

Comparing Security in eBPF and
WebAssembly

Jules D��������� ‣ Bolaji G�������� ⬥ Tobias P���� ⬥ Florentin R����� ‣

‣ University of Namur ⬥ Karlstad University

1st Workshop on eBPF and Kernel Extensions
September 10, 2023, New York

1 / 16

https://doi.org/10.1145/3609021.3609306
https://orcid.org/0000-0002-4970-3730
https://orcid.org/0009-0005-3850-855X
https://orcid.org/0000-0001-6459-8409
https://orcid.org/0000-0001-5275-9308
https://www.unamur.be/
https://www.kau.se/
https://conferences.sigcomm.org/sigcomm/2023/workshop-ebpf.html

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Overview: lifecycle of eBPF and Wasm programs

Possible lifecycle for eBPF and Wasm programs

2 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

WebAssembly: selected key points

Managed stack & linear memory

Checked indirect function calls

1:1 mapping between binary ⬄ text format

Binary instruction format

Bounded memory
Web first but supports non-web embeddings

Default to no host access

3 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

WebAssembly: managed stack & linear memory

Stack layout on x86-64 with canaries and reordering Linear memory and VM state in WebAssembly

Illustrations from

emcc 1.39.7 (fastcomp backend, deprecated) emcc 1.39.7 (upstream backend), clang 9
(WASI)

clang 9 (WASI with stack-first), rustc
1.41 (WASI)

Lehmann, D. et al. [1]

4 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

WebAssembly: checked indirect function calls

Indirect function calls via the table section

Illustration from Lehmann, D. et al. [1]

5 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

WebAssembly: binary ⬄ text

Rust function compiled to a WebAssembly module in textual format

pub extern "C" fn add(left: i32, right: i32) -> i32 {
 left + right
}

#[no_mangle]1
2
3
4

$ rustc lib.rs --target wasm32-wasi --crate-type cdylib -C opt-level=3
$ wasm2wat lib.wasm

(module

 (func $add (type 0) (param i32 i32) (result i32)
 local.get 1
 local.get 0
 i32.add)

1
 (type (;0;) (func (param i32 i32) (result i32)))2

3
4
5
6

 (table (;0;) 1 1 funcref)7
 (memory (;0;) 16)8
 (global $__stack_pointer (mut i32) (i32.const 1048576))9
 (global (;1;) i32 (i32.const 1048576))10
 (global (;2;) i32 (i32.const 1048576))11
 (export "memory" (memory 0))12
 (export "add" (func $add))13
 (export "__data_end" (global 1))14
 (export "__heap_base" (global 2)))15

6 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Comparing eBPF and WebAssembly

vs

7 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Threat model

The verifier acts as the
gatekeeper to ensure

kernel safety

Untrusted code can run
without compromising

the host

8 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Memory safety
Few limitations on what
programmers can write
Verifier ensures safety
No proof, then no execution

Limited set of constructs
Grammatically correct, then
execution allowed
Runtime checks

 int a[3];
 int i;
 for (i = 0; i < 100; i++) {
 bpf_printk("%d ", a[i]);
 }

#include <linux/bpf.h>1
#include <bpf/bpf_helpers.h>2
SEC("xdp")3
int buffer(void *ctx) {4

5
6
7
8
9

 return 0;10
}11
char LICENSE[] SEC("license") = "12

 int a[3];
 int i;
 for(i = 0; i < 100; i++) {
 printf("%d ", a[i]);
 }

#include <stdio.h>1
#include <stdlib.h>2
int main() {3

4
5
6
7
8

 return 0;9
}10

Code will not run Code will run
9 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Control flow integrity
CFI enforced by the verifier
Flagging of programs violating
CFI
Verifier ensures termination

CFI achieved via semantics
Jump only to the beginning of
valid constructs
Indirect function calls prevent
call redirection

 while (1) {
 a++;
 }

#include <linux/bpf.h>1
#include <bpf/bpf_helpers.h>2
char _license[] SEC("license") = 3
int a;4
SEC("socket")5
int prog(void *ctx){6

7
8
9

 return 0;10
}11

 while (1) {
 a++;
 }

int a;1
int main() {2

3
4
5

 return 0;6
}7

Code will not run Code will run (forever)
10 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

API access
Many helper functions
available by default
Each program type can only
call a subset of the helper
functions
Access to helper functions is
restricted if unprivileged BPF
is enabled

Default to no host access
API implementation is
provided by the host
Standardized: e.g.
WebAssembly System
Interface

11 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Side-channels
Constant blinding to avoid
code as constant and JIT
spraying
Retpoline when tail calls
cannot be converted to direct
calls
Impossible path verification

Out of scope for the language,
in scope for the runtime
Bound checking when
accessing function table (e.g.
call_indirect)
No bound verification for
linear memory by default
(relying on page fault), can be
enabled in some settings

12 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Conclusion

Checks ahead of the execution Checks at runtime

Does not execute if policy violation is
found

Traps when policy violation occurs

Code is trusted but the code is not
trustworthy

Code is untrusted

Access to many kernel-provided
helpers, by default

No access to host resources, unless
explicitly granted

13 / 16

Jules Dejaeghere - Comparing Security in eBPF and WebAssembly

Takeaways
What are the performance impacts of eBPF and WebAssembly?

Is one approach more efficient than the other?

What can we learn from both technologies?

How could we measure and captures the differences?

14 / 16

This research was partially funded by the CyberExcellence project of
the Public Service of Wallonia (SPW Recherche), convention
No. 2110186, and Red Hat Research in the Security and safety of Linux
systems in a BPF-powered hybrid user space/kernel world project.

Comparing Security in eBPF and
WebAssembly

Jules D��������� ‣ Bolaji G�������� ⬥ Tobias P���� ⬥ Florentin R����� ‣

‣ University of Namur ⬥ Karlstad University

1st Workshop on eBPF and Kernel Extensions
September 10, 2023, New York

15 / 16

https://research.redhat.com/blog/research_project/security-and-safety-of-linux-systems-in-a-bpf-powered-hybrid-user-space-kernel-world/
https://doi.org/10.1145/3609021.3609306
https://orcid.org/0000-0002-4970-3730
https://orcid.org/0009-0005-3850-855X
https://orcid.org/0000-0001-6459-8409
https://orcid.org/0000-0001-5275-9308
https://www.unamur.be/
https://www.kau.se/
https://conferences.sigcomm.org/sigcomm/2023/workshop-ebpf.html

References
[1] Lehmann, D., Kinder, J. and Pradel, M. 2020. . 29th USENIX security symposium

(USENIX security 20) (Aug. 2020), 217–234.

This presentation has been designed using images from .

Meltdown and Spectre icons are from .

Everything old is new again: Binary security of WebAssembly

Freepik - Flaticon.com

Meltdown and Spectre website

16 / 16

https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.flaticon.com/
https://meltdownattack.com/

