
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Behavioral Maps

A Framework to Assess and Validate Self-Adaptive Architectures at Runtime

Lima dos Santos, Edilton

Award date:
2023

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. May. 2024

https://researchportal.unamur.be/en/studentTheses/e5fd6bb4-9c9f-4675-be9c-c93f619535aa

Behavioral Maps: A Framework to
Assess and Validate Self-Adaptive

Architectures at Runtime

Edilton Lima dos Santos

Jury

Prof. Marie-Ange Remiche
Université de Namur, Belgium

Prof. Claudia Raibulet
Vrije Universiteit Amsterdam, Netherlands

Prof. Kim Mens
Université Catholique de Louvain, Belgium

Prof. Vincent Englebert
Université de Namur, Belgium

Dr. Gilles Perrouin
Université de Namur, Belgium

Prof. Pierre-Yves Schobbens
Université de Namur, Belgium

A thesis submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in the subject of Computer Science

Supervised by Dr. Gilles Perrouin and Prof. Pierre-Yves Schobbens

University of Namur

PReCISE Research Center

Cover design: © Presses universitaires de Namur
© Presses universitaires de Namur & Edilton Lima dos Santos, 2023
Rue Grandgagnage 19
B – 5000 Namur (Belgium)
pun@unamur.be - www.pun.be

Registration of copyright: D/2023/1881/14
ISBN: 978-2-39029-177-0
Printed in Belgium.

Reproduction of this book or any parts thereof, is strictly forbidden for all coun-
tries, outside the restrictive limits of the law, whatever the process, and notably
photocopies or scanning.

“If you can dream it, you can do it.”

— Walt Disney

ABSTRACT

A Self-adaptive System (SAS) is a specialized system designed to handle changes
that may occur in the operating environment. This system accomplishes this by
triggering necessary adaptations at runtime. These adaptations can change the
system’s structure, behavior, or even its adaptation mechanism. However, it is
essential to note that these changes can introduce defects and architectural issues
(e.g., architectural bad smells) into the system, which can cause it to fail during
runtime. As such, it is crucial to carefully monitor and manage these adaptations
to maintain the system’s reliability. In order to ensure system performance and
integrity, it is essential to conduct thorough testing and architectural analysis while
the system is running. Although previous studies available in the literature have
focused mainly on analyzing architectural issues and testing during the design phase,
evaluating the system at runtime is equally essential. Thus, this thesis proposed the
Behavioral Map framework.

During system-under-test (SUT) execution, our framework can recognize fea-
ture interactions and architectural bad smells (ABS), such as Cyclic Dependency,
Extraneous Connector, Hub-Like Dependency, and Oppressed Monitors. Also, the
Behavioral Map generates a graphical map that describes the configuration ana-
lyzed at runtime. This map enables us to determine the testing boundaries and
to dynamically generate test cases based on the selected scope, which could be
determined through either Feature Relationship Analysis or ABSs Analysis. Also, the
test case generation processes can generate tests using the following strategies: i)
adaptive-random test generation, ii) evolutionary algorithms to generate tests, and
iii) combinatorial test design to generate test cases.

The Behavioral Map has been implemented in two versions. The first, the Be-
havioral Map White Box, is implemented as reusable building blocks that allow
their incorporation into the system under analysis. The last version, the Behavioral
Map Black Box, automatically executes the SUT methods from the host Java Virtual
Machine. This allows the Behavioral Map Black Box to identify features loaded at
runtime based on parameters defined by software developers without requiring
code instrumentation and source code recompilation of SUT, unlike the Behavioral
Map White Box. Through our research, we have conducted various studies to evalu-
ate our approach. In the first study, we analyzed the process of identifying feature
interaction and ABS detection at runtime in three SASs. Our findings indicated that
some ABS only appear in specific system configurations or architectures. The second
study compared ABS detected at runtime to those detected at design time, revealing

v

differences between the two. Lastly, we focused on assessing the feasibility of our
testing approach, and our results show that it is feasible to select the test scope at
runtime to SASs.

Keywords: Self-adapting system, Software architecture, Architectural Smells,
MAPE-K loop, Software testing, Runtime Validation, Behavioral Maps.

vi

RÉSUMÉ

Un système auto-adaptatif (SAA) est un système spécialisé conçu pour traiter les
changements qui peuvent survenir dans l’environnement opérationnel. Ce système
y parvient en déclenchant les adaptations nécessaires au moment de l’exécution.
Ces adaptations peuvent modifier la structure du système, son comportement, ou
même son mécanisme d’adaptation. Cependant, il est essentiel de souligner que
ces changements peuvent introduire des anomalies et des problèmes architecturaux
(par ex. les mauvaises pratiques (“smells”) architecturales) dans le système, ce qui
peut entraîner des défaillances en cours d’exécution. Il est primordial de surveiller
et de gérer attentivement ces adaptations afin de maintenir la fiabilité du système.
Pour assurer la performance et l’intégrité du système, il est essentiel de mener
des tests approfondis et une analyse architecturale lorsque le système est en cours
d’exécution. Bien que les études antérieures dans la littérature se sont principale-
ment concentrées sur l’analyse architecturales de manière statique, l’évaluation du
système en cours d’exécution est également essentielle. Cette thèse a ainsi proposé
le Framework “Behavioral Map”.

Pendant l’exécution du système à tester (SAT), notre Framework peut identifier
l’interaction des fonctionnalités ou les smells architecturaux, telles que la dépen-
dance cyclique, le connecteur externe, la dépendance de type “hub” et les capteurs
désynchronisés. En effet, la Behavioral Map génère une représentation graphique
qui décrit la configuration analysée au cours de l’exécution. Cette cartographie per-
met de déterminer les frontières des tests et de produire dynamiquement des cas de
test pour un sous ensemble déterminé du système, qui peut être établi par l’analyse
des relations entre les caractéristiques ou par l’analyse des smells architecturaux. De
plus, les processus de génération de cas de test peuvent générer des tests en utilisant
les stratégies suivantes : i) la génération de tests aléatoires adaptatifs, ii) les algo-
rithmes évolutionnaires pour produire des tests, et iii) la conception combinatoire
de scénarios de test.

La Behavioral Map a été mise en œuvre en deux versions. La première, la Behav-
ioral Map boite blanche, est mise en œuvre sous forme de composants réutilisables
qui autorisent leur incorporation au système analysé. La deuxième version, la
Behavioral Map boite noire, exécute automatiquement les méthodes du SAT à par-
tir de la machine virtuelle Java de l’hébergeur. Cela permet à la Behavioral Map
boite noire d’identifier les fonctionnalités chargées au moment de l’exécution en
fonction des paramètres définis par les développeurs de logiciels sans nécessiter
d’instrumentation du code et une recompilation du code source du SAT, au contraire

vii

de la Behavioral Map boite blanche. Dans le cadre de nos recherches, nous avons
mené plusieurs études pour évaluer notre approche. Dans la première étude, nous
avons analysé le processus d’identification de l’interaction des caractéristiques et la
détection de smells architecturaux en cours d’exécution dans trois SAAs. Nos résul-
tats ont indiqué que certains smells ne sont présents que dans des configurations
spécifiques de certains SAAs. La deuxième étude a comparé les smells détectés à
l’exécution à ceux détectés à la conception, en révélant des différences entre les
deux. Enfin, nous nous sommes concentrés sur l’évaluation de la faisabilité de notre
approche de test, et nos résultats ont montré qu’il est effectivement possible de
sélectionner la portée du test à l’exécution pour les SAAs.

Mots clés : Système auto-adaptatif, Architecture logicielle, Architectural Smells,
MAPE-K, Test Logiciel, Behavioral Map

viii

ACKNOWLEDGEMENTS

I want to start by expressing my gratitude to God for the many blessings in my life. I
am also thankful for my parents, Everaldo Lima dos Santos and Maria Lúcia Lima
dos Santos, who have always encouraged and supported me. Special thanks go to my
wife, Andréa, and daughter, Ingrid, who have been a constant source of inspiration
and love.

Also, I would like to thank my brothers, Elton and Elder, as well as all the members
of the Lima family who have directly or indirectly influenced and motivated me.

My Ph.D. studies began in September 2019 and have presented numerous chal-
lenges, including adjusting to a new country, a new job, and being away from family
and friends. However, I have also had many rewarding experiences, including the
freedom to conduct research without industry limitations and the guidance of ex-
ceptional advisors like Gilles Perrouin and Pierre-Yves Schobbens.

I want to express my deep appreciation to Prof. Gilles Perrouin for his invaluable
guidance and insightful discussions. Additionally, I am grateful to my friends Dhen-
nya, Davilene, Carmen, Thaís, Larissa, Nádia, Cristiano, Cíntia, Joel, Cássia, Dona
Nildes, Maria Helena, Aleci, Leonardo (Léo), Miguel (Miguelito), Maria Eduarda
(Duda), Lorena, Aishwarya, Rabeb, Ahmed, Maouaheb, Tárcius, Taís, Danillo, and
Sueny for their unwavering support and friendship. I extend my gratitude to my
research team, especially to James.

I would like to express my gratitude to the jury members for dedicating their time
to reading my manuscript and providing feedback. My sincere thanks go to Prof.
Marie-Ange Remiche, Prof. Claudia Raibulet, Prof. Kim Mens, and Prof. Vincent
Englebert.

I want to thank Prof. Ivan Machado and Prof. Eduardo Almeida from the Federal
University of Bahia in Brazil for believing in me. Without their support, this thesis
would not have been possible.

Finally, I am grateful to the University of Namur for their support through the
CERUNA grant.

ix

CONTENTS

Contents xi

List of Figures xv

List of Tables xvii

Preface xix
Context and problem statement . xix
Contributions . xx
Structure of the thesis . xxi
Publications . xxii

I Background 1

1 Dynamically Adaptive Systems 3
1.1 Dynamic Software Product Line . 4
1.2 Self-adaptive System . 5
1.3 Wrap up . 7

2 Architectural Bad Smells 9
2.1 Software Architecture . 10
2.2 Architectural Bad Smells Description 10
2.3 Related Work . 17
2.4 Wrap up . 18

3 Runtime Validation 19
3.1 Software Testing . 20
3.2 Test Approaches . 21
3.3 Wrap up . 23

4 Problem Statement 25
4.1 Architectural Bad Smells Challenge . 25
4.2 Runtime Test Challenge . 28
4.3 Wrap up . 30

xi

CONTENTS

II Behavioral Map Framework 33

5 Case Studies 35
5.1 Smart Home Environment (SHE) . 36
5.2 Adasim . 38
5.3 mRUBiS . 38
5.4 DeltaIoT . 38
5.5 Threats to validity . 38
5.6 Wrap up . 39

6 Behavioral Map 41
6.1 Overview . 41
6.2 Behavioral Map Definition . 43
6.3 Behavioral Map Building Process . 44
6.4 Identifying Architectural Bad Smells 46
6.5 Test Process . 49
6.6 Uncovered Aspects . 51
6.7 Wrap up . 51

III Implementation 53

7 Behavioral Map Framework 55
7.1 Framework Implementation . 55
7.2 Behavioral Map White Box . 57
7.3 Behavioral Map Black Box . 61
7.4 Wrap up . 70

IV Empirical Evaluations 71

8 Identifying Architectural Smells in Self-Adaptive Systems at Runtime 73
8.1 Behavioral Map - Based Architectural Bad Smells Detection 74
8.2 Results . 74
8.3 Threats to Validity . 80
8.4 Related Work . 82
8.5 Wrap up and perspectives . 82

9 Towards Assessing Architectural Smells for Self-Adaptive Systems at Run-
time 85
9.1 Study Design . 86
9.2 Results . 88
9.3 Threats to Validity . 93
9.4 Related Work . 94
9.5 Wrap up and perspectives . 94

10 Behavioral Map: Towards Runtime Testing for Self-Adaptive Systems 97

xii

Contents

10.1 Study Design . 97
10.2 Experimental Setup . 98
10.3 Experimental Results . 102
10.4 Discussion . 105
10.5 Threats to Validity . 105
10.6 Related Work . 106
10.7 Wrap up and perspectives . 107

V Postface 109

11 Conclusion 111
11.1 Summary of contributions . 111
11.2 Perspectives and future work . 112
11.3 Final remarks . 113

A Behavioral Map Black Box 115
A.1 Feature Trace Configuration Options 115
A.2 Chapter 10 - Case Study Configuration Files 115

B Acronyms 123

Bibliography 125

xiii

LIST OF FIGURES

1 Thesis Structure Overview. xxi

1.1 Feature model of the Sensor software product line. 4
1.2 The MAPE-K loop. 5

2.1 Example component and connectors implemented using UML diagrams. 10
2.2 The first diagram (a) depicts Connector Envy smell involving communi-

cation and facilitation services. The second diagram (b) shows Connector
Envy involving a conversion service [51]. 11

2.3 Scattered Functionality occurring across three components [51]. 12
2.4 An Ambiguous Interface is implemented using a single public method

with a generic type as a parameter [51]. 13
2.5 An Extraneous Connector occurrence example with an event- and a

procedure-call-connector between two components [51]. 14
2.6 An Cyclic Dependency occurrence between two components. 15
2.7 Hub-Like Dependency example. 16
2.8 Oppressed Monitors smell example. 17

4.1 Traffic Routing system simplified architecture (simplified). 28

5.1 Behavioral Map (BM) for one SHE configuration. 37

6.1 Behavioral Map (BM) process overview. 42
6.2 An overview of Detection (A) and Analysis (B) processes are used to

identify and categorize the features on Behavioral Map. 45
6.3 Behavioral Map (BM) test process overview. 49

7.1 Behavioral Map Architecture overview. 56
7.2 Report of Features Activated at runtime. 66
7.3 Report of Features Involved in Cyclic-Dependency architectural bad smell. 67
7.4 Invoked Methods Report shows the last methods executed in the last

adaptation performed by Adasim [137]. 68
7.5 Stack Trace Report shows the last method executed in the last adaptation

performed by Adasim [137]. 68
7.6 Test Code Coverage Report. 69
7.7 Unit Test Report shows an overview of the tests performed at runtime. . 69

xv

LIST OF FIGURES

7.8 Combinatorial Test Design Report example. 70

8.1 Behavioral Map for SHE in adaptation 2. 75
8.2 CD identified in Adasim QLearningRoutingAlgorithm in adaptation 1. . 76
8.3 Features involved in HL identified in Adasim. 78
8.4 Behavioral map of the first configuration of mRUBiS Self-Optimization. 80
8.5 Behavioral map of the first configuration of mRUBiS Self-Healing MAPE-K

loop. 81

xvi

LIST OF TABLES

5.1 Systems used in this thesis. 36

6.1 Selected Architectural Bad Smells for Self-Adaptive Systems. 47

8.1 ABSs identified adaptation 1 and 2 of the SHE. 74
8.2 ABSs identified in adaptation 1 and 2 of the Adasim - QLearningRoutin-

gAlgorithm. 76
8.3 ABSs identified in adaptation 1 and 2 of the Adasim AdaptiveRoutingAl-

gorithm. 79

9.1 ABS identified by Arcan and Behavioral Map. 89
9.2 ABS identified by the BM in adaptation 1 and 2 of the Adasim - QLearn-

ingRoutingAlgorithm. 89
9.3 ABS identified by the BM in adaptation 1 and 2 of the Adasim AdaptiveR-

outingAlgorithm. 90
9.4 Architectural Bad Smells identified by Arcan and Behavioral Map in mRU-

BiS Self-Optimization. 91
9.5 Architectural Bad Smells identified by Arcan and Behavioral Map in mRU-

BiS Self-Healing MAPE-K loop. 92

10.1 Processing time to generate testing at runtime for each SAS under analyses.102
10.2 Adasim test strategy coverage. 102
10.3 ABSs identified by the BM in Adasim adaptation loops. 104
10.4 DeltaIoT test strategy coverage. 104

xvii

PREFACE

Context and problem statement

Self-Adaptive Systems (SAS) change their behavior depending on environmental
changes and (re)configuration plans and goals [25, 47, 71, 109]. Dynamic Software
Product Line (DSPL) engineering is a way of implementing SASs, where features
are enabled or disabled at runtime according to a feature model [13]. However,
validating the DSPLs can be complex due to the exponential growth in the number
of configurations possible with the number of features [5, 28, 119]. Furthermore,
unexpected and undesired interactions between features can occur, especially if the
system can update itself (for example, by downloading new features to interface with
a sensor newly plugged into the system) [21]. While the feature interaction problem
is well-researched for systems where features are bound at the specification or design
time [3, 5, 6, 26, 28, 58, 85], it is less explored for runtime interactions [21, 102].

Beyond that, adaptations at runtime may affect architectural qualities and prop-
erties. For instance, the (re)configuration process may add a new architectural
solution in an inappropriate context, combine architectural fragments with undesir-
able behaviors, or apply architectural abstractions at the wrong granularity level via
new features loaded at runtime [51, 52, 77]. In these circumstances, Architectural
Bad Smells (ABS) may appear, implying reductions in system maintainability [29,79].
ABSs result from a set of architectural design decisions that negatively impact the
system’s properties (understandability, testability, maintainability, extensibility, and
reusability) [29, 42, 52]. However, an ad-hoc literature review identified only two
studies exploring ABS in SAS at design time [106, 114]. In addition, there is a gap in
evaluating the impact or identification of ABS in SAS at runtime [90].

In this context, SASs testing is a complex undertaking that poses a significant
challenge. Testing every operational scenario that a SAS may encounter at runtime is
impractical [48]. Furthermore, the number of potential configurations that may arise
at runtime grows exponentially with the number of features provided by the system.
As a result, SAS demands testing strategies that can address unknown variability
space at runtime or untested configurations before software deployment. Runtime
tests are essential to ensure that the SAS functions as expected in unforeseen situ-
ations. Testing SAS to verify that the new configurations satisfy the requirements
at runtime is imperative. Therefore, test generation during runtime is necessary
to guarantee the relevance of testing, where relevance refers to the applicability
of a test case to its environment in constant change [47]. Thus, we must face two

xix

PREFACE

main questions: i) How to deal with Runtime variability’s impact on SAS Tests? This
umbrella question is discussed in [30, 47, 117, 118]. Also, this thesis addresses some
open questions about the runtime variability’s impact on SAS Tests, such as How to
deal with the exponential growth of SAS configurations that should be tested? and ii)
How can the number of test cases be reduced while maintaining the fault detection
capability? In this direction, we must generate test cases for each configuration
detected at runtime [104, 126, 139].

Contributions

This thesis introduces the Behavioral Map (BM) formalism, which gathers infor-
mation from various sources, such as feature models and source codes, to identify
feature interactions and architectural issues (e.g., ABS). The BM is a directed graph
that captures interactions defined in the feature model while taking control and
data flow interactions inferred from the candidate reconfiguration implementation.
Typically, Dynamic Software Product Line (DSPL) engineering involves representing
the features of a system family along with their commonalities, variabilities, and
relationships. This model is highly abstract and serves as a foundation for feature
selection and product derivation during design time or runtime. However, it fails to
capture control and data flow interactions inferred from the SAS, which are crucial
in identifying unpredictable behavior or relationships among features at runtime.

Thus, the BM supports the feature interaction issues identification, ABS iden-
tification, and testing selection based on the analysis of a runtime configuration.
Furthermore, we can include the BM in the system adaptation process to verify
the selected configuration before deployment. Consequently, the system will not
execute the faulty configuration and will keep the last valid configuration until a
new one gets computed. The main contributions are: i) usage of the BM to derive
an ABS catalog dedicated to SAS; ii) the exploitation of identified feature interac-
tions to derive test generation and selection algorithms for the configuration under
study, notably when new features emerge via hot-plugging mechanisms; and finally,
iii) evaluation of map inference mechanisms on several case studies. This evalu-
ation will allow the performance assessment of our inference and prioritization
algorithms.

Behavioral Map Framework: We created two versions of the Behavioral Map in
Java 8. The first version, the Behavioral Map (BM) White Box, is a set of reusable
building blocks that can be integrated into the analyzed system. The BM White Box
uses the Neo4J1 graph database (including Cypher2 queries) to create a map visual-
ization and the WALA API [66] to extract data. This API provides Call Graph [55, 56]
and the Control-Flow Analysis (CFA) [55, 87, 88] algorithms for extracting data. The
API uses static analysis to identify dependencies within the class hierarchy and per-
forms interprocedural dataflow analysis to identify relationship types. Additionally,

1Neo4j - https://neo4j.com/product/
2Cypher - https://neo4j.com/docs/cypher-manual/current/introduction/

xx

https://neo4j.com/product/
https://neo4j.com/docs/cypher-manual/current/introduction/

Structure of the thesis

we can retrieve information about each feature’s installation at runtime using the
manifest file, which describes the feature and its dependencies. The BM White Box
also can identify Architectural Bad Smells (ABS) at runtime.

The second, Behavioral Map Black Box, is an extension of Java Pathfinder (JPF)3

that can automatically execute System Under Test (SUT) methods without requiring
code instrumentation or recompilation of SUT. This feature helps software develop-
ers to identify features loaded at runtime based on parameters. The BM Black Box
also supports the detection of ABS at runtime based on the map created using the
Neo4J graph database. Also, the tool is equipped with JUnit4, allowing for seamless
execution of test units if the SUT implements them. Additionally, it can generate
unit-level test cases using TackleTest5 [124] based on ABS or feature interaction
detected at runtime.

Structure of the thesis

Figure 1: Thesis Structure Overview.

3Java Pathfinder is an extensible software model-checking framework for Java bytecode programs -
Additional information is available at https://github.com/javapathfinder/jpf-core

4JUnit - Additional information is available at https://junit.org/junit5/docs/5.0.0-M5/user-guide/
5TackleTest - https://github.com/konveyor/tackle-test-generator-cli

xxi

https://github.com/javapathfinder/jpf-core
https://junit.org/junit5/docs/5.0.0-M5/user-guide/
https://github.com/konveyor/tackle-test-generator-cli

PREFACE

This thesis is divided into five parts, with a diagram of the structure provided in
Figure 1. The introductory section is followed by Part I, which covers the background
information needed for the rest of the thesis. Chapter 1 introduces Dynamic Adap-
tive Systems, focusing on DSPL and SAS. Chapter 2 describes ABS, including their
characteristics, quality impact, and trade-offs. Chapter 3 provides the necessary
background on runtime validation. In Chapter 4, we explore the difficulties that
arise with detecting Architectural Bad Smells and conducting runtime testing in the
face of runtime variability. Part II contains the case studies discussed in Chapter 5
and main contributions of the thesis, with the Behavioral Map framework presented
in Chapter 6. Implementation details are described in Part III on Chapter 7, includ-
ing the Behavioral Map White Box and Behavioral Map Black Box. The Empirical
Evaluations are presented in Part IV, with Chapter 8 focusing on assessing ABS for
SASs using the Behavioral Map. Chapter 9 compares design time and runtime ABS
detection for SASs. In contrast, Chapter 10 addresses the applicability of Behavioral
Map to select scope tests, generate test cases, and execute tests at runtime in SASs.
Finally, Part V presents Chapter 11, conclude the thesis and offers research perspec-
tives. Also, the thesis appendixes include some configurations files used to run the
Behavioral Map Black Box during the experimentation.

Publications

The content of this thesis is based upon, reuses, and extends the following peer-
reviewed publications of the author:

Book Chapter

[77] Edilton Lima dos Santos, Sophie Fortz, Pierre-Yves Schobbens, and Gilles
Perrouin. Behavioral maps: Identifying architectural smells in self-adaptive
systems at runtime. In Patrizia Scandurra, Matthias Galster, Raffaela Miran-
dola, and Danny Weyns, editors, Software Architecture, pages 159–180, Cham,
2022. Springer International Publishing.

Conferences

[78] Edilton Lima dos Santos, Pierre-Yves Schobbens, Ivan Machado, and Gilles
Perrouin. Architectural bad smells for self-adaptive systems: Go runtime! In
Proceedings of the 17th International Working Conference on Variability
Modelling of Software-Intensive Systems, VaMoS ’23, page 85–87, New York,
NY, USA, 2023. Association for Computing Machinery.

[36] Edilton Lima dos Santos, Pierre-Yves Schobbens, and Gilles Perrouin. Featured
scents: Towards assessing architectural smells for self-adaptive systems at
runtime. In 19th International Conference on Software Architecture, pages
71–74. IEEE, 2022.

[35] Edilton Lima dos Santos, Sophie Fortz, Gilles Perrouin, and Pierre-Yves Schob-
bens. A vision to identify architectural smells in self-adaptive systems using

xxii

Conferences

behavioral maps. In 15th European Conference on Software Architecture
(ECSA 2021), page 1. CEUR Workshop Proceedings, 2021.

[34] Edilton Lima dos Santos. Stars: Software technology for adaptable and reusable
systems. In Proceedings of the 25th International Systems and Software
Product Line Conference (SPLC), pages 13–17. ACM, 2021.

[112] Edilton Lima dos Santos, Gilles Perrouin, and Pierre-Yves Schobbens. Stars:
software technology for adaptable and reusable systems phd research project.
In Proceedings of the 14th International Working Conference on Variability
Modelling of Software-Intensive Systems, pages 1–2, 2020.

xxiii

Part I

Background

1

C
H

A
P

T
E

R

1
DYNAMICALLY ADAPTIVE SYSTEMS

1.1 Dynamic Software Product Line . 4
1.2 Self-adaptive System . 5
1.3 Wrap up . 7

Nowadays, the software industry has been developing software systems capable
of anticipating how and when they will need to self-adapt [17, 83, 109, 122]. The
self-adaptation has been widely accepted as an effective methodology for handling
modern software systems’ increasing complexity and dynamicity [133]. Such behav-
ior is implemented in adaptation mechanisms to manage the adaptation process and
assurance software integrity during and after the adaptation. These software systems
are named Dynamic Adaptive Systems (DAS). The DASs monitor themselves and
their execution environment to answer the environmental changes, user requests,
and reconfiguration plans and goals at runtime [35, 78]. For this purpose, the DASs
combine architectural fragments or solutions in their adaptation process [77]. Also,
DASs can be divided into two parts: i) Adaptation policies or adaptation strategies,
specifying how the system must react according to the environmental changes or
user’s requirements at runtime, and ii) the set of features (configuration options)
used to (re)configure the system [91, 132]. Consequently, these systems can be
customized or reconfigured to specific needs via the bind and unbind of different
features at runtime, a phenomenon known as runtime variability.

The DASs can be conceptualized as a dynamic software product line (DSPL) [89]
or self-adaptive system [13] in which variabilities are bound at runtime [1, 13, 57].
However, SASs differ from DSPLs as the former do not provide models of the system’s
variability [105]. This means that a SAS can be a DSPL only if implemented following

3

CHAPTER 1. DYNAMICALLY ADAPTIVE SYSTEMS

Figure 1.1: Feature model of the Sensor software product line.

the DSPL engineering principles [13, 37]. In the following sections, we define both
systems. Thus, this chapter presents the main ideas and concepts behind DAS,
focusing in DSPL engineering and SAS used in this thesis. Section 1.1 presents DSPL
concepts. Section 1.2 discusses the SAS concepts and their characteristics.

1.1 Dynamic Software Product Line

Dynamic software product lines (DSPL) engineering exploits the knowledge ac-
quired in Software Product Line (SPL) [27] engineering to develop systems ca-
pable of self-adapt at runtime (e.g., highly-configurable, context-aware, and self-
adaptive) [10]. Thus, DSPL incorporates the property of similarities and variability in
the family of software like SPL. Moreover, DSPL provides a mechanism to automati-
cally derive product instances that dynamically adapt at runtime to accommodate
particular user needs or likely changes in environmental conditions and resource
constraints [111]. Consequently, DSPL engineering helps us design more dynamic
software architectures and build more adaptable software to handle autonomous
decision-making depending on environmental changes and (re)configuration plans
to work in such environments [20, 77]. Moreover, it emphasizes variability analy-
sis and design at development time and variability binding and reconfiguration at
runtime [115]. Such reconfiguration at runtime requires variability mechanisms or
adaptive mechanisms to trigger the reconfigurations or adaptations at runtime.

DSPL dynamically binds or unbinds features, via an adaptive mechanism, at
runtime according to a Feature Model (FM) [9]. A feature model represents com-
monalities and variabilities in a family of systems as well as relationships amongst
features [35, 69]. Thus FM represents the structural relationship consisting of a logi-
cal grouping of features (e.g., the features are grouped into Mandatory, Alternative,
or Optional). It thus describes which valid (re)configurations can be performed [35].
Also, the model has a high abstraction level and is used as a starting point for the
feature selection to new products instantiation in design time or runtime. In this con-
text, a feature is a characteristic of a software system that satisfies a requirement,
represents a distinctive user-visible aspect, and provides a potential configuration
option [2].

Figure 1.1 presents a concrete example of a Feature Model that represents a set of
permitted selection features that can be used to instantiate a new type of Sensor in a
software product line. This model is hierarchically arranged in a set of features, which
with the main feature, Sensor, conceptually represents the product line domain. It

4

1.2. Self-adaptive System

Figure 1.2: The MAPE-K loop.

has two mandatory compound features, Connection and Type. The mandatory
feature Type has six child features, which are alternative: Temperature, Gas, Presence,
Luminosity, Water and Soil Moisture, respectively. However, the mandatory feature
Connection has three child features within an OR-feature relationship: USB, Ethernet,
and WIFI. Besides, the model includes an optional feature: LCD.

1.2 Self-adaptive System

A self-adaptive system (SAS) comprises a closed-loop system capable of evaluating
and changing its behavior at runtime due to its requirements (e.g., environment
constraints and adaptation policies) and users’ needs [83,92]. Thus, SAS is a closed-
loop system with feedback from the self (software requirements) and the context
(operating environment) [109]. Consequently, the self-adaptations are typically
implemented using a closed-loop through key activities responsible for the adapta-
tion process: Monitor, Analyze, Plan, and Execute over a shared Knowledge base,
together forming a MAPE-K loop [65, 134].

MAPE-K: The MAPE-K loop was proposed by IBM [65] and an example of this
approach is shown in Figure 1.2. The Monitor gathers, aggregate, filters, and report
details (such as metrics, configuration parameters, or other information that can
trigger the adaptations) collected from a managed resource (hardware or software).
In this context, a managed resource can be any resource type (hardware or soft-
ware) that exists in the runtime environment of a system, and that can be managed
(e.g., sensor/probe and effector/actuator). In this context, a sensor serves as an
interface that provides access to information regarding a managed resource’s current
state as well as any changes made to that state. On the other hand, an effector is an
interface that allows for modifications to be made to the state of managed resources.

5

CHAPTER 1. DYNAMICALLY ADAPTIVE SYSTEMS

The Monitor also correlates all information collected into Symptoms that can
be further analyzed in Analyze. The Analyze correlates and models complex situa-
tions (for example, time-series forecasting and queuing models) to understand the
current system state, learn about the environment and help predict future situations.
Thus, the Analyze identifies whether the current system needs an adaptation at
runtime and performs the Change Request.

The Plan constructs the Change Plan based on the Change Request to achieve
the goals and objectives for which the system was implemented, using the adap-
tations policy to guide its work. The policy is a set of considerations designed to
guide the decisions affecting software (managed resource) behavior.

The Execute changes the behavior of the software (managed resource) using
effectors based on the Change Plan built by the Plan.

The Knowledge is a set of data (e.g., symptoms and adaptation policies) shared
among MAPE activities and used in the closed loop to decide when the system
needs to trigger an adaptation at runtime. The data shared includes topology
information, historical logs, metrics, symptoms, and adaptation policies, etc.

Self-* Properties: Self-adaptation is a process of (re)configuring or adapting the
software architecture of a system as a reaction to changes in the managed resources
or environment (context) of the system [14, 49, 74]. Thus, the systems implement
the self-* properties to perform self-adaptation. One of the well-known sets of self-
* properties are self-configuring, self-healing, self-optimizing, self-protecting,
self-awareness, and context-awareness [75, 109, 127].

In the following, we further elaborate on each property’s details based on [75,
109, 127].sSelf-Configuring is the ability to reconfigure automatically and dynamically

in reaction to changes by installing, updating, and composing/decomposing
software components at runtime.sSelf-Healing is the ability to discover, diagnose, and react to failure. This
property can help to anticipate possible problems and takes proper actions to
prevent failure.sSelf-Optimizing is managing performance and resource allocation to satisfy
different users’ requirements. For instance, this property can manage the
response time, throughput, and workload.sSelf-Protecting is the ability to detect security breaches and recover from
their effects. It has two aspects: i) defending the system against malicious
attacks and ii) predicting problems and taking actions to avoid or mitigate
their effects.sSelf-Awareness means that the system is aware of its self-states and behaviors.
This property is based on self-monitoring, which reflects what is monitored.sContext-Awareness means that the system knows its context (operational
environment). Context is any information that can be used to characterize the
situation of an entity (person, place, or object) that is considered relevant to
the interaction between a user and an application [32].

6

1.3. Wrap up

1.3 Wrap up

This chapter presented the standard Dynamic Adaptive Systems (DAS) and focused
on the Dynamic Software Product Line (DSPL) and Self-Adaptive System (SAS). Also,
we discuss the concepts of runtime variability, feature model, feature, MAPE-K loop,
and context awareness used in the approaches proposed in this thesis to identify the
architectural issues and select tests at runtime.

7

C
H

A
P

T
E

R

2
ARCHITECTURAL BAD SMELLS

2.1 Software Architecture . 10
2.2 Architectural Bad Smells Description 10
2.3 Related Work . 17
2.4 Wrap up . 18

In the software engineering literature, smells are categorized as code smells [41],
design smells [121], and Architectural Smells (AS) or Architectural Bad Smells (ABS)
[52]. The categorization depends on factors such as its scope and the impact on the
rest of the system [110]. For instance, code smells have a limited impact at the class
level. On the other hand, ABS span multiple components impacting them at the
system level. Moreover, ABSs are analogous to code smells because they represent
standard solutions that are not necessarily faulty or errant but still negatively impact
software quality at different levels [51, 110].

Several authors [29, 42, 52] define an ABS as a set of architectural design deci-
sions that negatively impact system lifecycle properties, such as understandability,
testability, maintainability, extensibility, and reusability. ABS may arise by applying
a design solution in an inappropriate context [52], combining design fragments
with undesirable behaviors, or applying design abstractions at the wrong level of
granularity [51,77]. Consequently, ABS indicate possible design and implementation
issues and fixing them can improve the system’s quality [77].

The following section presents software architecture concepts (Section 2.1) and
describes one of the literature’s well-known sets of Architectural Bad Smells. Section
2.2.1 describes Connector Envy (CE). We define the Scattered Functionality (SF)
smell in section 2.2.2. Ambiguous Interfaces (AI) smell is presented in section 2.2.3.

9

CHAPTER 2. ARCHITECTURAL BAD SMELLS

ComponentA ComponentB

ComponentC

ClassC

+ methodC()

ComponentD

ClassD

+ methodD()
<<call>>

Figure 2.1: Example component and connectors implemented using UML diagrams.

The Extraneous Connector (EC) smell characteristics are introduced in section 2.2.4.
Section 2.2.5 defines Cyclic Dependency (CD) smell. Hub-Like Dependency (HL)
smell is explained in 2.2.6. Section 2.2.7 presents Oppressed Monitors (OM) smell.
Finally, Section 2.3 discusses the related work.

2.1 Software Architecture

Bass et al. [11] define software architecture as a structure or structures of the sys-
tem, which comprises software elements, the externally visible properties of those
elements, and the relationships among them [11]. This structure contains various
models that depict different perspectives on the system’s structure. To formalize
software architecture and ensure some of its desirable properties, architectural styles
can be used to describe component and connector types. In this context, archi-
tectural styles are a set of canonical architectural solutions to problems [11]. Thus,
components provide specific functions for the system, while connectors enable
communication between components. Figure 2.1 shows a component diagram
illustrated in UML1 notation. This diagram provides a visual representation of how
different components interact with each other by employing diverse connectors. For
instance, ComponentA and ComponentB communicate with others through an inter-
face (connector type). Also, an object of type ClassC in ComponentC communicates
with ClassD in ComponentD via a synchronous method call. An architectural config-
uration consists of a single component or multiple components communicating via
connectors [97].

2.2 Architectural Bad Smells Description

This section describes seven different ABSs proposed in [50–52] and [114]. We aim
to identify and fully grasp these smells by providing precise and concise definitions

1UML stands for Unified Modeling Language. For more information, please visit: https://www.omg.
org/spec/UML

10

https://www.omg.org/spec/UML
https://www.omg.org/spec/UML

2.2.1. Connector Envy (CE)

Figure 2.2: The first diagram (a) depicts Connector Envy smell involving commu-
nication and facilitation services. The second diagram (b) shows Connector Envy
involving a conversion service [51].

based on standard architectural building blocks like components, connectors, inter-
faces, and configurations [51,52]. We have also included one or more UML diagrams
to represent each smell visually.

2.2.1 Connector Envy (CE)

Description: The components affected by Connector Envy cover too much func-
tionality that should be delegated to a connector. Thus, this smell impacts the
components encompassing extensively one or more of the following interaction
services:sCommunication concerns the data transfer (e.g., messages, computational

results) between architectural elements.sCoordination concerns the transfer of control between architectural elements.sConversion translates different interaction services between architectural
elements (e.g., conversion of data formats and types).sFacilitation concerns the mediation, optimization, and streamlining of inter-
action (e.g., load balancing or fault tolerance).

Figure 2.2 (a) illustrates an occurrence of a CE smell, where ComponentA imple-

11

CHAPTER 2. ARCHITECTURAL BAD SMELLS

Figure 2.3: Scattered Functionality occurring across three components [51].

ments communication and facilitation services. ComponentA imports a communica-
tion library because it provides low-level networking facilities implementing remote
communication. Consequently, naming, delivery, and routing services handled by re-
mote communication are a type of facilitation service. Figure 2.2 (b) depicts another
Connector Envy smell in which ComponentB performs a conversion during pro-
cessing. ComponentB implements the PublicInterface class. PublicInterface
implements the process method by calling a conversion method that transforms the
Type parameter into a ConcernType.

Quality Impact and Trade-offs: The quality attributes affected by the occurrence
of this smell are: i) Reusability is reduced because the dependencies are created
between interaction services and application-specific services are hard to reuse ei-
ther without including the other; ii) Understandability because disparate concerns
are mixed. Thus, the component has functionality and connection responsibilities;
iii) Testability because application and interaction functionality cannot be tested
separately. For instance, a test failure could result from a fault in the interaction func-
tionality or the application logic. Thus, developers must investigate two potential
sources for the error instead of just one.

2.2.2 Scattered Functionality (SF)

Description: Garcia et al. [51] argue that SF smell describes a system with multiple
components responsible for realizing the same high-level concern. Also, some
of those components are responsible for orthogonal concerns. Consequently, they
violate the principle of separation of concerns in two manners: i) this smell scatters
a single concern across multiple components; and ii) at least one component ad-
dresses multiple orthogonal concerns. The components realizing scattered concerns
depend on each other, and as a result, their reusability and modularity are reduced.

Figure 2.3 depicts three components responsible for the same high-level concern,
SharedConcern, while ComponentB and ComponentC are responsible for orthogo-

12

2.2.3. Ambiguous Interfaces (AI)

Figure 2.4: An Ambiguous Interface is implemented using a single public method
with a generic type as a parameter [51].

nal concerns. Thus, ComponentB and ComponentC violate the principle of separa-
tion of concerns because they are responsible for multiple orthogonal concerns. Also,
they cannot be combined into one component with ComponentAwithout creating a
component that deals with more than one concern.

Quality Impact and Trade-offs: Scattered Functionality smell impacts modifi-
ability, understandability, testability, and reusability in the components affected.
Consequently, when the concern SharedConcern (depicted in Figure 2.3) needs
to be modified, there are three possible components where SharedConcern can
be updated and tested. Also, we cannot reuse ComponentA without ComponentB
and ComponentC, thus affecting the reusability of each component. The smell re-
duces understandability because two components (ComponentB and ComponentC)
are responsible for implementing orthogonal concern SharedConcern. Garcia et
al. [51] argue that the Scattered Functionality smell may be acceptable when the
shared concern must be provided by multiple off-the-shelf (OTS) components whose
internals are unavailable for modification.

2.2.3 Ambiguous Interfaces (AI)

Description: This smell arises when an interface offers only a single and general
entry point into a component. For instance, this smell appears in event-based
publish-subscribe systems because the interactions are not explicitly modeled, and
multiple components exchange event messages via a shared event bus (e.g., com-
munication broker). Figure 2.4 depicts an occurrence of Ambiguous Interface smell,
where two aspects are relevant: i) the interface offers only one public service or
method (e.g., process(GeneralType P)), even though its component offers and
processes multiple services (e.g., TypeA and TypeB); and ii) since the interface only
offers one entry-point, the accepted type (e.g., GeneralType) is consequently overly
general.

13

CHAPTER 2. ARCHITECTURAL BAD SMELLS

Figure 2.5: An Extraneous Connector occurrence example with an event- and a
procedure-call-connector between two components [51].

Quality Impact and Trade-offs: The quality attributes affected by the occurrence
of this smell are: i) Analyzability because the smell does not reveal which services
a component is offering. Thus, the related component’s implementation must be
inspected before the services can be used. Garcia et al. [51, 52] argue that Ambigu-
ous Interfaces also reduce static analyzability at the architectural level and can
occur independently of the implementation-level constructs that realize them; ii)
Understandability because the component does not specify what type of message
is being passed through the interface.

2.2.4 Extraneous Connector (EC)

Description: This issue occurs when two different types of connectors are used
to connect two components. While this problem can apply to any connector, we will
only focus on procedure call and event connectors. Figure 2.5 displays an example
of this issue, where ComponentA and ComponentB are connected through a combi-
nation of procedure call and event connectors. In this scenario, both components
send events to the SoftwareEventBus, which then forwards them to the appropri-
ate recipient. Additionally, an object of type ClassB in ComponentB communicates
with ComponentA through a synchronous method call to transfer data and control
via a service interface.

Quality Impact and Trade-offs: The quality attributes affected by this smell are: i)
Adaptability because the senders and receivers of events are unaware of each other.
However, the components with procedure calls may be difficult to adapt, as shown
in Figure 2.5, because we should adapt both components; ii) Reusability is affected
because two different links are used to connect the components. Consequently, they
have a strong dependency on each other, and this aspect makes it difficult to reuse in
different contexts; iii) Understandability is affected because it is unclear under what
circumstances the additional communication occurs between the two components.

14

2.2.5. Cyclic Dependency (CD)

Garcia et al. [51, 52] argue that EC smell may be acceptable when a standalone
desktop application uses both connector types to handle user input via a graphical
user interface (GUI). In this context, event connectors are not used for adaptability
advantages but to allow the asynchronous user handling of GUI events.

2.2.5 Cyclic Dependency (CD)

Figure 2.6: An Cyclic Dependency occurrence between two components.

Description: Ganesh et al. [50] claim that this smell arises when two or more
class-level abstractions depend on each other directly or indirectly to function
correctly. The components involved in a cycle dependency can hardly be maintained,
tested, or reused in isolation. Figure 2.6 depicts two components (ComponentA and
ComponentB) involved in cyclic dependency via ClassA and ClassB that has direct
dependency between both classes.

Quality Impact and Trade-offs: The quality attributes affected by the occurrence
of this smell are: i) Reusability is reduced because the dependencies between
components are hard to reuse without including the other. For instance, to reuse
ComponentA (in Figure 2.6), the developers should include ComponentB; ii) Testa-
bility because tracking and properly testing all components involved in CD may
be difficult depending on the system’s complexity. CD forces to execute unrelated
system parts, increasing testing complexity; iii) Maintainability: when a compo-
nent related to a concern needs to be modified, it may trigger negative impacts on
components involved in CD.

2.2.6 Hub-Like Dependency (HL)

Description: Díaz-Pace et al. [33] claim that this smell arises when an abstraction
(e.g., classes or packages) has outgoing and ingoing dependencies with many other
abstractions. Figure 2.7 depicts seven components, where ComponentA provides
a message service to send and receive data. In this context, ClassA uses ClassF
and ClassG to implement a message service provided to ComponentB, ComponentC,
ComponentD, and ComponentE. Consequently, ClassA is a highly used system class
because all message service is concentrated on it. This structure is undesirable, as it
increases the potential effort necessary to change all abstractions involved.

15

CHAPTER 2. ARCHITECTURAL BAD SMELLS

ComponentB

ComponentA

ClassB

+ message()

...
a = new ClassA();
a.message();
...

ComponentC

...
a = new ClassA();
a.message();
...

ComponentD

ClassD

+ message()

...
a = new ClassA();
a.message();
...

ComponentE

...
a = new ClassA();
a.message();
...

ClassE

+ message()

ClassA

+ message()

ComponentF ComponentG

...
f = new ClassF();
f.send();
g = new ClassG();
g.receive();
...

ClassF

+ send()

ClassG

+ receive()

<<call>>

<<call>>

<<call>>

<<call>>

<<call>>

<<call>>

ClassC

+ message()

Figure 2.7: Hub-Like Dependency example.

Quality Impact and Trade-offs: The quality attributes affected by the occurrence
of this smell are: i) Maintainability because even a slight modification in a class
affected by HL smell will generate a ripple effect in all classes or packages directly
depending upon them. For instance, a modification in ClassA (Figure 2.7) will
require adapting at least all the dependent classes; ii) Testability because the class
affected by HL smell cannot be tested separately due to ripple effects triggered by its
modification. Therefore, all the dependent classes should be tested with the central
component.

2.2.7 Oppressed Monitors (OM)

Description: Serikawa et al. [114] claim that this smell is characterized by a set of
monitors that shows the following characteristics:sThey are independent of each other concerning the data manipulated.sThey have the same polling rates.sThe execution order of the monitors is predetermined in compilation time

and unmodifiable at runtime. Such a situation occurs due to bad implemen-
tation decisions leading all monitors to be included in a unique loop that takes
from their autonomy.

16

2.3. Related Work

GPSMonitorContextManager

LoopManager

+ loop()

WeekdaySensor

+ getData()

...
gpsSensor = new GPSSensor();
weekdaySensor = new weekdaySensor();

while(!stop){
 ...
 gpsSensor.getData();
 weekdaySensor.getData();
 ...
}
...

GPSSensor

+ getData()

Note
Data may change
every minute or
less.

Note
Data changes
every 24 hours.

Figure 2.8: Oppressed Monitors smell example.

Consequently, OM indicate that the monitors are forced to have the same polling
rate and an immutable execution order at runtime. Figure 2.8 illustrates OM smell oc-
currence in a simplified scenario composed of three components (ContextManager,
WeekdayMonitor, and GPSMonitor). The ContextManager component manages
the loop to collect the data provided by WeekdayMonitor and GPSMonitor. In the
WeekdayMonitor, the data changes every 24 hours. Moreover, the GPSMonitor data
may change every minute or less, depending on the context detected. However,
the loop structure implemented in LoopManager class needs to comply with the
GPS’s high polling rate of change leading to a useless weekday monitoring process
implemented in WeekdaySensor class. This smell leads to unnecessary waste of
resources because the WeekdayMonitor is operating at a polling rate faster than
necessary.

Quality Impact and Trade-offs: This smell is acceptable only when there are
simple monitors with similar polling rates because creating separated monitors as
parallel processes may lead to an overhead problem. Also, the quality attributes
affected by the occurrence of this smell are: i) Maintainability of the system is
impacted due to the lack of modularization. Therefore, if a monitor needs to be
adjusted, it may directly affect the behavior of other monitors once they are highly
coupled; ii) Testability because the monitors affected by OM smell cannot be tested
in isolation due to having the same polling rate and unchangeable execution order.
Moreover, this leads to unnecessary data capturing, performance issues, or data
loss because the polling rate was unrespected. Consequently, test results may not
represent the actual behavior of each monitor under the test.

2.3 Related Work

In this thesis, we are interested in studying the detection of ABS at runtime in self-
adaptive systems. So, we searched the literature and found two works dedicated to
identifying ABS in self-adaptive systems. The first study [106] relies on the Arcan [44]

17

CHAPTER 2. ARCHITECTURAL BAD SMELLS

tool to identify ABS in 11 self-adaptive systems. Arcan [43] creates a graph database
with the structure of classes, packages, and dependencies of the analyzed project,
allowing the execution of algorithms on the graph to detect the ABS at design time.
In this thesis, we want to detect ABSs in self-adaptive systems at runtime. Thus, the
approach proposed in Chapter 6 of this thesis also uses a graph for ABS detection,
but there are two differences:

(i) We create a map for each SAS configuration identified at runtime;
(ii) We identify the ABS at the level of features defined in the system’s feature

model. Thus, to analyze the architecture, we associate the features defined
in the model with the structure of classes, packages, and dependencies im-
plemented in the source code. This process allows us to relate a feature to its
implementation.

Also, our work presented in Chapter 9 involves the comparison of Arcan and the
BM for runtime smell detection [36].

The second study [114] presents two new ABSs specific to self-adaptive systems:
Obscure Monitor and Oppressed Monitors. Also, it defines the algorithms to identify
each ABS at design time. To validate the proposed smells, the authors identified
the proposed smells in 8 SASs and discussed how to refactor the system affected
by those smells. We try to detect the Oppressed Monitors ABS at runtime using the
approach proposed in this thesis in Chapter 6.

2.4 Wrap up

This Chapter presented the essential background on Architectural Bad Smells, dis-
cussing the most known ABS available in the literature. We described the ABS
characteristics, quality impact, and trade-offs for each ABS. Also, we included
the two ABSs detected only in self-adaptive systems because we are interested in
studying ABS detected in such systems. However, all ABSs presented are detected at
design time and do not consider the self-adaptability employed by Self-adaptive sys-
tems at runtime. Such an aspect may hide or increase the number of ABSs detected
in SASs [36, 77]. We define in Chapter 6 our approach to detecting Architectural
Bad Smells in Self-adaptive Systems based on the bind and unbind of features at
runtime. This thesis will focus only on CD, EC, HL, and OM smells because they
have been studied previously in SASs [106, 114].

18

C
H

A
P

T
E

R

3
RUNTIME VALIDATION

3.1 Software Testing . 20

3.2 Test Approaches . 21

3.3 Wrap up . 23

Self-Adaptive Systems (SAS) are equipped with feedback loops (adaptation mech-
anisms) to self-adapt to user requirements or environment changes. Consequently,
identifying and testing every operational context that a SAS may encounter at run-
time is impossible [48]. Also, the number of possible (re)configurations at runtime
varies exponentially with the number of features provided by the system. Thus,
SAS needs test strategies to deal with an unknown variability space at runtime or
untested configurations before the software deployment. In this context, runtime
tests may ensure that the SAS functions appropriately, even in unpredictable scenar-
ios. The test of SAS should provide that the new configurations satisfy requirements
at runtime and consequently may require test generation at runtime to guarantee
testing relevance, where relevance indicates the applicability of a test case to its
environment [47].

This Chapter discusses the software testing background and test approaches
used to generate test cases to support runtime testing. Section 3.1 presents the
software testing concept. Section 3.2 discusses the test approaches focusing on
Random Testing, Search-based Software Testing, Combinatorial Test Design, and
MAPE-T.

19

CHAPTER 3. RUNTIME VALIDATION

3.1 Software Testing

Within software development, software testing is an essential component of the
overall development process. Multiple interpretations exist of what constitutes
software testing [16, 82, 103, 117], but regardless of the specific definition, it remains
a critical step in ensuring the quality and functionality of the final product. In
this direction, the Software Engineering Body of Knowledge (SWEBOK) [16] defines
software testing as: "Software testing consists of the dynamic verification that a
program provides expected behaviors on a finite set of test cases, suitably selected from
the usually infinite execution domain.".

In the realm of software testing, when we use the term Dynamic, we are referring
to the practice of executing a program with specific inputs to assess its functionality.
However, it is necessary to remark that this approach only tests a finite subset of all
potential scenarios, which have been selected based on their level of risk and priority.
The selection of tests can significantly vary depending on the technique employed.
Thus, it is crucial for software engineers to understand that different selection criteria
can have a major impact on the effectiveness of testing. Lastly, the term Expected
pertains to the ability to evaluate whether the observed outcomes of testing meet
the predetermined acceptance criteria. Without this ability, testing would serve no
purpose. Thus, testing refers to the process of dynamically analyzing software by
executing the system and comparing the results to the expected outputs [82].

The testing process is of utmost importance in identifying defects within software
systems. It is widely recognized as the fundamental method for evaluating software
quality in real-world scenarios. However, the testing accomplished at each level of
software development is different and has distinct objectives [82], as described in
the following.sUnit Testing involves testing the smallest testable piece of software, also

known as the "unit", "module", or "component". This is made at the most
basic level to ensure that the software functions properly.sIntegration Testing combines two or more tested units into a more signifi-
cant structure. This type of testing is carried out on the interfaces between
the components and the larger structure being built, especially if the quality
of the structure cannot be evaluated based on its components alone.sSystem Testing is a way to ensure the overall quality of an entire system from
beginning to end. It relies on the functional and requirement specifications of
the system but also checks for non-functional quality attributes like reliability,
security, and maintainability.sAcceptance Testing is intended for the delivery of software to customers or
users. This testing aims to ensure that the system is operating as intended
rather than to discover errors.

In the following Sections, we present some test approaches available in the
literature.

20

3.2. Test Approaches

3.2 Test Approaches

The following sections present some test approaches used to generate and execute
tests at runtime.

3.2.1 Random Testing

Random testing is a technique that proves to be highly beneficial in specific scenarios
where there is no need for an in-depth understanding of the internal structure of the
software [59, 70]. This method is particularly effective when the output of each test
can be automatically verified [70]. To generate random values, one can either opt for
a manual generation or employ a pseudo-random number generator.

Kaur and Singh [70] have pointed out that relying solely on pure randomness
for generating test cases is a seldom-used approach. Instead, modern testing tools
such as Randoop1 [98] employs a more sophisticated technique known as Feedback-
directed Random Test Generation [99]. This approach involves using feedback
obtained from executing test inputs to steer the search toward sequences that pro-
duce new and legal object states. Inputs that lead to redundant or illegal object
states are disregarded. By applying this technique, the search space is significantly
reduced, leading to more efficient and reliable test case generation.

3.2.2 Search-based Software Testing

Search-Based Software Testing involves using meta-heuristic optimizing search
techniques, such as Genetic Algorithms, to automate or partially automate testing
tasks [84, 116]. This technique involves creating a group of potential test cases called
candidate solutions. The algorithm then utilizes a fitness function to determine how
close these candidate solutions are to meeting a coverage goal. The search is guided
by this fitness function, which improves with each generation until a solution is
found. This method is effective in ensuring comprehensive coverage of the testing
process [84].

Modern tools like EvoSuite2 [45] use a search-based approach integrating cutting-
edge techniques like hybrid search [63], dynamic symbolic execution [53] and testa-
bility transformation [62] to automatically generates test cases with assertions for
Java code classes. The tool supports coverage criteria such as line, branch, method,
exception, output, and weak mutation testing as test objectives. Also, Evosuite
minimizes the tests, meaning only the ones contributing to achieving coverage are
retained [46].

1Randoop is a unit test generator for Java. More information is available at: https://randoop.github.
io/randoop/

2EvoSuite is an automated tool for generating test cases for Java classes. For more information, please
visit: https://www.evosuite.org/

21

https://randoop.github.io/randoop/
https://randoop.github.io/randoop/
https://www.evosuite.org/

CHAPTER 3. RUNTIME VALIDATION

3.2.3 Combinatorial Test Design

Combinatorial Test Design (CTD), also referred to as Combinatorial Testing (CT)
[76, 94] or Combinatorial Interaction Testing (CIT) [28, 94], is a widely recognized
approach used to develop efficient and highly effective tests [124]. The methodology
involves the identification of combinations of input values, allowing for testing
multiple scenarios in a single test case. This approach reduces the number of tests
required while ensuring that all possible combinations are thoroughly examined,
resulting in improved test coverage and a more comprehensive testing process.

The use of CTD offers two advantages [94,124]. Firstly, it allows for coverage goals
to be calculated based on an adjustable level of interaction, which helps manage
testing costs. Secondly, CTD generates an optimized set of coverage goals at a specific
interaction level, resulting in a reduced number of tests needed. These aspects are
essential to test self-adaptive systems (SAS) at runtime because they allow dealing
with the exponential growth of SAS configurations that should be tested. They
provide a practical way to detect failures caused by parameter interactions with a
good trade-off between cost and efficiency. Thus, CTD can help to detect failures
triggered by the interactions among parameters in the SUT [94].

The CTD is supported by the TackleTest3 [124] tool for automatically generating
of unit-level test cases for Java applications. It also combines different code coverage
criteria, such as statement, branch coverage, and type-based combinatorial coverage
[73].

3.2.4 MAPE-T

The MAPE-T is a feedback loop used to enhance testing strategies with runtime
capabilities [48]. It is based on the MAPE-K [65] architecture for adaptive systems,
which involves monitoring, analysis, planning, and execution. Consequently, the
MAPE-T comprises four parts described as follows.sMonitor: Monitor and identify changes within the system and its environmen-

tal context.sAnalyze: Identify individual test cases to adapt and select specific tests to
execute at runtime.sPlan: Adapts test inputs and outputs as needed and schedules runtime testing.sExecute: Perform the planned test plan and analyze results, adjust expected
outcomes, and trigger adaptations within the SAS, its requirements, or the
testing framework.

Such a testing approach manages the adaptation and execution of runtime test-
ing for a SAS as it self-adapts [47]. Consequently, the process of monitoring MAPE-T
involves gathering data about the system as well as its surrounding environment [48].
This data is then utilized by the analysis and planning processes to determine which
components of the SAS require testing and how to adjust the inputs and outputs of
test cases. The execution process runs and evaluates the results of tests to decide if
adaptation is required.

3TackleTest - https://github.com/konveyor/tackle-test-generator-cli

22

https://github.com/konveyor/tackle-test-generator-cli

3.3. Wrap up

3.3 Wrap up

This Chapter presented the necessary background on software testing and test
approaches focusing on Random Testing, Search-based Software Testing, Combina-
torial Test Design, and MAPE-T. In this thesis, we employ the test strategy Random
Testing, Search-based Software Testing, and Combinatorial Test Design to generate
test cases at runtime. Such strategies were adopted to face the runtime test challenge
described in Section 4.2 of Chapter 4.

23

C
H

A
P

T
E

R

4
PROBLEM STATEMENT

4.1 Architectural Bad Smells Challenge . 25
4.2 Runtime Test Challenge . 28
4.3 Wrap up . 30

In this chapter, we discuss the challenges runtime variability raises on Architec-
tural Bad Smells (ABS) detection and argue that we should analyze Self-Adaptive
Systems (SAS) architectures at runtime, as addressed in our paper Architectural Bad
Smells for Self-Adaptive Systems: Go Run-time! [78]1. Additionally, we highlight the
runtime testing challenge for SAS, focusing on the impact of runtime variability on
tests and how to generate test cases automatically.

4.1 Architectural Bad Smells Challenge

The literature on Self-Adaptive Systems (SAS) encompasses approaches to support
Architectural Bad Smells (ABS) identification at design time through static analysis
[106]. Such approaches enable the program source code analysis statically without
executing it. However, it does not consider the system’s (re)configuration process at
runtime [106] and the variability space. In particular, we argue that we cannot infer
the whole variability space for two reasons. First, since most SAS do not document
configuration options, it is difficult to analyze them automatically. Second, SAS
are realizing open variability [125] at runtime thanks to variability mechanisms
such as polymorphism and via the possibility to download new features on the

1Paper presented at 17th International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS 2023) - https://vamos2023.sdu.dk/

25

https://vamos2023.sdu.dk/

CHAPTER 4. PROBLEM STATEMENT

fly (e.g., the code for a plug-and-play sensor [111]). A particular characteristic of
a SAS is to reconfigure dynamically at runtime. A SAS might change its behavior
due to unexpected environmental changes, reconfiguration plans, and goals [34].
The adaptations at runtime may affect architectural qualities and properties, given
that the (re)configuration process may combine architectural fragments or apply
architectural abstractions at the wrong granularity level through the newly loaded
features [77].

Based on such observations and our experience [77], we have devised the follow-
ing seemingly controversial idea: achieving an effective ABS identification in SAS
will only be possible at runtime, once variability is bound. Accordingly, we strongly
encourage carrying out dynamic analysis in addition to/rather than solely relying
on static analysis. It contradicts the common practice of identifying architectural
smells only at design time. The following section motivates why this current practice
is doomed to fail.

4.1.1 Runtime variability’s impact on SAS architectures

Even if not implemented as such (see below), one can see SAS (re)configuration as
activating and deactivating features at runtime. Not taking this aspect into account
leads to inaccurate reports on the existence and importance of ABS runtime. For in-
stance, in a recent study, we compared ABS detected at design time and runtime [36].
We observed significant differences between smells’ occurrences at such different
binding times for the Adasim project [137]. In addition, some smells appearing at
runtime could not be found at design time for the mRUBiS project [128].

4.1.2 Lack of variability documentation in SAS

Variability management is crucial for SAS [36], and this lead the research community
on variability management to coin the concept of dynamic software product lines [13]
(DSPLs). DSPLs realize SAS by carefully modeling SAS adaptations using variability
models and tracing variability down to implementation artifacts, e.g., SHE [111] is
a SAS implemented using the DSPL engineering. This would allow the variability-
aware analysis of SAS and possible extension of the variability-aware code smells
[40, 120] to ABS. However, most SAS are not implemented as DSPLs. For example,
none of the Java-based exemplars provided by the SEAMS community2 had any
variability documentation (feature model, feature annotations). Dos Santos et al.
introduced a manual process to identify source code features based on information
available in the system’s repository [77], more details available in Section 6.3.1.
However, adding a mechanism in the systems’ source code for ABS identification
requires expertise and time because the mandatory and variable features are not
documented.

26

4.1.3. Capturing adaptations

1: procedure ADAPTATIONMECHANISM

while !i sF i ni shed() do
dataLoad();
dataAnalysis();
runAdaptationStep();
end

2: end procedure
3: procedure RUNADAPTATIONSTEP

4: featureIdentification();
5: bindingFeatures();
6: end procedure

Algorithm 1: Interception loop design.

4.1.3 Capturing adaptations

For identifying ABS at runtime, it is necessary to run the system and identify the
exact moment each adaptation starts and ends [107]. It is also necessary to cap-
ture all features and dependencies loaded in the adaptation loop at runtime. This
task is challenging because it is necessary to identify the method responsible for
executing the adaptation loop and the invoked methods inside it. Algorithm 1 illus-
trates such a scenario using a simplified MAPE-K loop [65] implementation. The
adaptationMechanism()method is responsible for executing the system’s adap-
tation mechanism. It uses a loop to execute the adaptation process encompassing
dataLoad(), dataAnalysis(), and runAdaptationStep() methods. The first
method reads the data from the environment, e.g., sensor data, and sends them to
the dataAnalysis()method. The dataAnalysis() defines the features we should
activate to support the adaptation required at runtime. Then, the runAdaptation-
Step()method performs the adaptation. We adopt a runtime monitoring approach
to this challenge by observing the evolution of methods and objects, progressively
identifying the code responsible for the adaptation, and tracing methods entries
and exits [77].

4.1.4 Handling polymorphism at runtime

Some SAS architectures are implemented based on polymorphism through ab-
stract classes or interfaces. Polymorphism is a strategy to support variability at
runtime [107]. Such a strategy could hide the absolute number of features involved
in Cyclic Dependency (CD) and Hub-Like Dependency (HL), particularly when the
analysis (of ABS) only considers the design time [36]. This is due to the analysis
taking only concrete classes into account. Figure 4.1 shows a simplified architecture
model of a Traffic Routing system. The model shows that the Vehicle class uses
the Core and Vehicle Routing interface to bind a specific routing (e.g., QRouting,
LearningRouting, and LinearRouting) mechanism at runtime for each Vehicle

2https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

27

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

CHAPTER 4. PROBLEM STATEMENT

«interface»
VehicleRouting

Vehicle

LearningRouting

LinearRouting

QRouting «interface»
Agent

Core

Implementation

Implementation

Implementation

Use

Use

Use

Implementation
Use

Figure 4.1: Traffic Routing system simplified architecture (simplified).

instantiated. Also, the Vehicle class implements the Agent interface used to con-
nect the system core, and each agent type is instantiated at runtime. The system core
can use VehicleRouting (e.g., LinearRouting) to manage vehicles with a specific
routing type at runtime. In this scenario, the cyclic dependency between Vehicle
and Core will happen only at runtime. Thus, the static analysis does not identify
that type of ABS at design time because there is no direct relationship among all
classes involved in CD. Also, the same situation may happen with classes involved
in HL.

4.2 Runtime Test Challenge

Self-Adaptive Systems (SAS) target environments with hard-to-predict, highly dy-
namic, and comparatively resource-constrained conditions [31]. Consequently,
SAS characteristics imply the most significant challenge in testing such systems
because tests at design time cannot foresee or anticipate all (re)configurations
supported by the system at runtime. SAS testing should ensure that the new con-
figurations satisfy requirements at design time and runtime [47]. Thus, due to the
runtime aspects of SAS, it is necessary to perform the Validation and Verification
(V & V) tasks incrementally and combined, both at design and runtime [30]. In this
context, runtime testing arises as a complementary technique to support the V &
V of SAS at runtime. The following sections discuss the challenge of performing
runtime validation in SASs.

28

4.2.1. Runtime variability’s impact on SAS Tests

4.2.1 Runtime variability’s impact on SAS Tests

The unpredictability of configurations of the SAS is the most significant challenge to
testing because the number of possible configurations goes exponentially with the
number of features provided by the system. Thus, the test team needs to deal with
the following challenges, as identified in [117, 118].

(i) How to deal with the exponential growth of SAS configurations that should
be tested - there is considerable difficulty in defining the test suite scope to
execute on a SAS due to its number of possibilities for (re)configuration, as
discussed in [22, 48, 86, 91, 123, 130, 136].

(ii) How to guarantee the correctness of SAS configurations that have never been
tested in advance - the challenge is to define test cases to cover unforeseen
configurations and the testing oracle. Many works [19, 95, 96, 130] mentioned
the difficulty of testing a system that does not have a clear boundary due to
(re)configurations at runtime. Also, other work focuses on the difficulty of
defining a testing oracle for testing the SAS [80, 86, 100].

(iii) How to detect and avoid during the testing activity incorrect system con-
figurations defined at runtime - In this context, it is not easy to dynamically
define test cases to avoid incorrect settings so that they guarantee continuous
system operation. Consequently is not easy to detect and avoid incorrect
system configurations at runtime [86, 95, 96].

(iv) How to anticipate all the relevant context changes and when they could
impact the behavior of SASs - the SAS context changes may affect their be-
havior at any time during the execution. In this scenario, the challenge is
identifying reliably significant adaptive changes within the system and its
execution environment. For instance, a reconfiguration may trigger a feature
interaction problem at runtime due to an unknown context at design time
and consequently crash the SASs. Such an issue is unpredictable at design
time due to the number of possible configurations at runtime. Thus, building
a test set that properly encompasses all relevant context variables with repre-
sentative values is a significant issue [24,118] because design-time approaches
for testing SASs focus on a specific subset of the known context.

(v) How to deal with context-dependent control and data flow in SASs - Applying
data flow testing criteria in SAS is arduous due to environmental interference
and the context-aware nature of control flow and data flow-related faults
[80, 91]. Therefore, the challenge is designing test models that include control
flow graphs (with associated data flow information) and defining test cases to
cover the properties of those models [118].

(vi) How to simulate a realistic SAS execution environment and workload - This
issue permeates to building SAS testing to simulate execution environments
and workloads realistically [71, 81, 86, 108]. However, unpredictability and
unclear system boundaries directly impact SAS realistic simulations and work-
loads.

(vii) How to define formal models for testing of changing behavior - The fo-
cus of this challenge is to combine model-checking and testing techniques.

29

CHAPTER 4. PROBLEM STATEMENT

Weyns [131] discussed the challenge of defining formal models to validate
by considering the systems’ adaptive properties. Another issue is the need
to specify and formalize SAS context-aware behavior to enable verification
tasks [86, 138].

(viii) How to define generic testing approaches for any adaptation process - Defin-
ing generic validation approaches for any system adaptation process can be
complicated because each adaptive system uses different adaptive mecha-
nisms to manage its adaption process [117]. For example, Adasim [137] uses
a parameter-based routing algorithm, while mRUBiS [128] can use various
adaptation mechanisms (e.g., MAPE-K, Event-Condition-Action) depending
on the selected configuration. The challenge is to conceive a testing approach
that can be applied to both systems during runtime. Some papers [39,64] have
discussed this challenge and suggested defining validation approaches that
should be generic for any system adaptation process or, at least, to a specific
subset of applications.

4.2.2 Test cases generation

One challenge to testing SASs at runtime is to generate test cases for the changing
environment [117, 118]. Consequently, we must generate test cases for each configu-
ration detected at runtime [104, 126, 139]. It may increase the system overload and
consequently decrease SAS performance at runtime due to the time employed in test
case generation, the number of test cases generated, and the time used to execute
the tests. Thus, the challenge is reducing the number of automatically generated
tests. In this context, how can the number of test cases be reduced while maintain-
ing the fault detection capability? Vassev et al. [126] addressed this issue using two
techniques for test case generation: one using random selection and another using
a change-impact analysis approach. The change-impact analysis determines the
test attributes concentrating on the effect of a change in particular events or actions
employed by an execution path. Thus, the generated test suites are composed of
fluent execution paths and test attributes [126].

4.3 Wrap up

This chapter presented the challenges to detecting Architectural Bad Smells (ABS) at
runtime. Also, we made the case to switch from the classic design time and static
detection of architectural bad smells to a more dynamic, runtime perspective when
considering intrinsically variability-aware self-adaptive systems. Additionally, we
have been involved in developing this perspective, providing methods (see Chap-
ter 6) and tools (see Chapter 7) to identify smells at runtime and overcoming the
previous challenges [77].

Furthermore, we have thoroughly discussed the intricacies of conducting run-
time testing and creating automated test cases for SAS. Our solution involves lever-
aging the power of the Behavioral Map Black Box (refer to Section 7.3) to seamlessly

30

4.3. Wrap up

and automatically select, generate, and execute testing based on the interaction of
features or ABS detected at runtime for every adaptation performed.

31

Part II

Behavioral Map Framework

33

C
H

A
P

T
E

R

5
CASE STUDIES

5.1 Smart Home Environment (SHE) . 36

5.2 Adasim . 38

5.3 mRUBiS . 38

5.4 DeltaIoT . 38

5.5 Threats to validity . 38

5.6 Wrap up . 39

In this Chapter, we present a variety of case studies used throughout the thesis.
These case studies include the Smart Home Environment (SHE) framework [111],
Adasim [137], and mRUBiS [128] systems. They were featured in our published
book chapter, Behavioral Maps: Identifying Architectural Smells in Self-Adaptive
Systems at Runtime [77]. Additionally, we have included the DeltaIoT system [67],
which was used in Chapter 10.

We employed the Behavioral Map (BM) framework to assess the software quality
of four distinct systems: SHE, Adasim, mRUBiS, and DeltaIoT. The commonality
among these systems is that they were all developed using Java 8 programming lan-
guage. These specific systems were selected because they exhibit a range of adaptive
mechanisms, and their descriptions and implementations were readily accessible.
Also, our analysis focused solely on self-adaptive systems with complete implemen-
tation. It did not consider the frameworks (such as JDEECo1 [72]) utilized during

1More information available at: https://www.hpi.uni-potsdam.de/giese/public/selfadapt/
exemplars/v2v-deeco/

35

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/v2v-deeco/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/v2v-deeco/

CHAPTER 5. CASE STUDIES

Table 5.1: Systems used in this thesis.

System
Architectural

Model
Adaptive

Mechanisms
Application

Domain
SHE Publish-Subscribe MAPE-K Internet Of Things

Adasim Agent-based
Parameter-based
routing algorithm

Automated traffic
routing

mRUBiS
Architectural
model-based

Architecture-based
MAPE-K
Event-Condition-Action
State based feedback
loop

Marketplace

DeltaIoT
Architecture-based
adaptation

MAPE-K Internet of Things

development or the tools (such as Lotus@Runtime2 [8]) used for SAS verification at
runtime.

The Adasim, mRUBiS, and DeltaIoT systems were obtained from the SAS commu-
nity repository3, which provides a variety of SAS reference systems. These systems
have been thoroughly examined and analyzed during the “Software Engineering for
Adaptive and Self-Managing Systems" symposium and community4. Additionally,
they were chosen for a study on ABS for SAS in the design time published in [106]
and runtime published in [35, 77].

Table 5.1 shows the main characteristics of each selected system as follows:
(i) System - the name of the system;

(ii) Architectural Model - The type of architectural model used to implement the
system under evaluation;

(iii) Adaptive Mechanisms - The mechanisms used to trigger the adaptations at
runtime;

(iv) Application Domain - Information about the application domain of the sys-
tems selected in this study.

These characteristics are essential to help us understand the impact of each smell in
the selected systems and the runtime variability’s impact on self-adaptive systems
tests at runtime. In the following sections, we present each selected system and its
configurations under evaluation.

5.1 Smart Home Environment (SHE)

SHE is a smart home system that uses the MAPE-K loop to identify changes (such as
a new sensor being plugged in) and make the appropriate changes to the dashboard
(e.g., display data coming from that sensor). The SHE core is composed by Manager,

2Complementary information available at: https://www.hpi.uni-potsdam.de/giese/public/
selfadapt/exemplars/lotusruntime/

3https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
4https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

36

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/lotusruntime/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/lotusruntime/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

5.1. Smart Home Environment (SHE)

Requires

Re
ad
s

R
eads

Reads

Reads

Reads

Read
s

ControlsRequires

Requires

Requ
ires

RequiresRe
qu
ire
s

R
eq
ui
re
s

Requires

R
eq
ui
re
s

R
eq
ui
re
s

Requ
ires

presentation
layer

listener

lampController

luminosity

presence

lamp

manager

loader

installer

Figure 5.1: Behavioral Map (BM) for one SHE configuration.

Listener, Loader, Installer, and Presentation Layer. These layers are responsible for
controlling the adaptation, communication, and data presentation at runtime. Also,
we included four optional features as follows: i) Luminosity: used to read data from
the luminosity sensor; ii) Presence: used to read data from the presence sensor;
iii) lampController: responsible for controlling Lamp feature’s behavior using the
information read from Luminosity and Presence features; iv) Lamp: an actuator
used to switch on and off lights based on the lampController feature’s data. Also, we
analyzed a second version of the SHE that uses the same features described above
and includes the water, climateController, temperature, and airConditioner features.
This configuration of SHE is depicted Figure 5.1. Also, we analyzed a second version
of the SHE that uses the same features described above and includes the water,
climateController, temperature, and airConditioner features.

37

CHAPTER 5. CASE STUDIES

5.2 Adasim

Adasim is a simulator for the Automated Traffic Routing Problem (ATRP)5, imple-
mented as an agent-based system [106, 137]. The system is composed of six abstract
components: i) a map; ii) vehicles; iii) agents - make routing decisions; iv) sensors;
v) uncertainty filters - utilized to control the noise and other sources of uncertainty
in the sensor; and vi) data privacy policies - used by vehicles and streets to restrict
part or all information about themselves from sensors [137]. The system employs
adaptive mechanisms to deal with the scalability problems and the unpredictable
changes in the environment, for instance, an accident.

5.3 mRUBiS

mRUBiS6 is a marketplace based on RUBiS [101], comprising 18 components and can
arbitrarily host many shops. These shops manage items, users, auctions/purchases,
inventory, and authenticate users. Also, mRUBiS is a model-based architectural
self-healing and self-optimization exemplar that can be expanded upon [101]. Con-
sequently, the system supports different adaptive mechanisms [128], as shown in
table 5.1.

5.4 DeltaIoT

DeltaIoT [67] is a multi-hop communication Internet-of-Things (IoT) system. It
means that each IoT device (mote) must be able to communicate with other devices
in order to reach the gateway. The system is designed to adjust its settings in response
to different uncertainties. DeltaIoT7 also includes a simulator for offline testing and
a physical setup of 25 motes8 accessible for remote field experimentation. The
system comprises features: i) Probe used to collect data; ii) Effector used to execute
an action; iii) Mote used to represent the devices; iv) Link; v) LinkSettings contains
the source and destination node of the link, the transmission power and spreading
factor to be used to communicate via the link and the distribution factor for the link.

5.5 Threats to validity

The case studies introduced in this Chapter are used to evaluate architectural bad
smells detection and test case selection at runtime. It is important to note that the
case studies we have provided may not be representative of all dynamic adaptive
systems currently in existence. To mitigate the validity threats, we choose systems
from various application domains with different adaptive mechanisms, as presented
in Table 5.1.

5https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-atrp/
6https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/mrubis/
7Find more information at: https://people.cs.kuleuven.be/~danny.weyns/software/DeltaIoT/
8The motes use LoRa radio technology supporting long-range communication, more information

available at: https://www.lora-alliance.org/What-Is-LoRa/Technology

38

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-atrp/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/mrubis/
https://people.cs.kuleuven.be/~danny.weyns/software/DeltaIoT/
https://www.lora-alliance.org/What-Is-LoRa/Technology

5.6. Wrap up

5.6 Wrap up

This Chapter considers different case studies that represent different kinds of sys-
tems and come from different sources.

39

C
H

A
P

T
E

R

6
BEHAVIORAL MAP

6.1 Overview . 41
6.2 Behavioral Map Definition . 43
6.3 Behavioral Map Building Process . 44
6.4 Identifying Architectural Bad Smells 46
6.5 Test Process . 49
6.6 Uncovered Aspects . 51
6.7 Wrap up . 51

This chapter gives the Behavioral Map (BM) concept proposed in this thesis.
The BM supports feature interaction issues detection, Architectural Bad Smell
(ABS) identification, and testing selection based on the analysis of each runtime
configuration [34, 77]. We tackle the feature interaction, testing selection, and
architectural issues (e.g., ABS) by introducing the BM formalism, a directed graph
capturing interactions defined in the feature model but also capturing control and
data flow interactions inferred from the candidate reconfiguration implementation.
Also, Sections 6.1, 6.2, 6.3, and 6.4 were published in the book Software Architecture
(Lecture Notes in Computer Science, vol 13365) as part of the chapter Behavioral
Maps: Identifying Architectural Smells in Self-Adaptive Systems at Runtime [77].

6.1 Overview

Inspired by Dynamic Software Product Lines (DSPLs) [9,13,20,111], we consider SAS
adaptations as interacting feature configurations. In a (D)SPL, one describes features
and their dependencies in Feature Model (FM) [69] and traces their realization in

41

CHAPTER 6. BEHAVIORAL MAP

Figure 6.1: Behavioral Map (BM) process overview.

the code via, e.g., annotations. Not all SASs are DSPLs, and FM as well as traceability
of features throughout the implementation may be absent. Our BM process copes
with this issue (see Section 6.3). Then, the role of a Behavioral Map is to capture
interactions between features of a specific (re)configuration to be analyzed before
it gets deployed [34]. Such configurations are produced within an adaptation loop.
We rely on the well-known MAPE-K loop (Monitor, Analyze, Plan, and Execute over
a shared Knowledge base) proposed by IBM [65]. We depicted it on the left side of
Figure 6.1, though any type of control loop may interact with a BM. Thus, the BM
needs to interact with the component responsible for defining the Change Plan used
in the adaptation process at runtime and retrieving the configuration rules. The
Change Plan is a plan or series of actions that outlines the necessary modifications
to be performed at runtime to execute a particular adaptation [65]. For instance,
the plan includes the list of features that should be binding and unbinding or the
configuration policy used to install each feature.

We used the Change Plan of the self-adaptive system selected to create the map
based on its configuration rules. This strategy was adopted because we assume that
the system implements a MAPE-K loop [65] to manage the adaptation process at
runtime. We thus avoid building a Behavioral Map for an invalid configuration. Fur-
thermore, the Behavioral Map can look for architectural bad smells in a self-adaptive
system independently of the adaptation mechanism employed in the reconfigura-
tion process at runtime. However, to facilitate the presentation of the Behavioral
Map process, we decided to use MAPE-K loop because it is more intuitive and the
most used adaptation mechanism for developing SASs [4, 17, 25, 61, 77].

To build a BM, we follow the process described in Figure 6.1. The MAPE-K
loop monitors continuously a set of managed resources and gathers the results in
symptoms. Then the loop analyses symptoms and determines if an adaptation is
necessary based on Knowledge (which in our case includes the DSPL feature model).
If such an adaptation is necessary, it will issue a change request for the Plan phase
that will determine the appropriate configuration (a set of enabled and disabled
features) to execute as prescribed by its Change Plan. The BM building process (right
side of Figure 6.1) interacts with this Change Plan containing, besides the candidate
configuration, a set of configuration rules notedCR. These rules contain information

42

6.2. Behavioral Map Definition

on the features and their dependencies (versions, imported and exported packages)
obtained via extraction (see Section 7.1). The map building process comprises the
following steps: Feature Identification, Detection, Analysis and Map Building. In the
following, we define the BM formalism and explain the BM building process.

6.2 Behavioral Map Definition

A BM is a hybrid structure, mixing structure, data, and control information about
one configuration of the DSPL. Formally, a BM is a tuple:

B M = (C ,V ,V T y pes, v t y pe,E ,ET y pes, A, vat tr i butes), where:sC is a configuration, i.e. a selection of interacting features in a given planned
SAS adaptation,sV ⊆C is a set of vertices in a configuration,sV T y pes = {Core, Optional, Controller, Sensor, Actuator, Presenter} where:

– Core - represents the features that are included in all product configura-
tions [12, 69];

– Optional features refer to features that can be included in one configura-
tion of the software but omitted in others [12, 69];

– Controller is a feature that adjusts the target system by performing ac-
tions through an actuator based on sensor information [18]. Also, a
feature controller can be control the behavior from other feature at run-
time [111];

– Sensor is a feature used to obtain data from the managed resources [65];
– Actuator is a feature used to perform operations on the managed re-

source [65];
– Presenter is a feature responsible for displaying data from the features

that communicate with the system’s features [111],sv t y pe : V → P (V T y pes) \; is a function giving the types of a vertice. We
suppose that a vertice/feature can have multiple types. For example, a feature
can be core (i.e., present in all configurations) and also serves as a controller,sE is a set of edges such as∀e ∈ E , e = (v, v ′,r) where v, v ′ ∈V and r ∈ ET y pes =
{Controls, Reads, Suppresses, Requires} where:

– Controls: In the context of self-adaptive systems, "controls" refers to a
relationship where one feature can influence another feature’s behavior
without completely suppressing it [65]. An example of this would be a
Controller managing the behavior of an Actuator [17];

– Reads: This kind of relationship happens when one feature reads data
collected or produced by another feature, such as a sensor [65], without
controlling or suppressing the feature’s behavior;

– Suppresses: This type of relationship happens when a feature suppresses
the behavior of another one. Also, we consider as suppressed the rela-
tionship between features where a controlled feature (like Actuator or
another Optional feature) needs to be uninstalled or unbound by its
controlling feature (like Controller);

43

CHAPTER 6. BEHAVIORAL MAP

– Requires: a relationship in which a feature is part of another feature’s
implementation [12]. In this relationship, there is no suppression or
control over the feature’s behavior that is part of the main feature,s A is the set of all attributes,svat tr i butes : V ×P {A} is a function giving the value of all the attributes for a

given vertice.

6.3 Behavioral Map Building Process

In the remaining, we describe the BM process shown on the right side of Figure 6.1.

6.3.1 Feature Identification

We describe the manual process used to identify features in source code based on
information available in the system’s repository. The feature identification process
uses the Feature Trace provided by Data Extractor (see Section 7.1.2 for details)
to track features at runtime. This process is necessary because the self-adaptive
systems available in Self-adaptive System Community1 do not use a feature model
to define their features. The feature identification process consists of four steps.

Step 1 - Identifying the features: We first identify the features available in the
selected systems by examining articles (published in the literature), software require-
ments documents, architecture descriptions, and other information provided by
developers in the software repository (e.g., GitHub) used to describe the software re-
quirements and implementation. These documents describe the systems, including
adaptive mechanisms, applicability, test scenarios, and source code.

Step 2 - Identifying the core features in the source code: We use the feature
name (or description) identified in Step 1 and adaptive mechanisms (see Table
5.1) implemented in the system to guide the identification of the core features
in the source code. The Core features are executed in every (re)configuration of
the system. In addition, we selected only the main concrete class responsible for
implementing the feature behavior because the class is the main point for the
feature implementation. Consequently, we use this class to identify the hierarchy of
dependencies at runtime via Data Extractor.

Step 3 - Identifying the optional features in the source code: We use the feature
name or description and the scenario in which each feature is activated to identify
optional features in our source code. We also analyze the comments used to describe
class or method implementation to support our feature identification process. By
associating the information collected in Step 1 with our source code information,
we can locate each optional feature and select the main concrete class responsible
for implementing it.

Step 4 - Behavioral Map Feature Trace: The features (class) identified in Steps 2
and 3 are included in the Feature Trace provided by the Data Extractor (more detail
in Section 7.1.2).

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

44

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

6.3.2. Detection

Figure 6.2: An overview of Detection (A) and Analysis (B) processes are used to
identify and categorize the features on Behavioral Map.

6.3.2 Detection

Detection determines interacting features using pairwise analysis [119] and their
directed relationships based on the configuration rules CR. Moreover, we assume
that in the CR, there are all features and their configuration policy (including feature
dependencies) required to address a specific context at runtime. For example, the
feature installation process used the constraints available in the manifest file to iden-
tify the feature and its dependencies. Besides, this process can use complementary
information defined in the Change Plan to guide the installation, configuration, and
adaptation processes at runtime.

In this context, we will use the CR defined in the Change Plan to identify the
features and directions of each relationship. Thus, the Detection process selects
a feature in the CR and identifies its dependencies based on the configuration
information of the feature. Let us consider a Feature A, which requires loading a
Feature B at runtime. This dependency is defined in the CR file and used by the
Detection process to create an arrow from feature A to feature B, indicating the
direction of the relationship between the features, as depicted in Figure 6.2 - A. The
process repeats for each feature until all interactions are detected and created on
the map.

6.3.3 Analysis

During the analysis stage, we further refine the interactions identified during detec-
tion (in Figure 6.2 - A) in categories. For this, we analyzed the selected interaction
(Feature A and Feature B depicted in Figure 6.2 - A) to identify the type of feature type
(V T y pes) implemented, according to the information available in the CR file. Thus,

45

CHAPTER 6. BEHAVIORAL MAP

let us consider Feature A as a Controller (V T y pes) and Feature B as an Actuator
(V T y pes). Consequently, the relationship between Feature A and B, as shown in
Figure 6.2 - B, is categorized as Controls (ET y pes) because a Controller feature con-
trols the behavior of features categorized as Actuator. For example, a Controller can
read data provided by Sensor. The relationship between a Controller and a Sensor is
categorized as Reads.

6.3.4 Map Building

Based on interaction detection and analysis, we can build the Behavioral Map for a
configuration of the SAS. We represent this map as a directed graph where features
form the vertices and relationships form the edges.

1 table ← loadConfigurationRulesFile(CR f i le);
2 verticesOnMap ← createVerticesOnMap(table);
3 foreach vertex in verticesOnMap do
4 foreach row in table do
5 if row.name.equals(vertex.name) then
6 foreach relation in row.getAllRelationships() do
7 if relation.relationship is not null then
8 createEdge(vertex, relation.relationship_type, relation.featureName);
9 end

10 end
11 end
12 end
13 end

Algorithm 2: Behavioral Map algorithm.

Algorithm 2 captures the whole BM building process. The algorithm begins by
loading the CR file as a table (line 1 at algorithm 2) and instantiates the vertices
(features) on the map (createVerticesOnMap, line 2). The next step is to look for
each created vertex (feature) and identify its relationships in the Configuration Rules
(table). Consequently, we create three loops, as shown lines 3, 4, and 6. The first
loop selects a vertex on the map and then looks for its information in the table
using the second loop. Line 5 checks whether each row of the table contains the
selected vertex. Line 6 retrieves all relationships (row.getAllRelationships())
related to the selected vertex on the map. For each relationship, createEdge creates
an edge in the map based on the following arguments: i) the vertex from which the
edge starts; ii) the relationship type represented by the edge; iii) the destination
vertex (relation.featureName in line 8). The loop on line 6 will repeat until all
edges are created.

6.4 Identifying Architectural Bad Smells

This Section describes the process performed to identify the architectural bad smells
using the Behavioral Map. We recall the definition (on a high level) of ABS detected
in the Behavioral Map for this. Additionally, we present the identification guidelines
and discussion for each ABS.

46

6.4.1. Cyclic Dependency [7]

Table 6.1: Selected Architectural Bad Smells for Self-Adaptive Systems.

Smell Name Detection

Cyclic Dependency (CD) [7] Full
Extraneous Connector (EC) [51] Full
Hub-Like Dependency (HL) [7, 106] Full
Oppressed Monitors (OM) [114] Partial

While ABS catalogs exist in the literature [7, 51], their role in self-adaptive ar-
chitectures is less known [106, 114]. Table 6.1 presents a list of smells we believe to
be relevant for assessing self-adaptive architecture as well as their level of support
through the BM. For each of them, we briefly describe how they can be identified
via the BM, and we provide a short discussion on their impact. We also provide a
replication package on GitHub2 with a tutorial to configure the Neo4J platform, CR
files, and the scripts used to create the map and analyze ABS.

6.4.1 Cyclic Dependency [7]

This smell occurs when two or more components depend on each other directly or
indirectly [7]. Components involved in a dependency cycle can hardly be released,
maintained, or reused in isolation [44].

Identification Guidelines. We determine cycles in the sub-graph of the BM
formed by the features and the relationships of type Requires using a Depth-First
traversal strategy.

Discussion. Based on relationship categories, other forms of cyclic dependencies
may be uncovered, such as control ones which may cause concurrent accesses to
resources and/or deadlocks.

6.4.2 Extraneous Connector (EC) [51]:

This smell happens when two connectors of different types are used to link a pair of
components [51]. This thesis focuses on only the impact of combining procedure
call and event connectors (e.g., communication via publish-subscribe).

Identification Guidelines. The automatic identification of extraneous connec-
tors proceeds by analyzing paths between pairs of vertices in the BM. In a com-
plementary way, a designer can visually identify EC smells on the BM. The lamp-
Controller (Figure 5.1) uses two types of connectors to connect with the features
Presence, Luminosity, and Lamp. The lampController uses the Listener (Publish-
Subscribe client to implement the Reads edge) and procedure call communication
(represented by the Requires edge) with Presence, Luminosity, and Lamp.

Discussion. This smell increases the coupling between features of the DSPL,
negatively impacting its variability, and thus its adaptability [52]. However, a direct

2https://github.com/edilton-santos/BehavioralMapExtendedStudy

47

https://github.com/edilton-santos/BehavioralMapExtendedStudy

CHAPTER 6. BEHAVIORAL MAP

connection may be justified for concurrent operation [51] and may increase the
system’s resiliency in case of failure of the publish-subscribe architecture.

6.4.3 Hub-Like Dependency (HL):

This smell appears when a component has (incoming or outgoing) dependencies
with a large number of other abstractions (e.g., other components) or concrete
classes [7, 106].

Identification Guidelines. Thanks to its graph structure, the BM allows to auto-
matically compute the in/out-degree (number of incoming or outgoing edges) for
each vertex (feature). Features having high in/out-degrees are subjected to the HL
smell. In Figure 5.1, we see that the Listener feature is subjected to the HL smell since
it is involved in most of the Requires relationships of the BM. Besides, if a feature has
only many outgoing Requires edges, it is a Hub type called Overreliant Class [7].

Discussion. The presence of the HL smell in the Listener feature is motivated
by the publish-subscribe architecture adopted by the SHE framework. The Listener
centralizes all the communication processes in this software architecture and works
as a communication broker. It is therefore acceptable in this case [7, 44]. However,
hubs form points of attention in case of failure.

6.4.4 Oppressed Monitors [114] (OM):

According to [114], this smell is characterized by a set of monitors (retrieving in-
formation from sensors) independent from each other that are managed with the
same data polling rate and predefined execution order, yielding sub-optimal data
acquisition and failure of subsequent monitors if one monitor in the sequence fails.

Identification Guidelines. Fully identifying this smell involves delving into the
source code and getting information about polling rate since sequencing of sensor
calls is not present on the map. Yet, if several sensors are controlled by the same
controller, the map can help locating the features to look for this smell.

Discussion. In some cases, this smell is acceptable, especially when there are
simple monitors with similar polling rates [114]. However, this smell limits the adapt-
ability and resiliency of the system, which are important criteria for self-adaptive
systems.

These examples illustrate the two complementary usages of the BM. First, the
BM is a formal model amenable to the automated detection of smells using graph
algorithms. Second, visual representations help designers and engineers to visualize
runtime configurations.

6.4.5 Identification Process

The BM framework thus comes with dedicated algorithms to identify ABS [35],
as described in Section 6.4. These algorithms are implemented via the Cypher3

language, allowing to query the graph. We used provided queries to identify Cyclic

3Cypher - https://neo4j.com/docs/cypher-manual/current/introduction/

48

https://neo4j.com/docs/cypher-manual/current/introduction/

6.5. Test Process

Figure 6.3: Behavioral Map (BM) test process overview.

Dependency (CD), Extraneous Connector (EC), Hub-Like Dependency (HL), and
Oppressed Monitors (OM) on the map created for the SASs under study. For example,
listing 6.1 shows how to compute cyclic dependencies on the map. The first line
checks if feature F needs feature F2 to be bound during runtime and if F2 requires F
at the same time. The second line checks if F2 needs F3 and F3 requires F. Finally, the
last line returns features involved in CD. All queries used in this study are available
on GitHub4.

1 MATCH (f:Feature)−[:Requires]−>(f2:Feature)−[:Requires]−>(f)
2 OPTIONAL MATCH (f2)−[:Requires]−>(f3:Feature)−[:Requires]−>(f)
3 RETURN f, f2, f3

Listing 6.1: Cypher query used to look for Cyclic Dependency on the Behavioral Map.

6.5 Test Process

This section will explain how the Behavioral Map (BM) supports the generate auto-
mated test cases and performing runtime testing for Self-Adaptive Systems (SAS).
To illustrate the Test Process, we will adhere to the process outlined in Figure 6.3.
The Test Process comes into play once the behavioral map processing has been
completed and comprises four steps (Test Selection, Test Planner, Test Builder, and
Test Run), which we will discuss in the subsequent sections.

6.5.1 Test Selection

The Test Selection process selects the test suite scope based on the behavioral
map built at runtime for the System Under Test (SUT). Thus, the BM supports test
selection at runtime based on the Feature Relationship Analysis or Architectural
Bad Smells Analysis.

4https://github.com/edilton-santos/BehavioralMapExtendedStudy

49

https://github.com/edilton-santos/BehavioralMapExtendedStudy

CHAPTER 6. BEHAVIORAL MAP

Feature Relationship Analysis

The Behavioral Map (BM) will select the features based on the relationship types
(ET y pes) relevant to highlight runtime interaction problems, as defined in Section
6.3.3.sFeature interactions with shared resources: The BM selects the first features

that are controlled by two or more features that are classed as Controls si-
multaneously. Moreover, the features that are classed as Controls and are
part of the shared resources identified will be included in the test selection.
Consequently, the controlled features and the feature controls are included in
the test selection. And then, the Behavioral Map executes the same process
to identify the required features involved in shared resources relationships.
Finally, select all features suppressed by two or more features at runtime. This
strategy allows selecting all features involved in shared resources relationships
detected at runtime. We adopted such a strategy because the features in-
volved in shared resources relationships are more likely to trigger unexpected
behavior at runtime, widely known as feature interaction problems.sFeature interactions without shared resources: When working with feature
interactions, it is crucial to consider their relationships. In this case, we iden-
tify the features that fall under the Controls relationship, followed by those
involved in the Requires relationship. Next, we need to select the features that
are part of the Suppresses relationship. Finally, we select all features that are
classified under the Reads relationship.

Architectural Bad Smells Analysis

The Behavioral Map (BM) selects only the features involved in architectural bad
smells identified on the map. For this, we use the processes outlined in Section 6.4.5.

6.5.2 Test Planner

The Test Planner identifies all classes and their dependent classes used to implement
the selected features. For this purpose, the Test Planner obtains the name of the
class responsible for implementing the selected feature and dependent features in
the configuration rules (CR) file. Also, the Test Planner retrieves complementary
information based on each class load at runtime that has a relationship to the
selected feature via Data Extractor (more detail in Section 7.1).

6.5.3 Test Builder

Test cases are expertly crafted by the Test Builder, utilizing the list of classes employed
to implement the selected feature, as the Test Planner process identified. The Test
Builder can generate tests using the following strategies:sAdaptive-random test generation;sEvolutionary algorithms to generate tests;sCombinatorial Test Design (CTD) to generate test cases.

50

6.5.4. Test Run

6.5.4 Test Run

The Test Run performs the tests based on the test suite scope built by Test Builder at
runtime and generates the test reports.

6.6 Uncovered Aspects

This thesis aims to provide a framework to support the feature interaction detection,
architectural bad smells identification and test suite scope selection at runtime for
self-adaptive systems. This intricate process involves multiple aspects, and it is
essential to note that certain areas will not be covered in this work.

6.6.1 Feature model definition

It is assumed that the developers have already defined and validated the feature
model beforehand, as the Behavioral Map (BM) cannot support this task. However,
the BM can assist in identifying the core and optional features in the source code (as
explained in Section 7.2.1) or using the parametrization process to identify feature
types (core and optional) loading at runtime, as described in Section 7.3.1.

6.6.2 Product derivation

The Behavioral Map does not support product derivation and only runs (supported
only by Behavioral Map Black Box5) and monitors the system’s adaptations under test
based on the parameters defined previously by the users for the system execution.

6.6.3 Predict (Re)Configuration

The Behavioral Map cannot infer the SAS (re)configuration before the system de-
fines the adaptation plan based on its context. Thus, the map shows precisely the
configuration loaded at runtime.

6.7 Wrap up

This chapter introduced the Behavioral Map approach and explained its features.
Also, we discussed the limitations of our approach in Section 6.6. We will provide a
detailed explanation of the various components of the Behavioral Map framework
implementation in Chapter 7.

5More information available at Section 7.3

51

Part III

Implementation

53

C
H

A
P

T
E

R

7
BEHAVIORAL MAP FRAMEWORK

7.1 Framework Implementation . 55
7.2 Behavioral Map White Box . 57
7.3 Behavioral Map Black Box . 61
7.4 Wrap up . 70

Behavioral Map (BM) is the framework we developed to support the feature inter-
action detection, architectural bad smells identification, and testing selection scope
described in this thesis. This framework was published as part of a book chapter
entitled Behavioral Maps: Identifying Architectural Smells in Self-Adaptive Sys-
tems at Runtime [77] in the book Software Architecture (Lecture Notes in Computer
Science, vol 13365), specifically Sections 7.1, 7.1.1, and 7.1.2.

7.1 Framework Implementation

We conceived a framework to infer Behavioral Maps whose architecture is shown in
Figure 7.1. The framework uses the Neo4J1 platform and its Cypher2 query language,
as well as the Neo4j APOC (Awesome Procedures on Cypher) Library [93]. The top-
most layers, Map Builder, Analyzer, and Interaction Detector perform the processes
defined in Chapter 6. In the following, we focus on the remaining elements of the
framework.

1Neo4j - https://neo4j.com/product/
2Cypher - https://neo4j.com/docs/cypher-manual/current/introduction/

55

https://neo4j.com/product/
https://neo4j.com/docs/cypher-manual/current/introduction/

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

Figure 7.1: Behavioral Map Architecture overview.

7.1.1 Integration Layer

The Integration Layer (IL) serves as an interface between the Self-adaptive System
and the map-building components, receiving the data used to build the map. Also,
this layer defines the CR file data type used to build the map as follows:sname is the feature name in the system;s friendly_name is the friendly name of the feature shown to the user;sexported_packages lists the exported packages or services offered via features;s imported_packages lists the packages used by features to compose their

functionality;sversion represents the feature version;sstatus defines if the feature is active or inactive;s type defines the feature type;srelationships is a collection composed of relationship types and associated
features described as follows:

– relationship_type represents the relationship type, as defined in ET y pes;
– feature_name is the feature name associated with the relationship_type

field.

The IL reads data via Data Extractor or CR file in formats XML, JSON, or CSV.

7.1.2 Data Extractor

The Data Extractor (DE) realizes the runtime integration between the Integration
Layer and the Self-Adaptive system. The DE runs over the Plan function (see Figure
6.1), reading the Change Plan information at runtime and relating the features and
CR after the system triggers the adaptation process. Hence, the DE identifies all
features used and their relationships regarding the Change Plan configuration to
be deployed. Thereafter, the DE builds a CR file including all involved features and

56

7.2. Behavioral Map White Box

sends it to the Integration Layer. Listing 7.1 shows a small part of the CR (in JSON
format), created by DE with one feature (Presence), some properties (e.g., name,
status, and type), and relationships at runtime (e.g., line 9).

1 {
2 "name":"Presence",
3 "friendly_name":"Presence",
4 "exported_packages":["com.she.core.presence"],
5 "imported_packages":["com.she.core.listener"],
6 "version":"1.0.0",
7 "status":"Active",
8 "type":"Sensor",
9 "relationships":[{"relationship_type":"Requires","feature_name":"Listener"}]

10 }
11 ...

Listing 7.1: Presence feature configuration rules.

The DE component can be implemented for all types of adaptation processes
because this component receives as a parameter the features and their V T y pes, the
features implementation path in the packages, and Jar files. Also, we used these
parameters to map the relation between features and components that implements
each feature. Besides, the DE provides a Feature Trace used to identify the features
executed at runtime based on the features identified in the source code by the
developers or researchers following the process defined in section 6.3.1. The Feature
Trace gets all the information used to build the CR file at runtime and sends all
collected information to DE for each monitored adaptation.

The BM framework allows computing a graph depicting core and variable fea-
tures as well as the different interactions between them (see the figures 5.1, 8.1, 8.2,
8.3, 8.4, and 8.5). Though these maps may be used for visual inspection, they mainly
serve as support for further analyses thanks to the Neo4J graph database3.

7.2 Behavioral Map White Box

The Behavioral Map (BM) White Box is implemented as reusable building blocks
that allow their incorporation into the system under analysis. The BM White Box
uses the Neo4J graph database (including Cypher queries) to build map visualiza-
tion and WALA API [66] to perform the data extraction. Such API provides Call
Graph [55, 56] and the Control-Flow Analysis (CFA) [55, 87, 88] algorithms used in
the Data Extraction component implementation. The static analysis allows us to
identify the dependency relationship among the class hierarchy used by selected
features or perform interprocedural dataflow analysis and identify relationships’
types. Also, in a complementary way, we can retrieve information using the manifest
file used to install each feature at runtime. Such a file describes the feature and
its feature dependency. Furthermore, the BM White Box offers support to identify
Architectural Bad Smells (ABS) at runtime. The following sections will delve into
the framework’s various resources.

3https://neo4j.com/product/neo4j-graph-database/

57

https://neo4j.com/product/neo4j-graph-database/

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

7.2.1 Feature Trace

1 public class ECAFeedbackLoop {
2 ...
3 public static void main(String[] args) { // Main to run the simulator and feedback loop.
4 // Behavioral Map Data Extractor component.
5 FeatureTrace.activeOnlyOneJarFile("./mrubis-selfhealing.jar", "de/mdelab/simulator/mrubis/

,→ ");
6 FeatureTrace.setCoreFeatureTrace(ECAFeedbackLoop.class);
7 // load the model.
8 Architecture architecture = SelfHealingConfig.loadModel("./model/mRUBiS.comparch");
9 FeatureTrace.addRequiresFeatureInsideMethods(ECAFeedbackLoop.class, SelfHealingConfig.

,→ class);
10 ...
11 UtilityFunction utilityFunction= new MRubisSelfHealingUtilityFunction(exceptionThreshold);
12 FeatureTrace.addRequiresFeatureInsideMethods(ECAFeedbackLoop.class,

,→ MRubisSelfHealingUtilityFunction.class);
13 Scenario scenario = new SelfHealingScenario(architecture, exceptionThreshold);
14 FeatureTrace.addRequiresFeatureInsideMethods(ECAFeedbackLoop.class, SelfHealingScenario.

,→ class);
15 ...
16 ECAFeedbackLoop loop = new ECAFeedbackLoop(exceptionThreshold);
17 // run the simulation
18 do {
19 simulator.injectIssues();
20 loop.run(architecture, simulator.getChangeEventsQueues());
21 simulator.validateModel();
22 ...
23 // Behavioral Map.
24 InteractionDetector interactionDetector = new InteractionDetector(new Integration(new

,→ DataExtractor()));
25 interactionDetector.doAnalysis();
26 // Save the Configuration Rules in JSON format.
27 interactionDetector.saveResult("./BMResult/mRubis-BM/selfhealing/ECAFeedbackLoop");
28 // Remove the optional feature available in the feature trace collection.
29 FeatureTrace.removeOptionalFeatures();
30 ...
31 } while (!simulator.isSimulationCompleted());// repeat until the simulation is completed
32 simulator.showResults();
33 }
34

35 // Runs the feedback loop.
36 public void run(Architecture architecture, ChangeEventQueues queues) {
37 Queue<ComponentStateChangeEvent> componentStateChangeEvents = queues.

,→ getComponentStateChangeEvents();
38 if (!componentStateChangeEvents.isEmpty()) {
39 new ComponentStateChangeEventProcessor().process(componentStateChangeEvents);
40 // Behavioral Map Data Extractor component.
41 FeatureTrace.addRequiresFeatureInsideMethods(ECAFeedbackLoop.class,

,→ ComponentStateChangeEventProcessor.class);
42 }
43 ...
44 }
45 }

Listing 7.2: Feature Trace code instrumentation implemented in mRUBiS [128].

The Feature Trace is a Java static class that offers a set of methods used to feature
identification according to the process described in Section 6.3.1. In the code snippet
provided in Listing 7.2, we instrumented mRUBiS [128] (version Event-Condition-
Action (ECA) feedback loop) with Feature Trace to detect loaded features based on
the Change Plan. Specifically, we focused on class ECAFeedbackLoop, which runs
the simulator and feedback loop. Line 5 adds the Jar file and main package to be

58

7.2.1. Feature Trace

1 public class LinearTrafficDelayFunction implements TrafficDelayFunction {
2 private static final Logger logger = Logger.getLogger(LinearTrafficDelayFunction.class);
3

4 public int getDelay(int weight, int capacity, int number) {
5 logger.info("Delay computed.");
6

7 // Behavioral Map Data Extractor component.
8 FeatureTrace.addOptionalFeature(LinearTrafficDelayFunction.class, true);
9 return Math.max(weight, number - capacity + weight);

10 }
11 }

Listing 7.3: Feature Trace code instrumentation implemented in Adasim [137].

analyzed when mRUBiS is executed. In contrast, line 6 identifies ECAFeedbackLoop
as a core feature because it implements the feedback loop for self-healing mRUBiS.
This adaptation mechanism is implemented between lines 36 and 44. To identify
the relationship between ECAFeedbackLoop and other loaded features, we analyze
the objects loaded inside the methods provided by classes. For this, the Feature
Trace provides the method FeatureTrace.addRequiresFeatureInsideMethods
used to make the association between the class (e.g., ECAFeedbackLoop.class)
and dependency (e.g., SelfHealingConfig.class) loaded inside its methods, the
lines 9, 12, 14, and 41 show an example of this instrumentation. However, this
information will only be included in the Feature Trace if the method was executed at
runtime.

The method addRequiresFeatureInsideMethods provided by Feature Trace
allows include features available inside methods in the analysis because the WALA
API cannot identify objects inside executed methods at runtime. The other rela-
tionships are detected based on class properties retrieved by WALA API through
the class hierarchy built. Additionally, Feature Trace offers a valuable method
(e.g., FeatureTrace.removeOptionalFeatures()) for erasing any optional fea-
tures present in the trace collection prior to the commencement of a fresh adaptation
cycle, as illustrated in line 29. Consequently, each map will include only the optional
features loaded in a specific adaptation loop.

In addition to this, Listing 7.3 also showcases the implementation of the optional
feature, the Linear Traffic Delay Function available in Adasim [137]. This feature is
responsible for setting the delay at a node to be equal to the number of cars at the
node minus a given maximum capacity. The Feature Trace includes this optional
feature through line 8, utilizing the addOptionalFeaturemethod. This method
allows us to include the class responsible for implementing the optional feature and
define whether the class is a controller, as defined in Section 6.3.3. In this case, it
means that the Linear Traffic Delay Function controls the behavior of other features,
so the second parameter of the method is true. With the help of the Feature Trace,
we were able to gain a thorough understanding of the features present in the systems
and their relationship with each other.

The Feature Trace supports detecting the type of object load at runtime be-
cause SASs architectures are implemented based on polymorphism through ab-
stract classes or interfaces. Listing 7.4 shows the implementation of the method

59

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

1 private Vehicle buildVehicle(int i, ConfigurationOptions opts, AdasimMap g) throws
,→ ConfigurationException {

2 RoutingAlgorithm cs = randomVehicleStrategy(opts.getStrategies());
3 cs.setMap(g);
4 List<RoadSegment> nodes = g.getRoadSegments();
5 RoadSegment start = randomNode(nodes);
6 RoadSegment end;
7 do {
8 end = randomNode(nodes);
9 } while (start.equals(end));

10

11 // Behavioral Map Data Extractor component.
12 FeatureTrace.addRequiresFeatureInsideMethods(SimulationBuilder.class, cs.getClass());
13 FeatureTrace.addRequiresFeatureInsideMethods(SimulationBuilder.class, Vehicle.class);
14 return new Vehicle(start, end, cs, i);
15 }

Listing 7.4: Code snippet of class SimulationBuilder implemented in Adasim [137].

buildVehicle used to instantiate an object Vehicle. Such a method associates the
routing algorithm (RoutingAlgorithm in line 2) used to move the vehicle on the
map (AdasimMap) and their position on the road (RaodSegment in lines 5 e 6). How-
ever, the RoutingAlgorithm is an interface used to specify the behavior of a class by
providing an abstract type. Thus, line 2 loads at runtime any object that implements
the RoutingAlgorithm interface. As a result, the architectural bad smell analyses
at design time cannot detect the relationship between SimulationBuilder and
classes that implement the RoutingAlgorithm interface because only concrete
classes are included in the analyses. To solve this issue, the Feature Trace gets as a
parameter the runtime class of the object instantiated, as shown in line 12. There
are two possibilities to set the class type: i) All Java classes offer a static method
called class, which can be used to return the runtime class of an object, as used in
line 13, and ii) To discover the object type loaded via an interface or abstract class,
we should use the method getClass() provided by the object loaded at runtime
because this method returns the runtime class of object. For instance, in line 12,
we used the cs.getClass() to obtain the concrete class loaded at runtime. Thus,
we can identify the actual type of object loaded through an interface or abstract
class and consequently analyze its dependencies. The strategy employed to set the
class type was adopted because the Feature Trace should be generic and work with
different types of system implementation.

7.2.2 Interaction Detector

The Interaction Detector (defined in Section 6.3.2) is a component that operates
within the adaptation loop, as seen in lines 24, 25, and 27 in Listing 7.2. Its purpose
is to inform the Behavioral Map about the end of the adaptation loop at runtime so
that it can adequately process the configuration rules (CR) file based on the data
collected by Data Extractor (see line 24) from Change Plan. Thus, it processes the
CR file before starting a new adaptation loop via the method interactionDetec-
tor.doAnalysis(), as illustrated in line 25. This method performed static analysis
to identify class interaction using the CFA algorithm. The last process of Interaction

60

7.2.3. Map Building Implementation

Detector is to save the CR in JSON format, as shown in line 27.

7.2.3 Map Building Implementation

1 CALL apoc.load.json("file:///crFileSHEstudy1.json") YIELD value
2 CALL apoc.create.node([’Feature’,value.type], {name:value.name, friendly_name:value.

,→ friendly_name,
3 exported_packages:value.exported_packages, imported_packages:value.imported_packages,

,→ version:value.version,
4 status:value.status, type:value.type}) YIELD node
5 MERGE (f:Feature {name: node.name})
6 WITH value, node, f
7 UNWIND value.relationships AS relation
8 MERGE (fr:Feature {name: relation.feature_name})
9 WITH value, relation, f, fr

10 WHERE relation.relationship_type <> ""
11 CALL apoc.merge.relationship(f,relation.relationship_type,{},{},fr) YIELD rel
12 RETURN value, f, fr, rel

Listing 7.5: Cypher query used to import the CR file and build the Behavioral Map.

The Map Building defined in Section 6.3.4 is implemented using the Noe4j plat-
form. To illustrate the creation of a behavioral map using the CR file in JSON format,
we present Listing 7.5. The first line of the code loads the CR file into the Neo4J
graph database, while the second line generates nodes on the map. Moving forward,
line 7 establishes the relationships between the various features as described in
Section 6.3.2, and line 11 generates relationships for each feature on the map based
on the relations identified in line 7, as defined in Section 6.3.3.

7.2.4 Architectural Bad Smell Identification

Identifying Architectural Bad Smells (ABS) on the map is implemented via a set of
Cypher queries executed on a behavioral map. Thus, the Behavioral Map framework
implements a Cypher query for each ABS described in Section 6.4. All queries used to
identify ABSs supported by the Behavioral Map framework are available on GitHub4.

7.3 Behavioral Map Black Box

The Behavioral Map Black Box is implemented as an extension of Java Pathfinder
(JPF) 5 that uses the jpf-nhandler6 to automatically execute the System Under Test
(SUT) methods from the host Java Virtual Machine (JVM). This allows the Behavioral
Map Black Box to identify features loaded at runtime based on parameters defined
by software developers without requiring code instrumentation and source code

4https://github.com/edilton-santos/BehavioralMapExtendedStudy
5Java Pathfinder is an extensible software model-checking framework for Java bytecode programs -

Additional information is available at https://github.com/javapathfinder/jpf-core
6jpf-nhandler is an extension of Java PathFinder (JPF) - see more information at https://github.com/

javapathfinder/jpf-nhandler

61

https://github.com/edilton-santos/BehavioralMapExtendedStudy
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-nhandler
https://github.com/javapathfinder/jpf-nhandler

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

Listing 7.6: Behavioral Map Black Box configuration engine.
1 ## We don’t check the standard libraries or frameworks used to build the SUT.
2 behavioralmap.excludeLibraries=org.netbeans.*,org.openide.*,com.ibm.*,org.apache.*,org.

,→ eclipse.*,org.json.*,org.osgi.*,org.jdom.*
3 ## Define the path used to save the CR file used to build the Behavioral Map.
4 behavioralmap.crFilePath =${jpf-behavioralmap}/configurationRules
5 ## By setting this to true, all CR files created in the configurationRules directory,
6 ## are removed once the search starts.
7 behavioralmap.cleanConfigurationRulesDir =false
8 ## Define the path used to save the result file after the analysis.
9 behavioralmap.resultFilePath =${jpf-behavioralmap}/result

10 ## By setting this to true, all result files created in the result directory, are
11 ## removed once the search starts.
12 behavioralmap.cleanResultDir =false
13 ## Define dependency level used to analyze the architectural smell Hub-Like Dependency.
14 behavioralmap.architecturalDependencyLevel =7
15 ## By setting this to true, save the SUT stack trace.
16 behavioralmap.saveSutStackTrace =true
17 ## By setting this to true define the SUT as a SAS and analyzes each adaptation.
18 behavioralmap.sutIsSelfAdaptiveSystem =true
19 # The root directory for java JDK 8 installation.
20 behavioralmap.javaJDKHome =/usr/lib/jvm/java-8-openjdk-arm64

recompilation of SUT, unlike the Behavioral Map White Box. Furthermore, the Be-
havioral Map Black Box as the Behavioral Map White Box supports the Architectural
Bad Smells (ABS) detection at runtime.

The BM Black Box tool is also a powerful solution for facilitating runtime testing.
It comes equipped with JUnit7, which allows for the seamless execution of test
units if the system under test (SUT) implements them. The tool also provides an
interface with the TackleTest8 [124], which automatically generates unit-level test
cases. Furthermore, the Neo4J graph database is used to produce map visualizations,
as seen in the Behavioral Map White Box.

7.3.1 Behavioral Map Configuration Process

The Behavioral Map Black Box tool is a solution that employs parametrization based
on the JPF configuration file to specify the parameters necessary for creating the
behavioral map and executing relevant analyses (e.g., Architectural Bad Smells (ABS)
detection and Test Selection). The configuration file offers support for a wide range
of processes, including but not limited to:

Configuration Engine

The Behavioral Map Black Box configuration engine is responsible for the general
setup of the tool. In Listing 7.6, we can see a section of the engine that pertains
to the general configuration applied to all systems undergoing analysis. Line 2
shows which standard libraries or frameworks used to build the system under test
(SUT) should not be included in the analysis. Lines 4 and 9 define the path to save
the configuration rules (CR) files and reports generated after analysis of each SUT

7JUnit - Additional information is available at https://junit.org/junit5/docs/5.0.0-M5/user-guide/
8TackleTest - https://github.com/konveyor/tackle-test-generator-cli

62

https://junit.org/junit5/docs/5.0.0-M5/user-guide/
https://github.com/konveyor/tackle-test-generator-cli

7.3.1. Behavioral Map Configuration Process

Listing 7.7: Feature Trace configuration example used to run the Adasim [137].
1 ## SUT what the Behavioral Map should run. Sets the Main class name and path.
2 target=adasim.TrafficMain
3 ## SUT app name.
4 behavioralmap.sutAppName =Adasim
5 ## The main package of the system under analysis.
6 behavioralmap.sutMainPackageFilter =adasim
7 ## List of the packages used to storage the core features of system under analysis.
8 behavioralmap.sutCoreFeaturePackages=adasim,adasim.agent,adasim.filter,adasim.generator

,→ ,adasim.model.*,adasim.util
9 ## List of the packages used to storage the optional features of system under analysis.

10 behavioralmap.sutOptionalFeaturePackages=adasim.algorithm.*
11 ## List of the classes or packages used to control other classes behavior at runtime.
12 behavioralmap.sutControllerFeatures=adasim.algorithm.*,adasim.agent.RoadClosureAgent
13 ## List of classes whose behavior is controlled by classes defined as controllers.
14 behavioralmap.sutControlledFeatures=adasim.model.RoadSegment,adasim.model.Vehicle
15 ## Define the method used in the adaptation loop.
16 behavioralmap.sutAdaptationLoopMethodName =adasim.model.TrafficSimulator.

,→ takeSimulationStep()

adaptation at runtime. The standard configuration saves the file in the Behavioral
Map path (e.g., ${jpf-behavioralmap}). Lines 7 and 12 (on Listing 7.6) define
if the configuration rules directory and the result directory will be cleaned before
starting the Behavioral Map execution.

The configuration engine has a feature that allows us to set the dependency level
for analyzing the architectural smell (Hub-Like Dependency), see line 14. By adjust-
ing this configuration, we can improve the accuracy of the analysis. Additionally,
the tool can save a stack trace report for each SAS adaptation made at runtime (line
16 in Listing 7.6). This feature allows us to track the entire history of adaptations
from the known initial state to the last one executed. The history includes all the
methods executed and the values of their respective parameters at runtime. This
history can help face the issue of tracing the complete history of adaptations and
their execution states mentioned in [117].

The Behavioral Map Black Box can analyze architectural bad smells and generate
tests in self-adaptive or non-adaptive systems. This parametrization can be set
via the parameter behavioralmap.sutIsSelfAdaptiveSystem presented in line
18 in Listing 7.6. By setting behavioralmap.sutIsSelfAdaptiveSystem to true,
the user defines the system under test (SUT) as a self-adaptive system, and each
adaptation will be analyzed at runtime. Otherwise, running the system analysis
as a non-adaptive system and the adaptation loop not be verified. The parameter
behavioralmap.javaJDKHome defines the root directory for Java Development Kit
(JDK) 8 installation because the Java Runtime Environment (JRE) will not suffice to
build the tests.

Feature Trace

To utilize the Feature Trace, we must configure the configuration file provided in
Listing 7.7. This particular listing displays only a small section of the Behavioral Map
configuration file, which is used to operate and evaluate the Adasim [137] system
within the Behavioral Map framework. The first step is to define the class of SUT

63

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

that the Behavioral Map should run to start the SUT. For this, the Feature Trace
provides the parameter target used to define the class with the method main used
to run the SUT, see line 2. The parameter behavioralmap.sutAppName (in line 4)
is used to define the name of the system under test. Additionally, the parameter
behavioralmap.sutMainPackageFilter (line 6) defines the main package of the
system that should be analyzed at runtime. Consequently, the parameter guides the
architectural bad smell analyses and test generation.

Additionally, the Feature Trace allows identifying the core and optional features
through the parameters behavioralmap.sutCoreFeaturePackages and beha-
vioralmap.sutOptionalFeaturePackages, as illustrated in lines 8 and 10 of the
Listing 7.7. Such parametrization allows the users to inform the set of packages or
classes responsible for implementing the core and optional features. We employed
this strategy to address the issue of lack of variability documentation in SAS dis-
cussed in Section 4.1.2. Similarly, we can define the controller features (line 12)
and controlled features (line 14) using the same method to identify the core and
optional features. The parametrization presented in lines 8, 10, 12, and 14 supports
the Feature Identification process described in Section 6.3.1.

In the Feature Trace, there is a parameter called behavioralmap.sutAdapta-
tionLoopMethodName (refer to line 16) which addresses the issue of capturing adap-
tations at runtime, as discussed in Section 4.1.3. According to line 16, the Behavioral
Map should keep track of the adasim.model.TrafficSimulator.takeSimula-
tionStep()method, as a new adaptation begins once this method finishes exe-
cuting. Thus, The Behavioral Map can progressively identify the code responsible
for the adaptation and trace methods entries and exits [77]. Consequently, this
parameter supports the identification process of the Change Plan at runtime and the
process of retrieving the Configuration Rules (CR) used to generate the Behavioral
Map. Also, more information about all configurations supported by Feature Trace
can be found in Section A.1 of Appendix A.

Test Engine Configuration

The Behavioral Map test engine was conceived to tackle the challenge dis-
cussed in Sections 4.2 and 4.2.2. Thus, the test engine configuration provides the
parametrization necessary to select the test scope, generate test cases and run testing
at runtime based on feature interaction type and Architectural Bad Smells identi-
fied. Listing 7.8 present all parameter necessary to select and generate testing at
runtime via the Behavioral Map. The parameter behavioralmap.sutTestPrio-
ritizationBasedOn (line 2) allows setting the criteria (e.g., Feature Relationship
Analysis or Architectural Bad Smells Analysis) to select the classes that should be
tested at runtime, as defined in Section 6.5.1. Also, there is a possibility to define if
the tool will generate the test cases or use the tests case provided by the self-adaptive
system under analysis to run the tests, see line 4.

The Behavioral Map utilizes the Tackle Test tool for generating test cases. To set
the Tackle Test installation directory, use the parameter behavioralmap.tackle-
TestGeneratorHome (line 6). Additionally, the behavioralmap.testBaseTest-

64

7.3.1. Behavioral Map Configuration Process

Listing 7.8: Test Engine Configuration of Behavioral Map Black Box.
1 ## Test selection based on: interaction or smells
2 behavioralmap.sutTestPrioritizationBasedOn=interaction
3 ## By setting this to true, the Behavioral Map will generate the test classes.
4 behavioralmap.sutGenerateTestClasses=true
5 ## The root directory for tackle-test-generator-cli installation.
6 behavioralmap.tackleTestGeneratorHome =/tackle-test-generator-cli
7 ## The test generator: evosuite, randoop, and combined (evosuite and randoop).
8 behavioralmap.testBaseTestGenerator=combined
9 ## If you select the options evosuite or combined, you shoud select one or more

,→ Evosuite generation Criterion.
10 behavioralmap.testEvosuiteGenerationCriterion =LINE,BRANCH,EXCEPTION,WEAKMUTATION,

,→ OUTPUT,METHOD,METHODNOEXCEPTION,CBRANCH
11 ## Do not augment CTD-guided tests with coverage-increasing base tests.
12 behavioralmap.testNoAugmentCoverage =false
13 ## Do not generate CTD coverage report.
14 behavioralmap.testNoCtdCoverage =true
15 ## CTD interaction level (strength) for test-plan generation.
16 behavioralmap.testInteractionLevel =2
17 ## Number of executions to perform to determine pass/fail status.
18 behavioralmap.testNumSeqExecutions =2
19 ## Time limit per class (in seconds) for evosuite/randoop test generation.
20 behavioralmap.testTimeLimit =2
21 ## Maximal heap size (in MB) used for obtaining coverage data.
22 behavioralmap.testMaxMemoryForCoverage =4096
23 ## A boolean flag indicating that error-revealing tests should be generated.
24 behavioralmap.testBadPath =false;
25 ## Reuse existing base test cases. Default: false.
26 behavioralmap.testReuseBaseTests =false;
27 ## Generate code coverage report with JaCoCo agent.
28 behavioralmap.testCodeCoverage =true
29 ## When test suites are generated per module, create a combined coverage report.
30 behavioralmap.testCombineModulesCoverageReports =false

Generator parameter helps create JUnit test cases using different strategies such
as evosuite9, randoop10, and combined (EvoSuite and Randoop). Randoop uses
adaptive-random test generation, while EvoSuite applies evolutionary algorithms to
create tests that meet code-coverage targets (such as method, statement, branch,
and exception coverage). Thus, the code-coverage targets are defined using the pa-
rameter behavioralmap.testEvosuiteGenerationCriterion in line 10. Within
line 8 of the code, an option called combined utilizes a technique known as Com-
binatorial Test Design (CTD) to generate test cases that examine various combi-
nations of the declared method parameter types. The CTD modeling approach
enhances the types of combinations examined and provides the ability to select
different interaction levels as coverage goals [124]. Thus, this ultimately results in
a more comprehensive testing process. Furthermore, the test generation can be
configured on whether error-revealing tests are generated. For this, the parame-
ter behavioralmap.testBadPath should be true, indicating that error-revealing
tests should be generated.

Also, the tool has other parameters used to enhance the performance and code
coverage. For instance, by setting the parameter behavioralmap.testNoAugment-
Coverage (line 12) to false, the tool will augment CTD-guided tests with coverage-

9EvoSuite - Additional information is available at https://www.evosuite.org/
10Randoop - More information is available at https://randoop.github.io/randoop/

65

https://www.evosuite.org/
https://randoop.github.io/randoop/

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

Figure 7.2: Report of Features Activated at runtime.

increasing base tests. In a complementary way, we can reuse the existing base test
cases. For this, the field behavioralmap.testReuseBaseTest (line 26) should be
set as true. While the parameter behavioralmap.testInteractionLevel spec-
ifies the CTD interaction level for a test-plan generation. For example, by setting
the interaction level for 2 results in pair-wise testing. Consequently, the test plan
will include all possible combinations of subtypes for each pair of method param-
eters. The parameter behavioralmap.testNumSeqExecutions (line 18) defines
the number of executions to determine the pass/fail status of generated sequences.

The tool also allows setting the time limit per class (in seconds) for test gener-
ation, see line 20. Thus, reducing the time used to generate the test cases to the
selected testing scope. The last parameter used to enhance the performance is
behavioralmap.testMaxMemoryForCoverage (line 22). This parameter sets the
maximal heap size (in MB) used for obtaining coverage data. The Behavioral Map
generates test reports as CTD coverage (line 14), code coverage (28), and combine
modules coverage (line 30).

7.3.2 Behavioral Map Reports

The Behavioral Map provides a comprehensive collection of reports for every adap-
tation analyzed at runtime. These reports provide valuable insights into the system’s
quality detected at runtime. The reports are automatically saved in the "result"
directory inside the Behavioral Map installation or any other directory specified in
the configuration file, as shown in Listing 7.6.

66

7.3.2. Behavioral Map Reports

Report of Features Activated

The report displayed in Figure 7.2 provides a list of the features that were loaded
at runtime based on the Change Plan executed by the self-adaptive system. Thus,
this report is created using the map developed during each adaptation’s analysis. It
presents a comprehensive overview of the activated features, describing the feature
name, the package in which it is implemented, the type of feature, its activation
status, and the total number of features activated throughout the adaptation process.

Report of Features Involved in Architectural Bad Smells

The Behavioral Map generates a report for each type of architectural bad smell
(ABS) detected at runtime. These reports help to identify problematic areas that
may require refactoring to improve the overall architectural quality of the system.
An example report, illustrated in Figure 7.3, offers a comprehensive overview of
the features involved in Cyclic-Dependency ABS during Adasim’s [137] adaptation
loop. Such a report comprises a list of classes (Features) and packages in Java
format name, the feature type, and the total of features involved in ABS. These
informations are crucial for deciding which classes should be refactored to improve
the overall system’s architectural quality. Also, the Behavioral Map allows us to use
this information to select test scope and generate test cases at runtime, as discussed
in Section 7.3.1.

Figure 7.3: Report of Features Involved in Cyclic-Dependency architectural bad
smell.

Invoked Methods Report

The Invoked Methods Report illustrated in Figure 7.4 shows the methods most
invoked at runtime. This report is built based on the methods executed during the
feature interactions at runtime. Thus, the report lists the most frequently executed
methods, ordered from most to least. This information is helpful for developers
because it highlights which methods require extra attention during system mainte-
nance. If these methods have issues, the system may crash. The report can also assist
with the decision of which unit tests should be implemented because developers
can focus on the most executed methods at runtime.

67

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

Figure 7.4: Invoked Methods Report shows the last methods executed in the last
adaptation performed by Adasim [137].

Stack Trace Report

Figure 7.5: Stack Trace Report shows the last method executed in the last adaptation
performed by Adasim [137].

The Behavioral Map generates Stack Trace Report is used to trace the complete
history of adaptations starting at a known initial state, including the parameter
values used to execute each method at runtime. Thus, the report is built based
on the order of the methods executed during the feature interactions detected at
runtime by the Behavioral Map. Consequently, the reports can be used to support
unit test implementation to deal with context-dependent control and data flow in
SASs because it shows each executed method and their respective parameters used
to answer a specific adaptation at runtime, as illustrated in Figure 7.5.

Test Code Coverage Report

The Behavioral Map generates the Test Code Coverage Report11 based on the se-
lected test scope process (Section 6.5.1) and test strategy (Section 6.5.3) for each
adaptation that has been tested at runtime. This report indicates the percentage
of code statements and branches that were covered during the execution of test
cases, providing insight into how much of the code was actually executed during

11The Code Coverage Report was generated using JaCoCo. See more at https://www.jacoco.org/
jacoco/trunk/index.html

68

https://www.jacoco.org/jacoco/trunk/index.html
https://www.jacoco.org/jacoco/trunk/index.html

7.3.2. Behavioral Map Reports

Figure 7.6: Test Code Coverage Report.

automated tests, as depicted in Figure 7.6. Also provides other important metrics
listed in the following:sBranches Coverage refers to the proportion of executed branches in code that

includes if/else and switch statements. This metric considers the total number
of branches in a method and determines whether they were executed or not.
By examining the branch coverage, developers can gain insights into the
effectiveness of their testing procedures and identify areas for improvement.sCyclomatic Complexity [129] is a metric used to evaluate the complexity of
code based on the number of paths necessary to cover all potential paths in
the code using a linear combination.sMethods are considered executed once at least one instruction has been
executed.sClasses are considered executed as soon as their methods are executed.

Unit Test Report

Figure 7.7: Unit Test Report shows an overview of the tests performed at runtime.

The Behavioral Map framework generates a comprehensive Unit Test Report
based on the selected test scope (Section 6.5.1) for each adaptation tested at runtime.
This report provides a concise summary of all the test case results. A visual depiction
of the report can be found in Figure 7.7.

69

CHAPTER 7. BEHAVIORAL MAP FRAMEWORK

Figure 7.8: Combinatorial Test Design Report example.

Combinatorial Test Design Report

After Combinatorial Test Design (CTD) guided test generation is finished, the Behav-
ioral Map framework provides a coverage report that summarizes the achieved CTD
test plan coverage. The report indicates the number of rows in the CTD test plan
for which the tool could generate unit tests. However, it is essential to note that the
percentage of test plan coverage12 reported here does not reflect the achieved code
coverage. The code coverage can be verified in the Test Code Coverage Report 7.3.2.
The CTD report is available in both JSON format (for visualization tools) and HTML
format, which allows the user to drill down from class to method to CTD test plan
row level, as shown in Figure 7.8.

7.4 Wrap up

In this chapter, we discussed the implementation of the Behavioral Map framework,
explicitly highlighting the features of the Behavioral Map White Box and Behavioral
Map Black Box. Additionally, we explored how the tool supports architectural smells
identification and runtime testing to face the issue presented in Chapter 4.

12More information available at https://github.com/konveyor/tackle-test-generator-cli/blob/main/
doc/unit/user_guide.md#output-artifacts

70

https://github.com/konveyor/tackle-test-generator-cli/blob/main/doc/unit/user_guide.md#output-artifacts
https://github.com/konveyor/tackle-test-generator-cli/blob/main/doc/unit/user_guide.md#output-artifacts

Part IV

Empirical Evaluations

71

C
H

A
P

T
E

R

8
IDENTIFYING ARCHITECTURAL SMELLS IN

SELF-ADAPTIVE SYSTEMS AT RUNTIME

8.1 Behavioral Map - Based Architectural Bad Smells Detection 74
8.2 Results . 74
8.3 Threats to Validity . 80
8.4 Related Work . 82
8.5 Wrap up and perspectives . 82

We present in this chapter the case study published in the book Software Archi-
tecture (Lecture Notes in Computer Science, vol 13365), titled Behavioral Maps:
Identifying Architectural Smells in Self-Adaptive Systems at Runtime [77] used to
introduce the Behavioral Map (BM) formalism (presented in Section 6) and validate
the Behavioral Map White Box, described in Section 7.2. Also, this case study is
an extended version of the paper A Vision to identify architectural smells in self-
adaptive systems using behavioral maps [35]. We analyze the Architectural Bad
Smell in self-adaptive systems at runtime.

Our results suggest that runtime ABS assessment is required to fully capture SAS
architectural qualities because the ABS occurrences vary along each self-adaptation.
In summary, this chapter provides the following contributions:

(i) A first study to identify architectural bad smells for SAS at runtime;
(ii) An analysis based on two runtime adaptations of Smart Home Environment

(SHE), 40 runtime adaptations of Adasim, and 16 runtime adaptations of
mRUBiS, demonstrate that runtime variability affect the type and occurrence
of smells found;

73

CHAPTER 8. IDENTIFYING ARCHITECTURAL SMELLS IN SELF-ADAPTIVE SYSTEMS AT

RUNTIME

Table 8.1: ABSs identified adaptation 1 and 2 of the SHE.

Adaptation 1 Adaptation 2

Feature Name
Feature

Type
EC HL OM EC HL OM

listener Core
Yes
(6)

Yes
(10)

lampController Optional
Yes
(3)

Yes
Yes
(3)

Yes

climateController Optional
Yes
(2)

(iii) A replication package containing the results and scripts to process behavioral
maps is also available:
https://github.com/edilton-santos/BehavioralMapExtendedStudy.

8.1 Behavioral Map - Based Architectural Bad Smells Detection

We search for architectural smells in various runtime adaptations within the Smart
Home Environment (SHE) framework [111], Adasim [137], and mRUBiS [128] sys-
tems developed in Java. These smells include Cyclic Dependency (CD), Extraneous
Connector (EC), Hub-Like Dependency (HL), and Oppressed Monitors (OM), de-
fined in Chapter 2. To identify these ABSs, we use the Feature Identification process
described in Section 6.3.1 and the process to identify the ABS using the Behavioral
Map described in Section 6.4. Additionally, we instrumented the system source code
following the process introduced in Section 7.2.1, which is based on the system’s
characteristics presented in Sections 5.1, 5.2, and 5.3.

8.2 Results

The following sections describe the results and discuss the reasons behind each
architectural smell identified in the self-adaptive systems under study.

8.2.1 SHE Framework Results

The SHE Framework performed two self-adaptations and activated 22 features at
runtime, nine in the first adaptation and 13 in the last adaptation. Table 8.1 presents
in detail the features involved in ABS during the SHE Framework adaptations. The
listener is involved in HL smell in both adaptations, but the number of outgoing
increases in the second adaptation. This situation occurred because the water, cli-
mateController, temperature, and airConditioner features were activated at runtime,
increasing the number of the Requires relationships on the listener feature, as shown
in Figure 8.1.

Also, the BM identified lampController as involved in EC and OM smells in two
adaptations. The EC smell occurred because the lampController uses the listener

74

https://github.com/edilton-santos/BehavioralMapExtendedStudy

8.2.1. SHE Framework Results

Requires

Requires

Requires

Requires

Controls

Reads

Requires

Re
qu
ire
s

Requires

Req
uires

Controls

Re
ad
s

Reads

R
equires

Re
qui
res

Re
qu
ire
s

R
eq
ui
re
s

Requires

R
eq
ui
re
s

Reads

Reads

Re
ad
s

Reads

Reads

R
eads

Reads

R
ea
ds

R
eq
ui
re
s

Requires

Re
qu
ire
s

presence

listener

climateControllertemperature airConditioner

lampControllerluminosity

lamp

water

manager

installer

loader
presentation

layer

Figure 8.1: Behavioral Map for SHE in adaptation 2.

(the communication broker) and procedure call to exchange messages with presence,
luminosity, and lamp. The procedure call is represented as the relationship Requires
or Controls on the BM, as illustrated in Figure 8.1. The Requires relationships among
lampController and presence, luminosity, lamp represent an architectural bad smell.

The BM identified the lampController and presentation layer as a possible OM
smell. However, after analyzing the source code together with the SHE Framework
developers, we identified that only the lampController uses the same data polling
rate and predefined execution order to retrieve data from the sensors. Thus, only
lampController feature was classified as OM smell. Finally, the climateController
feature activated in adaptation two was classified as EC smell. While the BM supports
the identification of potential OM smells, manual source code analysis is necessary
to eliminate false positives.

75

CHAPTER 8. IDENTIFYING ARCHITECTURAL SMELLS IN SELF-ADAPTIVE SYSTEMS AT

RUNTIME

Table 8.2: ABSs identified in adaptation 1 and 2 of the Adasim - QLearningRoutingAl-
gorithm.

Adaptation 1 Adaptation 2

Feature Name
Feature

Type
CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes
Yes
(13)

Yes
Yes
(12)

Vehicle Core Yes
Yes
(14)

Yes
Yes
(13)

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
QLearningRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core
Yes
(9)

Yes
(9)

8.2.2 Adasim Results

The Adasim system was executed using two different parameter files because we
identified two adaptation modes: QLearningRoutingAlgorithm and AdaptiveRoutin-
gAlgorithm.

Figure 8.2: CD identified in Adasim QLearningRoutingAlgorithm in adaptation 1.

76

8.2.2. Adasim Results

Adasim QLearningRoutingAlgorithm. Adasim performed 13 self-adaptations
and activated 18 features at runtime. However, we identified that the variability of
the features at runtime only triggered different numbers of ABS detected between
adaptations one and two. Such behavior was observed because Adasim did not
enable/disable other features (after adaptation two), which may add new ABS at
runtime. It means that the system continued executing the adaptations process
using the features and data produced by each loop until it completed its adaptation
cycles.

Table 8.2 presents in detail the features involved in ABS during the two first
adaptations. The QLearningRoutingAlgorithm is an optional feature involved in CD
(only in the first adaptation) with the feature RoadSegment, and Vehicle, as shown in
Figure 8.2. Such figures show all features involved in CD, the features in green are
core features and the optional feature in pink. The relationship defined as Requires
amongst features in CD indicates that all features involved can hardly be released,
maintained, or reused in isolation. Thus, if the developers decide to reuse the feature
Vehicle, they should reuse all features presented in Figure 8.2.

Nevertheless, the absence of the QLearningRoutingAlgorithm (in adaptation
two) reduces the numbers of dependency in the features RoadsSegment and Vehicle
involved in HL, see Table 8.2. This situation occurred because RoadSegment and
Vehicle are not sharing QLearningRoutingAlgorithm in adaptation two. Also, per-
forming evolutionary or corrective maintenance on the RoadSegment and Vehicle
features is an arduous task, as poorly planned maintenance can trigger unexpected
behavior in the system, like bugs. Moreover, a hub (as RoadSegment and Vehicle)
with a mixture of ingoing/outgoing dependencies could be a problem because of its
lack of architectural logic [44]. These aspects negatively impact system maintenance
and reusability. In addition, the SimulationXMLBuilder feature has been identified
as HL. Thus, we have identified three features involved in HL, as shown in Figure 8.3.

Adasim AdaptiveRoutingAlgorithm. The Adasim executed 27 self-adaptations
and activated 20 features at runtime. We observed that the variability of the features
at runtime impacted the numbers of ABS detected between adaptations 1 and 2,
as identified in the Adasim QLearningRoutingAlgorithm. Table 8.3 presents the
ABS identified during adaptations 1 and 2. Additionally, it is possible to observe
that the number of CD identified increases or decreases depending on the num-
ber of optional features required in each adaptation process. This situation also
impacts the number of HL identified in each adaptation, mainly because the fea-
tures identified as CD and HL concentrated on the core features. Also, there is a
strong relation of dependency among them at runtime. Thus, we detected that the
Vehicle feature identified as HL in Adaptation 1 was not identified in Adaptation
2. Such a situation occurred because the optional features AdaptiveRoutingAlgo-
rithm, QLearningRoutingAlgorithm, and LookaheadShortestPathRoutingAlgorithm
are not used in adaptation 2. Consequently, the BM identified in adaptation 2 the
RoadSegment feature as a new HL.

However, we did not identify the Extraneous Connector and Oppressed Monitors
smells in Adasim because the system does not use publish-subscribe architecture or
loops to collect data in the sensors.

77

CHAPTER 8. IDENTIFYING ARCHITECTURAL SMELLS IN SELF-ADAPTIVE SYSTEMS AT

RUNTIME

Figure 8.3: Features involved in HL identified in Adasim.

8.2.3 mRUBiS Results

The mRUBiS system is divided into self-healing and self-optimization versions. How-
ever, during the feature identification process, we identified four versions of mRUBiS:
i) self-healing with adaptation mechanism Event-Condition-Action (ECA) feedback
loop is composed of 22 features; ii) self-healing with adaptation mechanism State-
Based Feedback Loop (SBFL) is composed by 18 features; iii) self-healing with adap-
tation mechanism MAPE-K is composed of 22 features, and iv) self-optimization
with adaptation mechanism MAPE-K is composed by 27 features.

mRUBiS self-optimization: Figure 8.4 depicts the first configuration of mRUBiS
self-optimization with one optional feature (in pink). We started looking for ABS
in the system based on this configuration. The BM identified the SelfOptimiza-
tionConfig, MRubisModelQuery, and EventBasedMapeFeedbackLoop as HL in four
adaptation loops. Thus, these features are core used in all configurations of mRUBiS
self-optimization. We observed in the SelfOptimizationConfig a decrease in the
numbers of dependencies used in the second adaptation. This situation occurred
because the feature is responsible for adding the validators and other parameters
for self-optimization to the simulator. However, the number of validators used at
runtime decreases, impacting the dependencies identified. The MRubisModelQuery
and EventBasedMapeFeedbackLoop maintain the same numbers of dependencies in
all adaptations. Also, the BM framework did not identify other types of ABS during
the adaption loop.

78

8.2.3. mRUBiS Results

Table 8.3: ABSs identified in adaptation 1 and 2 of the Adasim AdaptiveRoutingAlgo-
rithm.

Adaptation 1 Adaptation 2

Feature Name
Feature

Type
CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes
Yes
(13)

Vehicle Core Yes
Yes
(17)

Yes

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
AdaptiveRouting
Algorithm

Optional Yes

QLearningRouting
Algorithm

Optional Yes

LookaheadShortest
PathRoutingAlgorithm

Optional Yes

SimulationXMLBuilder Core
Yes
(11)

Yes
(11)

mRUBiS self-healing: The BM does not identify ABS in the self-healing version
with adaptation mechanism ECA and SBFL after four reconfiguration processes at
runtime. The BM identified one instance of HL in the core feature StateBasedMape-
FeedbackLoop in four adaptations loops to mRUBiS self-healing version with adap-
tation mechanism MAPE-K. The feature is the main entry point to other features
such as Monitor, Action, Plan, Execute, SelfHealingConfig, SelfHealingScenario, and
MRubisSelfHealingUtilityFunction. Also, the knowledge is captured in the model
described in CompArch [128] language, provided by the framework CompArch
implemented outside the mRUBiS implementation. This model is utilized as a pa-
rameter on the feature StateBasedMapeFeedbackLoop to validate the self-healing
issues at runtime. Thus, the HL identified is a feature of the architecture instead
of an issue. This situation happened because the StateBasedMapeFeedbackLoop
has been chosen as a controlled entry point to separate the adaptive mechanism
(MAPE-K) logically from the self-healing configuration (implemented via SelfHeal-
ingConfig). We can observe this situation in Figure 8.5 through the relationship
between StateBasedMapeFeedbackLoop (highlighted in red) and SelfHealingConfig
(highlighted in blue). Also, Figure 8.5 presents all features available in adaptation
1 of the mRUBiS Self-Healing MAPE-K loop. The features CF1_Injector (in pink)
and LightWeightRedeployComponent (in yellow) are optional features activated at
runtime.

79

CHAPTER 8. IDENTIFYING ARCHITECTURAL SMELLS IN SELF-ADAPTIVE SYSTEMS AT

RUNTIME

Figure 8.4: Behavioral map of the first configuration of mRUBiS Self-Optimization.

8.3 Threats to Validity

As for any empirical study, we consider threats to the internal validity of results
themselves or their generalization.

8.3.1 Internal Validity

The absence of a feature model and feature annotations in the source code may
reduce the precision of the feature identification process in the source code. To miti-

80

8.3.1. Internal Validity

Figure 8.5: Behavioral map of the first configuration of mRUBiS Self-Healing MAPE-K
loop.

gate this threat, we used the Eclipse IDE1 tool to verify the feature implementation
and to debug the systems’ source code to check the execution of each feature identi-
fied using the process defined in Section 6.3.1. Also, the systems under study provide
a log system that we used to check whether the main class used to implement the
features identified using our methodology were present in the system log. Thus, we
checked whether each core or optional feature was correctly identified in the source

1Eclipse IDE - https://www.eclipse.org/downloads/packages/

81

https://www.eclipse.org/downloads/packages/

CHAPTER 8. IDENTIFYING ARCHITECTURAL SMELLS IN SELF-ADAPTIVE SYSTEMS AT

RUNTIME

code.

8.3.2 External Validity

Our results may not generalize to all SAS since we selected only three systems in
our study. Additionally, it is impossible to run all possible system adaptations or
estimate their number. We selected systems with different architectural models,
adaptation mechanisms, and application domains, as presented in Table 5.1. This
diversity contributes to the mitigation of this threat. In this study, our goal was to
reveal and explain the existence of the runtime architectural bad smells using the
Behavioral Map. We left for future work with a more quantitative assessment.

8.4 Related Work

We found two works dedicated to the identification of ABS in self-adaptive systems.
The first study [106] relies on the Arcan [44] tool to identify ABS in 11 self-adaptive
systems. Arcan creates a graph database with the structure of classes, packages, and
dependencies of the analyzed project, allowing the execution of algorithms on the
graph to detect the ABS at design time. Our approach also uses a graph for ABS de-
tection, but there are two differences: i) we create a map for each SAS configuration
identified at runtime; and ii) we identify the ABS at the level of features defined in the
system’s feature model. Thus, to analyze the architecture, we associate the features
defined in the model with the structure of classes, packages, and dependencies
implemented in the source code. This process allows us to relate a feature to its
implementation. Our work in progress involves the comparison of Acran and the
BM for runtime smell detection [36].

The second study [114] presents two new ABSs specific to self-adaptive systems:
the Obscure Monitor and the Oppressed Monitors. Also, it defines the algorithms to
identify each smell at design time. To validate the proposed smells, the authors iden-
tified the proposed smells in 8 SASs in the manual and discussed how to refactor the
system affected for those smells. We believe that our work on smells identification at
runtime may uncover new ABS specific to SAS.

8.5 Wrap up and perspectives

In this chapter, we argued for the assessment of architectural bad smells (ABS) in
self-adaptive systems (SAS) at runtime using the Behavioral Map (BM). We evalu-
ated three SAS (SHE Framework, Adasim, and mRUBiS) and identified ABS during
runtime on various system reconfigurations. Our results showed that certain ABS
only appear in specific system configurations or architectures, such as the EC and
OM smell in the publish-subscribe architecture used in SHE Framework. We also
observed that the type and quantity of ABS found in SAS depend on the configu-
ration analyzed at runtime. For example, in Adasim’s AdaptiveRoutingAlgorithm,
the Behavioral Map detected nine CD and three HL smells in the first adaptation.
Also, only six CD smells in the second can be explained by binding and unbinding

82

8.5. Wrap up and perspectives

certain runtime features. Therefore, the Behavioral Map framework is a valuable tool
for evaluating the architectural qualities of a given runtime adaptation. However,
identifying ABS during runtime requires expertise and time because the core and
variable features are not documented.

We envision three future works:
(i) We intend to conduct an empirical study to compare the differences between

smells detected at design time and those occurring during runtime in self-
adaptive systems;

(ii) We plan to create a dedicated ABS tool that operates at the bytecode level to
reduce the engineering costs associated with analyzing SAS at runtime;

(iii) We aim to expand our findings by evaluating more self-adaptive systems.

83

C
H

A
P

T
E

R

9
TOWARDS ASSESSING ARCHITECTURAL SMELLS

FOR SELF-ADAPTIVE SYSTEMS AT RUNTIME

9.1 Study Design . 86
9.2 Results . 88
9.3 Threats to Validity . 93
9.4 Related Work . 94
9.5 Wrap up and perspectives . 94

Nowadays, more and more Self-Adaptive Systems (SAS) are required to run with-
out interruptions in heterogeneous environments. SAS vary their behavior through
the (de)activation of features depending on environmental changes and reconfigura-
tion plans and goals to answer such requirements. Such a reconfiguration combines
architectural fragments or different solutions at runtime that may negatively impact
their architectural qualities. Thus, Architectural Bad Smells (ABS) may emerge, im-
plying reductions in system maintainability [29, 79]. ABS results from architectural
design decisions that negatively impact system lifecycle properties (e.g., testability
and maintainability) [52].

Variability management is key for SAS as well as for Software Product Lines (SPL),
where one derives a family of variants based on the core (present in all variants) and
optional (present in some variants) features [27]. Many studies target ABS in single
systems or [29, 42, 51, 52, 79, 90]. However, there are less studies focusing on SAS or
Dynamic Software Product Line (DSPL) [35, 106, 114]. In particular, these studies do
not discuss the impact of runtime variability on smell detection and evolution as
the SAS adapts. To assess the runtime architectural qualities of SAS, we developed a

85

CHAPTER 9. TOWARDS ASSESSING ARCHITECTURAL SMELLS FOR SELF-ADAPTIVE

SYSTEMS AT RUNTIME

framework that instruments SAS to monitor runtime adaptations and captures them
in behavioral maps (BM) [35].

This chapter presents a preliminary comparison between design time and run-
time smell detection for SAS published and presented at the International Conference
on Software Architecture (ICSA)1 [36]. To perform this comparison, we selected two
ABS detection tools, Arcan [43] and our BM framework [35]. We motivate the choice
of the former tool because it was applied on SAS at design time [106]. The Behavioral
Map framework is the only approach to focus on runtime ABS. Both tools focus
on SAS written in Java. We selected Adasim [137] and mRUBiS [128] for their public
availability and the diversity of adaptation mechanisms these SAS use. The char-
acteristics of those systems were introduced in Sections 5.2 and 5.3. As for smells,
we considered Cyclic Dependency (CD) and Hub-Like Dependency (HL) [7] as they
are supported by both Arcan and BM framework tools. Furthermore, additional
information about the ABSs selected can be found in Sections 2.2.5 and 2.2.6.

Our results show important differences between smells occurrences at design
time and runtime for Adasim, and smells appearing at runtime not found at design
time for mRUBiS. ABS occurrences also vary along SAS reconfigurations. Our results
suggest that runtime ABS assessment is required to fully grasp SAS architectural
qualities. In summary, this chapter provides the following contributions:

(i) A first empirical comparison of architectural bad smells for SAS detected at
design time and at runtime;

(ii) Our analysis based on 40 runtime adaptations of Adasim and 16 runtime
adaptations of mRUBiS, demonstrates that runtime variability affects the type
and occurrence of smells found. The results and scripts to process behavioral
maps are also available here: https://doi.org/10.5281/zenodo.5814028.

9.1 Study Design

This empirical study aims at investigating differences between smells one detects at
design time and smells occurring at runtime. To understand these differences, we
formulate the following research questions.

9.1.1 Research Questions

RQ1. Are smells found at design time also found at runtime?

This involves: i) running different configurations of self-adaptive systems, ii) mea-
sure the type and number of occurrence of each smell, and iii) compare these results
with smells detected at design time.

1ICSA 2022 - https://icsa-conferences.org/2022/

86

https://doi.org/10.5281/zenodo.5814028
https://icsa-conferences.org/2022/

9.1.2. Architectural Bad Smells Analysis Tools

RQ2. How does the number of architectural bad smells evolves during the recon-
figuration process at runtime?

We aim at qualifying the variations of smell occurrences at runtime, and this is
related to the SAS variability.

9.1.2 Architectural Bad Smells Analysis Tools

We selected Arcan [43] and the Behavioral Map (BM) [35, 77] framework to perform
ABS detection in self-adaptive systems. Both tools were employed in the past for ABS
detection [35, 106]. The former analyses the source code while the latter computes a
behavioral map, i.e., a graph representing different relationships (requires, reads,
controls) between features at runtime described in Chapter 6. Both tools target
software written in Java.

9.1.3 Experimental Setup

We ran Arcan on the Jar files available on GitHub for Adasim2 and mRUBiS3. We
instantiated the Behavioral Map (BM) framework on both systems, a result of a two
weeks work from the author. Below, we will provide instructions on how to use each
of the selected tools.

The ABS Identification in Arcan

We used the Arcan with the Neo4J4 command and specified the database destination
folder. We present below the commands used to identify CD and HL in the system
under study. Thus, we executed the tool command as described in the following.

Command to look for CD: java -jar Arcan-1.2.1-SNAPSHOT.jar
-p my_projec_location -out my_output-results_location

-d my_database_destination_location -neo4j -cd

Command to look for HL: java -jar Arcan-1.2.1-SNAPSHOT.jar
-p my_projec_location -out my_output-results_location

-d my_database_destination_location -neo4j -hl

The ABS Identification in Behavioral Map

In order to accurately identify the ABS in Adasim and mRUBiS systems, we con-
ducted a thorough analysis of the available source code and Jars files on GitHub. We
downloaded the source code of each system and reconstructed their development
and execution environments based on the information provided by the developers.
Furthermore, we expertly instrumented the source code to keep a precise trace of

2https://github.com/brunyuriy/adasim
3https://github.com/thomas-vogel/mRUBiS
4Neo4j - https://neo4j.com/product/

87

https://github.com/brunyuriy/adasim
https://github.com/thomas-vogel/mRUBiS
https://neo4j.com/product/

CHAPTER 9. TOWARDS ASSESSING ARCHITECTURAL SMELLS FOR SELF-ADAPTIVE

SYSTEMS AT RUNTIME

features during runtime. The process for identifying these features is outlined in
detail below.

Feature Identification Process: To ensure accurate tracking and integration of
features into the Feature Trace (as explained in Section 7.2.1), we adhere to the
established process outlined in Section 6.3.1. In mRUBiS, the code instrumentation
for the Feature Trace is available in Listing 7.2, while Listing 7.3 showcases the
code instrumentation employed in Adasim. Through these code instrumentation
methods, we can effectively identify the features loaded during runtime and add
them to the Feature Trace collection. This collection is then used to generate the
configuration rules (CR) file based on the Change Plan detected in the adaptation
loop, as demonstrated in lines 24 and 25 of Listing 7.2.

Running the Behavioral Map tool: In order to effectively utilize the Behavioral
Map tool, a series of meticulous steps were taken for each system. Within the
Adasim system, two parameter files, namely config.xml and config-Adapti-
veRoutingAlgorithm.xml, were employed to determine the routing and traffic
delay function algorithm utilized for adaptations during runtime. The Behavioral
Map framework created 13 maps for the first file and 27 maps for the second, ulti-
mately resulting in 40 carefully analyzed adaptations at runtime. Similarly, within
the mRUBiS system, two parameter files, namely mRUBiS_performance.comparch
and mRUBiS.comparch, were utilized to express the adaptable software’s architec-
tural runtime model. The mRUBiS_performance.comparch file was utilized to run
the self-optimization version with the MAPE-K loop adaptation mechanism, while
the mRUBiS.comparch file was used to run the self-healing version with adaptation
mechanisms based on the Event-Condition-Action (ECA) approach, MAPE-K loop,
and State-Based Feedback Loop. Through the Behavioral Map tool, a total of four
maps were created for each version of mRUBiS executed, ultimately resulting in 16
adaptations that were thoroughly analyzed overall. These mRUBiS variants were
identified during the feature identification process. They were included in the Archi-
tectural Bad Smells (ABS) analysis process for comprehensive analysis. Additionally,
we employed the strategy outlined in Section 6.4.5 to find the ABSs for each system
we examined.

9.2 Results

The following sections describe the results and discuss the reasons behind the
differences between each architectural bad smell identified at runtime or design
time in each selected self-adaptive system.

9.2.1 Adasim Results

Adasim is a parameter-based routing algorithm adaptive mechanism, and we identi-
fied two adaptation modes according to the algorithms initiating the reconfiguration
process: QLearningRoutingAlgorithm and AdaptiveRoutingAlgorithm.

88

9.2.1. Adasim Results

Table 9.1: ABS identified by Arcan and Behavioral Map.

Arcan Behavioral Map

Feature Name CD HL CD HL
Feature

Type
TrafficSimulator Yes Yes Core
RoadSegment Yes Yes Yes Yes Core
Vehicle Yes Yes Yes Core
VehicleManager Yes Yes Core
RoadVehicleQueue Yes Yes Core
AdasimMap Yes Core
QLearningRoutingAlgorithm Yes Optional
SimulationXMLBuilder Yes Core

Table 9.2: ABS identified by the BM in adaptation 1 and 2 of the Adasim - QLearn-
ingRoutingAlgorithm.

Adaptation 1 Adaptation 2

Feature Name
Feature

Type
CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes
Yes
(13)

Yes
Yes
(12)

Vehicle Core Yes
Yes
(14)

Yes
Yes
(13)

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
QLearningRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core
Yes
(9)

Yes
(9)

Adasim QLearningRoutingAlgorithm: Table 9.1 presents the ABS identified
by Arcan and BM. For the last tool, we show only the smells identified in the first
adaption loop. Additionally, the table shows the feature type affected for each ABS.
The Arcan analysis identified ABS only in the core features. Thus, the TrafficSim-
ulator, RoadSegment, Vehicle, VehicleManager, and RoadVehicleQueue are Cyclic
Dependency (CD), and RoadSegment is Hub-Like Dependency (HL).

BM found the same features identified by Arcan involved in ABS and identified
three more additional features, as we depicted in Table 9.1. Thus, the core feature
AdasimMap and the optional feature QLearningRoutingAlgorithm were identified as
CD. Also, the core feature SimulationXMLBuilder was identified as HL. These ABS
were identified in the first adaptation loop executed by Adasim.

We analyzed Adasim during 13 self-adaptations and found that the number of
detected ABS only changed between the first and second adaptations. Further adap-
tations did not affect the architecture further. Table 9.2 details the features involved

89

CHAPTER 9. TOWARDS ASSESSING ARCHITECTURAL SMELLS FOR SELF-ADAPTIVE

SYSTEMS AT RUNTIME

in ABS during the two first adaptations. The QLearningRoutingAlgorithm is an op-
tional feature involved in CD only in adaptation 1 with the feature RoadSegment and
Vehicle. Nevertheless, the absence of the QLearningRoutingAlgorithm (in adaptation
2) reduces the numbers of dependency in the features RoadsSegment and Vehicle
involved in HL, see Table 9.2. This situation occurred because RoadSegment and
Vehicle are not sharing QLearningRoutingAlgorithm in the second adaptation.

Adasim AdaptiveRoutingAlgorithm. In this mode, we monitored the system
during 27 self-adaptations, involving 20 features. Similarly, we observed differences
between the two first adaptations. Table 9.3 presents the ABS identified during
adaptations one and two. We observe that the number of CDs identified increases
or decreases depending on the number of optional features required in each adap-
tation process. This situation also impacts the number of HL identified in each
adaptation, mainly because the features identified as CD and HL concentrated
on the core features. Also, there is a strong dependency among them at runtime.
We discovered that the Vehicle feature, identified as HL in Adaptation 1, was not
identified in Adaptation 2 because the optional features AdaptiveRoutingAlgorithm,
QLearningRoutingAlgorithm, and LookaheadShortestPathRoutingAlgorithm were
not loaded. As a result, the BM identified the RoadSegment feature as a new HL in
adaptation 2, as Arcan also identified.

Table 9.3: ABS identified by the BM in adaptation 1 and 2 of the Adasim AdaptiveR-
outingAlgorithm.

Adaptation 1 Adaptation 2

Feature Name
Feature

Type
CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes
Yes
(13)

Vehicle Core Yes
Yes
(17)

Yes

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
AdaptiveRouting
Algorithm

Optional Yes

QLearningRouting
Algorithm

Optional Yes

LookaheadShortest
PathRoutingAlgorithm

Optional Yes

SimulationXMLBuilder Core
Yes
(11)

Yes
(11)

90

9.2.2. mRUBiS Results

Table 9.4: Architectural Bad Smells identified by Arcan and Behavioral Map in mRU-
BiS Self-Optimization.

Arcan Behavioral Map

Feature Name CD HL CD HL
Feature

Type
SimulatorUtil Yes
ModelParameterPage Yes Optional
ModelParameterPage$1 Yes Optional
SelfOptimizationConfig Yes Core
MRubisModelQuery Yes Core
EventBasedMapeFeedbackLoop Yes Core

Our investigation into Adasim has uncovered discrepancies in identifying
architectural bad smells (ABS) at runtime versus design time. Upon analyzing
the data, we found that runtime detection could identify a higher number
of ABSs, including those present in the core features in all adaptations (RQ1
- see Section 9.1.1). An example is the Adasim AdaptiveRoutingAlgorithm,
which had 5 Cyclic Dependency (CD) and 1 Hub-Like Dependency (HL) ABS
detected by Arcan, and 9 CD and 2 HL ABS detected by the Behavioral Map in
the first adaptation. We also discovered that the number of ABS occurrences
was affected by the activation or deactivation of optional features (RQ2 - see
Section 9.1.1). For instance, in Adasim AdaptiveRoutingAlgorithm, the BM
detected 9 CD and 3 HL ABS in the first adaptation but only 6 CD ABS in the
second. These findings shed light on the importance of considering runtime
and design time detection when analyzing ABSs in software architecture.

9.2.2 mRUBiS Results

The mRUBiS system is divided into self-healing and self-optimization versions.
mRUBiS self-optimization: Table 9.4 details the Architectural Bad Smells (ABS)

identified by Arcan and the Behavioral Map (BM) framework. Arcan analysis iden-
tified the SimulatorUtil as Hub-Like Dependency (HL) and the classes Model-
ParameterPage and ModelParameterPage$1 as Cyclic Dependency (CD) in the
mRUBiS self-optimization version. The SimulatorUtil is a class part of the frame-
work used to implement the mRUBiS simulator, but the Arcan tool identified the
class as a mRUBiS implementation. Also, the classes ModelParameterPage and
ModelParameterPage$1 are optional features responsible for implementing the
graphical interface.

However, the BM identified the SelfOptimizationConfig, MRubisModelQuery,
and EventBasedMapeFeedbackLoop as HL in four adaptation loops. Thus, these fea-
tures are core used in all configurations of mRUBiS self-optimization. We observed in
the SelfOptimizationConfig feature a decrease in the number of dependencies used
in the second adaptation. This situation occurred because the feature is responsible
for adding the validators and other parameters related to self-optimization. However,

91

CHAPTER 9. TOWARDS ASSESSING ARCHITECTURAL SMELLS FOR SELF-ADAPTIVE

SYSTEMS AT RUNTIME

Table 9.5: Architectural Bad Smells identified by Arcan and Behavioral Map in mRU-
BiS Self-Healing MAPE-K loop.

Arcan Behavioral Map

Feature Name CD HL CD HL
Feature

Type
SimulatorUtil Yes
ModelParameterPage Yes Optional
ModelParameterPage$1 Yes Optional
StateBasedMapeFeedbackLoop Yes Core

the number of validators used at runtime decreases, impacting the dependencies
identified. The MRubisModelQuery and EventBasedMapeFeedbackLoop maintain
the same numbers of dependencies in all adaptations. Also, the BM framework did
not identify other types of ABS during the adaptation loop.

mRUBiS self-healing: The Arcan identified the same ABS identified in the mRU-
BiS self-optimization version because the classes the SimulatorUtil, ModelPa-
rameterPage, and ModelParameterPage$1 are used in the mRUBiS build inde-
pendent of the version. However, the BM does not identify ABS in the self-healing
version with the adaptation mechanism Event-Condition-Action (ECA) and State-
Based Feedback Loop (SBFL) after four reconfiguration processes at runtime. The
difference between the results presented by Arcan and BM is triggered by the way
how ABSs are identified. Table 9.5 presents in detail the ABS identified by Arcan
and BM for the self-healing version with adaptation mechanism MAPE-K. The BM
identified one instance of HL in the core feature StateBasedMapeFeedbackLoop
in four adaptation loops. The feature is the main entry point to other features
such as Monitor, Action, Plan, Execute, SelfHealingConfig, SelfHealingScenario, and
MRubisSelfHealingUtilityFunction.

After conducting a thorough analysis of four different system versions, it has
been determined that mRUBiS at runtime has a superior architectural quality.
This is due to the fact that we were only able to identify the Architectural
Bad Smells (ABS) in the self-healing version that utilized the MAPE-K adap-
tation mechanism. Specifically, we discovered one Hub-Like Dependency
(HL) in the StateBasedMapeFeedbackLoop feature that remained consistently
present throughout all four performed self-adaptations (RQ2 - see Section
9.1.1). Furthermore, ABSs identified at design time are not always present at
runtime.

9.2.3 Synthesis

Answering RQ1. We observed significant differences between design time and
runtime smell detection for both systems. Some smells are only present at runtime,
and conversely, some smells only appear at design time. By answering no to RQ1,
we motivate the need for further assessment of runtime smells for SAS.

92

9.2.4. Lessons Learned

Answering RQ2. We also observed a variation in the occurrences of smells found
between the adaptations. For instance, in Adasim AdaptiveRoutingAlgorithm, the
BM found 9 CD and 3 HL in the first adaptation. However, in the second, the BM
found 6 CD smells. We could explain this variation by activating and deactivating
certain runtime features.

9.2.4 Lessons Learned

The feature identification process was quite complicated because we did not find
a feature model or feature annotation in the source code. Consequently, we ran
each system using the Eclipse IDE in debug mode to analyze its execution flow to
understand how the self-adaptation process works. In addition, we analyze how the
features previously identified in the documentation were implemented. After this
step, we include the Behavioral Map Feature Trace in the code of all the features
identified in the previous phase. However, during this process, we encountered
non-explicit features in the documentation. An example of this situation is Adasim’s
SimulationXMLBuilder and RoadVehicleQueue features. Thus, we worked for two
weeks on the process of identifying the features of each system.

A self-adaptive system changes its behavior depending on environmental changes
and reconfiguration plans. Thus, these systems have architectures based on interface
and abstract classes. This type of architecture impacts the ABS identification because
the system’s core features use polymorphism (via interfaces or abstract class) to per-
form the (re)configurations. Such an aspect can interfere with the identification
of ABS, such as CD and HL, which consider a concrete class in their identification
process. The BM framework identifies the actual feature activated at runtime based
on the interface or abstract class used to execute the feature. It then establishes the
relationship between the features identified at runtime and the core feature. We
used the process described to identify (at runtime) the relationships of Adasim’s
QLearningRoutingAlgorithm features (see Figure 8.2). The core features AdasimMap,
Vehicle, and RoadSegment receive an interface called RoutingAlgorithm as a param-
eter. Thus, the BM framework identified the real interactions between each feature
at runtime, identifying the real dependencies between features at runtime.

9.3 Threats to Validity

In this empirical study, some general threats to validity have to be considered,
threatening the results’ internal validity or generalization.

9.3.1 Internal Validity

The lack of a feature model and feature annotations in the source code may hamper
the variability identification process. To mitigate this threat, we used the Eclipse
IDE5 tool to verify the feature implementation and to debug the systems’ source
code to check the execution of each feature identified using the process described

5Eclipse IDE - https://www.eclipse.org/downloads/packages/

93

https://www.eclipse.org/downloads/packages/

CHAPTER 9. TOWARDS ASSESSING ARCHITECTURAL SMELLS FOR SELF-ADAPTIVE

SYSTEMS AT RUNTIME

in Section 6.3.1. We also analyzed execution logs to ensure that our identification
of features was correct. Thus, we verified whether each core or optional feature
was identified precisely in the source code. Finding tools to perform Architectural
Bad Smells (ABS) detection in self-adaptive systems at design time and runtime is
difficult. Therefore, our main issue for conducting experiments is to evaluate if the
ABS found at design time is also found at runtime. Thus, we used the Arcan [43]
and the Behavioral Map (BM) framework [35, 77] to address this threat because both
tools were employed in the past for ABS.

9.3.2 External Validity

Our findings may not be applicable to all SAS, as we only analyzed two specific
systems in our research. Also, testing all possible system adaptations and estimating
their number is impossible. However, the systems we chose have diverse architec-
tural models, adaptation mechanisms, and application domains, which helps to
reduce this limitation. Our aim was not to gather statistical evidence on the dif-
ferences between runtime and design time architectural bad smells but rather to
uncover and explain their existence. We will leave a more quantitative evaluation for
future research.

9.4 Related Work

We have come across three research studies that focus on identifying Architectural
Bad Smells (ABS) in self-adaptive systems (SAS). The first study [114] presents two
new ABS specific to SAS. It also outlines the guidelines for identifying each smell
during the design phase. The second study [106] identified ABS in 11 self-adaptive
systems at design time. However, these studies do not address how the ABS identifi-
cation process can be affected by the runtime (re)configuration. Since the system will
adapt itself to respond to changes in its environment during runtime, this adaptation
can cause the ABS identified during design time to not be found during runtime, or
vice versa.

The last study [35] relies on the Behavioral Map (BM) to automatically infer key
architectural characteristics from different sources (e.g., feature model, source code,
adaptation rules) and represent them in a graph. The graph allows the execution of
algorithms to detect the ABS based on the architecture identified at runtime. Also,
the author illustrates their applicability to Smart Home Environment (SHE) [111]
example. Our study aims to understand how ABS occurs at runtime for different
feature combinations and if the ABS identified at design time occurs in all SAS
configurations at runtime.

9.5 Wrap up and perspectives

In this chapter, we made a case for assessing architectural bad smells (ABS) for
self-adaptive systems (SAS) at runtime, hypothesizing differences between design
time and runtime analyses. We selected two SAS (Adasim and mRUBiS) and two ABS

94

9.5. Wrap up and perspectives

detection tools (Arcan and the Behavioral Map framework) to reveal and explain
these differences. We performed design time and runtime smell detection on several
systems reconfigurations. Our results showed that there are indeed differences
between design time and runtime detection. While we could have assumed that
all smells found at runtime would be a subset found at design time, we also found
occurrences of smells only found at runtime. We identified the root causes for
this seemingly surprising finding, including polymorphism affecting the design
time analysis’s precision. These differences interest SAS architects in order to more
precisely put their maintenance efforts and assess the architectural qualities of
a given runtime adaptation. However, instrumenting such SAS for runtime ABS
identification requires expertise and time, especially since core and variable features
are not documented. This is the main lesson learned from our study besides our
results.

There is room for future work. First, we would like to reduce the cost of engi-
neering involved in analyzing SAS at runtime, which is a current impediment to
large-scale analyses. In particular, we will design a dedicated ABS tool operating at
the bytecode level, easing runtime analyses. Second, we will generalize our findings
by assessing more SAS.

95

C
H

A
P

T
E

R

10
BEHAVIORAL MAP: TOWARDS RUNTIME TESTING

FOR SELF-ADAPTIVE SYSTEMS

10.1 Study Design . 97

10.2 Experimental Setup . 98

10.3 Experimental Results . 102

10.4 Discussion . 105

10.5 Threats to Validity . 105

10.6 Related Work . 106

10.7 Wrap up and perspectives . 107

This Chapter introduces a preliminary study that utilizes the Behavioral Map
Black Box to select the test scope at runtime based on feature relationship analysis
and architectural bad smells analysis approach proposed in this thesis in Section
6.5.1. We show how to generate and execute tests at runtime in two self-adaptive
systems.

10.1 Study Design

In this empirical study, we employ the Behavioral Map Black Box to deal with the
runtime variability’s impact on self-adaptive systems tests at runtime (discussed in
Section 4.2.1), and we generate test cases for the changing environment [117, 118].
To face those problems, we state the following research questions in Section 10.1.1.

97

CHAPTER 10. BEHAVIORAL MAP: TOWARDS RUNTIME TESTING FOR SELF-ADAPTIVE

SYSTEMS

10.1.1 Research Questions

RQ1. How to define the test suite scope that should be tested at runtime for
SASs? One of the main challenges is determining the test suite scope to test on a
Self-Adaptive Systems (SAS) due to a large number of possible (re)configurations.

RQ2. Which approach to test scope selection at runtime achieves the best code
coverage? This question aims to find the most effective approach to choose the
test scope that covers the most code while requiring the least time to complete at
runtime. We evaluated Feature Relationship Analysis and Architectural Smells
Analysis as test selection strategies to answer this question via our Behavioral Map
Black Box.

10.1.2 Self-adaptive systems under study

We chose Adasim [137] and DeltaIoT [67] as they have Java 8 components implemen-
tation and are compatible with Linux operating systems for ARM1 64-bit (ARM64)
processors. We indeed developed and experimented the Behavioral Map frame-
work on such a platform. As for mRuBiS, we did not select them due to their Java 8
components being incompatible with Linux ARM64.

10.2 Experimental Setup

This Section explains the procedures we used to generate and run tests at runtime
using the Behavioral Map Black Box to test the Adasim [137] and DeltaIoT [67].

10.2.1 Feature identification process in the Behavioral Map Black Box

We follow the process outlined in Section 6.3.1 to identify the features in Adasim
and DeltaIoT. Thus, we parameterized the Feature Trace engine using the parameters
described in the Listing 10.1. Based on this listing, we will describe the feature
identification process in the Behavioral Map Black Box.

Step 1 - Identify the features: To begin, we examine papers and information
available on the Software Engineering for Self-Adaptive Systems portal to identify
the features present in Adasim2 and DeltaIoT3. These papers provide details on the
systems, including their adaptive mechanisms, applicability, test scenarios, source
code, and system version.

Step 2 - Identify the core features in the source code: To identify the core
features in the source code, we used the feature name or description determined
in Step 1, along with the adaptive mechanisms presented in Table 5.1. These core

1ARM stands for Advanced RISC Machine. For more information, please visit: https://www.redhat.
com/en/topics/linux/what-is-arm-processor#overview

2Adasim artifacts available at https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
model-problem-atrp/

3DeltaIoT artifacts available at https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
deltaiot/

98

https://www.redhat.com/en/topics/linux/what-is-arm-processor#overview
https://www.redhat.com/en/topics/linux/what-is-arm-processor#overview
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-atrp/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-atrp/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/deltaiot/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/deltaiot/

10.2.1. Feature identification process in the Behavioral Map Black Box

Listing 10.1: Feature identification in Behavioral Map Black Box.
1 ## SUT app name.
2 behavioralmap.sutAppName =adasim
3 ## The main package of the system under analysis.
4 behavioralmap.sutMainPackageFilter=adasim
5 ## List of the classes or packages used to storage the core features of system under

,→ analysis.
6 behavioralmap.sutCoreFeaturePackages=adasim,adasim.agent,adasim.filter,adasim.generator

,→ ,adasim.model.*,adasim.util
7 ## List of the classes or packages used to storage the optional features of system

,→ under analysis.
8 behavioralmap.sutOptionalFeaturePackages=adasim.algorithm.*
9 ## List of the classes or packages used to control other classes behavior at runtime.

10 ## The Behavioral Map will use it to verify if the behavior defined at design time
,→ happen at runtime.

11 behavioralmap.sutControllerFeatures=adasim.algorithm.*,adasim.agent.RoadClosureAgent
12 ## List of classes whose behavior is controlled by classes defined as controllers.
13 behavioralmap.sutControlledFeatures=adasim.model.RoadSegment,adasim.model.Vehicle
14 ## SUT version.
15 behavioralmap.sutVersion =1.0.0
16 ## Define the method used in the adaptation loop.
17 behavioralmap.sutAdaptationLoopMethodName =adasim.model.TrafficSimulator.

,→ takeSimulationStep()

features are executed every time the system is reconfigured. We chose the main class
responsible for implementing the feature behavior. This class is crucial for feature
implementation and helps us identify the hierarchy of dependencies at runtime.
Thus, we can set in the Behavioral Map Black Box parameterization engine the core
features in the level of class or package (e.g., packages part of the core of the system
used in the feature implementation). For instance, Listing 10.1 shows in line 6 the
core features identified based on the Adasim source code. In this case, we define the
core features-based implementation packages because the system uses the features
packages to separate concerns.

Step 3 - Identify the optional features in the source code: We used the feature
name or description along with the scenario where each feature is activated to
identify optional features in the source code. Additionally, we analyzed the source
code comments used to describe the class or method implementation to support
feature identification. This information was then associated with the source code
information collected in Step 1 to locate each feature. Such as the core features, the
optional features can be set in the class or package level, as illustrated in line 8 in the
Listing 10.1.

Step 4 - Behavioral Map Feature Trace: The features (class or packages) iden-
tified in steps 2 and 3 are included in the Feature Trace engine provided by the
Behavioral Map Black Box, as depicted in Listing 10.1 in lines 6 and 8. Also, we
define the system’s name in line 2 and identify the system’s main package (line 4)
filter used to guide the analysis at runtime. Consequently, this parameter guarantee
that only packages of the system under test will be analyzed at runtime. We define
the controller and controlled features in lines 11 and 13. Line 15 sets the version
of the system. Finally, line 17 shows which method should be intercepted to cap-
ture the adaptations loop at runtime and obtain the Change Plan that initiated the
adaptation. In this case, the Behavioral Map should intercept the method adasim.-

99

CHAPTER 10. BEHAVIORAL MAP: TOWARDS RUNTIME TESTING FOR SELF-ADAPTIVE

SYSTEMS

Listing 10.2: Test Selection Engine Configuration.
1 ## The Behavioral Map can be set to run test selection based on feature interaction
2 ## type and Architectural Bad Smells identified at runtime. Test selection based on:
3 ## - Feature Relationship Analysis = interaction
4 ## - Architectural Bad Smells = smells
5 behavioralmap.sutTestPrioritizationBasedOn=interaction

model.TrafficSimulator.takeSimulationStep() because this method starts
and ends the adaptation loop. As a result, the tool can capture the environmental
updates to generate test cases to facilitate the test of context-aware programs such
as SAS that reflect the system’s environmental surroundings and the selected con-
figuration. Sections 7.3.1 and A.5 of Appendix A provide all the configuration files
used in Adasim and DeltaIoT analysis. Also, we included a short description for each
parameter used to explain their parameter goal.

10.2.2 Test Selection Configuration

We selected the test suite scope to test based on the feature interaction for
Adasim and DeltaIoT. Thus, the Behavioral Map will determine the test suite scope
using the Feature Relationship Analysis process outlined in Section 6.5.1. Also, we
selected the test scope based on the Architectural Bad Smells detected at runtime,
as discussed in Section 6.5.1. However, this option was applied only in the Adasim
case because we did not find smells in DeltaIoT.

Listing 10.2 shows the parameters used to define how the test suite scope should
be selected. Thus, in this first experimentation phase, we set the test selection engine
to select the scope based on interaction, as shown in line 5. In the last phase, we set
the parameter behavioralmap.sutTestPrioritizationBasedOn to smells.

10.2.3 Test Generation Configuration

A challenge in testing SASs during runtime is creating test cases for the constantly
changing environment. Therefore, we must create test cases for every configuration
detected at runtime. To face this challenge, the Behavioral Map Black Box supports
the test case generation for each adaptation detected at runtime. For this, we
configure the Behavioral Map Black Box to generate testing at runtime, as depicted in
Listing 10.3. Therefore, we set the option behavioralmap.sutGenerateTestClas-
ses (line 4) to true. This option activates the test generation process at runtime.
At line 6, we define the directory for TackleTest installation. Also, as we presented
in Section 6.5.3, the Behavioral Map Black Box can generate test cases at runtime
using the following strategies: i) adaptive-random test generation; ii) evolutionary
algorithms to generate tests; and iii) Combinatorial Test Design (CTD) to generate
test cases.

In this study, we apply the Behavioral Map to generate testing using the CTD
combined with an evolutionary algorithm (supported by EvoSuite) and adaptive-
random test (via Randoop) to guide the test generation at runtime. Thus, we set the

100

10.2.3. Test Generation Configuration

Listing 10.3: Test Generation Engine.
1 ########## AUTOMATED TEST-GENERATION CONFIGURATION ##########
2 ## By setting this to true, the Behavioral Map will generate the test classes based on
3 ## the test selection define by the Behavioral Map algorithm.
4 behavioralmap.sutGenerateTestClasses=true
5 ## The root directory for tackle-test-generator-cli installation.
6 behavioralmap.tackleTestGeneratorHome =/edilton/Downloads/tackle-test-generator-cli
7 ## The Behavioral Map supports three strategies for test generation: CTD-guided test
8 ## generation, test generation using EvoSuite standalone, and test generation using
9 ## Randoop standalone.

10 ## The test generator strategy used to generate the building-block test sequences:
11 ## - Test generation using EvoSuite only = evosuite
12 ## - Test generation using Randoop only = randoop
13 ## - Test generation using Evosuite and Randoop = combined
14 behavioralmap.testBaseTestGenerator=combined
15 ## If you select the options Evosuite or combined, you shoud select one or more

,→ Evosuite generation criteria.
16 behavioralmap.testEvosuiteGenerationCriterion =LINE,BRANCH,EXCEPTION,WEAKMUTATION,

,→ OUTPUT,METHOD,METHODNOEXCEPTION,CBRANCH
17 ## Do not augment CTD-guided tests with coverage-increasing base tests.
18 behavioralmap.testNoAugmentCoverage =true
19 ## Do not generate a CTD coverage report. Default value: false
20 behavioralmap.testNoCtdCoverage =false
21 ## CTD interaction level (strength) for a test plan generation. Default: 2. Its means

,→ pair-wise testing, in which all combinations of
22 ## subtypes for each pair of method parameters are included in the test plan.
23 behavioralmap.testInteractionLevel =2
24 ## Number of executions to perform to determine pass/fail status of generated sequences

,→ . Default value: 2
25 behavioralmap.testNumSeqExecutions =2
26 ## Time limit per class (in seconds) for evosuite/randoop test generation. Default: 2.
27 behavioralmap.testTimeLimit =2
28 ## Maximal heap size (in MB) used for obtaining coverage data.
29 behavioralmap.testMaxMemoryForCoverage =10240

parameter behavioralmap.testBaseTestGenerator (line 14) to combined. The
tool uses the CTD-guided test generation process to create a CTD model for each
public method in the specified application classes. This model is then utilized to
generate a test plan. Each row of the test plan specifies a set of types for the method
parameters, which becomes a coverage goal for test generation. By using a method-
level approach, a set of test plans is created to guide the test generation process. The
CTD model for a method includes a set of types for each formal parameter, identified
statically through type inference and subtypes of the declared parameter type [124].
Also, we selected the test criterion LINE, BRANCH, EXCEPTION, WEAKMUTATION, OUT-
PUT, METHOD, METHODNOEXCEPTION, and CBRANCH to generate test cases, as shown
in line 16.

Additionally, we do not augment CTD-guided tests with coverage-increasing
base tests, as shown in line 18. It increases the time expended in the test generation.
We adopted testing pair-wise based, as a consequence, the parameter behavio-
ralmap.testInteractionLevel (line 23) was set to 2. Thus, all combinations of
subtypes for each pair of method parameters are included in the test plan. Then,
we define the number of executions to perform to determine the pass/fail status of
generated sequences to 2, see line 25. The time limit per class (in seconds) for test
generation was defined in line as 2 seconds. To increase the tool performance, the
maximal heap size (in MB) used for obtaining coverage data was set to 10240MB, as

101

CHAPTER 10. BEHAVIORAL MAP: TOWARDS RUNTIME TESTING FOR SELF-ADAPTIVE

SYSTEMS

Table 10.1: Processing time to generate testing at runtime for each SAS under analy-
ses.

Feature Relationship
Analysis

Architectural Smells

System Adaptation Loops CTD CTD

Adasim 15 01:18:02 01:08:04

DeltaIoT 96 05:59:00 -

Table 10.2: Adasim test strategy coverage.

Adasim Adaptation Loop
Scope Selection Test Strategy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F. Relationship CTD 50% 50% 50% 50% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51% 51%

Architectural Smells CTD 52% 53% 53% 53% 53% 53% 53% 53% 53% 53% 53% 53% 53% 53% 53%
Test Strategy Coverage

shown in line 29.

10.2.4 Architectural Bad Smells

Our research delved into two types of Architectural Bad Smells (ABS): Cyclic De-
pendency (CD) and Hub-Like Dependency (HL). We considered examining these
ABS because they are highly interconnected and require more maintenance, making
them more critical. Additionally, these ABS pose significant challenges related to
dependency issues. The selected ABS was introduced in Sections 2.2.5 and 2.2.6.

10.3 Experimental Results

This Section discusses the results obtained by applying the Behavioral Map Black
Box to generate and run tests for Self-Adaptive Systems (SAS) at runtime.

10.3.1 Running the Behavioral Map

We used a Linux (Ubuntu 20.04.6 LTS) ARM 64-bit in a Virtual Machine with 32GB
RAM, a CPU with 2 gigahertz and four processing cores, and a 256GB hard disk to
run the Behavioral Map. Table 10.1 presents the time it took to generate the tests
at runtime using the Combinatorial Test Design (CTD) strategy, with the test scope
selected based on Feature Relationship Analysis and Architectural Smells. Adasim
executed 15 adaptation loops for each scope selection strategy at runtime, resulting
in 30 adaptations analyzed at runtime. In comparison, DeltaIoT had no Architectural
Bad Smells (ABS), so we could not generate testing based on Architectural Smells.
Thus, 96 adaptation loops were analyzed at runtime using Feature Relationship
Analysis.

102

10.3.2. Adasim

10.3.2 Adasim

The tool generated tests for Adasim at runtime using the testing scope based on
Feature Relationship and Architectural Smells as presented in Table 10.1. The Behav-
ioral Map strategy took one hour, eighteen minutes, and two seconds to generate
and run tests based on CTD with scope selected via Feature Relationship Analysis.
On the other hand, in the test generation guided by Architectural Smells, the tool
consumed one hour, eighteen minutes, and 4 seconds to generate and run tests.
Consequently, the tool used less time to generate the tests and test the system at
runtime.

Table 10.2 summarizes the code coverage of tests generated at runtime using
Feature Relationship Analysis and Architectural Smells Analysis guided scoping. In
the following sections, we discuss these results.

Feature Relationship Analysis

In Adasim, the number of features activated during runtime varied between 17
and 20. The first adaptation activated 20 features, while the last only activated
17. Meanwhile, the generated test coverage covered 50 percent of the system code
between adaptations 1 and 4 for the testing scope selected via Feature Relationship
analysis, as shown in Table 10.2. Starting from adaptation five, the code coverage
index remained at 51%. We observed that the number of features loaded in each
adaptation loop did not affect the accuracy of the CTD because the test generation
operates in two steps. Firstly, it uses EvoSuite and/or Randoop to create a set of
initial test cases, which are then used to gather “building-block” test sequences and
add them to a sequence pool [73]. In the next step, the engine goes through the
CTD test plans and attempts to produce a complete test sequence for each row by
creating objects/values of the types specified and reusing sequences from the pool.
Also, we used pair-wise interaction as the coverage objective to generate the test
plans. Thus, many different test plans can achieve the same t-way coverage [124].

Architectural Smells Analysis

The Adasim configuration used in the Feature Relationship Analysis was also used
for this strategy. Thus, the number of activated features ranged from 17 to 20. The
initial adaptation resulted in 20 activated features, while the final adaptation only
resulted in 17. However, the test code coverage results are slightly different, as
shown in Table 10.2. The generated test covered 52% of the system code between
adaptation 1 and for the other adaptation 53%. This situation happened because we
selected the test scope based on architectural bad smells. Thus, using pairwise, the
Behavioral Map Black Box will generate tests only for classes involved in ABS and its
dependency. Pairwise testing involves testing all combinations of subtypes for each
pair of method parameters in the test plan [73]. Table 10.3 shows the ABSs detected
at runtime and which adaptation is affected by them. As the table outlines, eight
core features are involved in various ABSs in different adaptation loops. It means the
system’s features are numerous dependencies with other abstractions, such as other

103

CHAPTER 10. BEHAVIORAL MAP: TOWARDS RUNTIME TESTING FOR SELF-ADAPTIVE

SYSTEMS

Table 10.3: ABSs identified by the BM in Adasim adaptation loops.

Architectural Bad Smells

Feature Name
Feature

Type
CD HL CD HL

TrafficSimulator Core Yes Yes
RoadSegment Core Yes Yes Yes
Vehicle Core Yes Yes Yes Yes
VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
QLearningRoutingAlgorithm Optional Yes
SimulationXMLBuilder Core Yes
SimulationXMLReader Core Yes Yes

Adaptation Loop 1-5, 7-10, 12, 14 1 6, 11, 13, 15 2-15

Table 10.4: DeltaIoT test strategy coverage.

DeltaIoT Adaptation Loop
Scope Selection Test Strategy 1-2 3-4 5-22 23-96
F. Relationship CTD 72% 73% 74% 75%

Test Strategy Coverage

components, and more components rely on each other directly or indirectly [77].
Consequently, the generated test will cover much of the system code mainly because
the architectural smells focused on the system’s core under analysis, as shown in
Table 10.3.

10.3.3 DeltaIoT

DeltaIoT performed 96 self-adaptations during runtime and loaded eight features
for each adaptation loop from the initial adaptations until the second-to-last one.
However, the final adaptation loop only included five core features, which means
that three optional features were not loaded. To ensure comprehensive testing for
DeltaIoT, we employ Feature Relationship Analysis to determine the appropriate
testing scope during runtime. Table 10.4 shows the test strategy code coverage for
all self-adaptation analyzed at runtime. However, the test code coverage results are
slightly different, as shown in Table 10.4. For instance, in adaptation loops 1 and
2, the test cases generated at runtime covered 72% of the system source code. In
DeltaIoT, self-adaptation 3 and 4 covered increased by one point, which means 73%
covered. However, between the adaptations, loops 5 to 22 covered increased to 74%,
and finally, during adaptations 23 to 96, the test code covered stayed at 75%.

Unfortunately, the Behavioral Map Black Box could not find ABS on DeltaIoT be-

104

10.4. Discussion

cause of how the simulator was designed. DeltaIoT is made up of five sub-packages:
deltaoit.client, deltaoit.main, deltaoit.mapek, deltaoit.scenario_da-
ta, and deltaoit.services. Our analysis focused solely on these packages, en-
compassing DeltaIoT’s implementation. We did not examine any third-party frame-
work packages, such as the domain and simulator used for network infrastructure
simulation, as our goal was to analyze the architectural quality of the DeltaIoT
system.

10.4 Discussion

This section answers the research questions presented in section 10.1.1.

10.4.1 Research Questions

Answering RQ1. The findings demonstrated the approaches’ viability in selecting
the test suite scope at runtime based on the adaptation loop under tests. Also, we
used the Combinatorial Test Design (CTD) strategy to generate the tests at runtime
based on Feature Relationship Analysis and Architectural Bad Smells Analysis. As a
result, the time used to generate tests at runtime varied according to the test scope
selection approach employed and the quantity of self-adaptation performed by the
system under tests.

Answering RQ2. Based on test results performed on the Adasim system presented
in Section 10.3.2, we may suggest that the test scope selection based on Architectural
Bad Smells Analysis is more effective rather than Feature Relationship Analysis.
This is because the number of selected classes through Architectural Bad Smells
Analysis is significantly less than the number of selected classes through Feature
Relationship Analysis. During the first adaptation loop, Adasim loaded 20 features at
runtime. However, only 9 features were selected for testing through Architectural
Bad Smells Analysis, while 19 features were selected through Feature Relationship
Analysis. Despite the smaller scope size, the coverage of the test generated through
CTD is considerable, which is evident in Table 10.2. We cannot make the same
assessment with DeltaIoT because we cannot find architectural smells in the system.
However, given the DeltaIoT results (6 hours to generate and run the tests for all
the adaptations), testing large SAS implementations based on Feature Relationship
Analysis is time-consuming.

10.5 Threats to Validity

When conducting an empirical study, it is essential to consider potential threats to
validity, which could impact the accuracy of the results or their general applicability.
Thus, in the following section, we present the threats to validity faced in this study.

105

CHAPTER 10. BEHAVIORAL MAP: TOWARDS RUNTIME TESTING FOR SELF-ADAPTIVE

SYSTEMS

10.5.1 Internal Validity

Identifying variability in source code can be challenging in the absence of a feature
model or annotations. To overcome this, we employed the process described in
Section 10.2.1. Moreover, we meticulously analyzed execution logs to ensure precise
feature recognition. Our ultimate objective is to verify the correct identification of
all core and optional features in the source code. In addition, some self-adaptive
systems selected have incorporated test classes that may produce discrepancies in
the automatic test coverage calculations. As a result, we have decided to delete all
implemented test classes from the source code and related dependencies.

10.5.2 External Validity

It is important to note that our research only pertains to two specific SAS systems and
may not be applicable to all systems. However, we did evaluate these two systems
based on their unique adaptation mechanisms and application domains, which
helps to address this limitation. Our aim was not to obtain statistical evidence on
the differences in Feature Relationship Analyses and Architectural Bad Smells but
rather to assess the viability of the proposed approach for selecting the test scope.
Therefore, a more quantitative assessment will be conducted in future work.

10.6 Related Work

This section will discuss the related work that is most relevant to our research. We
have chosen papers that focus on creating and implementing tests for SAS.

RETAkE [37] is a method of conducting runtime testing based on the variability
of the system’s context and the modeling of its features. It verifies the system’s adap-
tation rules using its variability model while also verifying its behavioral properties.
The authors evaluated RETAkE using the mutation testing technique [68, 135] with
two SAS and measured the overhead introduced when integrating it into the SAS.
Our approach allows defining the test scope based on feature interaction or archi-
tectural bad smells detected in the selected configuration at runtime through the
Behavioral Map. The Behavioral Map then generates test cases using strategies such
as Combinatorial Test Design, adaptive-random test generation, and evolutionary
algorithms to ensure adequate code coverage (including method, statement, branch,
and exception coverage). Once the tests are generated, the tool executes them at
runtime.

Eberhardinger et al. [38] utilized runtime testing principles to confirm that the
system could respond to inputs and reorganize accordingly. They achieved this
by simulating the environment and introducing controlled faults into the system
under test. On the other hand, the Behavioral Map does not require a simulated
SASs environment for testing. Instead, the tool executes SASs in its Java Virtual
Machine (JVM) and monitors the feature interactions and workflows. It identifies
any architectural issues during runtime, selects the appropriate test scope, generates
test cases, and runs the tests.

106

10.7. Wrap up and perspectives

Proteus [47] is a framework that allows for online adaptive testing to ensure that
tests remain relevant to changing operating conditions. It adjusts test suites and test
cases at runtime and creates an adaptive test plan for each operating context. This
plan includes all possible test suites related to a specific system configuration and
environmental parameters. Proteus implements the MAPE-T [48] runtime testing
feedback loop to improve testing assurance. As a Proteus, the Behavioral Map runs
testing at runtime but does not adjust test suites and test cases. Instead, the tool
creates test cases for each operating context during the system self-adaptation based
on the selection of the scope (e.g., feature interaction or architectural bad smells).

Hansel et al. [60] has introduced a systematic SAS testing scheme that enables
engineers to test feedback loops at an early stage of development. They achieve this
by utilizing architectural runtime models [15] that are typically available early in the
development process. Feedback loop activities commonly use these models during
runtime, providing a high-level abstraction that describes test inputs and expected
results. Thus, to test for failures, a simulator is used. This simulator injects failures
into the runtime model, which emulates the behavior of the adaptable software and
environment. It also includes a monitor step that reflects any failures in the model.
In contrast, our approach runs the system under test and generates the test case at
runtime for each adaptation based on test criteria selected by developers.

10.7 Wrap up and perspectives

In this chapter, we presented a preliminary study to assess the feasibility of selecting
the test scope at runtime using a feature relationship analysis and an architectural
bad smells analysis approach. The Behavioral Map Black Box, introduced in this
thesis, is used to select the test scope, generate the tests at runtime using the Com-
binatorial Test Design strategy, and run the tests. The findings indicate that using
this approach to select the test scope at runtime for self-adaptive systems is feasible.
The main limitation of this study is that it is only limited to coverage, we would like
to explore other aspects (such as the bug-finding ability, and test suite size) in the
future.

107

Part V

Postface

109

C
H

A
P

T
E

R

11
CONCLUSION

A Self-adaptive System (SAS) is a sophisticated system designed to handle any
changes that may arise in its operating environment. This system can trigger neces-
sary adaptations at runtime, changing its structure, behavior, or even its adaptation
mechanism. However, it is crucial to state that these changes can introduce architec-
tural issues (e.g., architectural bad smells) and defects into the system, which can
cause it to fail during runtime. It is of utmost importance to closely monitor and
manage these modifications to uphold the system’s dependability.

In this thesis, we introduced the Behavioral Map framework to identify feature
interaction and architectural bad smells at runtime. With this framework, we can ef-
ficiently determine the testing scope and produce test cases dynamically at runtime
based on the scope selected through Feature Relationship Analysis or Architectural
Bad Smells analysis.

11.1 Summary of contributions

Performing runtime analysis to verify the behavior (e.g., test at runtime) and ar-
chitectural issues for self-adaptive systems at runtime is challenging. For this, we
proposed the Behavioral Map framework. The framework supports feature interac-
tion detection and architectural bad smells detection at runtime. Thus, based on
the feature interactions detected at runtime, a graphical map is created to show how
they interact among them. Additionally, this map is used to identify architectural
bad smells that may arise in each reconfiguration at runtime.

Also, the Behavioral Map framework supports the test suite scope selection
at runtime based on feature relationship analysis and architectural bad smells
detection. Consequently, our framework generates test cases and runs unit tests
at runtime. The Behavioral Map framework offers three strategies to generate test

111

CHAPTER 11. CONCLUSION

cases: i) adaptive-random test generation, ii) evolutionary algorithms to generate
tests, and iii) Combinatorial Test Design to generate test cases.

The Behavioral Map framework is conceived in two versions: Behavioral Map
White Box and Behavioral Map Black Box, both implemented in Java 8. The Behav-
ioral Map White Box was implemented as reusable building blocks that allow their
incorporation into the system under analysis. On the other hand, the Behavioral
Map Black Box automatically executes the system under test (SUT) methods from
the host Java Virtual Machine (JVM). This characteristic makes it a convenient option
for those who want to avoid the hassle of modifying the SUT’s code.

Our empirical assessments are performed on several case studies, using self-
adaptive systems of various domains provided by the Software Engineering for Self-
Adaptive Systems community1 with diverse adaptive mechanisms and architectural
implementations.

11.2 Perspectives and future work

This section presents our perspectives and future potential research directions to
improve the architectural bad smells detection, test case selection, test generation
strategy, and Assessment of Test Generation.

11.2.1 Architectural Bad Smells Detection

Architectural Bad Smells detection may be improved in two ways:sThe Oppressed Monitors (OM) [114] architectural bad smell is partially de-
tected because fully identifying this smell involves delving into the source
code and getting information about the polling rate since the sequencing of
sensor calls is not present on the map. Thus, we need to include a strategy
to automatically identify the polling rate for each sensor detected at runtime
based on the source code. However, depending on the SAS implementation,
this information is unavailable in the source code or system configuration
files. As a result, we also need to define a parametrization in the framework
that allows us to define the polling rate for each sensor.sOur goal is to identify new architectural smells using the Behavioral Map
framework. We aim to detect Connector Envy, Scattered Functionality, and
Ambiguous Interfaces architectural smells as they can adversely affect the
quality of the SAS, including its reusability, maintainability, extensibility, un-
derstandability, and testability [51].

11.2.2 Test Case Selection

The last version of the Behavioral Map can select testing scope based on Feature
Interaction Analysis and Architectural Bad Smells detected at runtime. However,
there is a possibility to select the testing scope based on the most executed methods

1Software Engineering for Self-Adaptive Systems exemplars - https://www.hpi.uni-potsdam.de/
giese/public/selfadapt/exemplars/

112

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

11.2.3. Test Generation Strategy

at runtime in a given adaptation. Our framework offers a report (presented in
Section 7.3.2) that shows all the most executed methods at runtime. Thus, based on
this report, we can select the testing scope and generate the test cases only for the
methods most executed and their dependency loaded at runtime. We envision that
such a strategy could reduce the time consumed in generating and running the test
cases.

11.2.3 Test Generation Strategy

Testing self-adaptive systems at runtime poses a significant challenge as the sys-
tem may support (re)configurations not anticipated during the design phase. This
situation makes ensuring the accuracy of SAS configurations that were not tested
beforehand challenging. To address this issue, two questions must be answered:
(1) how to create test cases that cover unforeseen configurations, and (2) how to
define a testing oracle that covers unforeseen configurations [80,86,100]. To face the
former question, we proposed in this thesis to utilize the Behavioral Map framework
to select the test scope and generate test cases based on the configurations detected
during runtime. Additionally, we plan to apply metamorphic testing [23] at runtime
to generate the test cases [54, 113] to address the second question.

11.2.4 Assessment of Test Generation

We will evaluate our test methodology to identify the best combination of test scope
selection and generation strategies to increase test coverage and reduce the testing
time. Thus, we will be able to understand which combination (test scope selection
and generation strategies) can present the best cost-benefit ratio. Beyond these
criteria, we would like to explore the bug-finding ability of these strategies and
conduct user studies.

11.3 Final remarks

The purpose of this thesis is to conduct architectural analysis (e.g., Architectural Bad
Smells) and testing of Self-adaptive Systems at runtime. Although the Behavioral
Map framework is designed for Self-adaptive Systems or other types of Dynamic
Adaptive Systems, it can also be applied to other types of systems. By disabling the
monitoring of the adaptation loop performed by Behavioral Map Black Box, the tool
will only execute the architectural analysis and run tests when the system under test
completes its execution. Thus, our contributions may be extended to other types of
systems.

Also, the Behavioral Map Black Box provides two reports (Invoked Methods
Report and Stack Trace Report) that can be used to enhance the effectiveness of
the unit test developed. These reports combined to provide a comprehensive list of
the commonly used methods and their respective parameter values at runtime. By
leveraging these reports, developers can prioritize the unit test development strategy
effectively and ensure their system’s optimal test code coverage.

113

A
P

P
E

N
D

I
X

A
BEHAVIORAL MAP BLACK BOX

A.1 Feature Trace Configuration Options

Listing A.1 and A.2 present all configurations supported by the Feature Trace en-
gine. Also, in each configuration, include a short explanation about their goal. For
instance, the parameter behavioralmap.sutSuppressorFeatures defines a list
of the classes or packages used to suppress other classes’ behavior at runtime. These
classes or packages may trigger a negative impact on the behavior of the system
at runtime. Thus, we use this configuration to identify the suppressor on the be-
havioral map. Correspondingly, we can define the list of classes whose behavior is
suppressed by classes defined as suppressors. For this, we can use the parameter
behavioralmap.sutSuppressedFeatures.

The Feature Trace engine supports the definition of the list of the classes or
packages used as a presenter. For instance, the class used to implement the dash-
board can be defined via the parameter behavioralmap.sutPresenterFeatures.
Too, it is possible to define the list of the classes or packages used as a sensor. For
example, a class that implements read data via a physical sensor can be set using
the parameter behavioralmap.sutSensorFeatures. The parameter behavio-
ralmap.sutActuatorFeatures defines a list of the classes or packages used as an
actuator. All parameters are available in the Feature Trace engine are used in Behav-
ioral Map Black Box to validate and create a behavioral map for each configuration
detected at runtime.

A.2 Chapter 10 - Case Study Configuration Files

This section presents all configuration files used in the Behavioral Map Black Box to
run the case study proposed in Chapter 10. Section A.2.1 presents the configuration

115

APPENDIX A. BEHAVIORAL MAP BLACK BOX

Listing A.1: Feature Trace configuration options to run the SUT part 1.
1 ## SUT what the Behavioral Map should run. Sets the Main class name and path.
2 behavioralmap.sutAppName =
3 ## The main package of the system under analysis. Example: myApp or com.myApp
4 behavioralmap.sutMainPackageFilter =
5 ## List of the packages used to storage the core features of system under analysis.
6 behavioralmap.sutCoreFeaturePackages =
7 ## List of the packages used to storage the optional features of system under analysis.
8 behavioralmap.sutOptionalFeaturePackages =
9 ## List of the classes or packages used to control other classes behavior at runtime.

10 behavioralmap.sutControllerFeatures =
11 ## List of classes whose behavior is controlled by classes defined as controllers.
12 behavioralmap.sutControlledFeatures =
13 ## List of the classes or packages used as a suppressor of other classes’ behavior
14 ## at runtime.
15 behavioralmap.sutSuppressorFeatures =
16 ## List of classes whose behavior is suppressed by classes defined as suppressor.
17 behavioralmap.sutSuppressedFeatures =
18 ## List of the classes or packages used as a presenter, for instance class used to

,→ implement the dashboard.
19 behavioralmap.sutPresenterFeatures =
20 ## List of the classes or packages used as a sensor, for instance class used to

,→ implement read data via physical sensor.
21 behavioralmap.sutSensorFeatures =
22 ## List of the classes or packages used as an actuator.
23 behavioralmap.sutActuatorFeatures =
24 ## Define the classpath the place where we can find the compiled test class without

,→ dependency.
25 behavioralmap.sutTestClassCompiledClasspath=
26 ## SUT version.
27 behavioralmap.sutVersion =

file used to run the Adasim and Section A.2.2 DeltaIoT configuration file.

A.2.1 Adasim Configuration Files

Listings A.3 and A.4 show the configuration necessary to run the Adasim system on
the Behavioral Map Black Box and intercept the adaptation loop at runtime.

Listing A.3, line 2 loads the Behavioral Map Black Box, and line 4 targets the main
class used to run the Adasim. Line 6 defines the methods that should be executed
directly on Java Virtual Machine (JVM). Thus, the parameter nhandler.spec.delegate
should delegate a JVM to all methods implemented in third-party frameworks. Lines
17 until 56 are used to define the classpaths of the system. Thus, line 17 defines
where we can find the .class file or other systems dependency used to run the system.
Line 28 defines the localization of the source code, and line 36 defines the classpath
to compile the test class without dependency. Line 43 the classpath for compiled
test class without dependency. The last parameter set path to the Adasim path to
JavaPathFinder.

Listing A.4 shows the Feature Trace configuration. Thus, we define the system
under the test name (line 2) and the system’s main package in line 4. Lines 6 until
12 define packages or classes to implement each feature type. Line 16 sets the
adaptation loop method that should be monitored at runtime. Finally, line 18
defines the type of architectural smells that should be verified at runtime.

116

A.2.2. DeltaIoT Configuration Files

Listing A.2: Feature Trace configuration options to run the SUT part 2.
1 ## Define the method used in the adaptation loop. Note: If the SUT there is more than

,→ one method inside of the
2 ## adaptation loop, inform on the parameter sutAdaptationLoopMethodName only the last

,→ method executed or invoked inside of the adaptation loop.
3 ## Example of method name:
4 ## - Method less parameter: com.myAppPackage.ClassName.methodName() - > real name: com.

,→ myApp.MainClass.adaptationLoop()
5 ## - Method with primitive type parameter, you need to include the parameter type as

,→ follow:
6 ## ---> com.myApp.MainClass.adaptationLoop(int) or com.myApp.MainClass.adaptationLoop(

,→ boolean) or
7 ## com.myApp.MainClass.adaptationLoop(double) or om.myApp.MainClass.adaptationLoop(int,

,→ double) or
8 ## com.myApp.MainClass.adaptationLoop(long) or om.myApp.MainClass.adaptationLoop(long,

,→ double)
9 ## - Method with object type parameter, you need to include the parameter type as

,→ follow:
10 ## ---> com.myAppPackage.ClassName.methodName(ObjectTypeName) or com.myAppPackage.

,→ ClassName.methodName(ObjectTypeName1, ObjectTypeName1)
11 ## ---> com.myApp.MainClass.adaptationLoop(Object) or com.myApp.MainClass.

,→ adaptationLoop(String) or
12 ## ---> com.myApp.MainClass.adaptationLoop(Object, Object) or com.myApp.MainClass.

,→ adaptationLoop(String, String)
13 ## - Method with array or collection (as Set, HashSet, etc.) type parameter, you need

,→ to include the parameter type as follow:
14 ## ---> com.myAppPackage.ClassName.methodName(Object[]) or com.myAppPackage.ClassName.

,→ methodName(Set) or
15 ## ---> com.myAppPackage.ClassName.methodName(String[]) or com.myAppPackage.ClassName.

,→ methodName(HashSet)
16 behavioralmap.sutAdaptationLoopMethodName =
17 ## By setting this to true, the Behavioral Map will look for the Extraneous Connector (

,→ EC),
18 ## Oppressed Monitors (OM), Cyclic dependency (CD), and Hub-Like Dependency (HL).

,→ Otherwise,
19 ## the Behavioral Map will look for only CD and HL. Because architectural smell happens

,→ only
20 ## in publish-subscribe systems. Also, you should inform the communication broker Class

,→ in
21 ## the parameter behavioralmap.sutCommunicationBrokerClass.
22 ## Note: If you activated for TRUE but the system doesn’t was implemented as a publish-

,→ subscribe
23 ## system, the analysis results for the EC and OM architectural smells will exhibit the

,→ wrong results.
24 behavioralmap.sutIsPublishSubscribeSystem =false
25 ## Define the Class used in the SUT to implement the Communication Broker Class. This

,→ class on used to
26 ## exchange messages among the system features. Example: com.myApp.

,→ CommunicationBrokerClass
27 behavioralmap.sutCommunicationBrokerClass =

A.2.2 DeltaIoT Configuration Files

The configuration presented in the Listing A.5 shows the configuration necessary
to run the DeltaIoT system on the Behavioral Map Black Box and intercept the
adaptation loop at runtime. For instance, line 2 loads the Behavioral Map Black Box,
and line 4 targets the main class used to run the DeltaIoT. Line 6 defines the system’s
name under tests, and line 8 defines the methods that should be executed directly
on Java Virtual Machine (JVM). Thus, the parameter nhandler.spec.delegate should
be used to delegate a JVM to all methods implemented in third-party frameworks.
On the other hand, the parameter nhandler.resetVMState is used to reset the virtual

117

APPENDIX A. BEHAVIORAL MAP BLACK BOX

machine state. Lines 15 until 51 are used to define the classpaths of the system.
For instance, line 15 defines where we can find the .class file or other systems
dependency used to run the system. Line 27 defines the localization of the source
code, and line 39 defines the classpath to compile the test class without dependency.

Also, the Listing A.5 shows how the Features were identified and how to define
the method responsible for perform the adaptations at runtime, as illustrated in line
65.

118

A.2.2. DeltaIoT Configuration Files

Listing A.3: Adasim Configuration File (part 1) used to run the system under Behav-
ioral Map.

1 ## Loads the Behavioral Map
2 @using=jpf-behavioralmap
3 ## Main class name and path.
4 target=adasim.TrafficMain
5 ## Delegate methods to JVM host.
6 nhandler.spec.delegate=org.jdom.input.SAXBuilder.*,
7 org.jdom.Element.*,
8 org.apache.xerces.parsers.AbstractSAXParser.*,
9 org.apache.xerces.util.SAXMessageFormatter.*,

10 java.util.ResourceBundle$Control.newBundle,
11 java.util.ResourceBundle.loadBundle,
12 java.util.ResourceBundle.getBundleImpl,
13 java.util.ResourceBundle.findBundle,
14 java.util.ResourceBundle.getBundle,
15 java.util.ResourceBundle.getClassContext
16 ## The place where we can find the .class file or other systems dependency.
17 classpath=${sut-workspace}/adasim/bin,
18 ${sut-workspace}/adasim/visual,
19 ${sut-workspace}/adasim/lib/jdom-1.1.2.jar,
20 ${sut-workspace}/adasim/lib/log4j-1.2.16.jar,
21 ${sut-workspace}/adasim/lib/jopt-simple-3.2.jar,
22 ${sut-workspace}/adasim/lib/junit-4.8.2.jar,
23 ${sut-workspace}/adasim/lib/pjunit-0.2.jar,
24 ${sut-workspace}/adasim/resources/test,
25 ${sut-workspace}/adasim/resources,
26 ${sut-workspace}/adasim/resources/xml
27 ## System source code.
28 sourcepath=${sut-workspace}/adasim/src,
29 ${sut-workspace}/adasim/test,
30 ${sut-workspace}/adasim/resources/test,
31 ${sut-workspace}/adasim/resources,
32 ${sut-workspace}/adasim/resources/xml,
33 ${sut-workspace}/adasim/releases,
34 ${sut-workspace}/adasim/visual
35 ## System test classpath (compiled test class with dependency).
36 test_classpath=${sut-workspace}/adasim/bin,
37 ${sut-workspace}/adasim/test,
38 ${sut-workspace}/adasim/resources/test,
39 ${sut-workspace}/adasim/resources/xml,
40 ${sut-workspace}/adasim/resources,
41 ${sut-workspace}/adasim/visual
42 ## Define the classpath to compiled test class without dependency.
43 behavioralmap.sutTestClassCompiledClasspath=${sut-workspace}/adasim/bin
44 ## Used by the nhandler
45 native_classpath=${sut-workspace}/adasim/bin,
46 ${sut-workspace}/adasim/visual,
47 ${sut-workspace}/adasim/lib/jdom-1.1.2.jar,
48 ${sut-workspace}/adasim/lib/log4j-1.2.16.jar,
49 ${sut-workspace}/adasim/lib/jopt-simple-3.2.jar,
50 ${sut-workspace}/adasim/lib/junit-4.8.2.jar,
51 ${sut-workspace}/adasim/lib/pjunit-0.2.jar,
52 ${sut-workspace}/adasim/resources/test,
53 ${sut-workspace}/adasim/resources,
54 ${sut-workspace}/adasim/resources/xml,
55 ${sut-workspace}/adasim/releases,
56 ${sut-workspace}/adasim/visual

119

APPENDIX A. BEHAVIORAL MAP BLACK BOX

Listing A.4: Adasim Configuration File (part 2) used to run the system under Behav-
ioral Map.

1 ## SUT app name.
2 behavioralmap.sutAppName =adasim
3 ## The main package of the system under analysis.
4 behavioralmap.sutMainPackageFilter=adasim
5 ## List of the packages used to storage the core features of system under analysis.
6 behavioralmap.sutCoreFeaturePackages=adasim,adasim.agent,adasim.filter,adasim.generator

,→ ,adasim.model.*,adasim.util
7 ## List of the packages used to storage the optional features of system under analysis.
8 behavioralmap.sutOptionalFeaturePackages=adasim.algorithm.*
9 ## List of the classes or packages used to control other classes behavior at runtime.

10 behavioralmap.sutControllerFeatures=adasim.algorithm.*,adasim.agent.RoadClosureAgent
11 ## List of classes whose behavior is controlled by classes defined as controllers.
12 behavioralmap.sutControlledFeatures=adasim.model.RoadSegment,adasim.model.Vehicle
13 ## SUT version.
14 behavioralmap.sutVersion =1.0.0
15 ## Define the method used in the adaptation loop.
16 behavioralmap.sutAdaptationLoopMethodName =adasim.model.TrafficSimulator.

,→ takeSimulationStep()
17 ## The Behavioral Map will look for only CD and HL.
18 behavioralmap.sutIsPublishSubscribeSystem =false

120

A.2.2. DeltaIoT Configuration Files

Listing A.5: DeltaIoT Configuration File used to run the system under Behavioral Map.
1 ## Loads the Behavioral Map
2 @using=jpf-behavioralmap
3 ## Main class name and path.
4 target=deltaiot.main.SimpleAdaptation
5 ## System under test name.
6 behavioralmap.sutAppName =deltaiot
7 ## Delegate methods to JVM host.
8 nhandler.spec.delegate=com.google.gson.annotations.Expose.*,
9 com.google.gson.Gson.*,

10 com.google.gson.GsonBuilder.*,
11 java.lang.Thread.currentThread().getContextClassLoader().getResourceAsStream
12 ## Used to reset virtual machine state.
13 nhandler.resetVMState =true
14 ## The place where we can find the .class file or other systems dependency.
15 classpath=${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin,
16 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot,
17 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/client,
18 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/main,
19 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/mapek,
20 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/scenario_data,
21 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/services,
22 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/domain,
23 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/simulator,
24 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/lib/gson-2.2.4.jar,
25 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/info
26 ## System source code.
27 sourcepath=${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src,
28 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot,
29 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot/client,
30 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot/main,
31 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot/mapek,
32 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot/scenario_data,
33 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/deltaiot/services,
34 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/domain,
35 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/src/simulator
36 ## System test classpath (compiled test class with dependency).
37 #test_classpath=${sut-workspace}/
38 ## Define the classpath to compiled test class without dependency.
39 behavioralmap.sutTestClassCompiledClasspath=${sut-workspace}/
40 ## Used by the nhandle-jpf to delegates libary execution.
41 native_classpath=${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin,
42 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot,
43 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/client,
44 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/main,
45 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/mapek,
46 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/scenario_data,
47 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/deltaiot/services,
48 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/domain,
49 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/bin/simulator,
50 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/lib/gson-2.2.4.jar,
51 ${sut-workspace}/DeltaIoT/DeltaIoT-source/Simulator2/info
52 ## The main package of the system under analysis.
53 behavioralmap.sutMainPackageFilter=deltaiot
54 ## List of the packages used to storage the core features of system under analysis.
55 behavioralmap.sutCoreFeaturePackages=deltaiot,deltaiot.main,deltaiot.mapek,deltaiot.

,→ client
56 ## List of the packages used to storage the optional features of system under analysis.
57 behavioralmap.sutOptionalFeaturePackages=deltaiot.services.*
58 ## List of the classes or packages used to control other classes behavior at runtime.
59 behavioralmap.sutControllerFeatures=deltaiot.client.Effector
60 ## List of classes whose behavior is controlled by classes defined as controllers.
61 behavioralmap.sutControlledFeatures=deltaiot.services.Mote
62 ## SUT version.
63 behavioralmap.sutVersion =1.0.0
64 ## Define the method used in the adaptation loop.
65 behavioralmap.sutAdaptationLoopMethodName =deltaiot.mapek.FeedbackLoop.execution()
66 ## The Behavioral Map will look for only CD and HL.
67 behavioralmap.sutIsPublishSubscribeSystem =false

121

A
P

P
E

N
D

I
X

B
ACRONYMS

AS - Architectural Smells
ABS - Architectural Bad Smells
AI - Ambiguous Interfaces
API - Application Programming Interface
ATRP - Automated Traffic Routing Problem
BM - Behavioral Map
CIT - Combinatorial Interaction Testing
CT - Combinatorial Testing
CTD - Combinatorial Test Design
CR - Configuration Rules
CD Cyclic Dependency
CE - Connector Envy
CFA - Control-Flow Analysis
EC - Extraneous Connector
ECA - Event-Condition-Action
DAS - Dynamic Adaptive Systems
DSPL - Dynamic Software Product Line
FM - Feature Model
FODA - Feature Oriented Domain Analysis
HL - Hub-Like Dependency
ICSA - International Conference on Software Architecture
JPF - Java Pathfinder
JVM - Java Virtual Machine
JRE - Java Runtime Environment
JDK - Java Development Kit
MBT - Model-Based Testing

123

APPENDIX B. ACRONYMS

POM - Project Object Model
OM - Oppressed Monitors
OTS - off-the-shelf
SAS - Self-Adaptive Systems
SBFL - State-Based Feedback Loop
SF - Scattered Functionality
SPL - Software Product Lines
SHE - Smart Home Environment
SUT - System Under Test
SWEBOK - Software Engineering Body of Knowledge
UML - Unified Modeling Language
V & V - Validation and Verification

124

BIBLIOGRAPHY

[1] Oscar Aguayo and Samuel Sepúlveda. Variability management in dynamic
software product lines for self-adaptive systems—a systematic mapping. Ap-
plied Sciences, 12(20):10240, 2022.

[2] Sven Apel and Christian Kästner. An overview of feature-oriented software
development. Journal of Object Technology, 8(5):49–84, 2009.

[3] Sven Apel, Alexander Von Rhein, Thomas ThüM, and Christian KäStner.
Feature-interaction detection based on feature-based specifications. Com-
puter Networks, 57(12):2399–2409, 2013.

[4] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. Modeling and ana-
lyzing mape-k feedback loops for self-adaptation. In 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 13–23. IEEE, 2015.

[5] Joanne M Atlee, Uli Fahrenberg, and Axel Legay. Measuring behaviour interac-
tions between product-line features. In 2015 IEEE/ACM 3rd FME Workshop
on Formal Methods in Software Engineering, pages 20–25. IEEE, 2015.

[6] Thomas H Austin and Cormac Flanagan. Multiple facets for dynamic infor-
mation flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 165–178, 2012.

[7] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. Architectural
smells detected by tools: a catalogue proposal. In 2019 IEEE/ACM Interna-
tional Conference on Technical Debt (TechDebt), pages 88–97. IEEE, 2019.

[8] Davi Monteiro Barbosa, Romulo Gadelha De Moura Lima, Paulo Hen-
rique Mendes Maia, and Evilasio Costa. Lotus@ runtime: A tool for runtime
monitoring and verification of self-adaptive systems. In 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 24–30. IEEE, 2017.

[9] Luciano Baresi and Clément Quinton. Dynamically evolving the structural
variability of dynamic software product lines. In Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 57–63. IEEE Press, 2015.

125

BIBLIOGRAPHY

[10] Mahdi Bashari, Ebrahim Bagheri, and Weichang Du. Dynamic software prod-
uct line engineering: a reference framework. International Journal of Soft-
ware Engineering and Knowledge Engineering, 27(02):191–234, 2017.

[11] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

[12] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis
of feature models 20 years later: A literature review. Information systems,
35(6):615–636, 2010.

[13] Nelly Bencomo, Peter Sawyer, Gordon S Blair, and Paul Grace. Dynamically
adaptive systems are product lines too: Using model-driven techniques to
capture dynamic variability of adaptive systems. In SPLC (2), pages 23–32,
2008.

[14] Andrew Berns and Sukumar Ghosh. Dissecting self-* properties. In 2009
Third IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, pages 10–19. IEEE, 2009.

[15] Gordon Blair, Nelly Bencomo, and Robert B France. Models@ run.time. Com-
puter, 42(10):22–27, 2009.

[16] Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. Guide to the
Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE
Computer Society Press, Washington, DC, USA, 3rd edition, 2014.

[17] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese,
Holger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engi-
neering self-adaptive systems through feedback loops. Software engineering
for self-adaptive systems, pages 48–70, 2009.

[18] Javier Cámara, Rogerio De Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Testing the robustness of controllers for self-adaptive systems. Journal
of the Brazilian Computer Society, 20:1–14, 2014.

[19] Javier Cámara, Rogerio De Lemos, Nuno Laranjeiro, Rafael Ventura, and Marco
Vieira. Robustness-driven resilience evaluation of self-adaptive software sys-
tems. IEEE Transactions on Dependable and Secure Computing, 14(1):50–64,
2015.

[20] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike
Hinchey. An overview of dynamic software product line architectures and
techniques: Observations from research and industry. Journal of Systems
and Software, 91:3–23, 2014.

[21] Nicolás Cardozo and Ivana Dusparic. Learning run-time compositions of
interacting adaptations. In Proceedings of the IEEE/ACM 15th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pages 108–114, 2020.

126

Bibliography

[22] Marc Carwehl, Thomas Vogel, Genaína Nunes Rodrigues, and Lars Grunske.
Runtime verification of self-adaptive systems with changing requirements.
arXiv preprint arXiv:2303.16530, 2023.

[23] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic testing: a
new approach for generating next test cases. arXiv preprint arXiv:2002.12543,
2020.

[24] Betty HC Cheng, Holger Giese, Paola Inverardi, Jeff Magee, Rogério de Lemos,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al.
Software engineering for self-adaptive systems: A research road map. In
Dagstuhl Seminar Proceedings, volume 5525, pages 1–26. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Springer, 2009.

[25] HC al Cheng Betty et al. Software engineering for self-adaptive systems: A
research roadmap. Software Engineering for Self-adaptive Systems, pages
1–26, 2009.

[26] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.
Symbolic model checking of software product lines. In Proceedings of the
33rd International Conference on Software Engineering, pages 321–330,
2011.

[27] Paul Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[28] Myra B Cohen, Matthew B Dwyer, and Jiangfan Shi. Interaction testing of
highly-configurable systems in the presence of constraints. In Proceedings of
the 2007 international symposium on Software testing and analysis, pages
129–139, 2007.

[29] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. Architectural
bad smells in software product lines: An exploratory study. In Proceedings of
the WICSA 2014 Companion Volume, pages 1–6, 2014.

[30] Rogério De Lemos, David Garlan, Carlo Ghezzi, Holger Giese, Jesper Ander-
sson, Marin Litoiu, Bradley Schmerl, Danny Weyns, Luciano Baresi, Nelly
Bencomo, et al. Software engineering for self-adaptive systems: Research
challenges in the provision of assurances. In Software Engineering for Self-
Adaptive Systems III. Assurances: International Seminar, Dagstuhl Castle,
Germany, December 15-19, 2013, Revised Selected and Invited Papers, pages
3–30. Springer, 2017.

[31] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas
Vogel, et al. Software engineering for self-adaptive systems: A second research

127

BIBLIOGRAPHY

roadmap. In Software Engineering for Self-Adaptive Systems II: Interna-
tional Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised
Selected and Invited Papers, pages 1–32. Springer, 2013.

[32] Anind K Dey. Understanding and using context. Personal and ubiquitous
computing, 5:4–7, 2001.

[33] Jorge Andrés Díaz-Pace, Antonela Tommasel, and Daniela Godoy. Towards
anticipation of architectural smells using link prediction techniques. In 2018
IEEE 18th International Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 62–71. IEEE, 2018.

[34] Edilton Lima dos Santos. Stars: Software technology for adaptable and
reusable systems. In Proceedings of the 25th International Systems and
Software Product Line Conference (SPLC), pages 13–17. ACM, 2021.

[35] Edilton Lima dos Santos, Sophie Fortz, Gilles Perrouin, and Pierre-Yves Schob-
bens. A vision to identify architectural smells in self-adaptive systems using
behavioral maps. In 15th European Conference on Software Architecture
(ECSA 2021), page 1. CEUR Workshop Proceedings, 2021.

[36] Edilton Lima dos Santos, Pierre-Yves Schobbens, and Gilles Perrouin. Featured
scents: Towards assessing architectural smells for self-adaptive systems at
runtime. In 19th International Conference on Software Architecture, pages
71–74. IEEE, 2022.

[37] Erick Barros dos Santos, Rossana MC Andrade, and Ismayle de Sousa Santos.
Runtime testing of context-aware variability in adaptive systems. Information
and Software Technology, 131:106482, 2021.

[38] Benedikt Eberhardinger, Axel Habermaier, and Wolfgang Reif. Toward adap-
tive, self-aware test automation. In 2017 IEEE/ACM 12th International Work-
shop on Automation of Software Testing (AST), pages 34–37. IEEE, 2017.

[39] Thaddeus Eze, Richard J Anthony, Chris Walshaw, and Alan Soper. The chal-
lenge of validation for autonomic and self-managing systems. In Proceedings
of the seventh international conference on autonomic and autonomous
systems, pages 128–133, 2011.

[40] Wolfram Fenske and Sandro Schulze. Code smells revisited: A variability per-
spective. In Proceedings of the Ninth International Workshop on Variability
Modelling of Software-intensive Systems, pages 3–10, 2015.

[41] Martin Folwer. Refactoring: Improving the design of existing programs. Google
Scholar Google Scholar Digital Library Digital Library, 1999.

[42] Francesca Arcelli Fontana, Paris Avgeriou, Ilaria Pigazzini, and Riccardo
Roveda. A study on architectural smells prediction. In 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 333–337. IEEE, 2019.

128

Bibliography

[43] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian Tam-
burri, Marco Zanoni, and Elisabetta Di Nitto. Arcan: A tool for architectural
smells detection. In 2017 IEEE International Conference on Software Archi-
tecture Workshops (ICSAW), pages 282–285. IEEE, 2017.

[44] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco
Zanoni. Automatic detection of instability architectural smells. In IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pages 433–437. IEEE, 2016.

[45] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite genera-
tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, pages 416–419, 2011.

[46] Gordon Fraser and Andreas Zeller. Exploiting common object usage in test
case generation. In 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation, pages 80–89. IEEE, 2011.

[47] Erik M Fredericks and Betty HC Cheng. Automated generation of adaptive test
plans for self-adaptive systems. In 2015 IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems,
pages 157–167. IEEE, 2015.

[48] Erik M Fredericks, Andres J Ramirez, and Betty HC Cheng. Towards run-time
testing of dynamic adaptive systems. In 2013 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 169–174. IEEE, 2013.

[49] Alan G Ganek and Thomas A Corbi. The dawning of the autonomic computing
era. IBM systems Journal, 42(1):5–18, 2003.

[50] SG Ganesh, Tushar Sharma, and Girish Suryanarayana. Towards a principle-
based classification of structural design smells. J. Object Technol., 12(2):1–1,
2013.

[51] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Iden-
tifying architectural bad smells. In 13th European Conference on Software
Maintenance and Reengineering, pages 255–258. IEEE, 2009.

[52] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic.
Toward a catalogue of architectural bad smells. In International conference
on the quality of software architectures, pages 146–162. Springer, 2009.

[53] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 213–223, 2005.

129

BIBLIOGRAPHY

[54] Arnaud Gotlieb and Bernard Botella. Automated metamorphic testing. In Pro-
ceedings 27th Annual International Computer Software and Applications
Conference. COMPAC 2003, pages 34–40. IEEE, 2003.

[55] D Grove and C Chambers. Ibm research report an assessment of call graph
construction algorithms. 2000.

[56] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph
construction in object-oriented languages. In Proceedings of the 12th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 108–124, 1997.

[57] Gabriela Guedes, Carla Silva, Monique Soares, and Jaelson Castro. Variability
management in dynamic software product lines: A systematic mapping. In
2015 IX Brazilian Symposium on Components, Architectures and Reuse
Software, pages 90–99. IEEE, 2015.

[58] Robert J Hall. Feature combination and interaction detection via fore-
ground/background models. Computer Networks, 32(4):449–469, 2000.

[59] Richard Hamlet. Random testing. Encyclopedia of software Engineering,
2:971–978, 1994.

[60] Joachim Hänsel, Thomas Vogel, and Holger Giese. A testing scheme for self-
adaptive software systems with architectural runtime models. In 2015 IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, pages 134–139. IEEE, 2015.

[61] Salim Hariri, Bithika Khargharia, Houping Chen, Jingmei Yang, Yeliang Zhang,
Manish Parashar, and Hua Liu. The autonomic computing paradigm. Cluster
Computing, 9:5–17, 2006.

[62] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer,
André Baresel, and Marc Roper. Testability transformation. IEEE Transactions
on Software Engineering, 30(1):3–16, 2004.

[63] Mark Harman and Phil McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on Soft-
ware Engineering, 36(2):226–247, 2009.

[64] Henner Heck, Stefan Rudolph, Christian Gruhl, Arno Wacker, Jörg Hähner,
Bernhard Sick, and Sven Tomforde. Towards autonomous self-tests at runtime.
In 2016 IEEE 1st International Workshops on Foundations and Applications
of Self* Systems (FAS* W), pages 98–99. IEEE, 2016.

[65] IBM. An architectural blueprint for autonomic computing. IBM White Paper,
31:1–6, 2006.

[66] IBM. The T. J. Watson Libraries for Analysis (WALA). IBM, 2020.

130

Bibliography

[67] Muhammad Usman Iftikhar, Gowri Sankar Ramachandran, Pablo Bollansée,
Danny Weyns, and Danny Hughes. Deltaiot: A self-adaptive internet of things
exemplar. In 2017 IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 76–82.
IEEE, 2017.

[68] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering, 37(5):649–678,
2010.

[69] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical
report, CMU-SEI, 1990.

[70] Manpreet Kaur and Rupinder Singh. A review of software testing techniques.
International Journal of Electronic and Electrical Engineering, 7(5):463–474,
2014.

[71] Jeffrey O Kephart and David M Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[72] Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Frantisek
Plasil. An architecture framework for experimentations with self-adaptive
cyber-physical systems. In 2015 IEEE/ACM 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pages
93–96. IEEE, 2015.

[73] Konveyor. TackleTest: Automated Unit and UI Test Generation. Konveyor,
2023.

[74] Christian Krupitzer, Martin Pfannemüller, Vincent Voss, and Christian Becker.
Comparison of approaches for developing self-adaptive systems. 2018.

[75] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor
Schiele, and Christian Becker. A survey on engineering approaches for self-
adaptive systems. Pervasive and Mobile Computing, 17:184–206, 2015.

[76] D Richard Kuhn, Raghu N Kacker, and Yu Lei. Introduction to combinatorial
testing. CRC press, 2013.

[77] Edilton Lima dos Santos, Sophie Fortz, Pierre-Yves Schobbens, and Gilles
Perrouin. Behavioral maps: Identifying architectural smells in self-adaptive
systems at runtime. In Patrizia Scandurra, Matthias Galster, Raffaela Miran-
dola, and Danny Weyns, editors, Software Architecture, pages 159–180, Cham,
2022. Springer International Publishing.

[78] Edilton Lima dos Santos, Pierre-Yves Schobbens, Ivan Machado, and Gilles
Perrouin. Architectural bad smells for self-adaptive systems: Go runtime! In
Proceedings of the 17th International Working Conference on Variability

131

BIBLIOGRAPHY

Modelling of Software-Intensive Systems, VaMoS ’23, page 85–87, New York,
NY, USA, 2023. Association for Computing Machinery.

[79] Martin Lippert and Stephen Roock. Refactoring in large software projects:
performing complex restructurings successfully. John Wiley & Sons, 2006.

[80] Heng Lu. A context-oriented framework for software testing in pervasive
environment. In 29th International Conference on Software Engineering
(ICSE’07 Companion), pages 77–78. IEEE, 2007.

[81] Chu Luo, Miikka Kuutila, Simon Klakegg, Denzil Ferreira, Huber Flores, Jorge
Goncalves, Mika Mäntylä, and Vassilis Kostakos. Testaware: a laboratory-
oriented testing tool for mobile context-aware applications. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
1(3):1–29, 2017.

[82] Lu Luo. Software testing techniques. Institute for software research interna-
tional Carnegie mellon university Pittsburgh, PA, 15232(1-19):19, 2001.

[83] Frank D Macías-Escrivá, Rodolfo Haber, Raul Del Toro, and Vicente Hernandez.
Self-adaptive systems: A survey of current approaches, research challenges
and applications. Expert Systems with Applications, 40(18):7267–7279, 2013.

[84] Phil McMinn. Search-based software testing: Past, present and future. In 2011
IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops, pages 153–163. IEEE, 2011.

[85] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. On essential configuration complexity: measuring interactions in
highly-configurable systems. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, pages 483–494,
2016.

[86] Zoltán Micskei, Zoltán Szatmári, János Oláh, and István Majzik. A concept for
testing robustness and safety of the context-aware behaviour of autonomous
systems. In Agent and Multi-Agent Systems. Technologies and Applications:
6th KES International Conference, KES-AMSTA 2012, Dubrovnik, Croatia,
June 25-27, 2012. Proceedings 6, pages 504–513. Springer, 2012.

[87] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and
exploiting the k-cfa paradox: illuminating functional vs. object-oriented pro-
gram analysis. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 305–315, 2010.

[88] Benoît Montagu and Thomas Jensen. Trace-based control-flow analysis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, pages 482–496, 2021.

132

Bibliography

[89] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor
Solberg. Models@ run. time to support dynamic adaptation. Computer,
42(10):44–51, 2009.

[90] Haris Mumtaz, Paramvir Singh, and Kelly Blincoe. A systematic mapping study
on architectural smells detection. Journal of Systems and Software, 2020.

[91] Freddy Munoz and Benoit Baudry. Artificial table testing dynamically adap-
tive systems. PhD thesis, INRIA, 2009.

[92] Masuma Naqvi. Claims and supporting evidence for self-adaptive systems–a
literature review. 2012.

[93] Neo4j. Neo4j APOC Library. Neo4j, 2020.

[94] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM
Computing Surveys (CSUR), 43(2):1–29, 2011.

[95] Dirk Niebuhr and Andreas Rausch. A concept for dynamic wiring of compo-
nents: correctness in dynamic adaptive systems. In Proceedings of the 2007
conference on Specification and verification of component-based systems:
6th Joint Meeting of the European Conference on Software Engineering and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pages 101–102, 2007.

[96] Dirk Niebuhr, Andreas Rausch, Cornel Klein, Jürgen Reichmann, and Reiner
Schmid. Achieving dependable component bindings in dynamic adaptive
systems - a runtime testing approach. In 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, pages 186–197.
IEEE, 2009.

[97] Flavio Oquendo, Jair Leite, and Thais Batista. Software Architecture in Action.
Springer, 2016.

[98] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, pages
815–816, 2007.

[99] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
Feedback-directed random test generation. In 29th International Conference
on Software Engineering (ICSE’07), pages 75–84. IEEE, 2007.

[100] Lin Padgham, Zhiyong Zhang, John Thangarajah, and Tim Miller. Model-
based test oracle generation for automated unit testing of agent systems. IEEE
Transactions on Software Engineering, 39(9):1230–1244, 2013.

[101] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A sys-
tematic survey on the design of self-adaptive software systems using control
engineering approaches. In 2012 7th International Symposium on Software

133

BIBLIOGRAPHY

Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 33–42.
IEEE, 2012.

[102] Gilles Perrouin, Mathieu Acher, Jean-Marc Davril, Axel Legay, and Patrick
Heymans. A complexity tale: Web configurators. In 2016 IEEE/ACM 1st
International Workshop on Variability and Complexity in Software Design
(VACE), pages 28–31. IEEE, 2016.

[103] Klaus Pohl, Gunter Bockle, and Frank J. vander Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., 2005.

[104] Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebas-
tian Richly, Thomas Schlegel, and Uwe Aßmann. A combined simulation and
test case generation strategy for self-adaptive systems. Journal On Advances
in Software, 7(3&4):686–696, 2014.

[105] Clément Quinton, Michael Vierhauser, Rick Rabiser, Luciano Baresi, Paul
Grünbacher, and Christian Schuhmayer. Evolution in dynamic software prod-
uct lines. Journal of software: evolution and process, 33(2):e2293, 2021.

[106] Claudia Raibulet, Francesca Arcelli Fontana, and Simone Carettoni. A prelimi-
nary analysis of self-adaptive systems according to different issues. Software
Quality Journal, pages 1–31, 2020.

[107] Andres J Ramirez and Betty HC Cheng. Design patterns for developing dy-
namically adaptive systems. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, pages 49–58.
ACM, 2010.

[108] André Reichstaller and Alexander Knapp. Risk-based testing of self-adaptive
systems using run-time predictions. In 2018 IEEE 12th international con-
ference on self-adaptive and self-organizing systems (SASO), pages 80–89.
IEEE, 2018.

[109] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape
and research challenges. ACM transactions on autonomous and adaptive
systems (TAAS), 4(2):1–42, 2009.

[110] Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. Refactoring
for software architecture smells. In Proceedings of the 1st International
Workshop on Software Refactoring, pages 1–4, 2016.

[111] Edilton Santos and Ivan Machado. Towards an architecture model for dynamic
software product lines engineering. In IEEE International Conference on
Information Reuse and Integration (IRI), pages 31–38. IEEE, 2018.

[112] Edilton Lima dos Santos, Gilles Perrouin, and Pierre-Yves Schobbens. Stars:
software technology for adaptable and reusable systems phd research project.

134

Bibliography

In Proceedings of the 14th International Working Conference on Variability
Modelling of Software-Intensive Systems, pages 1–2, 2020.

[113] Sergio Segura, Amador Durán, Ana B Sánchez, Daniel Le Berre, Emmanuel
Lonca, and Antonio Ruiz-Cortés. Automated metamorphic testing of variabil-
ity analysis tools. Software Testing, Verification and Reliability, 25(2):138–
163, 2015.

[114] Marcel A Serikawa, André de S Landi, Bento R Siqueira, Renato S Costa, Fabi-
ano C Ferrari, Ricardo Menotti, and Valter V De Camargo. Towards the charac-
terization of monitor smells in adaptive systems. In X Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), pages 51–60.
IEEE, 2016.

[115] Liwei Shen, Xin Peng, Jindu Liu, and Wenyun Zhao. Towards Feature-Oriented
Variability Reconfiguration in Dynamic Software Product Lines, pages 52–68.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[116] Rodolfo Adamshuk Silva, Simone do Rocio Senger de Souza, and Paulo Sér-
gio Lopes de Souza. A systematic review on search based mutation testing.
Information and Software Technology, 81:19–35, 2017.

[117] Bento R Siqueira, Fabiano C Ferrari, Kathiani E Souza, Valter V Camargo, and
Rogério de Lemos. Testing of adaptive and context-aware systems: approaches
and challenges. Software Testing, Verification and Reliability, 31(7):e1772,
2021.

[118] Bento Rafael Siqueira, Fabiano Cutigi Ferrari, Marcel Akira Serikawa, Ricardo
Menotti, and Valter Vieira de Camargo. Characterisation of challenges for
testing of adaptive systems. In Proceedings of the 1st Brazilian Symposium
on Systematic and Automated Software Testing, pages 1–10, 2016.

[119] Larissa Rocha Soares, Jens Meinicke, Sarah Nadi, Christian Kästner, and Ed-
uardo Santana de Almeida. Varxplorer: Lightweight process for dynamic
analysis of feature interactions. In Proceedings of the 12th International
Workshop on Variability Modelling of Software-Intensive Systems, pages
59–66, 2018.

[120] Iuri Santos Souza, Ivan Machado, Carolyn Seaman, Gecynalda Gomes,
Christina Chavez, Eduardo Santana de Almeida, and Paulo Masiero. Investi-
gating variability-aware smells in spls: An exploratory study. In Proceedings
of the XXXIII Brazilian Symposium on Software Engineering, pages 367–376,
2019.

[121] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring
for software design smells: managing technical debt. Morgan Kaufmann,
2014.

135

BIBLIOGRAPHY

[122] Gabriel Tamura, Norha M Villegas, Hausi A Müller, João Pedro Sousa, Basil
Becker, Gabor Karsai, Serge Mankovskii, Mauro Pezzè, Wilhelm Schäfer, Ladan
Tahvildari, et al. Towards practical runtime verification and validation of
self-adaptive software systems. In Software Engineering for Self-Adaptive
Systems II: International Seminar, Dagstuhl Castle, Germany, October 24-
29, 2010 Revised Selected and Invited Papers, pages 108–132. Springer, 2013.

[123] TH Tse and Stephen S Yau. Testing context-sensitive middleware-based soft-
ware applications. In Proceedings of the 28th Annual International Com-
puter Software and Applications Conference, 2004. COMPSAC 2004., pages
458–466. IEEE, 2004.

[124] Rachel Tzoref-Brill, Saurabh Sinha, Antonio Abu Nassar, Victoria Goldin, and
Haim Kermany. Tackletest: A tool for amplifying test generation via type-
based combinatorial coverage. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 444–455. IEEE, 2022.

[125] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability
in software product lines. In Proceedings Working IEEE/IFIP Conference on
Software Architecture, pages 45–54. IEEE, 2001.

[126] Emil Vassev, Mike Hinchey, and Paddy Nixon. Automated test case generation
of self-managing policies for nasa prototype missions developed with assl. In
2010 4th IEEE International Symposium on Theoretical Aspects of Software
Engineering, pages 3–8. IEEE, 2010.

[127] NM Villegas, G Tamura, and HA Müller. Architecting software systems for
runtime self-adaptation: Concepts, models, and challenges. In Managing
Trade-Offs in Adaptable Software Architectures, pages 17–43. Elsevier, 2017.

[128] Thomas Vogel. mrubis: An exemplar for model-based architectural self-
healing and self-optimization. In Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Sys-
tems, pages 101–107, 2018.

[129] Arthur Henry Watson, Dolores R Wallace, and Thomas J McCabe. Structured
testing: A testing methodology using the cyclomatic complexity metric, vol-
ume 500. US Department of Commerce, Technology Administration, National
Institute of . . . , 1996.

[130] Kristopher Welsh and Pete Sawyer. Managing testing complexity in dynami-
cally adaptive systems: A model-driven approach. In 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops,
pages 290–298. IEEE, 2010.

[131] Danny Weyns. Towards an integrated approach for validating qualities of
self-adaptive systems. In Proceedings of the Ninth International Workshop
on Dynamic Analysis, pages 24–29, 2012.

136

Bibliography

[132] Danny Weyns. Software engineering of self-adaptive systems: an organised
tour and future challenges. Chapter in Handbook of Software Engineering,
page 2, 2017.

[133] Danny Weyns and Jesper Andersson. On the challenges of self-adaptation in
systems of systems. In Proceedings of the First International Workshop on
Software Engineering for Systems-of-Systems, pages 47–51, 2013.

[134] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mi-
randola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese,
and Karl M Göschka. On patterns for decentralized control in self-adaptive
systems. In Software Engineering for Self-Adaptive Systems II: International
Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers, pages 76–107. Springer, 2013.

[135] W Eric Wong. Mutation testing for the new century, volume 24. Springer
Science & Business Media, 2001.

[136] Franz Wotawa. Adaptive autonomous systems–from the system’s architec-
ture to testing. In Leveraging Applications of Formal Methods, Verification,
and Validation: International Workshops, SARS 2011 and MLSC 2011, Held
Under the Auspices of ISoLA 2011 in Vienna, Austria, October 17-18, 2011.
Revised Selected Papers, pages 76–90. Springer, 2012.

[137] Jochen Wuttke, Yuriy Brun, Alessandra Gorla, and Jonathan Ramaswamy.
Traffic routing for evaluating self-adaptation. In 2012 7th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 27–32. IEEE, 2012.

[138] Chang Xu, Shing Chi Cheung, Xiaoxing Ma, Chun Cao, and Jian Lv. Detecting
faults in context-aware adaptation. Int. J. Softw. Informatics, 7(1):85–111,
2013.

[139] Lian Yu, Wei Tek Tsai, Yanbing Jiang, and Jerry Gao. Generating test cases
for context-aware applications using bigraphs. In 2014 Eighth International
Conference on Software Security and Reliability (SERE), pages 137–146. IEEE,
2014.

137

	Contents
	List of Figures
	List of Tables
	Preface
	Context and problem statement
	Contributions
	Structure of the thesis
	Publications

	Background
	Dynamically Adaptive Systems
	Dynamic Software Product Line
	Self-adaptive System
	Wrap up

	Architectural Bad Smells
	Software Architecture
	Architectural Bad Smells Description
	Related Work
	Wrap up

	Runtime Validation
	Software Testing
	Test Approaches
	Wrap up

	Problem Statement
	Architectural Bad Smells Challenge
	Runtime Test Challenge
	Wrap up

	Behavioral Map Framework
	Case Studies
	Smart Home Environment (SHE)
	Adasim
	mRUBiS
	DeltaIoT
	Threats to validity
	Wrap up

	Behavioral Map
	Overview
	Behavioral Map Definition
	Behavioral Map Building Process
	Identifying Architectural Bad Smells
	Test Process
	Uncovered Aspects
	Wrap up

	Implementation
	Behavioral Map Framework
	Framework Implementation
	Behavioral Map White Box
	Behavioral Map Black Box
	Wrap up

	Empirical Evaluations
	Identifying Architectural Smells in Self-Adaptive Systems at Runtime
	Behavioral Map - Based Architectural Bad Smells Detection
	Results
	Threats to Validity
	Related Work
	Wrap up and perspectives

	Towards Assessing Architectural Smells for Self-Adaptive Systems at Runtime
	Study Design
	Results
	Threats to Validity
	Related Work
	Wrap up and perspectives

	Behavioral Map: Towards Runtime Testing for Self-Adaptive Systems
	Study Design
	Experimental Setup
	Experimental Results
	Discussion
	Threats to Validity
	Related Work
	Wrap up and perspectives

	Postface
	Conclusion
	Summary of contributions
	Perspectives and future work
	Final remarks

	Behavioral Map Black Box
	Feature Trace Configuration Options
	Chapter 10 - Case Study Configuration Files

	Acronyms
	Bibliography

