE DE FOURIER RAPIDE (FFT)	4
	1.1	Transformée de Fourier Discrète	5
	1.2	Algorithmes FFT dans le cas N=2 ^M	7
		A Algorithme de Cooley et Tukey	8
		B Algorithme de Sande et Tukey	14
	1.3	Algorithmes FFT dans le cas N=r ^M	20
		A Algorithme de Cooley et Tukey	21
		B Algorithme de Sande et Tukey	24
	1.4	Algorithmes FFT dans le cas N=r1.r2	26
		A Algorithme de Cooley et Tukev	26
		B Algorithme de Sande et Tukey	27
2	MODE	LES STATISTIQUES POUR LES ERREURS NUMERIQUES	28
	2.1	Théorie statistique élémentaire des erreurs	
		numériques	29
		2.1.1 Introduction	29
		2.1.2 Processus aléatoires	30
		2.1.3 Modèle statistique pour les erreurs	
		numériques	32
	2.2	Analyse des erreurs en virgule fixe	34
	1	2.2.1 Arithmétique en virgule fixe	34
		A Représentation des nombres binaires	34
		B Opérations élémentaires	35
		C Erreurs produites par la troncature ou	
		l'arrondi	36
		D Erreurs produites par le dépassement	39
		2.2.2 Application des hypothèses du modèle	
		statistique	40
	2.3	Analyse des erreurs en virgule flottante	41
		2.3.1 Arithmétique et bornes d'erreur	41

1

	A Représentation numérique en virgule	
	flottante	41
	B Multiplication à l'aide d'un registre	
	de longueur double	43
	C Addition à l'aide de chiffres de garde	45
	2.3.2 Modèles statistiques pour les erreurs	47
	A Distribution de la mantisse	48
	B Erreur de représentation numérique	48
	C Erreur de multiplication	51
	D Erreur d'addition	52
3	ANALYSE DES ERREURS NUMERIQUES DANS LES ALGORITHMES DE	
	LA TRANSFORMEE DE FOURIER RAPIDE EN VIRGULE FIXE	56
	Introduction	57
	3.1 Résultats de l'analyse de l'algorithme de Cooley	
	et Tukev	58
	3.1.1 Modèle statistique	58
	3.1.2 Propriétés de l'algorithme de Cooley et	
	Tukey	61
	3.1.3 Etude des erreurs numériques	66
	3.1.3.1 Arrondi - Sans déplacement	66
	3.1.3.2 Troncature - Sans déplacement	69
	3.1.3.3 Arrondi - Déplacement à chaque étape	73
	3.1.3.4 Troncature - Déplacement à chaque étape	77
	3.1.3.5 Remarques	78
	3.2 Résultats de l'analyse de l'algorithme de Sande	
	et Tukev	79
	3.2.1 Modèle statistique	79
	3.2.2 Propriétés de l'algorithme de Sande et	
	Tukey	80
	3.2.3 Etude des erreurs numériques	81
	3.2.3.1 Arrondi - Sans déplacement	81
	3.2.3.2 Troncature - Sans déplacement	82
	3.2.3.3 Arrondi - Déplacement à chaque étape	85

	3.2.3.4 Troncature - Déplacement à chaque étape	87
	3.3 Algorithmes pour des bases composites	88
	3.3.1 Algorithme de Cooley et Tukey	88
	3.3.2 Algorithme de Sande et Tukey	90
4	ANALYSE DES ERREURS NUMERIQUES DANS LES ALGORITHMES DE	
	LA TRANSFORMEE DE FOURIER RAPIDE EN VIRGULE FLOTTANTE	93
	4.1 Généralités	93
	4.2 Algorithme de Cooley et Tukev	96
	4.3 Algorithme de Sande et Tukev	106
	4.4 Cas particuliers	112
	$4.4.1$ $N=2^{M}$	113
	A Cas de l'arrondi	113
	B Cas de la troncature	115
	4.4.2 N=r ^M , r quelconque	117
	A Algorithme de Cooley et Tukey	117
	B Algorithme de Sande et Tukey	121
	4.4.3 N=r1.r2, r1 et r2 quelconques	125
	A Algorithme de Cooley et Tukey	125
	B Algorithme de Sande et Tukey	128
5	RESULTATS NUMERIQUES	131
	5.1 Résultats numériques pour la virgule fixe	132
	Annexe : Programmes et sous-programmes FORTRAN	138
	5.2 Résultats numériques pour la virgule flottante	151
	Annexe : Programmes et sous-programmes FORTRAN	163
BI	LIOGRAPHIE	188
TA	LE DES MATIERES	191