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Introduction

Mechanism design stands as a fundamental concept in eco-
nomics, addressing the complex challenge of making collective
choices based on the preferences of a group of individuals. It
has practical applications in diverse scenarios, ranging from
the allocation of seats in public schools, to the distribution of
goods through auctions or the design of voting and political
systems. Central to mechanism design is the arrangement of
incentives that guide individuals to strategically interact and
select outcomes aligned with desirable properties, which are
formalized as "social choice correspondences".

Consider, for instance, the allocation of spots in public
schools. A mechanism is needed to determine which students
are assigned to which schools, taking into account their prefer-
ences and the available seats. In this context, a well-designed
mechanism could ensure that students reveal their true pref-
erences, allowing the system to allocate seats efficiently, while
satisfying a fairness criteria for instance. However, preferences
are often private information, hidden from the decision-makers.
In the previous example, this means that a decision-maker can
not know the exact preferences of every student about every
existing school. This private information complicates the pro-
cess of determining which students should be placed where,
based on their genuine preferences. Instead of directly assess-
ing whether equilibrium outcomes satisfy desirable properties
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(which is what game theory focuses on), the focus shifts to con-
structing a mechanism that induces individuals to choose the
desired outcome. A successful mechanism has the ability to
incentivize strategic behavior that leads to outcomes aligning
with the desired properties. Individual incentives, collective
welfare, and strategic interactions forms the heart of mecha-
nism design.

A central goal of mechanism design therefore lies in the
comparison of different mechanisms to discern their effective-
ness in achieving desired outcomes. In order to do this, the
first step must be to anticipate the strategies individuals might
adopt when facing each mechanism based on their preferences.
These predictions are made from concepts shared with game
theory like Nash equilibrium or undominated strategies, for
instance. One must then find the outcomes generated by each
mechanism when agents play the predicted strategies, before
assessing if those outcomes meet the desirable properties. In
real-world scenarios, solution concepts might offer multiple pre-
dictions for the strategies individuals could adopt within a
mechanism. Consequently, some of these predictions may yield
outcomes satisfying the desired property, while others might
not. This diversity of predictions raises questions about how
mechanisms should be compared. For instance, when consider-
ing different mechanisms, how does one assess the performance
of a mechanism producing one desirable and one undesirable
outcome compared to another generating four desirable and
two undesirable outcomes?

In this first chapter, we focus on assessing and comparing
mechanisms based on their ability to satisfy specific proper-
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ties, such as Pareto efficiency or stability, particularly when
multiple equilibria are at play. Through a process of axioma-
tization, we characterize three distinct criteria for comparing
mechanisms. The first criterion is intuitive and based on highly
compelling axioms but is also incomplete (in the sense that it
does not allow to compare many mechanisms) and difficult to
work with. In acknowledging its limitations, we develop two
additional criteria, building on the foundations of the first,
while introducing robustness axioms that increase their appli-
cability and extend their scope. These new criteria offer a
more comprehensive perspective on the comparison of mech-
anisms, giving us a deeper understanding of their strengths
and limitations across various preference profiles. In summary,
our research engages in an exploration of mechanism design’s
theoretical and practical aspects, offering a perspective on the
evaluation and comparison of mechanisms across various set-
tings.

Moving from the realm of mechanism design, we shift to
another important societal issue that significantly impacts gen-
der equality, family dynamics, and societal development: the
prevalence of son preference and its associated "stopping rule."

In many developing regions, a preference for sons over
daughters is a deeply rooted element of the social structures
of societies. This phenomenon goes beyond being a mere cul-
tural tradition exerting a substantial impact on communities,
as it significantly influence reproductive patterns, family struc-
tures, or gender role expectations. Marriages for instance are
often concluded with the implicit goal of bearing sons who
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will ensure the continuation of family legacies and traditions;
in some communities, the birth of a son is grandly celebrated
for it symbolizes the continuation of the family name and her-
itage. Inheritance patterns further compound these disparities
as, in many cultures, sons are given a larger share of family
assets, reinforcing the notion of their pivotal role in perpet-
uating the family lineage. They are also perceived as future
breadwinners and supporters for their parents in old age.

The consequences of son preference are manifold and may
vary across regions, but often extend far beyond only shaping
societal norms. At the individual level, daughters frequently
find themselves at a disadvantage in terms of access to es-
sential resources. For instance, limited health care resources
may be allocated to sons over daughters, affecting overall well-
being. Additionally, unequal access to education can perpet-
uate gender-based disparities in skills and productivity, con-
tributing to cycles of poverty, restricting women’s activities
and reducing their opportunities for personal and economic
advancement. Overall, the consequences of this preference ex-
tend throughout society, leading to persistent gender dispari-
ties and presenting substantial challenges to achieving devel-
opment objectives.

Among the various consequences of son preference, this the-
sis focuses on what is known in the literature as the "stopping
rule" a central behavior when discussing son-favoring fertility
practices. The stopping rule refers to the deliberate decision
by parents to continue having pregnancies until they achieve a
specific number of sons, regardless of the total desired family
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size. This behavior manifests itself into two distinct yet in-
terconnected behaviors: instrumental births and sex-selective
abortion. Instrumental births encompass situations where par-
ents continue to have children until reaching the desired num-
ber of boys. This can result in larger-than-planned families
and, at times, lead to unintended consequences for the well-
being of both the parents and the children (overcrowded liv-
ing conditions, child labor to contribute to the family’s in-
come, or maternal health for instance). On the other hand,
sex-selective abortion involves the termination of pregnancies
based on the gender of the fetus. When parents desire male
children, they may opt for sex-selective abortion if prenatal
testing reveals a female fetus. The consequences of the stop-
ping rule and sex-selective abortion reverberate through mul-
tiple layers of society. At the individual level, these practices
can perpetuate gender inequalities and have significant reper-
cussions for the well-being of both sons and daughters. Sons
may bear the burden of fulfilling societal expectations, while
daughters may face diminished access to resources and oppor-
tunities, leading to cycles of disadvantage. Within households,
the pursuit of male offspring can influence family dynamics, in-
heritance patterns, and intra-household decision-making pro-
cesses. Sons may receive preferential treatment in terms of
education, health care, and other opportunities, while daugh-
ters might experience limited agency and reduced access to
essential resources. On a broader societal scale, sex-selective
abortion contribute to skewed sex ratios, which can lead to
imbalances in the marriage market and social stability. The
resulting gender disparities can hinder economic growth and
development by under-utilizing the potential of women and
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perpetuating a cycle of inequality.

By shedding light on the multifaceted impacts of these
practices, this thesis aims to contribute to a deeper under-
standing of the challenges posed by son preference and pave
the way for informed policy interventions that promote gender
equity, individual well-being, and sustainable societal develop-
ment. The second chapter introduces the theoretical under-
pinnings of the stopping rule, emphasizing its twofold mani-
festation instrumental births and sex-selective abortion. By
viewing these practices within an integrated framework, this
chapter sets the stage for a comprehensive understanding of
this complex phenomenon. We propose measures of detection
and offer a novel perspective for gauging the prevalence of
these behaviors across diverse countries. The third chapter
delves deeper into the repercussions of the stopping rule. It
highlights how this behavior generates sibling competition, re-
sulting in gender-specific disparities in mortality rates. This
empirical investigation quantifies the extent to which the stop-
ping rule contributes to girls’ mortality, uncovering surprising
insights into its impact on the less privileged segments of the
population of some countries.

The first chapter, Criteria to compare mechanisms that
partially satisfy a property: an axiomatic study, co-authored
with Benoît Decerf, introduces and axiomatize three criteria
to be used as tools for making informed choices between mech-
anisms. In the illustrative example,we shift to the comparison
of two matching mechanisms for school seat allocation: DA2

and BOS2, constrained versions of the Deferred Acceptance
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(DA) and Boston (BOS) mechanisms. These mechanisms are
compared based on their stability with respect to the "stable"
social choice correspondence. The comparison highlights the
challenges of our first criterion, the Proportion criterion, in as-
sessing stability. Even in this simplified setting, determining
the proportion of stable equilibria for each mechanism involves
complex calculations. The study then introduces the PHO
and the PHO∗ criteria (PHO for Profiles of Homogeneous
Outcomes), which overcome the limitations of the Proportion
criterion. The increased discriminatory power of PHO allows
for a clearer comparison of stability between DA2 and BOS2.
The example is used to show that DA2 performs better than
BOS2 in terms of stability according to the PHO criterion.
The paper also establishes relationships between PHO and
PHO∗, enabling deductions about the relative performance of
mechanisms based on these criteria.

The second chapter, Sex-Selective Abortions and Instru-
mental Births as the two faces of the Stopping Rule. New mea-
sures and world evidence, co-authored with Jean-Marie Baland
and Guilhem Cassan, highlights the prevalence of the stop-
ping rule in a large set of countries. This includes countries
widely known for their strong preference for sons such as In-
dia, Bangladesh and Nepal, but also countries which are much
less often mentioned in the literature like Armenia, Albania,
Azerbaijan or Ukraine. These countries exhibit a wide range
of gender preference biases, with desired sex ratios varying
between 109 and 232, always significantly surpassing ’natu-
ral’ sex ratios. We also show that instrumental births over-
whelmingly contribute to the prevalence of the stopping rule,
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accounting for more than two-thirds of its impact. In stark
contrast to previous studies that predominantly focus on sex-
selective abortion, our comprehensive approach unveils a far
more extensive influence of instrumental births. As expected,
girls are consistently more likely to be instrumental. For in-
stance, in Armenia, 64.5% of girls are considered instrumental
compared to 25.3% of boys, and in India, the corresponding
figures are 53.4% and 34.2%. Finally, a more detailed analy-
sis within India reveals distinct patterns across states and so-
cial groups. Gender-biased preferences follow well-established
caste hierarchies, with higher castes exhibiting stronger biases.
For instance, among high castes, the desired sex ratio reaches
an average of 246%, while among Muslims, it falls to 140%.

The third chapter, titled Stopping Rule and Girls Mortal-
ity: Insights from South Asian Nations, delves into the implica-
tions of the fertility consequences associated with the stopping
rule, as explored in the preceding chapter, on the under-five
mortality rate. Within this context, we define the mechanism
involving the indirect impacts of the gender-biased stopping
rule on health outcomes as ’passive discrimination’. The in-
vestigation reveals compelling evidence of substantial gender-
specific differentials in the levels of intra-household competi-
tion experienced by boys and girls. Moreover, these dispari-
ties in competition intensity exhibit variations upon household
characteristics, notably wealth. Concurrently, the study estab-
lishes a statistically significant influence of sibling competition
on mortality rates. For instance, the findings show that in In-
dia, the presence of an additional sibling during the initial five
years of a childs life increase the likelihood of her death before

8



the age of five by an average of approximately 12.61 percent-
age points. This effect is particularly pronounced within the
poorest strata of the population. From these two estimations,
we quantify the association between passive discrimination and
female mortality. Over the period spanning from 1980 to 2015,
the analysis attributes over 2,500,000 girl deaths in India di-
rectly to the passive discrimination mechanism. Analogously,
the estimated figures for Bangladesh, Pakistan, and Nepal
amount to 120,000, 90,000, and 25,000 respectively. These
represent a substantial proportion of girls’ deaths, with India
facing an impact that accounts for up to 20% of under-five fe-
male mortality. As expected, most of these cases occur within
the poorest segments of the population.
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Chapter 1
Criteria to compare mechanisms
that partially satisfy a property:

an axiomatic study

Joint with Benoît Decerf
The paper was published in the journal Social Choice and

Welfare (2022)

Abstract:We study criteria that compare mechanisms accord-
ing to a property (e.g., Pareto efficiency or stability) in the
presence of multiple equilibria. The multiplicity of equilibria
complicates such comparisons when some equilibria satisfy the
property while others do not. We axiomatically characterize
three criteria. The first criterion is intuitive and based on
highly compelling axioms, but is also very incomplete and not
very workable. The other two criteria extend the comparisons
made by the first and are more workable. Our results reveal
the additional robustness axiom characterizing each of these
two criteria.
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1.1 Introduction
From the assignment of seats at public schools to the allocation
of goods against payment in auctions, economics repeatedly
faces the problem of choosing among outcomes based on the
preferences of a set of agents over these outcomes. To guide
such collective choices, outcomes are often sorted according
to desirable properties, formalized as social choice correspon-
dences. If the agents’ preferences are known, the set of out-
comes can, for example, be sorted into subsets of Pareto effi-
cient and Pareto inefficient outcomes, or in some applications,
into subsets of “fair” and “unfair” outcomes.

Of course, preferences are often private information which
makes it impossible for the social planner to directly compute
whether outcomes satisfy a desirable property. Instead, the
planner must setup a mechanism through which agents inter-
acting strategically determine the selected alternative. Guid-
ing the planner’s design requires determining which mecha-
nism better provides agents with the incentives to select strate-
gies that, given their preferences, lead to the selection of out-
comes satisfying the desirable property.

The comparison of competing mechanisms then follows a
three-step procedure. The first step consists in predicting the
strategies agents might use in each mechanism as a function
of their preferences. Formally, these predictions are captured
by solution concepts such as undominated strategy, Nash equi-
librium, or dominant strategy. Second, one must compute the
outcomes selected by the mechanisms when agents play the
strategies predicted by the solution concepts selected in the
first step. Finally, one must evaluate the resulting outcomes
according to the property of interest. Example applications of

11



this three-step procedure can be found in Ergin and Sönmez
(2006) and Abdulkadiroğlu et al. (2011).

In practice, given a preference profile, it is common for so-
lutions concepts to make multiple predictions about the strate-
gies agents might use in a mechanism. When this is the case,
some of the predicted outcomes might satisfy the property of
interest, whereas others might not. When this is the case, it is
often unclear how mechanisms should be compared. For exam-
ple, on a given preference profile, how does a mechanism with
one desirable and one undesirable outcomes compare with a
mechanism with four desirable and two undesirable outcomes?

In this paper, we propose, characterize and compare three
criteria to perform such comparisons. First, the “Proportion”
criterion compares, on a profile-by-profile basis, the fraction
of desirable outcomes reached by each mechanism (the higher
the fraction, the better the mechanism performs in terms of
the property at stake). We show that this natural criterion
is characterized by three compelling axioms. Unfortunately,
the Proportion criterion only provides a very partial ranking
of mechanisms and often concludes that mechanisms cannot
be compared. Moreover, this criterion is not very workable
because it requires counting the number of equilibria and iden-
tifying the fraction of desirable equilibria. Doing so becomes
increasingly difficult as the number of equilibria grows.

Our two other criteria improve on both limitations and
therefore constitute our main contribution. Both criteria sat-
isfy the same three axioms as the Proportion criterion, and
therefore agree with it on all pairs that the Proportion cri-
terion is able to rank. To provide more complete orderings,
each of these two additional criteria also satisfy an additional
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robustness axiom. Loosely put, these two mirror robustness
axioms require that a comparison between two mechanisms
would not be altered if both mechanisms had one additional
desirable (undesirable) outcome.

Importantly, the two “extended” criteria compare mecha-
nisms by focusing on preference profiles for which outcomes
are either all desirable, or all undesirable. By doing so, they
yield more affirmative comparisons because they are not neces-
sarily bogged down by the existence of a few preference profiles
for which the proportions of desirable outcomes are reversed.
Moreover, these criteria do not require counting the number
of equilibria nor computing the fraction of desirable outcomes.

Of course, the strength of an affirmative comparison be-
tween two mechanisms depends on the criterion used. One can
be more confident that a mechanism will perform better than
another when they can be ranked by the Proportion criterion
than when this can only be done using our two other criteria.
Yet, when the Proportion criterion is silent, comparisons in
terms of our dual criteria provide interesting indications about
the respective performance that should be expected from two
alternative mechanisms. In other words, the improvement on
the limitations associated with the Proportion criterion comes
at some cost. Our robustness axiom can lead to comparisons
between mechanisms that are somewhat more debatable. This
axiom can be viewed as capturing the cost of increasing the
completeness of the partial order.

We illustrate the different discriminative powers and work-
abilities of these criteria for the comparison of the stability of
two school choice mechanisms on a narrow domain.

The paper is organized as follows. We integrate our work
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in the literature in Section 1.2. We present the framework in
Section 1.3. We derive axiomatically our criteria and discuss
their shortcomings in Section 1.4. We then illustrate how those
criteria can be use in the school choice problem in Section 1.5
and conclude in Section 1.6.

1.2 Related Literature
Our three criteria use a “profile by profile” approach to com-
pare mechanisms, which is common in the literature on voting
procedures (Dasgupta and Maskin (2008); Gerber and Barberà
(2016); Arribillaga and Massó (2015)).1 This approach is also
common in the matching literature. Whereas our paper fo-
cuses on comparing the properties of outcomes, the matching
literature has proposed a number of criteria to compare the
manipulability of mechanisms. Pathak and Sönmez (2013) for
example rank mechanisms by comparing the set of preference
profiles for which the mechanisms admit a truthful Nash equi-
libirum. If a mechanism admits a truthful Nash equilibrium
in every profile for which another mechanism also does, then
Pathak and Sönmez (2013) conclude that the latter is less ma-
nipulable than the former. Similarly, Andersson et al. (2014)
study manipulability by comparing the number of preference
profiles at which each mechanism is manipulable. This type of
manipulability comparisons avoids the issue induced by mul-
tiple solutions since it relies on binary evaluations: For any

1In Gerber and Barberà (2016), the solution concept is “iterated elim-
ination of weakly dominated strategies” and the correspondence is the
possibility of agenda manipulation. In Dasgupta and Maskin (2008), the
solution concept is “truthful revelation” and the correspondence is a col-
lection of five voting properties.
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given preference profile, either a mechanism is manipulable or
it is not.

In contrast, the multiplicity issue is key when evaluating
the efficiency or fairness of outcomes. For example, Chen and
Kesten (2017) compare school choice mechanisms with respect
to the stability of their Nash equilibrium outcomes. The crite-
rion implied by their analysis relies on the comparison of the
number of stable equilibria in each type profile. Ergin and
Sönmez (2006) show that the multiple equilibria of the Boston
mechanism are all Pareto dominated by that of the Deferred
Acceptance mechanism.

When mechanisms do not perfectly satisfy a property of
interest, another approach consists in comparing them using a
criterion formalizing “by how much" each solution violates the
property. In the case of stability, which requires the absence
of blocking pairs, Combe et al. (2017), Abdulkadiroglu et al.
(2019), Dogan and Ehlers (2020b) and Bonkoungou and Nes-
terov (2020) compare mechanisms by measuring, in different
ways, the number of blocking pairs or the number of players
participating to a blocking pair in each profile. Dogan and
Ehlers (2020a) axiomatically characterize criteria for stability
comparisons based on axioms specific to this property. Cur-
rent research along this approach has so far abstracted from
the multiplicity issue that we aim at tackling here.

Going even further away from the binary nature of social
choice correspondences, which only acknowledge two desirable
or undesirable categories, some authors propose to compare
mechanisms using fine-grained normative tool, e.g., a social
welfare function. Fleurbaey (2012) axiomatically characterize
a criterion that compares how alternative mechanisms perform
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in the light of a fined-grained ranking of outcomes. Again, the
setting considered by that author abstracts from the multiplic-
ity issue.

Finally, our work shares important similarities with the
literature on the measurement of predictive success (Selten
(1991)). We derive criteria that compare mechanisms as a
function of their ability to yield outcomes that are selected
by a correspondence. That literature derives rules that com-
pare theories as a function of their ability to make predictions
that are in line with observations. There are fundamental dif-
ferences between these two objectives, which imply that our
criterion are unrelated to these rules. Indeed these differences
in objectives makes the relevant primitives different as well.2

1.3 Framework and notation
This section introduces the terminology and notation for our
axiomatic results. We let N = {1, . . . , n} denote the set of
players, and o ∈ O denote the set of outcome. Each player
i ∈ N is characterized by a type yi ∈ Yi, e.g., the player’s

2The relevant primitives for our criteria are the numbers of equilibria
that yield an outcome that is (resp. not) selected by the correspondence.
In contrast, the relevant primitives for these rules include the “hit rate”,
i.e. the fraction of observations predicted by the theory, and the “area”,
i.e. the fraction of potential outcomes predicted by the theory. Neither
the “hit rate” nor the “area” are relevant primitives for our criteria. We
provide here the intuition why the “area” is not a relevant primitive for
our criteria. The following two mechanisms have different area but should
be considered equivalent by our criteria. The first mechanism has a unique
equilibrium that yields an outcome that is selected by the correspondence.
The second mechanism has multiple equilibria, all of which yield outcomes
that are selected by the correspondence.
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preference over the outcomes in O. A type profile is denoted
by y ∈ Y := ×i∈N Yi. Let X: Y → 2O be a social choice
correspondence, sometimes correspondence, for short.

A mechanism is a game form M : S → O that associates
every strategy profile s ∈ S := ×i∈N Si with an outcome in
O, where Si is the finite strategy space of i ∈ N . The set
of mechanisms is M (M includes both direct and indirect
mechanisms).

Let C: Y × M → 2S denote a solution concept. The
set C(y, M) corresponds to the set of strategy profiles that
C predicts could be played in mechanism M when the type
profile is y. As is common, we henceforth refer to C(y, M)
as the set of equilibria of M under C when the type profile
is y (whether or not C is an “equilibrium" solution concept).
Since we assume that strategy spaces are finite, the number of
equilibria is always finite. We focus on solution concepts that
admit at least one equilibrium for each type profile. The set
of such solution concepts is C.

For a given correspondence X, let ≽ be a partial order
on M×C. A partial order is a binary relation that is reflexive,
asymmetric, and transitive.3 The relation (M, C) ≽ (M ′, C ′)
indicates that mechanism M satisfies the property correspond-
ing to X at least as well as mechanism M ′ when the former is
played according to solution concept C and the latter accord-
ing to solution concept C ′. The symmetric and anti-symmetric
relations, i.e., (M, C) ≻ (M ′, C ′) and (M, C) ∼ (M ′, C ′), are
defined accordingly. Because ≽ is partial, there may exists
pairs [(M, C), (M ′, C ′)] for which the relation is undefined.

Observe that we require the partial order to compare pairs
3In particular, the weak relation is transitive.
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(M, C), (M ′, C ′) that are potentially based on different solu-
tion concepts. This recognizes the fact that the behavior and
coordination possibilities of players may depend on the mech-
anism. This is especially true when one of the mechanisms
under consideration admits dominant strategies whereas the
other does not (in which case, it is reasonable to use dominant
strategies as a solution concept for the mechanisms where the
latter is non-empty, and use the next best solution concept
for the other mechanism, see, e.g.,Ergin and Sönmez (2006);
Abdulkadiroğlu et al. (2011)).

Our objective is to identify partial orders satisfying com-
pelling properties. Throughout, we restrict our attention to
partial orders that satisfy an independence property we call
Outcome Neutrality. This property forces partial orders to
compare mechanisms based only on the number of equilibria
whose outcome are selected (or not) by the social choice cor-
respondence.4 This captures the idea that the only aspect of
equilibrium outcomes that matters to ≽ is whether or not they
are selected by the correspondence X. For any set A, we let
#A denote the cardinality of set A.

Axiom 1 (Outcome Neutrality).
For all C, C ′ ∈ C and all M, M ′ ∈ M, if for all y ∈ Y we

have

(i) #{s ∈ C ′(y, M ′) | M ′(s) ∈ X(y)} = #{s ∈ C(y, M) |
M(s) ∈ X(y)}, and

(ii) #{s ∈ C ′(y, M ′) | M ′(s) /∈ X(y)} = #{s ∈ C(y, M) |
4This property assumes that all equilibria count the same. This is a

natural assumption if one believes that all equilibria are equally likely to
occur.
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M(s) /∈ X(y)},

then (M, C) ∼ (M ′, C ′).

All partial orders satisfying Outcome Neutrality can be re-
formulated as partial orders over particular “counting" func-
tions. Any pair (M, C) defines an associated counting func-
tion F that associates any y with a function F (y) such that
F0(y) := #{s ∈ C(y, M) | M(s) /∈ X(y)} and F1(y) := #{s ∈
C(y, M) | M(s) ∈ X(y)}. When no confusion on the types
profile is possible, we simply write the components of the func-
tion F0 and F1.

Outcome Neutrality implies that any two (M, C) and (M ′, C ′)
whose associated functions F and F ′ are the same perform
equally well in terms of correspondence X (formally, (M, C) ∼
(M ′, C ′) whenever F = F ′). Therefore, the partial order ≽
on domain M × C is equivalent to a partial order on domain
F = {F : Y → Z}, where Z = {(z0, z1) ∈ N2

0|z0 + z1 ≥ 1}.
Observe that set Z is unbounded, a feature that is necessary
for some of our results.5

Slightly abusing the notation, we also denote the latter
partial order by ≽. For the sake of improved readability, all
remaining properties on the partial order are expressed on do-
main F .

5In particular, Parts 2 of Theorems 1, 2 and 3 require the construction
of intermediate mechanisms that may have, for some type profiles, more
numerous equilibria than the number of equilibria of the mechanisms being
compared. However, Parts 1 of Theorems 1, 2 and 3 do not require Z to
be unbounded.
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1.4 Criteria
We start by presenting three basic axioms for partial orders.
When no confusion is possible, we ignore the role of solution
concepts and simply say that we compare two mechanisms.
Also, we write that an equilibrium is “in X” (“not in X”) if
its outcome is selected (not selected) by correspondence X.
Finally, we say that two mechanisms M and M ′ are equivalent
on a type profile y if F0(y) = F ′

0(y) and F1(y) = F ′
1(y).

Our first axiom, Domination, requires that if two mecha-
nisms are equivalent on all but one type profile for which all
the equilibria of one mechanism are in X whereas all the equi-
libria of the other mechanism are not in X, then the former
performs better than the latter in terms of X.

Axiom 2 (Domination). For all F, F ′ ∈ F , if (i) F1(y∗) = 0
and F ′

0(y∗) = 0 for some y∗, and (ii) F ′(y) = F (y) for all
y ̸= y∗, then F ′ ≻ F .

Second, Monotonicity captures the idea that a larger num-
ber of equilibria not in X does not improve performance, while
a larger number of equilibria in X does not worsen it. If two
mechanisms are equivalent on all but one type profile for which
they are not exactly equivalent because one mechanism has ei-
ther one more equilibrium in X or one less equilibrium not in
X than the other mechanism, then the axiom concludes that
the former performs weakly better in terms of X.

Axiom 3 (Monotonicity). For all F, F ′ ∈ F , if (i) for some
y∗ we have either F ′

0(y∗) = F0(y∗) and F ′
1(y∗) = F1(y∗) + 1,

or F0(y∗) = F ′
0(y∗) + 1 and F ′

1(y∗) = F1(y∗), and (ii) F ′(y) =
F (y) for all y ̸= y∗, then F ′ ≽ F .
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These two axioms are based on demanding preconditions
and therefore, on their own, only impose relatively weak re-
strictions on ≽. Hence, many implausible partial orders are
not ruled out by these two alone. To illustrate the need for
a third restriction, consider the following example and the fol-
lowing criterion.

Definition 1 (Absolute Number criterion (AN)).
For any two F, F ′ ∈ F , we have F ′ ≽AN F whenever

F ′
1(y) ≥ F1(y) for all y ∈ Y.

Moreover, F ′ ≻AN F if, in addition,

F ′
1(y∗) > F1(y∗) for some y∗ ∈ Y.

The Absolute Number criterion compares mechanisms based
on their respective numbers of equilibria in X. This criterion
satisfies our first two basic properties and its logic is implicitly
used by Chen and Kesten (2017) (Theorem 2) when comparing
the stability of school choice mechanisms.

To see why ≽AN may be problematic, assume that there
is a unique type profile y, which for two mechanisms F̃ and
F̃ ′ is such that F̃ (y) = (1, 1) and F̃ ′(y) = (4, 2). Clearly, the
AN criterion concludes that F̃ ′ performs strictly better than
F̃ because F̃1(y) = 1 < 2 = F̃ ′

1(y). This strict comparison
is debatable because it ignores the fact that both mechanisms
admit equilibria not in X and F̃ ′ admits more equilibria not
in X than F̃ (F̃0(y) = 1 < 4 = F̃ ′

0(y)). Even if F̃ ′ has twice
as many equilibria in X as F̃ , it not clear one should conclude
that F̃ ′ performs strictly better than F̃ because F̃ ′ has four
times as many equilibria not in X as F̃ .
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The issue with the AN criterion is that it violates a third
basic property. Replication Invariance requires that two mech-
anisms that have the same proportion of their equilibria in X
be viewed as performing equally well in terms of X. More
precisely, if two mechanisms are equivalent on all but one type
profile where one mechanism has k times as many equilibria
in X and k times as many equilibria not in X as the other
mechanism, then Replication Invariance concludes that the
two mechanisms perform equally well in terms of X. When
this is the case, we say that the former is a k-replication of the
latter.

Axiom 4 (Replication Invariance). For all F, F ′ ∈ F and
k ∈ N, if (i) F ′

0(y∗) = kF0(y∗) and F ′
1(y∗) = kF1(y∗) for some

y∗, and (ii) F ′(y) = F (y) for all y ̸= y∗, then F ′ ∼ F .

It is easy to see how the axioms introduced thus far reach
a different comparison of F̃ = (1, 1) and F̃ ′ = (4, 2) than ≽AN .
Consider a third mechanism F̃ ′′ such that F̃ ′′(y) = (2, 1). By
Monotonicity, F̃ performs weakly better than F̃ ′′. By Repli-
cation Invariance, because F̃ ′ has twice as many equilibria in
X and twice as many equilibria not in X as F̃ ′′, they perform
equally well. Together, we must conclude that F̃ performs
weakly better than F̃ ′, in contradiction with the comparison
obtained with ≽AN . The debatable comparison obtained with
≽AN follows from its violation of Replication Invariance.

1.4.1 The Proportion criterion

As we show in Theorem 1, these three axioms jointly character-
ize the Proportion criterion. It compares mechanisms based on
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the proportion of their equilibria in X.6 This criterion does not
come as a surprise given its reliance on Replication Invariance.

Definition 2 (Proportion criterion (PROP)).
For any two F, F ′ ∈ F , we have F ′ ≽P ROP F whenever

F ′
1(y)

F ′
0(y) + F ′

1(y)
≥ F1(y)

F0(y) + F1(y)
for all y ∈ Y.

Moreover, F ′ ≻P ROP F if, in addition,

F ′
1(y∗)

F ′
0(y∗) + F ′

1(y∗)
= 1 and F1(y∗)

F0(y∗) + F1(y∗)
= 0 for some y∗ ∈ Y.

Observe that, in line with Domination, the Proportion cri-
terion yields strict comparisons only if there is a type profile
where one mechanism has all its equilibria in X while all the
equilibria of the other mechanism are not in X.

Our first result shows that the Proportion criterion is the
coarsest relation satisfying our axioms.

Definition 3 (Coarsest relation).
A partial order ≽co is the coarsest relation satisfying a set of

axioms if

1. ≽co satisfies the set of axioms.
6Under our assumptions, the proportion is always well-defined. Indeed,

we assume that solution concepts admit at least one equilibrium for each
type profile. As a result, the denominateur of the proportion is never zero.
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2. For all F, F ′ ∈ F and all ≽ satisfying the set of axioms,

F ′ ≽co F ⇒ F ′ ≽ F, and (1.1)
F ′ ≻co F ⇒ F ′ ≻ F. (1.2)

A partial order that is the coarsest relation satisfying a set
of axioms is not necessarily the only partial order that satisfies
this set of axioms. Yet, the coarsest relation is the only partial
order that satisfies the set of axioms while remaining silent
on all pairs (of functions) that are not ranked by the joint
implications of the axioms.

Theorem 1 identifies the close connection between the Pro-
portion criterion and our three basic axioms.7

Theorem 1. The partial order ≽P ROP is the coarsest re-
lation satisfying Domination, Monotonicity and Replication
Invariance.

Proof.

Part 1 of Definition 3: The proof that ≽P ROP satisfies these
three axioms is straightforward, and is therefore omitted.

7These three axioms are independent. Showing independence of Mono-
tonicity is the most difficult part. We propose the criterion I2, which sat-
isfies all these axioms except Monotonicity. Criterion I2 is based on the
following function f : [0, 1] → [0, 1] defined as f(x) = 1 − x for x ∈ {0, 1}
and f(x) = x for all x ∈ (0, 1). That is, function f is strictly increas-
ing for all x ∈ (0, 1), but returns the smallest value for x = 1 and the
greatest for x = 0. For any two F, F ′ ∈ F , we have F ′ ≽I2 F whenever
f
(

F ′
1(y)

F ′
0(y)+F ′

1(y)

)
≥ f

(
F1(y)

F0(y)+F1(y)

)
for all y ∈ Y , and we have F ′ ≻I2 F

if in addition the inequality is strict for some y∗ ∈ Y .
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Implication (1.2) in part 2 of Definition 3: F ′ ≻P ROP

F ⇒ F ′ ≻ F

We slightly abuse notation and often write F and F instead
of F (y) and F ′(y) whenever there is no ambiguity on y. Let
Y 1 = {y ∈ Y | F ′

0 = 0 and F1 = 0} be the set of type profiles
for which all equilibria of F ′ are in X while all the equilibria
of F are not in X. Since F ′ ≻P ROP F , we have that Y 1 is not
empty and also that F ′

1
F ′

0+F ′
1

≥ F1
F0+F1

for all y ∈ Y .
We show that any partial order ≽ satisfying the list of

axioms is such that F ′ ≻ F by constructing two sequences of
functions (Lp)p∈{0,1} and (Kp)p∈{0,1} with Lp, Kp ∈ F such
that

• L0 ≻ K0,

• L1 ≽ L0 and K0 ≽ K1,

• L1 = F ′ and K1 = F .

If these two sequences exist, then we have indeed that F ′ ≻ F .
We construct each function in the sequence type profile by

type profile. First, we construct L0 and K0. For all y ∈ Y 1,
we take L0 = F ′ and K0 = F . For all y ∈ Y \Y 1, we take
L0

1 = K0
1 = (F ′

0 + F ′
1) ∗ F1 and L0

0 = K0
0 = (F0 + F1) ∗

F ′
0. By successive applications of Domination we have L0 ≻

K0. By “successive applications” of Domination, we mean
that it is straightforward to construct a sequence of functions
(F p)p∈{0,...,P } with F 0 = K0, F P = L0 and such that F p+1 ≻
F p by the virtue of Domination for all p ∈ {0, . . . , P − 1}.

Then, we construct L1 and K1 from L0 and K0 by changing
their images on Y \Y 1. For all y ∈ Y 1, we take L1 = L0 and
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K1 = K0. For their construction on Y \Y 1, we define two
sequences (L̂q)q∈{0,1} and (K̂q)q∈{0,1} with L̂q, K̂q ∈ F such
that

• K0 ≽ K̂0,

• L̂0 ≽ L0,

• K̂1 ∼ K̂0,

• L̂1 ∼ L̂0,

and we take L1 = L̂1 and K1 = K̂1, which implies L1 ≻ K1.
For any y ∈ Y \Y 1, we take L̂0

0 = L0
0 and L̂0

1 = L0
1 + (F ′

1 ∗
F0 − F ′

0 ∗ F1), where we have F ′
1 ∗ F0 − F ′

0 ∗ F1 ≥ 0 because
F ′

1
F ′

1+F ′
0

≥ F1
F1+F0

. We have L̂0 ≽ L0 by (successive applications
of) Monotonicity. For any y ∈ Y \Y 1, we also take K̂0

0 =
K0

0 + (F ′
1 ∗ F0 − F ′

0 ∗ F1) and K̂0
1 = K0

1 . We have K0 ≽ K̂0 by
(successive applications of) Monotonicity.
Then, we construct L̂1 from L̂0 and K̂1 from K̂0. For any
y ∈ Y \Y 1, let L̂0 be a (F0 + F1)-replication of L̂1 and K̂0 a
(F ′

0 +F ′
1)-replication of K̂1 so that we have L̂1 ∼ K̂0 and K̂1 ∼

L̂0 by (successive applications of) Replication Invariance.
By construction, we have L1 = F ′ and K1 = F which com-

pletes the proof.

Implication (1.1) in part 2 of Definition 3: F ′ ≽P ROP

F ⇒ F ′ ≽ F

The proof can straightforwardly be adapted from the argu-
ment provided above, and is therefore omitted. �
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Theorem 1 calls for three remarks.
First, observe that one can also find complete orders satis-

fying this set of axioms.8
Second, Theorem 1 would still hold if we restrict ourselves

to solution concepts with only one outcome per type profile,
such as for instance the “truthfulness” solution concept. For
this special case, the criteria must rank functions whose do-
main of images is Z ′ = {(z0, z1) ∈ N2

0|z0 + z1 = 1}. All is-
sues associated with having multiple equilibria are ruled out.
For this special case, only Domination has bite because the
remaining three axioms are trivially satisfied. Observe that
the Proportion criterion would still yield a partial ranking of
mechanisms. This illustrates that the difficulty to characterize
a complete order is also present even when the equilibrium is
unique.

Third, using the strict versions of axioms Monotonicity,
i.e., if one mechanism has one more equilibrium in (resp. not
in) X than the other mechanism, it performs strictly better
(resp. worse) in terms of X, would lead to an impossibility be-
cause this stronger axiom is directly incompatible with Repli-
cation Invariance.

Although the Proportion criterion is very natural, it is af-
8Consider the following complete order. For any two F, F ′ ∈ F , we

have F ′ ≽COMP F whenever∑
y∈Y

F ′
1(y)

F ′
0(y) + F ′

1(y) ≥
∑
y∈Y

F1(y)
F0(y) + F1(y)

Observe that these three axioms do not jointly imply this order. Addi-
tional properties would be required, typically imposing some form(s) of
anonymity.
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fected by two important limitations. Since the Proportion cri-
terion relies on relatively weak axioms, it provides a very par-
tial ranking and is thus often silent. Moreover, the Proportion
criterion is not very workable. Indeed, this criterion requires
computing the exact number of equilibria in each type profile,
which can get quite challenging as even very simplified type
profiles can admit multiple strategy profiles.

1.4.2 Dual extension of the Proportion criterion

To obtain more complete partial orders, we maintain the ax-
ioms imposed thus far while imposing additional restrictions
that increase the number of pairs a partial order can compare.
In this sense, our new partial orders extend the comparisons
from ≽P ROP (they compare in the same way all pairs for which
≽P ROP makes an affirmative comparison, and reach affirma-
tive comparisons for some pairs for which ≽P ROP is silent).

First, we consider an additional robustness axiom that we
call Consistency to Additional ∈ X. Loosely put, Consistency
to Additional ∈ X requires that a comparison would not be al-
tered if both mechanisms had one additional equilibrium in X.
More precisely, assume that one mechanism M performs bet-
ter than another M ′ (in terms of X). Consider slight variants
of these two mechanisms such that, on a single type profile,
both variants have one additional equilibrium in X. Consis-
tency to Additional ∈ X requires that the variant of M also
performs better than the variant of M ′.

Axiom 5 (Consistency to Additional ∈ X). For all F, F ′, F̂ , F̂ ′ ∈
F , if (i) F̂0(y∗) = F0(y∗), F̂ ′

0(y∗) = F ′
0(y∗), F̂1(y∗) = F1(y∗)+1
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and F̂ ′
1(y∗) = F ′

1(y∗) + 1 for some y∗, and (ii) F̂ (y) = F (y)
and F̂ ′(y) = F ′(y) for all y ̸= y∗, then F ′ ≽ F ⇒ F̂ ′ ≽ F̂ and
F ′ ≻ F ⇒ F̂ ′ ≻ F̂ .

Even if one may consider that Consistency to Additional
∈ X is somewhat less compelling than our three basic axioms,
we believe that it constitutes a plausible way of extending their
affirmative comparisons. Observe in particular that Consis-
tency to Additional ∈ X does not impose any affirmative com-
parison on its own. It is only in combination with other ax-
ioms that it extends their pre-existing affirmative comparisons
to more pairs.

Theorem 2 presented below shows that Consistency to Ad-
ditional ∈ X is exactly the difference between ≽P ROP and our
second criterion. This criterion compares mechanisms by fo-
cusing exclusively on those type profiles for which all equilibria
are in X or those for which all equilibria are not in X. More
precisely, the criterion considers that a mechanism performs
at least as well as another if the latter has no equilibria in X
whenever the former has no equilibria in X and if the former
has all its equilibria in X whenever the latter has all its equi-
libria in X. The comparison becomes strict if for some type
profile, the former has all its equilibria in X whereas the latter
has not.

Definition 4 (Profiles with Homogeneous Outcomes criterion
(PHO)).
For any two F, F ′ ∈ F , we have F ′ ≽P HO F if for all y ∈ Y

F ′
1(y) = 0 ⇒ F1(y) = 0, and

F0(y) = 0 ⇒ F ′
0(y) = 0.
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Moreover, we have F ′ ≻P HO F if in addition

F ′
0(y∗) = 0 and F0(y∗) > 0 for some y∗ ∈ Y.

The partial order ≽P HO is more workable than ≽P ROP .
Indeed, obtaining affirmative comparisons with ≽P HO never
requires computing the proportion of equilibria in X. Even
better, it is not even necessary to compute the number of equi-
libria associated to each type profile. The reason is that the
affirmative comparisons of ≽P HO are only based on type pro-
files for which all equilibria are equivalent in terms of X.

Observe that ≽P HO yields strict comparisons only if there
is a type profile where one mechanism has all its equilibria
in X while the other’s are not all in X. In contrast, in the
case of ≽P ROP , strict comparisons require that there is a type
profile where one mechanism has all its equilibria in X while
the other’s are all not in X. Clearly, the weaker condition for
strict comparisons under ≽P HO derives from Consistency to
Additional ∈ X, which extends the strict comparisons obtained
from Domination.

Theorem 2 identifies the close connection between ≽P HO

and our four axioms.

Theorem 2. The partial order ≽P HO is the coarsest relation
satisfying Domination, Monotonicity, Replication Invariance
and Consistency to Additional ∈ X.

Proof. Part 1 of Definition 3:

The PHO criterion clearly satisfies Domination, Monotonic-
ity and Replication Invariance. We only prove that the PHO
criterion satisfies Consistency to Additional ∈ X. We must
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show that, when its preconditions are met, we have F ′ ≽P HO

F ⇒ F̂ ′ ≽P HO F̂ and F ′ ≻P HO F ⇒ F̂ ′ ≻P HO F̂ . As the
proof of the two implications are very similar, we only prove
the latter.

Again, we slightly abuse notation and write F0 and F1 in-
stead of F0(y) and F1(y). Given that F ′ ≻P HO F , we can
partition Y = Y 1 ∪ Y 2 ∪ Y 3 ∪ Y 4 ∪ Y 5, where

Y 1 = {y ∈ Y | F ′
0 = 0 and F1 = 0},

Y 2 = {y ∈ Y | F ′
0 = 0 and F0 = 0},

Y 3 = {y ∈ Y | F ′
0 = 0 and F0 > 0 and F1 > 0},

Y 4 = {y ∈ Y | F ′
0 > 0 and F ′

1 > 0 and F0 > 0 and F1 > 0},

Y 5 = {y ∈ Y | F ′
0 > 0 and F1 = 0},

and where Y 1 ∪ Y 3 is not empty. Such partition is illustrated
in Figure 1.1. We show that when comparing F̂ and F̂ ′, we

Mech F’

Mech F

Y 1

b

b

bb

b

b

b

b

b

b

b

Y 2 Y 3 Y 4 Y 5

u

b

b

u u

u

u

u

u

u

Figure 1.1: Illustration of type profiles for each subset of the
partition.
Each green dot represents an equilibrium in X and each red
triangle represents an equilibrium not in X.

can also partition Y = Ŷ 1 ∪ Ŷ 2 ∪ Ŷ 3 ∪ Ŷ 4 ∪ Ŷ 5 with the
same definitions as above, except that these definitions con-
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sider functions F̂ and F̂ ′ instead of F and F ′, i.e., Ŷ 1 = {y ∈
Y | F̂ ′

0 = 0 and F̂1 = 0}, Ŷ 2 = {y ∈ Y | F̂ ′
0 = 0 and F̂0 = 0},

and so on. Moreover Ŷ 1 ∪ Ŷ 3 is not empty. If we can partition
Y in this way, then we have F̂ ′ ≻P HO F̂ .

There remains to show that the preconditions of Consis-
tency to Additional ∈ X, which link F and F ′ to F̂ and F̂ ′,
are such that any y ∈ Y 1 ∪ Y 2 ∪ Y 3 ∪ Y 4 ∪ Y 5 is such that
y ∈ Ŷ 1 ∪ Ŷ 2 ∪ Ŷ 3 ∪ Ŷ 4 ∪ Ŷ 5 and any y ∈ Y 1 ∪ Y 3 is such
that y ∈ Ŷ 1 ∪ Ŷ 3. For all y ̸= y∗, we have F̂ (y) = F (y) and
F̂ ′(y) = F ′(y), which directly implies that for all p ∈ {1, . . . , 5}
we have y ∈ Ŷ p when y ∈ Y p. For y∗, we have F̂0(y∗) = F0(y∗)
and F̂ ′

0(y∗) = F ′
0(y∗), as well as F̂1(y∗) = F1(y∗) + 1 and

F̂ ′
1(y∗) = F ′

1(y∗) + 1. These preconditions are such that y∗ ∈
Y 1 ⇒ y∗ ∈ Ŷ 3, y∗ ∈ Y 2 ⇒ y∗ ∈ Ŷ 2, y∗ ∈ Y 3 ⇒ y∗ ∈ Ŷ 3, y∗ ∈
Y 4 ⇒ y∗ ∈ Ŷ 4 and y∗ ∈ Y 5 ⇒ y∗ ∈ Ŷ 4. Finally, as Y 1 ∪ Y 3

is non-empty, y∗ ∈ Y 1 ⇒ y∗ ∈ Ŷ 3 and y∗ ∈ Y 3 ⇒ y∗ ∈ Ŷ 3,
Ŷ 1 ∪ Ŷ 3 is not empty, the desired result.

Implication (1.2) in part 2 of Definition 3: F ′ ≻P HO

F ⇒ F ′ ≻ F

Since F ′ ≻P HO F , we can partition Y = Y 1∪Y 2∪Y 3∪Y 4∪
Y 5 using the same definitions used for part 1, and moreover
Y 1 ∪ Y 3 is not empty.

We show that any partial order ≽ satisfying the list of
axioms is such that F ′ ≻ F by constructing two sequences
of functions (Lp)p∈{0,...,5} and (Kp)p∈{0,...,5} with Lp, Kp ∈ F
such that

• L0 ≻ K0,

• Lp+1 ≽ Lp and Kp ≽ Kp+1 for all p ∈ {0, . . . , 4},
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• L5 = F ′ and K5 = F .

If such two sequences exist, then we have indeed that F ′ ≻ F .
First, we define L0 and K0. We construct these two func-

tions type profile by type profile. For all y ∈ Y 1 ∪ Y 3 we take
L0

0 = K0
1 = 0 and L0

1 = K0
0 = 1. For all y ∈ Y 2 we take

L0
0 = K0

0 = 0 and L0
1 = K0

1 = 1. For all y ∈ Y 4 ∪ Y 5 we take
L0

0 = K0
0 = 1 and L0

1 = K0
1 = 0. By (successive applications

of) Domination, we have L0 ≻ K0.
We define the remaining elements of the two sequences in

5 successive steps, one for each subset in the partition of Y .
Functions Lp and Kp are constructed from Lp−1 and Kp−1

in step p in such a way that for all a ∈ {1, . . . , p} and all
y ∈ Y a we have Lp(y) = F ′(y) and Kp(y) = F (y). When the
construction of a function is left unspecified on a type profile, it
means that this function takes the same image as the function
from which it is constructed.

• Step 1: Define L1 and K1 from L0 and K0 by changing
their images on Y 1.
For any y ∈ Y 1, take L1

0 = K1
1 = 0 and L1

1 = F ′
1 and

K1
0 = F0. That is, L1(y) is a F ′

1-replication of L0(y)
and K1(y) is a F0-replication of K0(y). By (successive
applications of) Replication Invariance, we have L1 ∼ L0

and K1 ∼ K0.

• Step 2: Define L2 and K2 from L1 and K1 by changing
their images on Y 2.
For any y ∈ Y 2, take L2

0 = K2
0 = 0 and L2

1 = F ′
1 and

K2
0 = F1. That is, L2(y) is a F ′

1-replication of L1(y)
and K2(y) is a F1-replication of K1(y). By (successive
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applications of) Replication Invariance, we have L2 ∼ L1

and K2 ∼ K1.

• Step 3: Define L3 and K3 from L2 and K2 by changing
their images on Y 3.
We define two sequences (L̂q)q∈{0,1} and (K̂q)q∈{0,1} with

– K̂0 ∼ K2,
– L̂0 ≻ K̂1,
– L̂1 ∼ L̂0,

and we take L3 = L̂1 and K3 = K̂1, which implies L3 ≻
K3.
For any y ∈ Y 3, we take K̂0

0 = F0 and K̂0
1 = 0. As K̂0(y)

is a F0-replication of K2(y), by (successive applications
of) Replication Invariance, we have K̂0 ∼ K2. We then
construct L̂0 from L2 and K̂1 from K̂0 by addition of
the same number of equilibria in X(y). For any y ∈ Y 3,
we take L̂0

0 = L2
0, K̂1

0 = K̂0
0 , L̂0

1 = L2
1 + F1 and K̂1

1 =
K̂0

1 +F1. By transitivity we have from the previous steps
that L2 ≻ K̂0. Therefore, we get L̂0 ≻ K̂1 by (successive
applications of) Consistency to Additional ∈ X. For any
y ∈ Y 3, we take L̂1

0 = 0 and L̂1
1 = F ′

1. As L̂1(y) is a
F ′

1
1+F1

-replication of L̂0(y), by (successive applications of)
Replication Invariance, we have L̂1 ∼ L̂0. If F ′

1
1+F1

is not
an integer, then an intermediary function L̂∗ must be
defined such that L̂∗(y) is a F ′

1-replication of L̂0(y) and,
also, such that L̂∗(y) is a (1 + F1)-replication of L̂1(y).

• Step 4: Define L4 and K4 from L3 and K3 by changing
their images on Y 4.
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We define two sequences (L̂q)q∈{0,...,3} and (K̂q)q∈{0,1}
with

– L̂0 ∼ L3 and K̂0 ∼ K3,
– L̂1 ≻ K̂1,
– L̂2 ≽ L̂1 and L̂3 ∼ L̂2,

and we take L4 = L̂3 and K4 = K̂1, which implies L4 ≻
K4.
For any y ∈ Y 4, we take L̂0

0 = F ′
0F1, K̂0

0 = F0 and
L̂0

1 = K̂0
1 = 0. As L̂0(y) is a F ′

0F1-replication of L3(y)
and K̂0(y) is a F0-replication of K3(y), by (successive
applications of) Replication Invariance, we have L̂0 ∼ L3

and K̂0 ∼ K3. We then construct L̂1 from L̂0 and K̂1

from K̂0 by addition of the same number of equilibria
in X(y). For any y ∈ Y 4, we take L̂1

0 = L̂0
0, K̂1

0 = K̂0
0 ,

L̂1
1 = L̂0

1+F1 and K̂1
1 = K̂0

1 +F1. By transitivity we have
from the previous steps that L̂0 ≻ K̂0. Therefore, we get
L̂1 ≻ K̂1 by (successive applications of) Consistency to
Additional ∈ X. For any y ∈ Y 4, we take L̂2

0 = L̂1
0

and L̂2
1 = L̂1

1 + F1(F ′
1 − 1). By (successive applications

of) Monotonicity, we have L̂2 ≽ L̂1. Finally, for any
y ∈ Y 4, we take L̂3

0 = F ′
0 and L̂3

1 = F ′
1. As L̂2(y) is

a F1-replication of L̂3(y), by (successive applications of)
Replication Invariance, we have L̂3 ∼ L̂2.

• Step 5: Define L5 and K5 from L4 and K4 by changing
their images on Y 5.
We define a sequence (L̂q)q∈{0,1} and a function K̂0 with

– L̂0 ∼ L4 and K̂0 ∼ K4,
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– L̂1 ≽ L̂0,

and we take L5 = L̂1 and K5 = K̂0, which implies L5 ≻
K5.
For any y ∈ Y 5, we take L̂0

0 = F ′
0, K̂0

0 = F0 and L̂0
1 =

K̂0
1 = 0. As L̂0(y) is a F ′

0-replication of L4(y) and K̂0(y)
is a F0-replication of K4(y), by (successive applications
of) Replication Invariance, we have L̂0 ∼ L4 and K̂0 ∼
K4. For any y ∈ Y 5, we take L̂1

0 = L̂0
0 and L̂1

1 = L̂0
1 + F ′

1.
By (successive applications of) Monotonicity, we have
L̂1 ≽ L̂0.

By construction, we have L5 = F ′ and K5 = F , which com-
pletes the proof.

Implication (1.1) in part 2 of Definition 3:

The proof can straightforwardly be adapted from the argu-
ment provided above, and is therefore omitted.

�

Interestingly, imposing Consistency to Additional ∈ X al-
lows comparing two mechanisms by only focusing on the subset
of type profiles for which all equilibria are equivalent in terms
of X. In a sense, type profiles for which both mechanisms yield
some outcomes in X and some outcomes not in X are “irrele-
vant” for the comparison.9 This greatly increases the number
of pairs that can be compared because, unlike ≽P ROP , the

9These type profiles are irrelevant in the sense that the exact fraction
of outcomes in X of each mechanism does not matter.
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partial order ≽P HO is not necessarily bogged down by the ex-
istence of a few type profiles for which proportions of equilibria
in X are reversed.

This reduction of the domain of “relevant” type profile is
rather surprising. We emphasize that Consistency to Addi-
tional ∈ X is not sufficient by itself to yield such reduction.
In fact, the Absolute Number criterion satisfies Consistency
to Additional ∈ X together with Domination and Monotonic-
ity, but still bases its comparisons on all type profiles in the
domain. This reduction is the result of the combination of the
list of axioms used.

Finally, we show that an axiom that is dual to Consistency
to Additional ∈ X leads to a criterion that is dual to ≽P HO.
Consistency to Additional /∈ X preserves the logic of Consis-
tency to Additional ∈ X, but the former focuses on equilibria
not in X, whereas the latter focuses on equilibria in X. More
precisely, assume that one mechanism M performs better than
another M ′ (in terms of X). Consider slight variants of these
two mechanisms such that, on a single type profile, both vari-
ants have one additional equilibrium not in X. Consistency to
Additional /∈ X requires that the variant of M also performs
better than the variant of M ′.

Axiom 6 (Consistency to Additional /∈ X). For all F, F ′, F̂ , F̂ ′ ∈
F , if (i) F̂0(y∗) = F0(y∗) + 1, F̂ ′

0(y∗) = F ′
0(y∗) + 1, F̂1(y∗) =

F1(y∗) and F̂ ′
1(y∗) = F ′

1(y∗) for some y∗, and (ii) F̂ (y) = F (y)
and F̂ ′(y) = F ′(y) for all y ̸= y∗, then F ′ ≽ F ⇒ F̂ ′ ≽ F̂ and
F ′ ≻ F ⇒ F̂ ′ ≻ F̂ .

Unsurprisingly, the partial order ≽P HO∗ associated to Con-
sistency to Additional /∈ X is very similar to ≽P HO. In fact,

37



the weak comparisons of these two criteria are based on the
same conditions. The difference comes from the condition for
strict comparisons. The partial order ≽P HO∗ yields strict com-
parisons only if there is a type profile where one mechanism
has some of its equilibria in X while the other has none of its
equilibria in X.

Definition 5 (Profiles with Homogeneous Outcomes criterion*
(PHO∗)).
For any two F, F ′ ∈ F , we have F ′ ≽P HO∗ F if for all y ∈ Y

F ′
1(y) = 0 ⇒ F1(y) = 0, and

F0(y) = 0 ⇒ F ′
0(y) = 0.

Moreover, we have F ′ ≻P HO∗ F if in addition

F ′
1(y∗) > 0 and F1(y∗) = 0 for some y∗ ∈ Y.

Theorem 3 identifies the close connection between ≽P HO∗

and the four axioms.

Theorem 3. The partial order ≽P HO∗ is the coarsest relation
satisfying Domination, Monotonicity, Replication Invariance
and Consistency to Additional /∈ X.

Proof. The proof can straightforwardly be adapted from the
proof of Theorem 2, and is therefore omitted. �
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1.5 Illustration with school choice mech-
anisms

For illustrative purposes, we compare two matching mecha-
nisms for the allocation of school seats. In this context, a
matching algorithm determines the allocation of seats based
on the preferences reported by the students and the priorities
that students receive at the different schools. The players are
the students and their strategy set is the set of preferences
they can report. A type profile consists in a preference profile
together with a priority profile. The complete description of
the school choice model considered is given in Appendix 1.A.

We focus on an extremely simplified domain of school choice
problems, with only three students and three schools, each en-
dowed with one seat. On this narrow domain, we compare two
school choice mechanisms with respect to the “stable" social
choice correspondence, which is central in the school choice
literature. This fairness property essentially requires that no
blocking pair exists in the assignment.10 The two mechanisms
we compare are constrained versions of the Deferred Accep-
tance (DA) and Boston (BOS) mechanisms, for which stu-
dents are allowed to report preferences on two schools only
(Haeringer and Klijn (2009)). We denote these mechanisms
as DA2 and BOS2.11 For both mechanisms, we use undom-
inated strategy profile as a solution concept. Although it is
widely used, the Nash equilibrium solution concept might not

10An assignment has a blocking pair if a student is assigned to a school
that another student prefers to her assignment and the other student has
higher priority at this school than the first student.

11See Appendix 1.B for the description of both mechanisms.
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be credible for such mechanisms. In school choice, Nash equi-
librium may require a degree of coordination that goes beyond
what can reasonably be expected from parents who play the
corresponding game, often as a one-shot game. Experimental
evidence also suggest that Nash equilibria are rarely reached
in these mechanisms (Calsamiglia et al. (2010)).

Under both DA2 and BOS2, many type profiles admit
multiple undominated strategy profiles, some of which lead
to stable assignments while others do not. However, there
are reasons to believe that DA2 should be deemed more sta-
ble than BOS2. First, theoretical results have shown that
unconstrained DA is stable in dominant strategies, whereas
unconstrained BOS is stable only in Nash equilibrium, i.e.,
when assuming complete coordination among the players. Sec-
ond, experimental evidence shows that constrained versions
of DA are more stable than constrained versions of BOS.
In a constrained environment, i.e., when players can report
preferences on a limited number of schools, Calsamiglia et al.
(2010) show that, even though stable assignments rarely oc-
cur, there are significantly more blocking pairs arising in con-
strained versions of BOS than in constrained versions of DA.
(Recall that the “stable” correspondence essentially selects as-
signments that do not contain any blocking pairs.) Also, Klijn
et al. (2013) show that, independently of players’ risk aversion,
BOS is less likely to produce stable assignments than DA.

Unfortunately, Proposition 1 shows that the Proportion cri-
terion cannot compare the stability of these two mechanisms:
There exist type profiles for which the proportion of stable
equilibria is greater under DA2 than under BOS2, as well as
other type profiles for which the converse is true.
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Proposition 1. Let the solution concept C be undominated
strategy profiles. Let X denote the stable correspondence. Let
F DA2 and F BOS2 be the functions respectively associated to
DA2 and BOS2 by C and X. There exists a type profile y ∈ Y
such that

F DA2
1 (y)

F DA2
0 (y) + F DA2

1 (y)
= 1 and F BOS2

1 (y)
F BOS2

0 (y) + F BOS2
1 (y)

< 1,

and a type profile y′ ∈ Y such that

F DA2
1 (y′)

F DA2
0 (y′) + F DA2

1 (y′)
<

F BOS2
1 (y′)

F BOS2
0 (y′) + F BOS2

1 (y′)
.

Proof. Type profile y is presented in Table 1.1. For visual
convenience, the schools at which a student has top-priority
are starred.

Ri1 Ri2 Ri3

s∗
1 s1 s2

s2 s∗
2 s∗

3
s3 s3 s1

Ds1 Ds2 Ds3

i1 i2 i3
...

...
...

Table 1.1: Type profile y for which all undominated strategy
profiles under DA2 are stable but not all undominated strategy
profiles under BOS2.

First, we show for y that all undominated strategy profiles
under DA2 are stable. As i1 has a top-priority at her most-
preferred school, she has a dominant strategy and is assigned
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to that school under any undominated strategy profile (Lemma
3). As i2 and i3 have a top-priority at their second most-
preferred school, they have a dominant strategy (Lemma 4)
that ranks their two most-preferred schools according to their
true preference (Lemma 5). Therefore, only one assignment
can be reached under undominated strategy profiles. This as-
signment is such that each student is assigned to her most-
preferred top-priority school. This assignment is stable.

Second, we show for y that one undominated strategy pro-
files under BOS2 is not stable. Consider the reported profile
Q shown herebelow.

Qi1 : s1 s2
Qi2 : s1 s2
Qi3 : s2 s3

Profile Q is an undominated strategy profile under BOS2

(Lemma 6). The assignment BOS2(Q) is such that i1 is as-
signed to s1, i2 is unassigned and i3 is assigned to s2. This
assignment is unstable as i2 prefers s2 over being unassigned
and i2 has a higher priority at s2 than i1.

Type profile y′ is presented in Table 1.2. For visual conve-
nience, the schools at which a student has top-priority are
starred and the only stable assignment is boxed.

Under DA2, one-third of undominated strategy outcomes
are stable. It is a dominant strategy for both i1 and i2 to
truthfully report their preference because they each have a
top-priority at their second favorite school (Lemma 3). In
turn, student i3 has three undominated strategies (Lemma 5):
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Ri1 Ri2 Ri3

s2 s1 s1

s∗
1 s∗

2 s2

i1 i2 s3

Ds1 Ds2 Ds3

i1 i2 i1

i3
...

...
i2

Table 1.2: Type profile y′ for which the proportion of stable
undominated strategy outcomes is larger under BOS2 than
under DA2.

Qi3 : s1 s2
Q′

i3 : s1 s3
Q′′

i3 : s2 s3

If i3 reports Qi3 , then the assignment is unstable because i3
is unassigned while the seat at s3 is vacant. If i3 reports Q′′

i3 ,
then the assignment is again unstable because i2 is assigned
to s1 even if i2 has a lower priority at s1 than i3. If i3 reports
Q′

i3 , then the assignment is stable.

Under BOS2, more than one-third of undominated strat-
egy outcomes are stable. Students i1 and i2 have two undom-
inated strategies whereas i3 has six undominated strategies
(Lemma 6):
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Qi1 : s2 s∗
1

Q′
i1 : s∗

1 s2

Qi2 : s1 s∗
2

Q′
i2 : s∗

2 s1

Qi3 : s1 s2
Q′

i3 : s1 s3
Q′′

i3 : s2 s3
Q′′′

i3 : s2 s1
Q′′′′

i3 : s3 s1
Q′′′′′

i3 : s3 s2

We show that a proportion 10/24 of BOS2 assignments are
stable, which is larger than the proportion 1/3 obtained under
DA2.

First, we consider the six undominated strategy profiles for
which i1 and i2 report Qi1 and Qi2 . None of the six assignments
are stable, because for all of them we have either that i3 is
unassigned or i2 is assigned to s1.

Second, we consider the six undominated strategy profiles
for which i1 and i2 report Q′

i1 and Q′
i2 . Under these profiles,

i1 is assigned to s1 and i2 is assigned to s2. The assignment
is stable if i3 reports s3, which is the case in all her undomi-
nated strategies but Qi3 and Q′′′

i3 . Hence, four out of these six
assignments are stable.

Third, we consider the six undominated strategy profiles
for which i1 and i2 report Qi1 and Q′

i2 . Under these profiles,
i2 is assigned to s2. The assignment is stable if i3 reports s3
and does not report s1 first. Hence, three out of these six
assignments are stable.

Fourth, we consider the six undominated strategy profiles
for which i1 and i2 report Q′

i1 and Qi2 . Under these profiles,
i1 is assigned to s1. The assignment is stable if i3 reports s3
and does not report s2 first. Hence, three out of these six
assignments are stable.
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The second important limitation of ≽P ROP is that this cri-
terion is not very workable. Even in our extremely simplified
domain with only three students and three schools, computing
the exact number of equilibria in each type profile and identi-
fying the proportion of these equilibria that are in X can be
challenging. As we show in the proof of Proposition 1, the
relatively simple type profile y′ admits 24 different undomi-
nated strategy profiles under BOS2. Investigating the stabil-
ity of all 24 is quite cumbersome. What is more, the proof
only shows that the two mechanisms cannot be compared by
≽P ROP , which requires considering only two type profiles.

This example illustrates the need for partial orders that
are less partial and more workable than ≽P ROP .

The increased discriminatory power of ≽P HO provides a
sense for which we can affirmatively compare DA2 and BOS2

in terms of stability. This comparison is in line with our ex-
pectations.

Proposition 2. Let the solution concept C be undominated
strategy profiles. Let X denote the stable assignments corre-
spondence. Letting F DA2 and F BOS2 be the functions respec-
tively associated to DA2 and BOS2 by C and X, we have
F DA2 ≻P HO F BOS2.12

12Note that with F DA and F BOS the functions respectively associated
to unrestricted DA and BOS by C and X, we also have F DA ≻P HO F BOS .
Indeed, in DA all students have a single dominant strategy which consist
in ranking all their acceptable schools without switches. There is therefore
only one undominated strategy profile in DA, and this profile is always
stable. It is then sufficient to show that some of the many undominated
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Proof. Part 1. F DA2 ≽P HO F BOS2 .

First, we show that for all y ∈ Y for which no undominated
strategy profiles under DA2 leads to a stable assignment, no
undominated strategy profiles under BOS2 leads to a stable
assignment. To do so, we show that there exists no y ∈ Y for
which no undominated strategy profiles under DA2 leads to
a stable assignment. Consider the contradiction assumption
that, for some type profile y∗ ∈ Y , no undominated strategy
profile under DA2 leads to a stable assignment. Let µ∗ denote
the most-efficient stable assignment for type profile y∗.

Assume first that all students are assigned to a school
under µ∗. Consider any undominated strategy profile Q =
(Qi1 , Qi2 , Qi3) under DA2 for which each student i reports
µ∗(i), the school to which she is assigned under µ∗. Any stu-
dent i has an undominated strategy with this property. In-
deed, if µ∗(i) is not her third favorite acceptable school, then
reporting her two favorite acceptable schools in the order of her
truthful preference is clearly undominated under DA2. If µ∗(i)
is her third favorite acceptable school, then i has no dominant
strategy under DA2 and reporting any two acceptable schools
in the same order as the order of preference is undominated
(Lemma 5).

Since strategies in Q are undominated, they report the
schools in the order of the students’ truthful preference (Lemma
5). Hence, if µ∗(i) is not reported first in Qi, then i prefers the
school reported first in Qi over µ∗(i). Then, because µ∗ is a
stable assignment, either the assignment DA2(Q) is µ∗, which
violates the contradiction assumption, or DA2(Q) is a Pareto
improvement over µ∗. In the latter case, DA2(Q) is unstable

strategy profiles in BOS are not stable.

46



because µ∗ is the most-efficient stable assignment. As DA2(Q)
is an unstable Pareto improvement over µ∗, we have that one
student, say i3, is assigned under DA2(Q) to the same school
as under µ∗, while i1 and i2 have exchanged the schools they
are assigned to under µ∗. If all students are assigned to a dif-
ferent school as under µ∗, then µ∗ cannot be the most-efficient
stable assignment. This implies that Qi1 : µ∗(i2) µ∗(i1) and
Qi2 : µ∗(i1) µ∗(i2). Assignment DA2(Q) is unstable because
there is a school s ∈ {µ∗(i1), µ∗(i2)} that i3 prefers over µ∗(i3)
and i3 has a higher priority at s than the student assigned
to s under DA2(Q). As i3 prefers s over µ∗(i3) we have that
Q′

i3 : s µ∗(i3) is undominated under DA2 (Lemma 5). As i3
has a higher priority at s than the student assigned to s under
DA2(Q), we must have that DA2(Qi1 , Qi2 , Q′

i3) = µ∗, which
violates the contradiction assumption.

Assume then that some student i is not assigned to a school
under µ∗. Because there are three schools and three students,
this implies that student i finds at most two schools acceptable.
In turn, this implies that any student i′ who is assigned to a
school under µ∗ is assigned either to her most-preferred school
or to her second most-preferred school. The reason is that i is
rejected from all of her acceptable schools. Hence, any school s
that is acceptable for i is assigned under µ∗ to another student
i′. This is only possible if i′ prefers s to the school that has a
vacant seat under µ∗. Hence, any such student i′ is assigned
to a school she prefers to at least one other school.

Consider any strategy profile Q = (Qi1 , Qi2 , Qi3) under
DA2 for which each student reports either her only acceptable
school, or her two most-preferred acceptable schools in the
same order as the order of her true preference. All strategies
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in Q are undominated under DA2 (Lemma 5). The contra-
diction assumption is violated because we have DA2(Q) =
µ∗. Indeed, under µ∗, unassigned students find at most two
schools acceptable and other students are assigned either to
their most-preferred or their second most-preferred acceptable
school. Therefore, on this type profile, the Deferred Accep-
tance mechanism stops before reaching the acceptable schools
not reported in Q (if any). Hence, when the profile is Q, mech-
anism DA2 follows the same steps as the Deferred Acceptance,
and thus yields the most efficient stable assignment.

There remains to show that, for all y ∈ Y for which all
undominated strategy profiles under BOS2 lead to a stable
assignment, all undominated strategy profiles under DA2 also
lead to a stable assignment. The proof is based on Lemma 1,
which shows that the set of assignments obtained by undom-
inated strategy profiles under DA2 are nested in the set of
assignments obtained by undominated strategy profiles under
BOS2.

Lemma 1. For any undominated strategy profile Q of DA2,
there exists an undominated strategy profile Q′ of BOS2 such
that DA2(Q) = BOS2(Q′).

Proof. Take any profile Q that is undominated under DA2.
Let assignment µ = DA2(Q).

We construct a strategy profile Q′ that is undominated
under BOS2 and such that BOS2(Q′) = µ. For any student i
who is unassigned under µ we let Q′

i = Qi. For any student i
who is assigned to a school under µ,

• we let Q′
i = Qi if µ(i) is reported first in Qi,
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• else Q′
i reports µ(i) first and also reports her most-preferred

acceptable school different from µ(i) (if any).

First, we show that Q′
i is undominated under BOS2. If

i finds only one school acceptable, then reporting this school
only is a dominant strategy under both BOS2 and DA2 (Lemma
2) and by construction this case is such that Q′

i = Qi. Assume
then that i finds at least two schools acceptable.

If the most-preferred school of student i is a top-priority
school for i, then it is a dominant strategy to report this school
first under DA2 (Lemma 3) and i must be assigned to this
school under µ, i.e., this school is µ(i). By construction, Q′

i

reports µ(i) first, and therefore Q′
i is a dominant strategy un-

der BOS2 (Lemma 3). Assume then that i finds at least two
schools acceptable and her most-preferred school is not a top-
priority school for i.

• Case 1: Q′
i = Qi.

Since Qi is undominated under DA2, we have by Lemma
5 that Qi reports two schools, ranks these two schools
according to i’s true preference and i weakly prefers these
two schools over her most-preferred top-priority school.
As Q′

i = Qi, we then have that Q′
i is undominated under

BOS2 (Lemma 6).

• Case 2: Q′
i ̸= Qi.

By construction of Q′
i, this case is such that i is assigned

under µ and µ(i) is reported second in Qi. Then, since
Qi is undominated under DA2, by Lemma 5, i weakly
prefers the two schools reported in Qi over her most-
preferred top-priority school. If µ(i) is i’s most-preferred
top-priority school, then Q′

i is undominated under BOS2
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(Lemma 6), because by construction of Q′
i this school

is reported first in Q′
i. If µ(i) is not i’s most-preferred

top-priority school, then Q′
i is undominated under BOS2

(Lemma 6) because by construction of Q′
i this strategy

reports two schools, one of them being preferred to i’s
most-preferred top-priority school. (The school reported
first in Qi is strictly preferred to µ(i).)

Second, we show that BOS2(Q′) = µ. Consider the subset
I ′ of students who are unassigned under µ. Since DA2(Q) = µ,
this implies that no student i ∈ I ′ can be blocking in matching
µ at a school she reports in Qi. (Indeed, if such student i was
blocking at a school s, then the student j for whom µ(j) = s
should have been rejected from s in the course of DA2 under
Q, a contradiction.) In other words, the seat at the schools
that i reports in Qi are assigned under µ to competitors of
i at these schools. By construction, for any student i ∈ I ′

we have Q′
i = Qi. Since any student j /∈ I ′ reports µ(j) first

in Q′
j , this implies that all seats at all schools reported by

any student i ∈ I are assigned to competitors of i in the first
round of BOS2 under Q′. As a result, all students in I ′ are
also unassigned under BOS2(Q′). Finally, since any student
j /∈ I ′ reports µ(j) first in Q′

j , student j is also assigned to
µ(j) under BOS2(Q′). Together, we have BOS2(Q′) = µ.

�

Consider any y ∈ Y for which all undominated strategy
profiles under BOS2 lead to a stable assignment. By Lemma
1, for any undominated strategy profiles under DA2, there is
an undominated strategy profiles under BOS2 that leads to
the same assignment. As a result, any undominated strategy
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profiles under DA2 leads to a stable assignment.

Part 2. For some y∗ ∈ Y , all undominated strategy pro-
files under DA2 lead to stable assignments, while some undom-
inated strategy profiles under BOS2 leads to unstable assign-
ments.

As shown in the proof of Proposition 1, type profile y pre-
sented in Table 1.1 has the required properties. Together, Part
1 and Part 2 imply that F DA2 ≻P HO F BOS2 . �

The proof of Proposition 2 illustrates another reason why
the partial order ≽P HO is more workable than ≽P ROP . Affir-
mative comparisons of ≽P HO are only based on type profiles
for which all equilibria are equivalent in terms of X. Impor-
tantly, it is sometimes easier to compare mechanisms on these
particular type profiles. For instance, the proof of Proposition
2 takes advantage of the focus on these type profiles. A key
step in the proof of Proposition 2 is that the US-assignments
under DA2 are nested in the US-assignments under BOS2.
(For short terminology, we refer to an assignment sustained
by an undominated strategy profile under mechanism M sim-
ply as an US-assignment under M .) This directly implies
that, if all US-assignments are stable under BOS2, then all
US-assignments are stable under DA2. The weak comparison
F DA2 ≽P HO F BOS2 then follows from the fact that there is no
type profile in our domain for which all US-assignments under
DA2 are unstable.

Given the relationships between ≽P HO∗ and ≽P HO, we can
deduce from Proposition 2 that, according to ≽P HO∗ , DA2

performs weakly better than BOS2 in terms of stability. The
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reason is that Proposition 2 shows that, according to ≽P HO,
DA2 performs strictly better than BOS2 in terms of stability,
and the preconditions for weak comparisons are the same for
both partial orders. Also, we can deduce from Proposition
2 that, according to ≽P HO∗ , BOS2 does not perform weakly
better than DA2 in terms of stability. The reason is that
the precondition for a strict comparison according to ≽P HO

precludes a reversed weak comparison according to ≽P HO∗ .
These two implications are recorded in Corollary 1.

Corollary 1. Let the solution concept C be undominated strat-
egy profiles. Let X denote the stable assignments correspon-
dence. Letting F DA2 and F BOS2 be the functions respectively
associated to DA2 and BOS2 by C and X, we have F DA2 ≽P HO∗

F BOS2and F BOS2 �P HO∗ F DA2.

Proof. Part 1. F DA2 ≽P HO∗ F BOS2 .

By definition of ≽P HO and ≽P HO∗ , this is a direct impli-
cation of F DA2 ≽P HO F BOS2 (Proposition 2).

Part 2. F BOS2 �P HO∗ F DA2 .

By definition of ≽P HO and ≽P HO∗ , this is a direct impli-
cation of F DA2 ≻P HO F BOS2 (Proposition 2). More precisely,
this follows from the fact that there exists a type profile y
(given in Table 1.1) for which all undominated strategy pro-
files of DA2 leads to a stable assignment whereas it is not the
case of all undominated strategy profiles of BOS2. �
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1.6 Concluding remark
The strength of the comparison between two mechanisms de-
pends on the partial order used. One can be more confident
that a mechanism will perform better than another when they
can be ranked when using ≽P ROP than when this can only
be done when using ≽P HO or ≽P HO∗ . However, given its two
limitations, affirmative comparisons obtained with ≽P ROP are
bound to be scarce and hard to obtain. In their absence, affir-
mative comparisons obtained with ≽P HO or ≽P HO∗ may pro-
vide interesting indications about the respective performance
to expect from two alternative mechanisms.
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Appendix

1.A The school choice model
The model and notation are inspired from Haeringer and Klijn
(2009). There are three students i1, i2 and i3 and three schools
s1, s2 and s3, each endowed with one seat. Each student can be
assigned to at most one school. Students have preferences over
the schools they could be assigned to as well as the possibility
of remaining unassigned (i.e., being self-matched). Each school
has a strict priority ordering over the students. In this setting,
a (school choice) problem is a pair π = (R,D) where

1. R := (Ri1 , Ri2 , Ri3) is the (strict) preference profile of
students over the three schools, and

2. D := (Ds1 ,Ds2 ,Ds3) is the (strict) priority profile of
schools over the three students.

The preference Ri of student i is a linear order over S ∪{i}.
If student i strictly prefers school s over school s′, we write
s Pi s′. As usual, s Ri s′ denotes a weak preference, allowing
for s = s′. We say that a school s is acceptable for a student
i if s Pi i and unacceptable if i Pi s. To avoid trivialities, we
assume that all students find at least one school acceptable.

The priority Ds of school s is a linear order over the three
students. If student i has a higher priority than student j at
school s, then i Bs j and we say that i is a competitor of j
at school s. School s is a top-priority school for student i if

54



i has no competitor at school s. We denote by Π the domain
of problems satisfying these assumptions.

An assignment is a function µ : {i1, i2, i3} → {s1, s2, s3}∪
{i1, i2, i3} that matches every student with a school or with
herself. We say that student i is assigned in the former case,
and unassigned in the latter case. An assignment is feasible
if no two students are assigned to the same school.

Given any problem π, an assignment µ is stable if it sat-
isfies each of the three following properties.

Individual rationality: For any student i, we have µ(i) Ri i.

Non-wastefulness: For any student i and any school s, if
s Pi µ(i), then #{j ∈ I | µ(j) = s} = 1.

No justified-envy: For any two students i and j, if µ(j) Pi µ(i),
then j is a competitor of i at school µ(j).

A (school choice) mechanism M is a function that as-
sociates every problem π in some domain ΠM ⊆ Π of problems
with a feasible assignment. We say that a mechanism is individ-
ually rational, non-wasteful or stable, if M(π) is individually
rational, non-wasteful or stable for all π ∈ ΠM . As is common,
when there is no ambiguity about D, we often use M(R) to
denote the assignment selected by mechanism M .

We assume that the three schools report their priority or-
dering truthfully to the mechanism. A type profile y is a
school choice problem π = (R,D) (and thus Y = Π), and the
players of mechanism M are the three students. For the two
mechanisms that we consider, the strategy space Si of each
student i consists in the set of reported preference Qi for which
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at least one school is unacceptable and at least one school is
acceptable.

For any type profile y, the pair (M, y) defines a strate-
gic form game for which students report a preference and the
outcome is the assignment selected by M under the profile of
reported preferences. Given (M, y), the strategy-space of stu-
dent i is the set of all the preferences of i that are featured in
at least one problem of ΠM . We call these strategies reported
preferences. A reported profile is a list Q := (Qi1 , Qi2 , Qi3)
of the reported preferences of all students.

The outcome of the game when students report Q is assign-
ment M(Q). Student i evaluates this assignment according to
her true preference Ri. In particular, strategy Qi is a (weakly)
dominant strategy for student i if

Mi(Qi, Q−i) Ri Mi(Q′
i, Q−i), for any Q−i and any Q′

i.

In turn, strategy Qi is a dominated strategy for student i
if

Mi(Q′
i, Q−i) Ri Mi(Qi, Q−i), for any Q−i and some Q′

i

and Mi(Q′
i, Q′

−i) Pi Mi(Qi, Q′
−i) for some Q′

−i. A strategy is
undominated if it is not dominated.

1.B Two mechanisms
In this section we describe the two school choice mechanisms
we compare, which are members of the class considered in
(Haeringer and Klijn (2009)). We first describe BOS2, a con-
strained version of the Boston mechanism for which students
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are allowed to report preferences on two schools only.

Input : A (reported) school choice profile.

Round 1: Students apply to the school they reported as
their favorite school. Every school that receives more
applications than its capacity starts rejecting the lowest
applicant in its priority ranking, up to the point where it
meets its capacity. All other applicants are definitively
accepted at the schools they applied to, and capacities
are adjusted accordingly.

Round 2 : Students who are not yet assigned apply to the
school they reported as their second favorite school. Ev-
ery school that receives more new applications in round
2 than its remaining capacity starts rejecting the lowest
new applicants in its priority ranking, up to the point
where it meets its capacity. All other applicants are
definitively accepted at the schools they applied to. The
algorithm terminates and all students not yet assigned
remain unassigned.

We now turn to DA2, a constrained version of the De-
ferred Acceptance mechanism for which students are allowed
to report preferences on two schools only.

Input : A (reported) school choice profile.

Round 1: Students apply to the school they reported as
their favorite school. Every school that receives more ap-
plications than its capacity definitively rejects the lowest
applicant in its priority ranking, up to the point where it
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meets its capacity. All other applicants are temporarily
accepted at the schools they applied to (this means they
could be rejected at a later point).

Round 2 : Students who were rejected in round 1 apply to
the school they reported as their second favorite school.
Every school considers the new applicants of round 2
together with the students it temporarily accepted. If
needed, each school definitely rejects the lowest students
in its priority ranking, up to the point where it meets its
capacity. The algorithm terminates and all students not
yet assigned remain unassigned.

1.C Preliminary results on undominated
strategies under DA2 and BOS2

Propositions 1 and 2 require identifying undominated strate-
gies under DA2 and BOS2. The following lemmas provide
the necessary results for such identification. They are direct
implications of characterization results taken from Haeringer
and Klijn (2009) and Decerf and Van der Linden (2018a).

Lemma 2. If student i finds only one school acceptable, then
reporting only this school is a dominant strategy under both
BOS2 and DA2.

Proof. This is a straightforward implication of the character-
ization of dominant strategies in constrained BOS and con-
strained DA in Decerf and Van der Linden (2018b). �

Lemma 3. Assume that the most-preferred school of student i
is a top-priority school for i. Under both BOS2 and DA2, (1)
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i has a dominant strategy and (2) i is assigned to her most-
preferred school when she plays her dominant strategy.

Proof. This is a straightforward implication of the character-
ization of undominated strategies in constrained BOS and
dominant strategies in constrained DA in Decerf and Van der
Linden (2018a) (Proposition 2 and 4). �

Lemma 4. Assume that the second most-preferred school of
student i is a top-priority school for i. Student i has a domi-
nant strategy under DA2, which consists in reporting these two
schools truthfully.

Proof. This is a straightforward implication of the characteri-
zation of dominant strategies in constrained DA in Decerf and
Van der Linden (2018a) (Proposition 2). �

Let student i’s most-preferred top-priority school be
the school that i prefers among the schools that are top-priority
for i (if any).

Lemma 5. Assume that the most-preferred school of student
i is not a top-priority school for i. Strategy Qi is undominated
under DA2 only if Qi reports two schools, Qi ranks these two
schools according to i’s true preference and i weakly prefers
these two schools over her most-preferred top-priority school.

Proof. Haeringer and Klijn (2009) (Proposition 4.2) show that
a necessary condition for Qi to be undominated under DA2 is
that Qi reports two schools and Qi ranks these two schools
according to i’s true preference. Decerf and Van der Linden
(2018a) (Proposition 3) show that another necessary condition
for Qi to be undominated under DA2 is that i weakly prefers
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these two schools over her most-preferred top-priority school.
�

Lemma 6. Strategy Qi is undominated under BOS2 if and
only if (i) the school reported first is i’s most-preferred top-
priority school or (ii) the school reported first is not top-priority
for i and Qi reports two schools, one of which is strictly pre-
ferred to i’s most-preferred top-priority school.

Proof. This is a straightforward implication of the characteri-
zation of undominated strategies in constrained BOS in Decerf
and Van der Linden (2018a) (Proposition 4). �

60



Chapter 2
Sex-Selective Abortions and

Instrumental Births as the two
faces of the Stopping Rule. New

measures and world evidence

Joint with Jean-Marie Baland and Guilhem Cassan

Abstract: The stopping rule refers to a behaviour by
which parents continue child bearing till they reach a specific
number of children of a given gender (boys, in general). Under
this behaviour, parents can choose to carry out these pregnan-
cies to term and raise a larger number of children than origi-
nally desired. Some of these children are therefore not desired
for their own sake, and can be defined as ‘instrumental’. When
additional births become too costly, parents can also resort to
sex-selective abortion by terminating pregnancies of the unde-
sired gender. We argue that these two practices are the two
complementary expressions of the stopping rule and ought to
be considered under a unified framework.

In this paper, we take the child as the unit of interest
and propose new measures of detection of these two practices.
With instrumental births, a girl is, on average, exposed to
a larger number of younger siblings than a boy. Under sex-
selective abortion, a boy has on average more sisters among
her elder siblings than a girl. These measures are easily imple-
mentable, precise, and do not rely on a natural sex ratio. We
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carry out our detection tests over a large set of countries and
quantify, for the countries identified by our tests, the magni-
tude of gender bias in parental preferences. We highlight, in
particular, the minor role played by sex-selective abortion as
compared to instrumental births in fertility behaviour.
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2.1 Introduction
Strong preference for sons is prevalent in many societies. Many
cultural factors account for these gender biased preferences, in-
cluding patrilocality (Ebenstein (2014)), old age support (Eben-
stein and Leung (2010); Lambert and Rossi (2016)), or the bur-
den of the dowry (Arnold et al. (1998), see also Williamson
(1976), Das Gupta et al. (2003) or Jayachandran (2015) for
detailed reviews). In this paper, we explore the demographic
consequences of these preferences.

Gender biased preferences lead to two fertility practices:
the “stopping rule”, by which parents continue having chil-
dren until they reach their desired number of boys1 and “sex-
selective abortion”, by which parents abort foetuses of the un-
desired gender. Both practices are viewed as distinct conse-
quences of son preference and tend therefore to be investigated
separately by the literature (Arnold (1985); Basu and de Jong
(2010); Bhalotra and Cochrane (2010); Jayachandran (2015)).
Figure 2.1.1 presents the number of papers in Jstor in which
the words “stopping rule” alone, “sex-selective abortion” alone,
and both combined appear at least once.2 A vast majority of

1The preferred gender is boy in most cases, so, for simplicity, we refer
to boys only, whereas these practices could also be used to target a desired
number of girls.

2As “stopping rule” is also a term widely used in computer sciences, we
have added the word “fertility” to all those searches. There exist also sev-
eral synonyms to “stopping rule”, which we have included in our searches
The searches made were: “stopping rule” OR “differential fertility behav-
ior” OR “son-targeting fertility behavior” OR “ son-preferring fertility
behavior” NOT “sex-selective abortion” ; “sex-selective abortion” NOT
“stopping rule” NOT “differential fertility behavior” NOT “son-targeting
fertility behavior” NOT “son-preferring fertility behavior” ; “sex-selective
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papers mention only one practice, with no reference to the
other. The stopping rule has also become of marginal interest
as compared to sex-selective abortion. A plausible reason for
this evolution is the belief that sex-selective abortion has led
to the disappearance of the stopping rule. As we will show
below, this belief is, to a large extent, wrong. Another pos-
sible reason is that the consequences of sex-selective abortion
are thought to be more problematic than those of the stopping
rule, which is highly debatable. A third reason is methodolog-
ical, as sex-selective abortion distorts the observed sex ratios,
making their use unfit for detecting the stopping rule.

In this paper, we argue that sex-selective abortion is not
fundamentally distinct from the stopping rule. When focussing
on pregnancies, sex-selective abortion and the stopping rule
are essentially equivalent. Figure 2.1.2 describes the pattern of
pregnancies for families which desire one son and no daughter,
with or without sex-selective abortion. In both cases, their
behaviour is identical: they carry on having pregnancies when
the foetus is a girl and they stop having pregnancies when the
foetus is a boy.3

In the following, “stopping rule” is used to refer to the gen-
eral practice of childbearing until the desired gender composi-
tion is reached. This practice is made of two components: “in-
strumental birth” and “sex-selective abortion”. “Instrumental
abortion” AND “stopping rule” ; “sex-selective abortion” AND “differ-
ential fertility behavior” ; “sex-selective abortion” AND “son-targeting
fertility behavior” ; “sex-selective abortion” AND “son-preferring fertility
behavior” . All articles found in duplicates were removed. These searches
were conducted on January 9, 2023. Non relevant results referring to
agricultural practices were manually cleaned.

3Obviously, girls are born in one case and aborted in the other.
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Figure 2.1.1: Number of articles referring to gender biased
fertility practices.
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Reading: in 2000-5, out of 103 articles published mentionning
the words "stopping rule" (and its synonyms) or "sex-selective
abortion", 84 mentionned sex-selective abortion alone, 13 men-
tionned "stopping rule" alone and 6 mentionned both.

birth” describes this behaviour by which parents have children
until the desired gender composition is reached.4 Under this

4This is the practice the literature generally refers to when using the
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Figure 2.1.2: Sex-selective abortion as a stopping rule: an
illustration.
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behaviour, children of the undesired gender are born. They
are instrumental since their birth happened only as a result of
their parents’ attempt to get a child of the desired gender.5
“Sex-selective abortion” refers to the practice of terminating
pregnancies until reaching the desired gender composition. To
our knowledge, the stopping rule has never been considered
under that light.

We analyze these two components under a unified frame-
work: under the stopping rule, sex-selective abortion and in-

term “stopping rule”.
5Some authors refer to these children as undesired children. We be-

lieve that, ex-ante, parents practicing instrumental births know that they
require these births in order to attain their desired gender composition.
Therefore, these births are better termed ‘instrumental’ than ‘undesired’.
Ex-post, of course, these children may be undesired.
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strumental birth are the two technologies households can use
to reach their desired gender composition. When the sex-
selective technology is not available, parents carry on having
pregnancies and children. When sex-selection technology is
available and cheap enough, parents carry on having pregnan-
cies but terminate some of them. When costs are intermedi-
ate, sex-selective abortion does not fully replace instrumental
births and the two technologies are used within the same fam-
ily. In this case, parents resort to instrumental births for their
first pregnancies while switching to sex-selective abortions for
the last ones. Once having chosen sex-selective abortion, par-
ents never switch back to instrumental births.

Given this equivalence, studying these two technologies
jointly is important because of the policy trade-offs involved.
They are indeed associated with undesirable, but different, out-
comes. On the one hand, instrumental births lead to higher
than desired fertility (Sheps (1963); Park (1978, 1983); Arnold
(1985); Clark (2000); Dahl (2008); Basu and de Jong (2010)).
It is the source of negative outcomes at the level of the soci-
ety (fertility is higher than desired), the mother (for instance,
through increased maternal mortality (Milazzo (2018))) and
the girl (by exacerbating sibling competition, reducing birth
intervals or via other forms of differential treatment (Arnold et
al. (1998); Jensen (2003); Bhalotra and van Soest (2008); Jay-
achandran and Kuziemko (2011); Rosenblum (2013); Rossi and
Rouanet (2015); Altindag (2016); Jayachandran and Pande
(2017)). On the other hand, sex-selective abortion controls fer-
tility but leads to missing girls at birth (Sen (1990); Anderson
and Ray (2010); Bhalotra and Cochrane (2010); Anukriti et al.
(2022)): too few girls are born as compared to boys. Abortions
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are costly for mothers and involve highly skewed sex ratios at
the society level (Tuljapurkar et al. (1995); Hesketh and Xing
(2006); Bhaskar (2011); Edlund et al. (2013); Grosjean and
Khattar (2018)). By contrast, girls, once born, are more likely
to be desired and face better outcomes than under the stop-
ping rule (Goodkind (1996); Lin et al. (2014); Hu and Schlosser
(2015); Kalsi (2015); Anukriti et al. (2022)).

Unless gender biased preferences are changed, a policy which
increases the cost of sex-selective abortion (Nandi and Deola-
likar (2013)) leads to more instrumental births. Without en-
tering into an ‘optimal population’ debate, it is not clear that,
given the implications for mothers, children and the society,
this particular policy is desirable per se. While changing the
relative costs of these technologies may not necessarily be fea-
sible or desirable (as discussed in Das Gupta (2019), see also
Mohapatra (2013)), we emphasize here their substituability,
whereby a policy targeting one technology has direct conse-
quences on the prevalence of the other. Sex-selective abortion
is forbidden in many countries (Darnovsky (2009)), rising the
cost of sex-selective abortion compared to instrumental births,
and inducing parents to turn to instrumental births. By con-
trast, some countries impose strict limits on the number of
births, such as the one child policy in China, increasing the
realtive cost of instrumental births and inducing parents to
turn to sex-selective abortions. This policy trade-off is absent
from many debates about these practices.

Under our unified framework, we derive tests allowing to
detect instrumental births and sex-selective abortions and quan-
tify their relative prevalence. Our detection tests do not rely
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on the benchmark provided by a natural sex ratio.6 They can
be applied without any further assumption or prior knowledge
about gender preferences. They are also robust to the distor-
tions in the sex ratio induced by sex-selective abortion, as well
as to underlying differences in the natural sex ratio at birth.7
As we elaborate below, this makes our tests more reliable than
existing alternatives.8 As stressed above, these tests are im-
portant from a policy perspective as they allow the detection
of both instrumental births and sex-selective abortions, and
therefore inform policy makers, researchers and activists about
where to target their efforts, both geographically or in terms of
the technology used. In addition, our quantification exercise
shows that instrumental births remain largely prevalent, even
in contexts in which sex-selective abortions are widely prac-
ticed. Thus, in Haryana, an Indian state known for the high
prevalence of sex-selective abortion, instrumental births are
twice as prevalent as sex-selective abortion (out of the 22% of
children directly affected by the stopping rule, 15 percentage
points are born via instrumental births while the remaining 7
percentage points are missing due to sex-selective abortion).

The main intuitions behind these tests are as follows. Were
data on pregnancies and the gender of foetuses available to

6See the discussion in Anderson and Ray (2010) on the absence of a
universal natural sex ratio.

7See the discussion in Anderson and Ray (2010) on how Sub Saharan
Africa countries seem to have a different natural sex ratio at birth and how
this may lead to very large underestimation of the phenomena of missing
women at the world level if not properly taken into account.

8Bongaarts (2013)’s international study of sex ratio at birth and of sex
ratio of the last born for example can not distinguish between changes in
natural sex ratio across space and time and changes in sex ratio caused
by sex-selective abortion.
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the researcher, detecting and measuring the stopping rule, in-
strumental births and sex-selective abortions could be done
jointly. However, because data on pregnancies are typicaly
not available, measuring instrumental births and sex-selective
abortions has to be done through two separate, though related,
approaches. They are defined at the child level and are both
based on the information available in the demographic compo-
sition of the siblings.

Building on Yamaguchi (1989), Arnold et al. (1998) and
Ray (1998), we show that, under the stopping rule and a pref-
erence for sons, female foetuses are on average followed by
more pregnancies than male foetuses, but they have the same
number and gender distribution of previous pregnancies foe-
tuses. In the absence of sex-selective abortion, this translates
into girls having on average more younger siblings than boys,
but having the same number and gender distribution of elder
siblings. Our formalization, while taking the perspective of
the child rather than that of a family with a completed fertil-
ity, replicates some well-known consequences of instrumental
births: total fertility is higher than desired (Sheps (1963)), the
total number of siblings is higher for girls than for boys (Yam-
aguchi (1989); Basu and de Jong (2010)) and, within families,
the average birth order of girls is lower than for boys (Basu
and de Jong (2010)). As a matter of fact, all these are the
direct consequences of girls having more younger siblings than
boys under the stopping rule. Our child level approach makes
formalization much simpler as well as more precise than previ-
ous attempts, and therefore contributes to the large theoretical
literature on instrumental births.9

9For example the influential formalization of Basu and de Jong (2010)
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This result also suggests a simple method to identify coun-
tries (or societies in general) in which instrumental births pre-
vail, by detecting countries in which girls have more younger
siblings than boys. Compared to other methods such as the
sex ratio of the last born (Jayachandran (2015)), there is no
need to refer to a natural sex ratio at birth, which has been
shown to vary across time and space (Chahnazarian (1988);
Waldron (1998); Bruckner et al. (2010)) and cannot provide a
reliable benchmark as discussed in Anderson and Ray (2010).
This property also makes our test robust to the practice of
sex-selective abortion, which directly affects sex ratios. Our
method can also be applied to families which have not com-
pleted their fertility and thereby allow us to consider recent,
instead of past, behaviours (Haughton and Haughton (1998)).
As we will show, besides countries in South Asia and North-
ern Africa, many Central Asian and European countries do
implement a stopping rule.

Over the recent years, the practice of sex-selective abortion
developed rapidly as a method to control the gender composi-
tion in the family. As abortions are typically not observable,
the literature focusses on the evolution of the sex ratio at birth
over time and birth ranks (Park and Cho (1995); Arnold et al.
(2002); Hesketh and Xing (2006); Jha et al. (2006); Almond

concludes that instrumental births lead to two distinct consequences: that
girls have more siblings (as in in Yamaguchi (1989)) and that girls have a
higher birth order within family. They also write that “girls will be born
into relatively larger family.” Our approach shows that there are not two
but only one consequence of instrumental births: girls have more younger
siblings (but the same number of older siblings). As a consequence, girls
are not born in family larger than boys: at birth, their family is exactly
as large as those of boys. But their families will grow larger after their
birth. Only our child level approach can make that point formally.
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and Edlund (2008); Abrevaya (2009); Bhalotra and Cochrane
(2010); Jha et al. (2011); Chen et al. (2013); Lin et al. (2014);
Anukriti et al. (2022)). This literature exploits the empirical
fact that sex-selective abortion tends to be practiced at later
birth ranks: it looks at how the sex ratio at birth changes
across ranks before and after the arrival of sex-selection tech-
nology. In doing so, this literature implicitely relies on the fact
that, under son preference, sex-selective abortion is more likely
the larger the proportion of girls among elder siblings.10 We
develop a formalization of this insight, showing that parents
always prefer to postpone sex-selective abortions and turn to
them when unsatisfied with the gender composition of their
first births. When instrumental births and sex-selective abor-
tions are not too costly, parents will use both: they will start
with instrumental births and switch to sex-selective abortions
in later births. This is because the opportunity cost of instru-
mental births discontinuously rises in the last births, when the
birth of an instrumental girl would prevent the family from
reaching its desired number of sons. This suggests a simple
test of detection based on the proportion of girls among elder
siblings. Absent sex-selective abortion, the proportion of boys
and girls among elder siblings should be independent of the
gender of the child. When sex-selective abortion is widespread,
the gender composition of elder siblings differs: a girl is more
likely to be born (aborted) when parents are (not) satisfied
with the gender composition of her elders, that is, if she has a
large proportion of boys (girls) among her elder siblings. As a
result a difference in the proportion of boys among elder sib-

10Figure 2 in Anukriti et al. (2022) provides a nice graphical illustration
of this pattern.
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lings across genders is evidence of sex-selective abortion. As in
the detection of instrumental births, this test does not rely on
the use of a natural sex ratio.11 Countries that practice sex-
selective abortion are essentially located in South and Central
Asia and Eastern Europe.

We then calibrate a simple model of gender-biased desired
fertility to decompose the stopping rule into instrumental births
and sex-selective abortions. This approach provides a measure
of the proportion of ‘instrumental’ children which, as we show,
is large and biased against girls. Given the general decline
in desired fertility, it also tends to increase over time. In the
process, we compute a desired sex ratio, defined as the ratio
of the desired number of boys to that of girls, to assess gen-
der biased preferences. Following Anderson and Ray (2010),
we also provide a measure of ‘missing’ girls at birth and show
that instrumental births remain the most prevalent stopping
rule technology even in the presence of widely available sex-
selection methods. Among countries practicing the stopping
rule, we show that focusing on sex-selective abortion alone
leads to an under estimation of the consequences of the stop-
ping rule by more than 66%.

The structure of the paper is as follows: we first present
our formalization of instrumental births and of sex-selective
abortion. Following the detection methods developed in that
section, we then identify the countries in which the instrumen-
tal births or sex-selective abortion prevail, and quantify their

11Apart from the difficulty linked to the absence of a benckmark natural
sex ratio, the use of the sex ratio as birth to detect sex-selective abortion
has been criticized (Dubuc and Sivia (2018)) for offering a potentially
biased view of the proportion of parents willing to use it to reach their
desired number of sons, in the presence of decreasing desired fertility.
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prevalence. We discuss that type of data needed for our tests
to be used and show that while fertility history data is ideal,
our tests do reasonnably well with household roster data even
in the presence of patrilocality and gender difference in age of
marriage. Finally, we compare the result of our test to those
obtained under more traditional measures and discuss these
alternative approaches.

2.2 Demographic consequences of the stop-
ping rule

2.2.1 The stopping rule and the number of younger
siblings

In its analysis of the consequences of instrumental births, the
theoretical literature in demography has extensively focussed
on outcomes at the family level, such as the total fertility or
the sex ratios among children (e.g Sheps (1963); Yamaguchi
(1989); Clark (2000); Basu and de Jong (2010)). Our approach
differs by taking the perspective of an individual child and by
considering the stopping rule at the level of pregnancies rather
than actual births. This perspective drastically simplifies the
modeling effort and delivers more precise empirical predictions.
It also highlights the equivalence between the two technologies
behind the stopping rule.

The main intuition of our measure goes as follows: suppose
that the only reason for which parents have pregnancies is to
reach a desired number of boys. Each pregnancy is consid-
ered as a draw in a lottery in which having a male foetus is
a “success”, while having a female foetus is a “failure”. When
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a male is “drawn”, parents are one unit closer to their objec-
tive. When a female is “drawn”, parents make no progress,
and additional pregnancies (draws) are required in order to
compensate for this failed attempt - no matter whether the
foetus is sex-selectively aborted or not. This is true at each
pregnancy. Therefore, compared to a male, a female foetus is
a failed lottery draw, which does not contribute to the desired
number of boys. As a result, a female foetus of a particular
rank will be followed by exactly the same number of preg-
nancies as a male foetus of the same rank plus the expected
number of additional draws required to have the male foetus
that she is not.

We now formally investigate this mechanism. Consider
first the case under which couples can have an unlimited num-
ber of children and want to have a given number b∗ of boys.
At any pregnancy, parents have p chances to have a boy and
(1 − p) chances to have a girl. As a result, in a ’large’ popula-
tion and at each pregnancy, there is exactly 1−p

p female foetus
for each male foetus. In other words, the (male to female) sex
ratio at any rank in this population is constant and equal to

p
1−p . The ’stopping rule’ has no effect on the sex ratio in the
aggregate or at each rank (Sheps (1963)). (Of course, by its
very definition, the stopping rule determines the gender of the
last birth and therefore the sex ratio of the last pregnancy.)

By definition, the mothers of a male or of a female foetus of
pregnancy k had the same number of k − 1 pregnancies in the
past. The gender composition of these past pregnancies is also
identical, as it is independent of the gender of the kth foetus
itself. For instance, if we assume that parents want at least 3
boys and focus on a foetus at rank 3, there are four possible
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combinations for the previous pregnancies: (femaℓe−femaℓe,
femaℓe − maℓe, maℓe − femaℓe, maℓe − maℓe). These events
occur with probability

(
(1 − p)2, (1 − p)p, p(1 − p), p2), which

is the distribution faced by a foetus at rank 3, independently
of whether it is a female or a male. As a result, the only differ-
ence between male and female foetuses of the same rank comes
from subsequent pregnancies. The critical difference between
the two is the fact that having a male foetus at a particular
rank implies that parents are one unit closer to their desired
number of boys. Having had a female, parents are not closer
to their target and, therefore, need additional pregnancies to
compensate. Therefore, at any given rank, a female foetus
is expected to be followed by more pregnancies than a male.
Let us now assume, more realistically, that the number of
children born in a family cannot exceed a given maximum, N̄ ,
with N̄ > b∗. This additional constraint implies that, absent
sex-selective abortion, some families will not reach their
desired number of boys. Consider a foetus of rank k and of
gender i = b, g who has e older brothers, with e + 1 ≤ b∗ (the
last inequality indicates that, at rank k −1, the family has not
yet reached her desired number of boys, b∗). We denote by
E (Yi (k, e)) the expected number of pregnancies that follow
a foetus of rank kth. Following the discussion above, we obtain:

Proposition 1: For any number of elder brothers e, with
e+1 ≤ b∗, the expected number of future pregnancies is strictly
larger for a female than for a male foetus at any rank k, with
k < N̄ :

E (Yg (k, e)) > E (Yb (k, e)) , ∀k < N̄, e + 1 ≤ b∗.
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Moreover,

E (Yg (k, e))−E (Yb (k, e)) = 1/p, ∀e+1 ≤ b∗, when N̄ → ∞.

Proof : See Appendix 2.A

The proposition remains true, independently of the tech-
nology available to parents. In particular, when sex-selective
technology is not available, this implies that, at a given birth
rank, girls have, in expected terms, more younger siblings than
boys. As the proposition holds for each rank, we also have, by
summing over all ranks, that girls on average have a larger ex-
pected number of younger siblings. This result easily extend
to a situation under which parents also desire a given number
of daughters g∗ > 0. A preference for boys in this situation
simply requires that the desired sex ratio, b∗/g∗, is larger than
p/(1 − p). Under this condition, girls still have more younger
siblings. To the best of our knowledge, no other plausible
mechanism can produce such an outcome.

It is easy to show that the difference in the expected num-
ber of subsequent pregnancies is increasing in N̄ . More pre-
cisely, for a given number of desired boys, b∗, the difference
at any rank k < N̄ is monotonically increasing in N̄ , as does
the male to female ratio of the last pregnancy. Conversely,
for a given N̄ , the difference is monotonically decreasing in
the number of desired boys, b∗. Moreover, when N̄ is very
large, the difference takes a very simple expression. Having
had a female instead of a male foetus, parents need one more
boy in the future to compensate and therefore require, in ex-
pected terms, 1/p more pregnancies. As a result, at any given
rank, the mother of a female foetus is expected to have 1/p
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additional pregnancies. In particular, if p = 1/2, she will, on
average, have 2 more pregnancies than if the foetus had been
a boy.12 13

Figure 2.2.1 illustrates the model’s main prediction with
Indian data, India being a country in which the stopping rule
is considered as pervasive. For all children who are at least
10 years old at the time of the survey, we have computed, at
each age between -2 and 10, the average number of ever-born
siblings for boys and girls separately. Before being born (at
age -2 to 0), Indian boys and girls have the same number of
(ever-born) older siblings. It is only after their births that the
number of siblings for a girl becomes higher than for a boy,
the more so the older she gets14.

12These results closely parallel those of Yamaguchi (1989), who investi-
gated the impact of the stopping rule on the expected proportion of boys
in a family and total family size. We show here that these outcomes can
only be driven by younger siblings.

13Note that a similar result can be found using an alternative model
in which parents have lexicographic preferences over the number of chil-
dren and the number of sons. Interestingly, a lexicographic model of the
stopping rule demonstrates that the fertility squeeze (Guilmoto (2009);
Jayachandran (2017)) not only applies to sex-selective abortions but also
to instrumental births. See Appendix 2.B for more details.

14Note that if a child is not yet born (negative ages), she can only have
elder siblings but when she is born (positive ages), her siblings will be
either older or younger siblings. Therefore, the fact that the divergence
in the number of ever born siblings emerges only after the child is born
reflects that the divergence is driven only by younger siblings.
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Figure 2.2.1: Number of ever-born siblings by age and gender
in India
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Data source: DHS India 1993, 1999, 2006, 2015, all children
aged 10+ at the time of the survey.
Reading: at age 10, the average Indian girl has 3.24 ever-
born siblings and the average Indian boy has 2.93 ever-born
siblings.

2.2.2 Self-selective abortion and the composition
of elder siblings

Detecting instrumental births is relatively straightforward,
given the availability of data on birth history. A different
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approach is needed to detect sex-selective abortion since reli-
able information on pregnancies and abortions is not available.
Suppose again that parents can have a maximum of N̄ chil-
dren. To simplify the discussion, we assume here that parents
want exactly b∗ boys and no girls, with N̄ > b∗. As discussed
later, the argument easily extends to the more general setting
in which g∗ > 0. The ’natural’ probability of having a boy
out of each pregnancy is given by p. Each abortion implies
a cost to parents of Cssa, and girls have no value per se. In
this simple framework, parents will always delay abortion as
long as this is feasible, i.e., as long as the number of possible
births left allows them to achieve their objective of b∗ boys.
Indeed, abortion at pregnancy j implies a cost of Cssa while,
by postponing to the next rank, this cost only occurs with
probability (1 − p). In other words, future abortions are, in
expected terms, always less costly than the current one. This
implies that, once a couple decides to practice sex-selective
abortion, other abortions are also carried out in the future in
the event of other female foetuses. We therefore have:

Lemma: Once, for a given pregnancy, sex-selective abor-
tion is chosen, sex-selective abortion is chosen for all future
pregnancies.

In families which only had daughters in their previous preg-
nancies, the result above implies that, since parents want b∗

boys, sex-selective abortion starts to be applied at birth rank
N̄ − b∗ + 1. More generally, for those families that did yet
not achieve their desired number of boys, female foetuses are
systematically aborted at all pregnancies for which the num-
ber of births left available corresponds to the number of boys
that are still missing to reach their objective. In particular,
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full sex-selection is expected in the last rank, k = N̄ . In other
words, at each rank k ≥ N̄ − b∗ + 1, sex-selective abortion is
applied by some families to obtain some of the boys born at
that rank.

That sex-selective abortion is applied at later ranks is sup-
ported by a large body of evidence (see e.g. Lin et al. (2014)).
Figure 2.2.2 illustrates this idea in the case of Armenia. We
report in the Figure the average sex ratio for all births of a
particular rank, before and after the widespread utilization of
the ultra-sound technology (2000). While before 2000, their
sex ratio does not vary across ranks, the picture after 2000
is particularly striking, with a steep increase in the observed
ratio in the later ranks. Thus, the sex ratio at rank 4 reaches
164, implying a proportion of boys in all births of rank 4 of
62.1%. By contrast, the sex ratio at rank 1 is identical to
that prevailing before 2000, indicating a negligible amount of
sex-selective abortion at that rank.

An important implication from the above argument is
that sex-selective abortions are practiced in families with
not enough sons and too many daughters. This observation
implies that, for all boys of rank k ≥ N̄ −b∗ +1 the proportion
of girls among their elder siblings is larger for a boy than for
a girl of the same rank.15

Proposition 2: Under self-selective abortion, at any rank
k ≥ N̄ − b∗ + 1, the proportion of girls among elder siblings is
larger for a boy than for a girl.

15Note that the probability that the sibling of rank k − 1 is a girl is
also larger than for a girl of the same rank. Also, the proportion of girls
among younger siblings is lower for girls than for boys of a given rank.
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Figure 2.2.2: Sex ratio at birth by birth rank in Armenia before
and after 2000
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Data source: DHS Armenia 2000, 2005, 2010 and 2016, all
children born at the time of the survey.
Reading: Prior to 2000, the sex ratio at birth at rank 3 is
111. After 2000, it is 148.

The proposition is at the heart of our test to detect the
occurrence of sex-selective abortion. The argument easily ex-
tends to a setting in which parents also want a given number of
daughters. As a matter of fact, even if gender preferences are
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biased in favour of girls, so that b∗/g∗ < p/(1 − p), the propor-
tion of boys among elder siblings is larger for a girl than for a
boy, so that the proportion of girls among elder siblings is again
larger for a boy than for a girl. As a result, the proposition
simply states the consequences of biased preferences, regard-
less of the preferred gender. Finally, in the particular case in
which b∗ + g∗ = N̄ , sex-selective abortion is already practiced
in the first rank.

2.2.3 Combining Costly Instrumental Births and
Sex-Selective Abortion

As argued above, instrumental births and sex-selective abor-
tions are two complementary mechanisms driving the demo-
graphic composition of families. When sex-selective abortion
becomes available, parents choose the best practice by com-
paring the cost of abortion to the cost of an (additional) in-
strumental child. We consider the case in which N̄ > b∗ + g∗

and, for simplicity, we assume that all costs are constant. As
above, Cssa stands for the cost of abortion, while the cost of
an instrumental birth is given by Cib. We also have to con-
sider the additional cost of failing to reach the desired gender
composition, which we denote by Cf . This cost occurs when
the number of births left available is lower or equal to the
number of boys or girls that still remain to be born. In other
words, the cost of instrumental births changes discontinuously
when it comes at the cost of not reaching the desired gender
composition: the first instrumental births are relatively cheap
draws, the last instrumental births are expensive draws, while
sex-selective abortions are a costly way to cheat the lotery.

Comparing these costs, three cases are possible. In the
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first case, Cssa > Cib + Cf at all ranks, and abortions, being
too costly, are never practiced. When Cssa < Cib at all ranks,
abortion is cheaper than an additional instrumental child, and
parents always resort to sex-selective abortions for each foetus
of the undesired gender. More interesting is the case in which
the cost of an abortion is smaller than the combined costs of
an instrumental birth and of not reaching the desired gender
composition for some ranks, Cib +Cf > Cssa, but greater than
the cost of an instrumental birth at lower ranks: Cssa > Cib.
In this case, parents choose instrumental births for the first
pregnancies and switch to sex-selective abortions at later ones,
when the number of births left available is just equal to the
number of desired boys or girls still required.

As the cost of sex-selective abortion falls, its prevalence
increases as parents turn away from carrying out to term their
last pregnancies. These cases are illustrated in Figure 2.2.3,
where Ñ represents the number of ‘cheap draws’.16 When
abortion costs are small and lower than Cib at all ranks, sex-
selective abortion is practiced from the first pregnancy on, all
born children are of the desired gender and no instrumental
births occur (Figure 2.2.3c). By contrast, when abortion costs
are very large, sex-selective abortion is never practiced and,
at each rank, part of the births are “instrumental” (Figure
2.2.3a). Policies affecting the number of sex-selective abor-
tions will therefore result in opposite changes in the number
of instrumental births. This framework also accomodates poli-

16Formally, Ñ =
(
N̄ − k + 1

)︸ ︷︷ ︸
Remaining draws

− (max(0, b∗ − b) + max(0, g∗ − g))︸ ︷︷ ︸
Remaining required successes

,

with b and g the number of boys and girls already obtained at that rank
and b∗ and g∗ the desired number of boys and girls.
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cies controlling the number of births allowed to parents. For
example, the “One child policy” in China makes Ñ ≤ 0.

Figure 2.2.3: Technology choice as a function of relative costs
and ‘cheap’ draws
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Ñ

Cost

2 1 0 −1 −2

Cib

Cib + Cf

Cssa

(c) Only Sex-
selective abortions

Sex-selective abortions do not therefore imply the disap-
pearance of instrumental births. In the case illustrated in Fig-
ure 2.2.3b, parents in early ranks prefer to carry out the preg-
nancies while turning to sex-selective abortions in later ranks
when these become necessary to reach their desired target. To
illustrate this case, consider a family which desires two boys
and one girl, with p = 1/2 and N̄ = 5. Among all possible
family compositions, suppose that we observe the following se-
quence : girl, girl, boy, girl and finally a boy. Among these
children, the girl born at rank 2 is ‘instrumental’ since she was
not desired per se, but is born as the result of the parental
desire to have two boys. Similarly, the girl at rank 4 is also
instrumental. Finally, at the last rank, parents, having had
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three girls and one boy, will abort in the event of a female
foetus. As a result, the boy born at the last rank is either the
result of a natural birth, with probability p, or of an abortion
with probability 1−p.17 In other words, 1−p girls should have
been born in the last rank, have been replaced by a boy and
should be considered as ‘missing’. Among these five births, we
therefore have two ‘instrumental’ and 1 − p ‘missing’ children.

Two measures of interest can be defined here. The first
one is the share of instrumental births, defined as the number
of instrumental births divided by the total number of children,
and which we interpret as the probability that a child taken at
random is ’instrumental’. The second is the share of missing
children, defined as the number of births that would have been
of a different gender in the absence of abortion, again divided
by the total number of pregnancies. It corresponds to the
probability that a random child is born as the result of at
least one previous abortion.

It is worth noting that, under the assumptions made above,
the sum of these two measures is exactly equal to the share of

17Strictly speaking, in this case, multiple abortions are possible in the
event of a sequence of female foetuses (Dimri et al. (2019)). We therefore
implicitly assume that parents can have a large number of pregnancies,
even though the maximal number of children is given. Under this as-
sumption, we can infer the corresponding expected number of abortions
necessary to obtain the boy who replaces the ‘missing’ girl at rank 5 as
1/(1−p). As a result, the expected number of abortions in the last rank is
exactly equal to 1 (= (1−p)∗1/(1−p)). If the number of possible pregnan-
cies is limited, the expected number of abortions lies between (1 − p) and
1. Note that, given the Bernoulli process assumed, this expected number
quickly converges to 1, even for a limited number of pregnancies. Thus,
if at most six pregnancies in the last rank are possible, the corresponding
expected number of abortions is larger than 0.98.
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instrumental births that would have occurred in the absence
of abortion. This is because our measure of missing children
does not (and cannot) measure the actual number of abortions,
which remain unobserved, but, instead, the number of foetuses
(’potential’ instrumental children) that have been replaced by
a child of the desired gender. Absent abortion, these foetuses
would be born and counted as instrumental births. For in-
stance, in our simple numerical example, consider the set of
families of five children starting with a sequence (g, g, b, g) for
the first four children. In the absence of abortion, a propor-
tion (1 − p) of families present the sequence (g, g, b, g, g) and
a proportion p of families, (g, g, b, g, b). On average, there-
fore, 2 + (1 − p) children are instrumental. When abortion
is available, the last female foetus is replaced by a male in
(1 − p) families, and the only sequence observed is (g, g, b, g, b),
with two instrumental children and (1 − p) missing girl, which
corresponds exactly to the (1 − p) instrumental child above.
This property strikingly illustrates this idea that instrumental
births and sex-selective abortion are the two complementary
dimensions of the stopping rule.18

Even when sex-selective abortions substitute for instrumen-
tal births, the latter remain quantitatively significant. To il-
lustrate this point, we computed the share of instrumental
births and missing children observed in families that desire 1
girl and either 1 or 3 boys, with a probability p = 0.5. Figure
2.2.4 presents the evolution of the two measures for different
levels of the maximum number of children (up to 8).

18This property holds as long as the availability of abortion does not
change the actual number of births, nor the desired number of boys and
girls. Our assumptions of given preferences and of a given maximum
family size satisfy these two requirements.
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Figure 2.2.4: Decomposition of stopping rule between instru-
mental births and missing births
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of 1 and a maximum number of births N̄ of 3, there are on
average 30% of children born under the stopping rule: 20% be-
cause of instrumental births and 10% because of sex-selective
abortions.

Even if abortion is available, the share of instrumental
births remains sizeable and, in general, exceeds the share of
missing children. Thus, when parents desire 3 boys and 1 girl,

88



with a maximum family size of 6, the share of instrumental
births is equal to 24.3% (out of which 22.5% are instrumental
girls and 1.8% instrumental boys) while the share of missing
births is equal to 9.2% (out of which 8.9% are missing girls
and 0.3% missing boys). In the absence of abortion, one would
have observed 33.5% instrumental children. Also, the share of
’missing’ children becomes quickly negligible when the family
size is large. For instance, focusing again on the case in which
parents desire 3 boys and 1 girl, the share of missing children
falls down to 3.2% when the maximum family size is equal to 8
(as compared to a share of instrumental births equal to 31.2%).
It is only when the number of desired boys and girls is very
close to the maximum number of children that the share of
missing births gets relatively large. Thus, when parents can
have up to 5 children, the share of missing and the share of in-
strumental children are both equal to 15.8%. By construction,
when the desired number of boys and girls is exactly equal to
the maximum family size, no instrumental births are observed
and the share of missing children is equal to 28.1%.19

2.3 Prevalence of the stopping rule
across countries

Given the demographic consequences of the stopping rule, our
theory offers a precise and straightforward strategy to detect

19This is in line with (Jayachandran (2017)) who highlights the in-
creased occurrence of abortions under declining fertility. In the context of
our model, we indeed observe an increase in the share of missing children,
and therefore in the occurrence of abortion, as the maximum family size
decreases.
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and measure the prevalence of the stopping rule, without rely-
ing on partial evidence or priors about the prevailing practices.
We first derive detection tests based on the sibling composi-
tion of each child. For instrumental births, our test measures
the number of younger siblings she has while, for sex-selective
abortion, we focus on the gender composition of her elder sib-
lings. We present our main results at the world scale, before
proposing measures of the relative importance of instrumental
and missing children in countries that implement the stopping
rule. We finally provide a more detailed analysis of the Indian
case.

In our empirical analysis, we use the Demographic and
Health Survey (DHS) of all countries available. This repre-
sents 82 countries, 2,995,509 mothers and 10,361,884 births.
The DHS are particularly valuable to us as they are compa-
rable across countries, and record the fertility history of ever
married women aged 13 to 49. We can therefore reconstruct for
each child at any age the number of siblings, older or younger,
she had. Appendix 2.D lists the countries and surveys we
used, as well as the corresponding number of observations.
For the detection of sex-selective abortion, we focus on chil-
dren born after 2000, since the ultra-sound technology was not
widespread enough before that date. This restricts our sample
to 1,685,160 mothers and 3,754,614 births in 69 countries.20

20Ideally, we would have liked to also analyze the cases of Korea, Japan,
Taiwan or China. Unfortunately, appropriate data were either not avail-
able or not directly comparable to the information provided by the DHS.
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2.3.1 Detecting the stopping rule

Instrumental Births

As shown in the preceding section, the difference in the num-
ber of younger siblings between girls and boys of any rank
is exactly zero in the absence of stopping rule. This bench-
mark does not depend on a natural sex ratio, nor on whether
a particular child is a last born or not. Our measure of instru-
mental births simply compares the difference in the number
of younger siblings of girls and boys to this logical benchmark.
When instrumental births prevail in favour of boys, this dif-
ference is necessarily greater than zero. When favoring girls,
this difference is smaller than zero. As discussed in Section
2.2, it can also be aggregated across children and families in a
straightforward manner.

To illustrate our approach, we run the following estima-
tions for India and Bolivia:

Nb Younger Siblingsit =
T∑

t=0
(αt ∗ageit +βt ∗femalei ∗ageit)+ϵit

(2.1)

Nb Younger Siblingsik =
K∑

k=1
(αk∗rankik+βk∗femalei∗rankik)+ϵik

(2.2)
where Nb Younger Siblingsit is the number of ever born

younger siblings of child i at age t and Nb Younger Siblingsik

is the number of ever born younger siblings of child i at rank k.
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For each child between zero and ten year old or between rank
1 and 6, we record all her younger siblings at each age, with an
age or rank-varying number of younger siblings. (We also clus-
ter standard errors at the primary sampling unit and weight
each observation by the DHS sample weight.) As our estimates
describe parental preferences, there is no a priori reasons to
include additional controls in the specifications. Figure 2.3.1
below reports our estimates.

Figure 2.3.1 strikingly illustrates the prevalence of instru-
mental births in India, as the number of younger siblings at
all relevant ages or ranks is systematically larger for girls than
for boys. (These results replicate, in a regression format, the
descriptive statistics presented in Figure 2.2.1 above.) As ex-
pected, this differential increases with age, to reach an average
of 0.3 extra siblings at age 10. By contrast, for ranks, the re-
lation is non-monotonic as the number of additional children
declines at higher ranks. We also report the corresponding
estimates for Bolivia, for which no such differential exists. At
any rank, at any age, the average Bolivian girl has the same
number of younger siblings as the average Bolivian boy.

We now provide the test for the prevalence of instrumental
births across all the countries surveyed. Since the difference in
the number of younger siblings prevails at all ranks and ages,
we use equation 2.3 to estimate for each country a condensed
version of equations 2.1 and 2.221:

21Note that, when aggregating over all ranks, the average birth order of
girls is lower than that of boys (Basu and de Jong (2010)). Not controlling
for ranks therefore makes our measure higher (in absolute value). Since
the ’aggregate-rank’ effect is a direct consequence of instrumental births,
and as our measure solely aims at detecting the prevalence of instrumental
births, this is not an issue.
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Figure 2.3.1: Differential number of ever-born younger siblings
by age and rank, India and Bolivia
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Data Source: DHS Bolivia 1989, 1994, 1998, 2003 and 2008
and DHS India 1993, 1999, 2006 and 2015.
Reading: In India, at age 10, girls have on average 0.3 more
younger siblings than boys of the same age. Girls born at rank
5 have on average 0.24 more younger siblings than boys of the
same rank. No difference across gender is perceivable either
by age or by rank in Bolivia.

Nb Younger Siblingsi = β ∗ femalei + ϵi (2.3)
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The coefficient β corresponds to the difference in the aver-
age number of younger siblings a girl faces compared to a boy.
Two additional remarks are in order. First, as illustrated by
Figure 2.3.1, one could use children of a particular age to carry
out our test. When measuring the difference in the number of
younger siblings at younger ages, the measure is increasingly
influenced by birth spacing which may vary across gender (see
in particular Jayachandran (2015)). This in itself is not a is-
sue for a measure of detection of the instrumental births, as
shorter birth spacing associated with the less desirable gender
simply translates into a larger number of younger siblings at
a young age. On the other hand, focussing on older children
implies that our measure applies only to a more distant past
and does not provide information on more recent years. Given
these two trade-offs, we choose here to focus on all children,
but our main results are robust when focussing on children of
a specific age. Second, one could also choose a particular rank
over which to apply our measure and focus, for instance, on
the eldest child of each family. In theory, a test on the differ-
ence in the number of younger siblings between first-born girls
and boys provides a necessary and sufficient condition for the
detection of the instrumental births. This is because the gen-
der composition of younger siblings is given by a probability
distribution so that a test on the eldest child carries enough
information for the test to apply and requires only to know the
gender of the eldest child and the number of younger siblings.
In doing so however, we neglect useful information related to
the consequences of the gender of siblings of higher ranks. In
a ’small’ sample, focussing on a particular rank therefore pro-
vides a sufficient but not a necessary test of the instrumental
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births.

Figure 2.3.2: Differential number of ever-born younger siblings
of girls, by country
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Data Source: All DHS.
Reading: In Nepal, girls have on average 0.27 more younger
siblings than boys.

We report in Figure 2.3.2 the differential number in
younger siblings of girls for all countries present in our sam-
ple, by increasing order. On the right-hand side of the Figure,
one finds a substantial cluster of countries with a very high
difference in the number of younger siblings, indicating the
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prevalence of instrumental births in these countries. The lat-
ter does not only include the ’usual suspects’, such as Nepal,
India, Pakistan or Bangladesh, but also countries of Eastern
Europe and Asia, such as Albania, Turkey, Armenia, Azer-
baijan, Jordan, Kazakhstan, Kyrgyzstan, Tajikistan or Viet-
nam, and Northern Africa, such as Egypt, Morocco or Tunisia.
This fact has been essentially ignored by the economic liter-
ature (Ebenstein (2014) is a notable exception). Second, a
few countries (Cambodia, Cameroon, Colombia, DR Congo,
Haiti, Indonesia, Mali, Niger, Nigeria and Trinidad), display
a much smaller (in absolute value) but negative coefficient,
suggesting the presence of a stopping rule favoring girls and
not boys.22 This possibility is hardly mentioned in the eco-
nomic literature (Williamson (1976)), but our gender neutral
approach allows to identify such a case. Most countries from
Sub-Saharan Africa do not apply the stopping rule. (This last
statement has to be qualified, however, owing to the relative
prevalence of polygamy in most of these countries. This may
have implications that we discuss in the subsection 2.3.2.)

Sex-selective Abortion

Our measure of sex-selective abortion compares at the child
level the gender composition of his or her elder siblings and
does not require a particular benchmark, such as the one given
by a natural sex ratio.23 When sex-selective abortion does not

22This pattern is grossly consistent with countries in which brideprice-
rather than dowry - is practiced, such as in Indonesia (Ashraf et al. (2020))
or Sub Saharan African countries (Corno et al. (2020))

23An alternative measure could simply focus on the gender of the preced-
ing child, but this strategy does not use the full information available to
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apply, the gender distribution among elder siblings is identical
across boys and girls of any rank so that no difference can
emerge. By contrast, when sex-selective abortion applies, boys
tend to have more sisters and girls more brothers among their
elder siblings.24 The prevalence of sex-selective abortion can
be illustrated using the following estimation:

Sh elder girlsit =
∑

t

(γt ∗ yearit + δt ∗ malei ∗ yearit) + ϵit (2.4)

where Sh elder girlsit is the share of sisters among alive elder
siblings of a child i born in year t.25 Note that, unlike our de-
tection test for instrumental births, the coefficient of interest
does not vary with age. This is because the composition of
the elder siblings is given and does not vary with the age of
the child. By contrast, we carry out our estimations at differ-
ent birth years t so as to compare the current situation to that
prevailing before the spread of ultra-sound technologies. Alter-
natively, we can also estimate the prevalence of sex-selective

the parents at the time of pregnancy. While less efficient, it also provides
a sufficient condition for detecting sex-selective abortion.

24Note that it is also the case that boys have more sisters among their
younger siblings compared to girls. Nevertheless, even when sex-selective
abortion is not applied, the gender distribution among younger siblings is
not the same for boys and girls, as girls have more younger siblings under
the stopping rule. This may become a problem in small samples.

25Given that the decision to abort selectively depends on the composi-
tion of the family at the time of the pregnancy, we focus on elder siblings
alive at the time of birth.
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abortion for children at specific ranks k over a given period:

Sh elder girlsik =
∑

k

(γk∗rankik+δk∗malei∗rankik)+ϵik (2.5)

Focussing again on India and Bolivia, the top panel of
Figure 2.3.3 below presents our estimates over several birth
cohorts starting in the mid-seventies. On the bottom panel,
we report the corresponding estimates for children of different
ranks born after 2000.

As in the analysis of instrumental births, India and Bolivia
offer a contrasting image. While Bolivia appears essentially
gender neutral, with no noticeable differences between girls
and boys, India exhibits a strong prevalence of sex-selective
abortion for all ranks once the ultra-sound technology became
widely available at the end of the nineties. Since then, the
incidence of sex-selective abortion increases monotonically.

We now provide a test of sex-selective abortion across all
countries which, for the sake of presentation, is based on a
simplified version of equation 2.5, averaging over all ranks:

Sh elder girlsi = δ ∗ textmaℓei + ϵi (2.6)

The δ coefficient, estimated separately for each country,
corresponds to the difference after 2000 in the average propor-
tion of girls among elder siblings of girls as compared to boys.
Figure 2.3.4 presents these estimates by increasing order of
magnitude.

On the right-hand side of the Figure, we find the countries
with a significant difference in the gender composition of elder
siblings. As expected, these are less numerous than in the de-
tection of instrumental births, owing to the limited availability
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Figure 2.3.3: Differential share of girls in elder siblings by
period and rank, India and Bolivia
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Data Source: DHS Bolivia 1989, 1994, 1998, 2003 and 2008
and DHS India 1993, 1999, 2006 and 2015.
Reading: In India, from birth cohort 1990 onwards, boys start
having a larger proportion of girls among their elder siblings
than girls. There is no such difference in Bolivia. For births
taking place after 2000 in India, at each birth rank, boys have
a larger proportion of girls among their elder siblings than girls.
There is no such difference in Bolivia.
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Figure 2.3.4: Differential share of girls in elder siblings of boys,
all countries
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Data Source: All DHS, births taking place after 2000.
Reading: In Azerbaidjan, boys have on average a proportion
of girls among their elder siblings larger by 12.39 percentage
points as compared to that of girls.

of the ultra-sound technology. Among the countries identified,
one finds India, Albania, Armenia, Azerbaidjan and Tajikistan
in which the stopping rule also prevails, but also Ukraine. At
much lower levels of significance, one also finds Cote d’Ivoire,
Ethiopia, Namibia and Zimbabwe. As discussed in Section
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2.3.1, our measure remains silent as to whether sex-selective
abortion favors a particular gender. The observed sex ratio is
needed to infer the prevailing gender bias.

2.3.2 Limits of our approach

We now discuss more systematically these two tests. The mea-
sures we propose are by themselves meaningful. Thus, our
test of instrumental births directly provides a measure of the
number of additional siblings and, therefore, the sibling com-
petition a girl is exposed to compared to a boy. Our test of
sex-selective abortion is a direct measure of gender diversity
within families. However, in terms of gender preferences, our
measures do not lend themselves to straightforward interpre-
tations. They indeed take values that depend on the desired
number of boys and girls as well as the maximal family size,
which vary across time and space. As a result, our measures
cannot be directly used to compare the intensity of gender
preferences across countries.26 In this respect, our measures
therefore only provide sufficient conditions for the prevalence
of instrumental births and sex-selective abortions.

Second, our measures only capture biases in gender prefer-
ences. For instance, if families have the same desired number
of boys and girls ( b∗

g∗ = p
1−p), no differential across gender can

arise and our two measures are equal to zero. As a result,
a non-conclusive detection test cannot differentiate between
families that have no preference regarding the gender of their
children and families that apply the stopping rule to achieve
an equal number of boys and girls. A similar remark holds if,

26As discussed in McClelland (1979), this qualification also holds for
other classical measures, such as the parity progression ratio.
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in the population, parents have opposite gender preferences,
with about half of them applying the stopping rule in favour
of boys and the other half in favour of girls. Clearly, all widely
used tests also suffer from this shortcoming. What we actually
detect through our tests is whether preferences are on average
biased towards a particular gender in a population.

Third, our two measures should be implemented concur-
rently in order to assess the prevalence of the stopping rule, as
they refer to two separate mechanisms of the same fundamen-
tal behaviour. Moreover, since sex-selective abortion tends
to be applied at later ranks, it does not neutralize the conse-
quences of the stopping rule in earlier ranks but makes instru-
mental births increasingly harder to detect empirically at later
ranks. By contrast, instrumental births have, by themselves,
no impact on the detection of sex-selective abortion since they
cannot affect the gender composition of older siblings.

An additional difficulty comes from the possibility of a se-
lective recall bias. Under-reporting children has two conse-
quences on our measures: on the one hand, when computing
our measures on children of rank k, some children of rank k
are missing, which leads to missing observations in that rank
and a possible selection bias; on the other hand, those chil-
dren will not be accounted for when computing our measures
on their siblings; leading to a measurement bias. As long as
the recall bias is gender neutral, so that boys are as likely to
be under-reported than girls, some observations are missing,
but our measures remain unbiased. In demographic surveys,
the main recall bias come from under-reporting elder girls who
died in early age. In our measure of instrumental births, these
’forgotten girls’ reduce the number of younger siblings of their
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elders by the same amount, independent of their gender. As a
result, the difference in the number of younger siblings of these
elders remains unchanged. There is therefore no measurement
bias at this level. However, some elder girls, with a larger
number of younger siblings, are systematically not accounted
for (the selection bias). This biases downwards our measure,
which still provides a sufficient condition for the prevalence of
instrumental births.

Concerning sex-selective abortion, there are no clear rea-
sons to believe the recall bias to cause a systematic selection
bias in our estimates, as long as the girls unaccounted for
present a gender distribution among their elder siblings that
is similar to that of an average girl in the sample. For children
that are observed, however, there are good reasons to believe
that these forgotten girls affect differently the gender compo-
sition of elder siblings. One indeed expects underreporting to
be more frequent in families with a stronger son preference. In
these families, the under-reported girls tend to be followed by
more younger brothers. The fall in the proportion of girls in
elder siblings therefore affects the observed boys much more
than the observed girls. As a result, boys on average present
an even lower proportion of sisters in their elder siblings com-
pared to girls of the same rank, leading to a downward bias of
our measure. Our test again provides a sufficient condition.27

We also discuss in Appendix 2.C the impact of other potential
observational biases on our tests, as those present in household
rosters which systematically omit elder children living outside

27By contrast, traditional measures based on the observed sex-ratio
are systematically affected by this under-reporting, over-estimating the
occurrence of sex-selective abortion.
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the household.
Finally, our two measures are not appropriate in all set-

tings. First, they require parents to have on average more
than one child. Our measures can not be used to analyze, for
instance, the one child policy in China and its demographic
consequences.28 The sex ratio at birth, with all its shortcom-
ings, turns out to be the only measure available. Second, our
test for instrumental births applies essentially to monogamous
societies. In polygamous settings, one cannot exclude the pos-
sibility that men having a strong preference for boys choose
to have more children with the wife that give them a son at
first birth. Under this argument, mothers with a female first
born have fewer children and boys, on average, end up having
a larger number of younger siblings than girls. (This however
points to a limitation of regular surveys which do not collect
systematic information on the father of the child.)

2.3.3 Measuring the prevalence of the stopping
rule

We now intend, on the basis of the previous estimates, to quan-
tify the prevalence of the stopping rule. We want, in particu-
lar, to estimate (1) the gender bias in abortion rate and the
resulting share of missing children, (2) the desired fertility by
gender, and in particular, the difference between the number
of desired boys and the number of desired girls and, finally, (3)

28This limitation also holds for all measures relying on family size to
detect instrumental births (such as the parity progression ratio or the
measures proposed by Basu and de Jong (2010); Yamaguchi (1989); Rossi
and Rouanet (2015)) or on ranks to detect sex-selective abortion (Bhalotra
and Cochrane (2010)).
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the share of instrumental children by gender. As is now clear,
our previous tests do not provide by themselves such indica-
tors and we need to compute these relying, on the one hand,
on a particular value of the natural sex ratio and, on the other
hand, on a simple model that structures parental preferences.
We assume this model to be common for the set of families
under analysis (e.g. a country over a given period). After de-
scribing our empirical strategy, we first present the estimated
temporal evolution of some critical indicators for India. We
then provide a summary table of these indicators for all the
countries in which a gender bias was detected through our two
tests, before returning to the Indian case, which we investigate
in more details by state and caste.

Empirical Approach

We first measure sex-selective abortion by comparing a natu-
ral sex ratio to the observed sex ratio, along the spirit of the
methodology proposed by Anderson and Ray (2010). Note
that this simple comparison does not provide an estimate of
the total number of abortions per gender, since these cannot
be inferred using the actual number of children born by gender.
We are therefore unable to estimate for each gender separately
the number of abortions or ‘replacements’ that may have oc-
curred. What we can do instead, through this comparison,
is to estimate the excess number of ‘replacements’ against a
particular gender as compared to the other. For the sake of
presentation, we again assume that abortion rates are biased
against girls, so that this comparison provides us the share of
missing girls. Let Nb and Ng stand for the observed number
of boys and girls. We first compute, given the number of exist-
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ing children, the counterfactual population of girls which we
should observe under the natural sex ratio, where p stands for
the ’natural’ probability of a boy at each birth. We refer to
this number as the potential population of girls, NP

g , defined
as follows:

NP
g = (1 − p)(Nb + Ng)

This expression allows us to define the share of missing
girls at birth among all children, mg:

mg =
NP

g − Ng

Nb + Ng

For instance, suppose that we observe in a population of
200 children 110 boys and 90 girls. With a natural sex ratio
of 100 girls for 100 boys, we should have observed a potential
population of 100 girls, and the proportion of missing girls is
then equal to 10/200, that is 5%.29

In a second step, we measure the share of instrumental chil-
dren, by estimating the desired number of boys and girls. In
order to do so, we calibrate a simple model of a representative

29The proportion of missing girls computed here differs from that in An-
derson and Ray (2010) since we compute the number of girls that should
‘replace’ boys under the natural sex ratio instead of the additional number
of girls that should have been born given the number of boys observed.
We therefore rely on the actual population as a natural benchmark, keep-
ing total population fixed, while they consider a potential population of
children that should be alive but are not observed. The rationale for us-
ing a measure of potential population in Anderson and Ray (2010) lies in
their focus on adult excessive mortality, while our measure of instrumen-
tal children, used later, requires us to focus on children that are actually
born.
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household which would like to have a given number of boys,
b∗, and a given number of girls, g∗ for a maximum family size
given by N̄ . We define X as the total number of births neces-
sary to obtain b∗ boys and g∗ girls, given a probability of male
birth equal to p. Under a discrete approach, the probability
distribution of X is the sum of two truncated negative bino-
mial distribution, and is given by the following expression30:

P (X = x|b∗, g∗, p) =
(

x − 1
b∗ − 1

)
pb∗(1 − p)x−b∗

+
(

x − 1
g∗ − 1

)
(1 − p)g∗

px−g∗

for x ∈ N
∈ {b∗ + g∗, N̄} and b∗, g∗

≥ 1

The first term of this expression represents the probability
to have b∗ −1 boys in the first x−1 births and a boy at the xth

birth. The second term similarly represents the probability to
have g∗ −1 girls and b∗ boys in the first x−1 births, and a girl
at the xth birth. In the following, we rely on a continuous ver-
sion of this expression, in which b∗, g∗ ∈ R+ and the binomial
coefficients are replaced by Gamma functions:

fX(x; b∗, g∗, p) ∝ Γ(x)
Γ(b∗)Γ(x − b∗ + 1)

pb∗(1 − p)x−b∗

+ Γ(x)
Γ(g∗)Γ(x − g∗ + 1)

(1 − p)g∗
px−g∗

30Note that when the desired number of children of one gender, g∗ for
instance, is equal to 0, the probability distribution of X reduces to a
simple negative binomial distribution with parameters b∗ and p.
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for x > b∗ + g∗ and b∗, g∗

≥ 0

Under this expression, the distribution of the number of
younger siblings for boy (Xb) of the a first rank is given by
fXb

(x; b∗ − 1, g∗, p). Similarly, the distribution of the number
of younger siblings for a girl (Xg) of the first rank is given by
fXg (x; b∗, g∗ − 1, p).31 Our empirical strategy relies on the
fact that the number of younger siblings of the first born,
given his (her) gender, provides all the information needed
in terms of family size and composition (given the distribu-
tion above). This property is directly related to our previ-
ous observation according to which focussing on the first born
is, in a large sample, necessary and sufficient for the detec-
tion of the stopping rule. We first compute µb and µg, the
average number of younger siblings for first-born boys and
girls observed in the sample. Given a large enough number
of observations, we know that µb → E(Xb|b∗ − 1, g∗, p) and
µg → E(Xg|b∗, g∗ − 1, p), the expected number of younger sib-
lings for a first-born boy or girl given the distribution above.
Given particular values of p and N̄ , we then compute the ex-
pected value of Xb and Xg for all possible values of b∗ and g∗.32

31Strictly speaking, one needs to add a normalizing multiplicative con-
stant for this expression to integrate to 1. This constant, which we will
estimate, depends on b∗ and g∗ but quickly converges to 1 for large enough
values of b∗ or g∗.

32The value of p used in these computations corresponds to the currently
observed probability of a male birth across the population and takes into
account the fact that some sex-selective abortions already took place. The
value of N̄ is chosen to be equal to the 90th percentile in the number of
children observed in the country under analysis. Our results are essentially
unaffected by the choice of this particular value as compared to the 80th,
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We then select the values of b∗ and g∗ which minimize the dis-
tance between the observed means µi and the corresponding
expected values E(Xi) for i = b, g, where the distance is de-
fined as the sum of the differences in absolute value. To obtain
the number of instrumental children of a particular gender, we
simply compute the difference between the actual and the de-
sired number of children.33

Measuring instrumental and missing births across
countries

We start by illustrating the evolution of gender preferences
in India. For that country, we compute the desired numbers
of children by gender, over intervals of five years starting in
1975 (corresponding to the year of birth of the child concerned).
Figure 2.3.5 below presents the estimated desired total fertility
(by summing the number of desired boys and girls) on the left
axis as well as the the proportion of desired boys among these,
which is a direct measure of gender biased preferences (on the
right axis).

Over the whole period, desired fertility decreased in India
in which it fell from about 3.3 in 1980 to 1.75 in the recent
years. The proportion of desired boys in total desired fertility
is relatively stable at around 60%, which corresponds to a
’desired’ sex ratio of 150 boys for 100 girls (0.57/(1 − 0.57)).

We then compare the desired to the actual number of girls
and boys and compute the share of instrumental boys and girls.

95th or 99th percentiles.
33It is important to note that our approach is valid as long as sex-

selective abortions are applied in the last ranks and simply replace the
gender of the last born without affecting the actual number of births.
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Figure 2.3.5: Desired fertility & Proportion of desired boys in
India
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Data Source: DHS India 1993, 1999, 2006 and 2015.
Reading: Over the period 1995-2000, the total desired fertil-
ity is 2. The desired proportion of boys is 62%.

We also compute the share of missing girls at birth using each
country’s pre-1980 sex ratio as estimated in Chao et al. (2019)
as the natural sex ratio at birth.34 Figure 2.3.6 reports for an
average family the number of desired and instrumental chil-

34See Appendix 2.E for a list of the ratio used.

110



dren, separately for boys and girls, as well as the number of
missing girls. Over the whole period, the desired number of
boys and girls decreased monotonically, while the number of
instrumental children remains constant, which implies that the
share of instrumental boys and girls increased throughout. As
expected, girls are also more likely to be instrumental. Start-
ing after 1990, the share of missing girls at birth is by contrast
modest and remains stable.

We now replicate our approach to estimate the share of
instrumental and missing children for all countries which we
identify as applying the stopping rule. Using all births oc-
curring after 2000, we identify 18 countries: Albania, Arme-
nia, Bangladesh, Cameroon, Colombia, Comoros, DR Congo,
Egypt, India, Jordan, Kenya, Nepal, Niger, Pakistan, Rwanda,
Tajikistan, Turkey and Yemen. Table 2.3.1 reports the fol-
lowing indicators: the desired family size, the desired sex ra-
tio,35 the actual sex ratio, the proportion of instrumental boys
among alive boys, the proportion of instrumental girls among
alive girls, the share of instrumental children, the share of ex-
cess instrumental girls36 and the share of missing girls at birth.
The last column presents the prevalence of the stopping rule
by summing the share of excess instrumental girls and that of
missing girls at births. The prevalence of the stopping rule

35Defined as above as the ratio between the number of desired boys and
the number of desired girls.

36Computed as the difference between the number of instrumental girls
and the number of instrumental boys divided by the total number of
children. Only the share of excess instrumental girls can be compared to
that of missing girls at birth, since the latter is, strictly speaking, the net
difference between the share of missing girls and the share of missing boys
(which we cannot separately observe nor estimate given our approach).
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Figure 2.3.6: Desired fertility, proportion of instrumental chil-
dren and missings girls at birth in India
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Data Source: DHS India 1993, 1999, 2006 and 2015.
Reading: Over the period 2010-2015, the number of missing
girls is 0.05, that of instrumental boys 0.69 and of instrumental
girls 1.02 on average per family.

is the share of children directly affected by the stopping rule,
either because they are instrumental or because they are born
as a result of sex-selective abortions. Most of these countries
display a strong bias in preferences for boys, with a desired
sex ratio that varies between 109 (for Kenya) and 232 (for
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Armenia), and is particularly large in Asian countries as it
never falls below 117 (in Pakistan), largely above the actual
sex ratios.

Given this bias, the proportion of instrumental girls is sys-
tematically larger for girls than for boys. In Armenia, for
instance, 64.5% of girls can be considered as instrumental, as
against 25.3% of boys. In India, the corresponding figures are
53.4% and 34.2% for girls and boys respectively. Overall, the
proportion of instrumental children hovers around 30%, with a
proportion of instrumental girls close to twice as large as that
of boys. On the other hand, 5 countries, Colombia, Cameroon,
Comoros, Niger and DR Congo display a bias in preferences
towards girls. The prevalence of the stopping rule is very di-
verse, with up to 21.8% children affected in Armenia and as
compared to 1.6% in Kenya or 0% in Colombia.37 Decompos-
ing the stopping rule between its instrumental births and miss-
ing births components underlines the overall predominance of
instrumental births.

The proportion of missing girls at birth, which we can
only estimate for countries identified as practicing sex-selective
abortion in the relevant sample, reaches 4.4% in Armenia, 1.7%
in Albania, 3% in Tajikistan and 3.7% in India. The corre-
sponding shares of excess instrumental girls are estimated at
17.4% for Armenia, 14.6% for Albania, 6.8 % in Tajikistan and
8.5% for India, largely exceeding missing girls. In other words,
countries practicing the stopping rule overwhelmingly practice
instrumental births only. In the countries in which both in-

37Our test detects Colombia as practicing the stopping rule. However
the difference in the number of younger siblings between girls and boys,
while significant, is small enough so that our model does not detect biased
preferences.
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strumental births and sex-selective abortion is practiced, the
latter is at lower magnitude compared to instrumental births.
For stopping rule countries taken as a whole, stopping rule
affects 9.1% of children, more than two third of which (6.4%)
via instrumental births. Therefore, focusing on sex-selective
abortion only, as is typically done in the literature, leads to
an underestimation of more than 66% of the prevalence of the
stopping rule.
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Table 2.3.1: Preferences & Fertility

Desired Desired Actual Instrumental Instrumental Instrumental Excess instrumental Missing girls Stopping Rule
family size sex ratio sex ratio boys (%) girls (%) children(%) girls (%) (%) (%)

Armenia 1.26 232 112 25.26 64.44 43.9 17.42 4.35 21.77
Albania 1.38 207 101 25.95 59.95 42 14.61 1.73 16.34
Tajikistan 2.54 173 106 16.46 37.13 25.44 6.81 2.98 9.79
Jordan 2.74 169 102 21.98 44.48 32.21 8.23 0 8.23
Nepal 1.81 166 107 27.43 51.07 38.58 9.59 0 9.59
Rwanda 3.06 155 106 14.06 28.22 20.23 4.36 0 4.36
Egypt 2.2 153 105 23.85 42.27 32.38 6.77 0 6.77
India 1.64 148 110 34.17 53.36 43.52 8.49 3.74 12.24
Yemen 3.37 146 110 17.45 31.06 23.58 4.41 0 4.41
Bangladesh 1.76 123 107 28.47 37.51 32.83 3.36 0 3.36
Turkey 1.62 122 109 35.69 45.2 40.35 3.99 0 3.99
Pakistan 3.1 117 105 26.83 33.34 29.98 2.32 0 2.32
Kenya 2.34 109 100 35.33 39.32 37.3 1.59 0 1.59
Colombia 1 100 104 57.62 57.62 57.62 0 0 0
Cameroon 2.76 83 109 27.61 20.72 24 -2.26 0 2.26
Comoros 2.99 82 100 32.81 24.86 28.67 -2.78 0 2.78
Niger 3.87 80 103 19.57 13.47 16.29 -1.81 0 1.81
DR Congo 3.59 77 103 25.87 17.09 21.15 -2.77 0 0
Total 1.94 138 108 32.27 47.04 39.4 6.62 2.42 9.17
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We end this empirical investigation by focussing on the case
of India more finely, distinguishing between states and castes.
We first replicate our approach over the 17 largest states of
India, for all births occuring after 2000. Table 2.3.2 reports
the same indicators as above for each state, which we rank
by decreasing order of the desired sex ratio. As widely doc-
umented in the literature (following Sen (1990)), we observe
a strong divide in gender preferences between North-Western
and Southern states. Thus, the desired sex ratio is as high as
246% in Gujarat, 243% in Haryana or 202% in Punjab, but
falls down to 123% in Tamil Nadu or 129% in Andra Pradesh.
(The actual sex ratio follows closely this ranking, from the
exceptionnally high 125% and 119% in Haryana and Punjab
to around 106% in Southern States.) Thus, in Gujarat and
Haryana, for each desired girl, parents desire almost 2.5 boys.
These strong biases in the desired sex ratios in the North imply
a very large proportion of instrumental girls: 58.3% of girls are
instrumental in Haryana, as compared to 19.1% of the boys.
By contrast, in regions in which the desired sex ratio is more
balanced, the share of instrumental girls and boys are much
closer: in Andhra Pradesh, for instance, these two shares are
much closer from one another.
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Table 2.3.2: Preferences & Fertility across Indian States and Castes

Desired Desired Actual Instrumental Instrumental Instrumental Excess instrumental Missing girls Stopping Rule
family size sex ratio sex ratio boys (%) girls (%) children(%) girls (%) (%) (%)

States

Gujarat 1.66 246 114 20.18 60.43 38.32 16.16 4.74 20.9
Haryana 1.68 243 125 19.14 58.27 36.5 15.21 6.87 22.08
Punjab 1.36 202 119 27.36 60.63 43.23 14.62 5.65 20.27
Himachal Pradesh 1.26 200 106 31.48 64.76 47.89 15.96 2.92 18.88
Madhya Pradesh 1.84 197 106 23.88 54.85 38.17 12.45 2.94 15.39
Bihar 2.41 180 107 19.09 43.39 29.84 8.54 3.19 11.74
Maharashtra 1.42 168 114 31.04 55.94 43.05 10.91 4.77 15.68
Odisha 1.67 165 107 26.02 48.94 36.73 9.02 0 9.02
Rajasthan 1.85 164 114 29.03 52.47 40.19 9.78 4.69 14.47
Uttar Pradesh 2.72 157 112 14.08 28.67 20.42 4.51 4.11 8.62
Goa 1.03 151 107 39.11 59.49 49.27 10.05 0 10.05
Karnataka 1.25 150 106 38.26 58.24 48.18 9.64 0 9.64
West Bengal 1.02 149 108 45.22 64.63 55.12 10.81 0 10.81
Assam 1.94 140 106 23.81 37.81 30.36 5.01 0 5.01
Andhra Pradesh 1.6 129 106 25.37 35.98 30.41 3.8 2.92 6.72
Tamil Nadu 1.25 123 109 36.98 47.11 41.96 4.36 3.45 7.81
Kerala 2.07 105 105 0 0 0 0 0 0

Castes

High Castes 1.42 246 114 21.59 62.55 40.41 17.07 4.64 21.72
Other Backward Caste 1.83 186 111 22.53 50.14 35.1 10.55 4.07 14.62
Scheduled Tribe 1.9 175 106 26.54 52.63 38.78 10.61 2.83 13.44
Muslims 2.29 160 108 24.62 45.61 34.36 7.95 0 7.95
Scheduled Caste 1.82 156 109 30.43 51.67 40.61 8.92 3.44 12.36
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In the Southern states, the practice of sex-selective abor-
tion is undetected in Karnataka, Goa and Odisha, and remains
relatively negligible in other States. By contrast, self-selective
abortion is widely practiced in the Northern States of Haryana
and Punjab, where the shares of missing girls are as high as
6.9% and 5.7%. The share of missing girls in the Northern
States fluctuates around 4%. This being said, the excess in-
strumental girl share remains largely above those figures, indi-
cating again that, in the implementation of the stopping rule,
the practice of instrumental births remains preponderant. For
instance, excess instrumental girls represent 15.2% of children
in Haryana while the share of missing girls is order of magni-
tude lower, at 6.9%. That is, in Haryana, 22.1% of children
are affected by the stopping rule, but focusing on sex-selective
abortion alones leads to an understimation of more than two
third of the prevalence of the stopping rule.

We report in the lower panel of the Table a similar exercise
distinguishing between five social groups: the High Castes38,
the Other Backward Castes, the Scheduled Castes, the Sched-
uled Tribes and the Muslims.39 There again, our estimates fol-
low the established Caste hierarchy, which matches closely the
observation that gender biased preferences are stronger among
higher castes (Chakravarti (1993); Kapadia (1997); Field et
al. (2010); Luke and Munshi (2011); Cassan and Vandewalle
(2021)). Thus, the desired sex ratio is on average equal to 246%
among high castes but falls to 140% among Muslims. The
share of missing girls ranges from 4.7% among High Castes to

38Defined here as all individuals non belonging to the other categories.
39The Muslim category includes Muslims classified as Other Backward

Classes, our Other Backward Classes category therefore only contains non
Muslim individuals.
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0% among Muslims, much inferior to the share of instrumental
births.

2.4 Comparison with other approaches

2.4.1 The sex ratio of the last born

In the literature, the most popular measure of instrumental
births is based on a literal interpretation of the stopping rule:
the last born in the family tends to be a boy. As a result, coun-
tries in which the stopping rule is prevalent should display a
large proportion of sons among the last born. This proportion
is then simply compared to a counterfactual sex ratio, typically
the “natural” sex ratio. While intuitive, this approach suffers
from some important shortcomings. First and foremost, there
is no universal natural sex ratio at birth: depending on the
ethnic group and the period considered, it can vary between
103 and 107 boys per 100 girls (see for instance Chahnazarian
(1988); Waldron (1998) and the discussion in Anderson and
Ray (2010)). Sex ratio at births also vary with environmental
factors, nutritional status or paternal age, so that, even within
the same ethnic group at a particular time period, one cannot
rely on a well-defined benchmark (see, for instance, Bruckner
et al. (2010) and Catalano and Bruckner (2005)).40 The exis-
tence of such a benchmark is made even more elusive in the

40For instance, Catalano et al. (2008) show that women under colder
weather abort more male foetuses, so that a 1ř C increase in annual tem-
perature predicts one more male per 1,000 females born in a year. In a
similar vein, Helle et al. (2009) in their analysis of sex ratios between 1865
and 2003 showed a strong increase of excess male births during periods of
exogenous stress, such as World War II.

119



presence of sex-selective abortion.41

Second, by focussing on the gender of the last born, this
approach naturally applies to families with completed fertility.
As a result, this measure necessarily describes the behavior
of older cohorts of mothers. By contrast, through our test,
the difference in the number of younger siblings emerges as
soon as families have reached a number of births exceeding
their desired number of boys or girls, largely before completing
fertility. Moreover, this difference can be detected at each rank,
so that a test carried out at the level of the eldest child is
already informative (particularly in the event of sex-selective
abortion at late ranks). Our measure can therefore detect
behavioral changes much sooner than measures relying on the
sex ratio of the last born.

We now compare the relative performance of our test to
that based on the sex ratio of the last born. As explained
above, the latter requires a natural sex ratio to be used as a
reference. Given the uncertainty surrounding its precise value,
we run the test for two plausible values of this ratio, 103 and
107.42 In Figure 2.4.1 below, we compare the value obtained
under our measure (on the vertical axis) to the corresponding
value of the sex ratio of the last born (on the horizontal axis).
Each dot in the graph corresponds to a particular country
(the corresponding confidence intervals are not reported for
the sake of exposition). The two measures are, as expected,
reasonably correlated.

41Additionnally, the use of survey data makes the estimates particularly
noisy: thus, for an observed sex ratio of 105, the 95 percent confidence
interval ranges between 100.8 and 109.2 in a sample of 10,000 births.

42Clearly, the comparison is even less favourable to the sex ratio of the
last born for more extreme, but plausible, values of the benchmark.
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Figure 2.4.1: Our test of instrumental births against the sex
ratio of the lastborn
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Data Source: All DHS
Reading: In Kyrgyzstan, girls have 0.1 more younger siblings
than boys and the sex ratio of the lastborn is 113. However, the
sex ratio of the lastborn is not statistically different from both
103 and 107 and does not allow to conclude that instrumental
births are used.

The Figure illustrates the poor performance of methods
based on the sex ratio of the last born. It is for 71% of the
countries (the white dots) that the observed sex ratios, given
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their confidence intervals, lead to conclusions that do not de-
pend on the value chosen as a reference (103 or 107). (Our
test agrees with 84% of them.) By contrast, for the other
countries (the black dots), the conclusion is ambiguous. We
report these cases with their corresponding confidence inter-
vals in Figure 2.4.2 below. According to our test, the stopping
rule prevails in half of them (which we represent by black tri-
angles or squares).43 Thus, Kyrgyzstan, Morocco and Kenya,
for instance, apply the stopping rule against girls according to
our test, but fail to be detected by the sex ratio of the last
born when a cut-off ratio of 107 is used.

2.4.2 Other popular measures

Another method used in demography is the “parity progres-
sion ratio” (Ben-Porath and Welch (1976); Williamson (1976);
Arnold (1997); Arnold et al. (1998); Norling (2015)). It evalu-
ates, at a given birth rank, the relative probability to continue
childbearing (the opposite of being the last born) given the
gender of the child at that rank. This measure, while close to
the “sex ratio of the last born”, is particularly relevant here
as it does not rely on a natural sex ratio at birth. It however
suffers from a number of limitations. First, it is a rank-specific
measure, with no clear interpretation when the measure gives
conflicting results at different ranks.44 Relatedly, given that it

43As stressed above, our test provides a sufficient condition for instru-
mental births and may thus leave a number of situations undetected.

44For example, Filmer et al. (2009)’s find evidence of instrumental births
as detected with parity progression for families of size 3, but not for fam-
ilies of sizes 2 and 4 in Sub Saharan Africa. They write “it is difficult
to take in all of the coefficients at a glance.” In addition, given the com-
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Figure 2.4.2: Added precision of our instrumental births test
compared to the sex ratio of the lastborn
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Data Source: All DHS data of countries considered as am-
biguous in Figure 2.4.1.
Reading: In Kyrgizstan, the sex ratio of the last born is 113,
but is not statistically different from 107. Our test allows to
unambiguously classify Kyrgizstan as practicing instrumental
births.

plexity of the approach, they restrict their analysis to comparing families
not having any sons at given rank to families not having any daughter,
therefore omitting from the analysis all intermediate cases.
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is based on a ratio of two probabilities, the literature does not
provide a clear way to aggregate it over ranks. One possibility
could be to estimate, over all ranks, the difference (instead of
the ratio) between boys and girls in their probability of hav-
ing a younger sibling. This difference however corresponds
essentially to the sex ratio of the last born, and uses exactly
the same information. In this respect, our measure generalizes
this approach by counting the number of younger siblings ob-
tained and thereby better exploiting the information available.
The parity progression ratio, because of its focus on the next
pregnancy, is less efficient.

Second, children of all ranks below the ’desired number
of boys or girls’ necessarily have younger siblings, irrespective
of their gender. Thus, if parents want, for instance, at least 2
boys, the first born of the family will necessarily have a younger
sibling. It is only at later ranks that the parity progression
ratio can detect a stopping rule behavior. This is problematic
for comparative studies, as the desired number of sons and
daughters may vary across countries and over time and would
require to vary the rank analyzed across countries according
to their desired number of boys and girls.

One may also think of using birth-spacing as a measure
of instrumental births, following the idea that parents with a
strong preference for sons will reduce the time between a new-
born girl and her next sibling (see Jayachandran (2015); Rossi
and Rouanet (2015)). One can then compare the average birth
spacing of a girl compared to a boy, possibly aggregated over
all ranks. Under this approach, the only reason why parents
would want to selectively reduce birth spacing is because they
want more younger siblings when the new born is a girl. How-
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ever, the reduction of birth spacing is not a necessary step to
do so. Therefore, while the detection of a gender difference
in birth spacing implies the practice of instrumental births,
the opposite is not true. Moreover, birth spacing is a particu-
larly noisy observation, given the uncertainty associated with
pregnancies. Finally, since sex-selective abortion affects birth
spacing, this measure becomes less relevant when sex-selective
abortion becomes widespread (Dimri et al. (2019)).

A last set of measures proposed in the literature is based
on the consequences of the stopping rule. According to Basu
and de Jong (2010), girls tend to be born in larger families
and to have, within families, earlier ranks than boys (see also
Yamaguchi (1989)). However, as shown in Section 2.2, girls do
not face larger families at birth. It is only after their birth that
their families grow larger under the stopping rule. This also ex-
plains why, within families, girls are born at earlier rank than
boys on average. The measure we propose follows the same
intuition but is more direct and precise. Following the idea
behind the parity progression ratio, Arnold (1985) proposes to
compare the declared use of contraceptives depending on the
gender composition of the family. Being based on current use,
this method is less sensitive to recall biases, but may suffer
from report biases as it relies on sensitive information. It also
crucially hinges upon the availability of contraceptives.

2.4.3 The sex ratio and sex-selective abortions

The theoretical literature on sex-selective abortion is less abun-
dant. In fact, the literature mostly focused on detecting its oc-
currence following the introduction of the ultra-sound technol-
ogy. The dominant approach rests on a comparison between
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the actual and the natural sex ratio in a given population.
More sophisticated methods rely on the idea that sex-selective
abortion is less prevalent in first ranks. This literature typi-
cally follows a difference-in-difference approach by comparing
sex ratios at birth across ranks and over time, for countries
such as Taiwan (Lin et al. (2014)), South Korea (Park and
Cho (1995)), China (Zeng et al. (1993); Chen et al. (2013)),
India (Bhalotra and Cochrane (2010); Jayachandran (2017);
Anukriti et al. (2022)) or the United States (Abrevaya (2009)).
Our approach of sex-selective abortion gives a theoretical foun-
dation to these empirical studies, while allowing for a measure
that is not rank-based and is, therefore, better suited for com-
parative approaches.

As above, we now assess the relative performance of our
test to that of the traditional approach, which compares the
observed proportion of boys in the population to the natural
sex ratio (which, as above, we assume to be either 103 or 107).
Figure 2.4.3 reports the value obtained under our measure (on
the vertical axis) and the corresponding value of the observed
sex ratio (on the horizontal axis).

The white dots represent countries for which a simple com-
parison of sex ratios leads to conclusions that do not depend
on the value of the cut-off (103 or 107). They barely repre-
sent 43% of the countries (our measure agrees with 69% of
these conclusions). Conversely, the black dots represent all
these countries for which the choice of the benchmark leads
to conflicting conclusions about the prevalence of sex-selective
abortion. These ambiguous cases represent the remaining 57%
of our sample. In Figure 2.4.4, we report for these countries a
classical mean test using the observed sex ratio with the corre-
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Figure 2.4.3: Our test of detection of sex-selective abortion
against the sex ratio at birth
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Data Source: All DHS, births taking place after 2000.
Reading: In Albania, boys have 3.97 percentage points more
girls in their elder siblings than girls and the sex ratio at bith is
111. However, the sex ratio at birth is not statistically different
from both 103 and 107 and does not allow to conclude that
sex-selective abortions are used.

sponding 95% confidence intervals. Among these, 7 countries
(18 %) are identified by our test as practicing sex-selective
abortion (as indicated by the black dots). This is the case, for
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instance, of Albania or Afghanistan for which the traditional
approach remains inconclusive with a benchmark of 107.

Figure 2.4.4: Added precision of our test of sex-selective abor-
tion compared to the observed sex ratio
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2.5 Conclusion
The stopping rule refers to this behaviour by which parents
continue child bearing until they reach a specific number of
children of a given gender. Parents can then choose to carry
out these pregnancies to term, leading to a larger number of
children than originally desired, a practice defined as instru-
mental births. They can also choose to abort foetuses of a spe-
cific gender, a practice known as sex-selective abortion. While
these two practices have been investigated independently in
the literature, they are closely related as they both result from
the same fundamental behaviour. We propose a unified frame-
work to consider them jointly. This framework underlines the
policy trade off implied by the substituability of the two prac-
tices.

Were pregnancies directly observable, these two practices
could be measured in a straightforward manner. The litera-
ture provides different indirect methods aimed at estimating
the consequences of these practices, which suffer from impor-
tant shortcomings. Taking the child as the unit of interest,
we propose, with the help of a simple model, new measures to
detect these two practices. Under instrumental births, a girl
is, on average, exposed to a larger number of younger siblings
than a boy. Under sex-selective abortion, a girls also has on
average more elder brothers than a boy. Unlike the existing
measures proposed in the literature, our measures do not re-
quire the use of a counterfactual benchmark. They can be
easily implemented, are defined at the level of the child and
do not require a completed fertility. They are also more effi-
cient as they make use of all the information available given
the current demographic composition of the family.
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We implement our detection tests over a large set of coun-
tries, and quantify, for the countries identified by our tests, the
magnitude of gender bias in parental preferences. Calibrating
a simple model of gender biased preferences, we show that the
desired sex ratio exceeds 130 boys for 100 girls in countries
such as India, Armenia and Nepal, largely above the actual
sex ratios. Overall in the countries in which stopping rule is
being practiced, instrumental births represent more than two
third of the stopping rule. Studying instrumental births inde-
pendently of sex-selective abortions can therefore lead to very
large underestimation of the prevalence of the stopping rule.
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Appendix

2.A Proof of Proposition 1
Let us first assume that the child at rank k is a boy and
consider his younger siblings. Three cases arise. In a first
case, the desired number of boys is obtained before reaching
the maximal number of children, which occur with probabil-
ity

∑N̄−k−1
j=1 B (b∗ − e − 1, j) (where B (a, b) is the simple bi-

nomial probability of having exactly a successes in b trials).
In the second case, one needs exactly N̄ children to reach
the desired number of boys, b∗. This occurs with probabil-
ity

(
p
∑N̄−k−1

j=1 B (b∗ − e − 2, j)
)
: with their N̄ − 1 younger

children, the parents have exactly n∗ − 1 boys and, with prob-
ability p, their last child, at rank N̄ , is a boy. Finally, one
finds parents who do not reach their desired number of boys
when having N̄ children.

Consider now a girl of the same rank k who has e older
brothers. Suppose first that her next sibling is a boy. For
all families that reach their desired number of boys with less
than N̄ children, this boy will have exactly the same expected
number of younger siblings to that of a boy of rank k who has e
older brothers. For families which, with a boy at rank k, reach
a size N̄ , his expected number of younger siblings is equal to
the expected number of younger siblings of a boy of rank k
minus 1. In other words, the expected number of siblings of
this boy of rank k +1, which we denote by E (Yb (k + 1, e) | gk)
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(to indicate that her sibling of rank k is a girl, g), is given by:

E (Yb (k + 1, e) | gk) = E (Yb (k, e))

N̄−k−1∑
j=1

B (b∗ − e − 1, j)


+ (E (Yb (k, e)) − 1)

1

−
N̄−k−1∑

j=1
B (b∗ − e − 1, j)


= E (Yb (k, e)) − 1

+

N̄−k−1∑
j=1

B (b∗ − e − 1, j)


Suppose instead that her next sibling is a girl. Following

the same reasoning as above, this girl, of rank k + 1, has an
expected number of younger siblings which is given by:

E (Yg (k +1, e) | gk) = E (Yg (k, e))−1+

N̄−k−1∑
j=1

B (b∗ −e, j)


As a result, the expected number of younger siblings for a

girl of rank k with e older brothers, E (Yg (k, e)) ,is given by
1 plus expectation of the number of younger siblings of that
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girl’s next sibling:

E (Yg (k, e)) = 1 + pE (Yb (k + 1, e) | gk)
+ (1 − p)E (Yg (k + 1, e) | gk)

= 1 + p

E (Yb (k, e)) − 1

+

N̄−k−1∑
j=1

B (b∗ − e − 1, j)


+ (1 − p)

E (Yg (k, e)) − 1

+

N̄−k−1∑
j=1

B (b∗ − e, j)


= E (Yb (k, e)) +

N̄−k−1∑
j=1

B (b∗ − e − 1, j)


+ 1 − p

p

N̄−k−1∑
j=1

B (b∗ − e, j)



=⇒ E (Yg (k, e)) > E (Yb (k, e)) , ∀k < N̄, e ≤ b∗ − 1.

�
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2.B The stopping rule with a desired
family size

The literature sometimes uses a slightly different approach
than the one we follow (see Sheps (1963), for example). While
they still assume that parents desire a given number of boys,
b∗, parents also have a preference over their total number of
children, n∗, which corresponds to their ideal family size. If,
with n∗ children, they do not have b∗ boys, they continue to
have children till they reach their desired number of boys. In
other words, these parents have lexicographic preferences in n∗

and b∗, with 0 < b∗ ≤ n∗. To analyze this alternative model,
we first assume away a constraint on the maximum number of
children so that parents, if needed, have as many children as
they need to reach the desired number of boys.

Consider first a family that succeeds in having at least b∗

boys with n∗children. In such families, at any rank k, girls
and boys have exactly the same number of younger siblings,
which is equal to (n∗ − k). The proportion of such families
in a large population is equal to the probability of having at
least b∗ ’successes’ (boys) in n∗ trials (children), which we
denote as above

∑n∗
j=b∗ B (j, n∗). All other families need more

than n∗children to reach their desired number of boys. In
such families, at any rank k, a girl will have 1/p more younger
siblings than a boy, 1/p corresponding to the expected number
of children necessary to have one extra boy. The proportion
of such families is given by

∑b∗−1
j=0 B (j, n∗). We therefore have:

Proposition 3: In families with lexicographic prefer-
ences over (b∗, n∗), at any rank, girls have in expected terms
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(
1
p

∑b∗−1
j=0 B (j, n∗)

)
more younger siblings than boys of the

same rank.

A direct consequence of this proposition is that a girl on
average (i.e., over all ranks) will also have

(
1
p

∑b∗−1
j=0 B (j, n∗)

)
more younger siblings than a boy. A closer examination of
this expression is illustrated in Figure 2.B.1: the difference in
the expected number of younger siblings is larger for a smaller
desired family size and for a larger desired number of boys.
Note for example how, for a given desired number of boys
an increase in the ideal family size leads to a decrease in the
difference in younger siblings (a change in curve). Note also
how, for a given ideal family size, an increase in the number
of desired boys increases the difference in younger siblings (a
change along the curve). As a result, it is likely that soci-
eties undergoing a demographic transition display a stronger
differential in younger siblings than societies characterized by
larger family sizes, provided the desired number of boys does
not vary too much. That is, the fertility squeeze hypothesis
(Guilmoto (2009); Jayachandran (2017)) not only applies to
sex-selective abortions but also to instrumental births.

Finally, imposing a constraint on family sizes in this setting
does not change our main results. Assume again that family
size cannot exceed a given level N̄ . Clearly, this constraint is
only binding for families that needed more than n∗ children
to have their desired number of boys, b∗. Among this subset
however, Proposition 1 above applies. More precisely, at any
rank k > n∗,with n∗ < k < N̄ and for any number of elder
brothers e, with e ≤ b∗ − 1, the expected number of younger
siblings is strictly larger for a girl than for a boy.

135



Figure 2.B.1: Difference in expected number of younger sib-
lings between girls and boys with lexicographic preferences in
b∗
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Data Source: Author’s simulations.
Reading: When parents have an ideal number of boys b∗ of
2, and an ideal family size n∗ of 4, girls one average have 0.625
more younger siblings than boys. When parents want the same
number of boys but for an ideal family size n∗ of 6, girls have
on average 0.219 more younger siblings than boys.

2.C Imperfect household information
Because our tests take the perspective of a child and his elder
and younger siblings, the ideal dataset to perform our tests is
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fertility history. However, information on the complete fertility
history is not always present in standard household surveys,
for instance when the only source of information comes from a
household roster. We now discuss the performance of our tests
in this setting. A household roster lists the gender, age and
family linkage of household members living in the household,
excluding children no longer living in this household. A child
missing from the household roster has two implications: our
measures are not computed for this child (a selection issue) and
this child is not accounted for when computing our measures
on her siblings (a measurement issue).

As long as the probability of leaving the household is uncor-
related with gender, our tests remain unbiased but are simply
less precise. However, in gender biased societies, the presence
of a child in a household is correlated with gender, for instance
because the age at marriage differs across gender. Consider
first the case in which (i) children leave the household upon
marriage and (ii) girls marry at a younger age than boys.45

As a result, relatively older girls are not accounted for when
aplying our measures on their siblings. This is also true for
older boys, but to a lower extent, given that they leave the
household at a later age.

Consider first the detection of instrumental births. Be-
cause older boys and girls are unobserved, the average number
of younger siblings is biased downwards for both genders (as we
apply our measure on younger siblings who, by definition, have
less younger siblings than their elder, unobserved, brothers and

45Patrilocality, whereby boys do not leave their parents while girls, once
married, do, reinforces this bias. In comparison, differential mortality
rates among older children are of much lower importance, but our discus-
sion easily extends to this issue as well.
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sisters). However, since more elder girls go unobserved (rela-
tive to boys), the selection bias is more pronounced for girls
and the difference in younger siblings between girls and boys is
downwards biased. In terms of measurement bias, because the
unobserved children are the elder, their absence does not affect
our measure for younger children (i.e. the number of younger
siblings of these younger children). The only situation in which
our measure is affected is for relatively older boys, who are too
young to be themselves married, but whose younger sisters are
already married. For these boys, the number of younger sib-
lings we measure is lower than the actual one, which biases
upwards the difference in younger siblings between girls and
boys. It turns out that, in the numerous simulations we ran,
this measurement bias is much less important than the selec-
tion bias discussed above. As a result, our test, applied to
household rosters, underestimates instrumental births. That
is, the bias implied by the use of our test for instrumental
births typically do not lead to falsely conclude that they are
practiced while they are not (false positive). However, the op-
posite is true: in presence of such bias, our test can be falsely
negative.

We now discuss the detection of sex-selective abortion in
this context. As discussed in the main text, under sex-selective
abortion, the proportion of girls among older siblings is larger
for boys than for girls, and this difference gets larger at later
ranks. Since the missing observations in household rosters are
older children for which this difference is less important, our
measure applied to the observed, later rank, children is up-
wards biased. In terms of measurement bias, the discussion is
more intricate. In general, since more elder girls than boys are
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missing, the proportion of girls among elder siblings is lower
than the actual one. But this underestimation is symmetric
across gender and does not, per se, create a bias. The asym-
metry is again located in this age interval in which girls tend
to be married while boys remain in the household. In the
interval, the fact that girls are more often missing does not
affect their older brothers, but only their younger brothers or
sisters. (For the latter, the proportion of girls among elder sib-
lings we measure is lower and the proportion of boys higher,
than the actual ones.) Since boys are more numerous in the
interval, and are therefore less often impacted by the disap-
pearance of their younger sisters, the measure is, on average,
less biased for boys than for girls. The measurement bias tends
therefore to also overestimate the difference in the proportion
of girls among elder siblings between boys and girls. In gen-
eral, household roster surveys overestimate our measure for
sex-selective abortion. That is, in presence of such bias, our
test for sex-selective abortion may lead to more false positive
and less false negative.

Finally, let us consider a survey which only provides the
number and the gender composition of children in a house-
hold. Absent birth ranks, we cannot reconstruct the number
of younger siblings or the gender of older siblings of a partic-
ular child. In terms of instrumental births, we can still follow
Equation 2.3 and replace the number of younger silbings by
the total number of siblings, essentially testing whether girls,
on average, live in larger families. While, under gender bi-
ased preferences, girls have more younger siblings, which will
mechanically translate into a larger number of siblings, girls
are also, on average, of lower birth rank, and therefore have
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fewer older siblings than boys. The latter effect never domi-
nates, and, for large enough sample size, a test based on family
size, while less precise, will yield the same outcome as the one
proposed in this paper.

2.D List of DHS surveys
Table 2.D lists all the DHS surveys used as well as their number
of observations.

Year of interview Observations
Afghanistan 2015 125715
Albania 2009 12766
. 2017 16128
Angola 2015 42002
Armenia 2000 11286
. 2005 10297
. 2010 8424
. 2016 8771
Azerbaijan 2006 13565
Bangladesh 1994 32590
. 1996 29366
. 2000 31925
. 2007 30527
. 2011 45844
. 2014 43772
Benin 1996 19359
. 2001 19398
. 2006 57232
. 2012 47152
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. 2017 45853
Bolivia 1989 22338
. 1994 24174
. 1998 29473
. 2003 45116
. 2008 40355
Brazil 1986 12356
. 1991 15363
. 1996 25513
Burkina Faso 1993 20655
. 1999 22145
. 2003 41520
. 2010 56178
Burundi 1987 11886
. 2010 24520
. 2016 45419
Cambodia 2000 40990
. 2005 40457
. 2010 37511
. 2014 33290
Cameroon 1998 15187
. 2004 29455
. 2011 42312
Central Africa 1994 16936
Chad 1997 25739
. 2004 21448
. 2015 68989
Colombia 1986 11622
. 1990 15976
. 1995 21830
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. 2000 21267

. 2005 71278

. 2010 91399

. 2015 62593
Comoros 1996 7913
. 2012 11497
Congo 2005 16687
Cote d Ivoire 1994 24870
. 1999 7575
. 2005 13358
. 2012 28211
Dominican Republic 1986 20151
. 1991 17168
. 1996 19784
. 1999 2871
. 2007 87585
. 2013 77443
Ecuador 1987 11835
Egypt 1988 35519
. 1992 38076
. 1995 56381
. 2000 54780
. 2005 61455
. 2008 48619
. 2014 59266
El Salvador 1985 6383
Ethiopia 1992 44174
. 1997 39881
. 2003 45540
. 2008 41392
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Gabon 2000 16878
. 2012 23109
Gambia 2013 26601
Ghana 1988 14216
. 1993 13298
. 1998 13188
. 2003 15086
. 2008 11888
. 2014 23118
Guatemala 1987 14698
. 1995 38753
. 1999 18581
. 2015 55398
Guinea 1999 22943
. 2005 27115
. 2012 27683
. 2018 28887
Guyana 2005 4923
Haiti 1994 12547
. 2000 26437
. 2006 24830
. 2012 29013
. 2017 27809
Honduras 2006 50093
India 1993 275172
. 1999 268879
. 2006 256782
. 2015 1315617
. 2020 1274250
Indonesia 1987 39719
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. 1991 74329

. 1994 90326

. 1997 86276

. 2002 79791

. 2007 84726

. 2012 83650

. 2017 86265
Jordan 1990 32812
. 1997 24243
. 2002 25296
. 2007 43460
. 2009 38199
. 2012 42275
. 2017 47040
KE 1989 25173
KE2 1993 23899
KE3 1998 23351
KE4 2003 22074
KE5 2009 22534
KE6 2014 83591
Kazakhstan 1999 8106
Kyrgyzstan 1997 8781
. 2012 16180
Lesotho 2004 14708
. 2009 14429
. 2014 11710
Liberia 1986 17264
. 2007 22123
. 2013 30804
Madagascar 1992 18931
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. 1997 21653

. 2004 20799

. 2009 48464
Malawi 1992 16330
. 2000 40421
. 2004 35883
. 2010 72301
. 2015 68074
Maldives 2009 20136
. 2017 13922
Mali 1987 12252
. 1996 37921
. 2001 48407
. 2006 52140
. 2012 33803
. 2018 33379
Mexico 1987 22676
Moldova 2005 9903
Morocco 1987 25518
. 1992 22657
. 2003 32494
Mozambique 1997 25752
. 2003 37443
. 2011 37984
Myanmar 2016 22989
Namibia 1992 13372
. 2000 14946
. 2007 19522
. 2013 18090
Nepal 1952 29156
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. 2001 28955

. 2007 26394

. 2011 26615

. 2017 26028
Nicaragua 2001 34157
Niger 1992 23841
. 1998 28888
. 2006 34378
. 2012 44183
Nigeria 1990 28123
. 2003 23038
. 2008 104808
. 2013 119386
. 2018 127545
Pakistan 1991 27369
. 2006 39049
. 2012 50238
. 2018 50495
Paraguay 1990 15346
Peru 1986 13291
. 1991 38783
. 1996 72390
. 2000 65453
. 2007 89220
. 2012 47261
Philippines 1993 35863
. 1998 32626
. 2003 30443
. 2008 28518
. 2013 31680
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. 2017 47244
Rwanda 1992 19440
. 2000 27602
. 2005 30072
. 2010 32639
. 2015 30058
Sao Tome 2008 7620
Senegal 1986 14389
. 1993 20815
. 1997 27448
. 2005 39895
. 2011 42510
. 2016 22740
Sierra Leone 2008 21136
South Africa 1998 22934
Sri Lanka 1987 17705
Sudan 1990 25805
Swaziland 2006 11410
Tajikistan 2012 19938
. 2017 21985
Tanzania 1991 29143
. 1996 24890
. 1999 11952
. 2004 30557
. 2010 29777
. 2015 37169
Thailand 1987 17803
Timor-Leste 2009 35998
. 2016 28682
Togo 1988 10782
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. 1998 26269

. 2014 26264
Trinidad 1987 7837
Tunisia 1988 16463
Turkey 1993 19762
. 1998 17791
. 2004 22443
. 2008 19678
. 2013 17871
Uganda 1988 16074
. 1995 22752
. 2001 23410
. 2006 30090
. 2011 28609
. 2016 57906
Ukraine 2007 8007
Uzbekistan 1996 9650
Vietnam 2002 14383
Yemen 1991 29803
. 2013 64602
Zambia 1992 22122
. 1996 24799
. 2002 23805
. 2007 21366
. 2013 49207
Zimbabwe 1988 12405
. 1994 16777
. 1999 14184
. 2005 19489
. 2010 19279
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. 2015 20791

2.E “Natural” sex ratios
Table 2.E.1 presents the average sex ratios estimated between
1950 and 1980 by Chao et al. (2019) that we use as reference
“natural” sex ratio in our estimation of missing girls at birth.

Table 2.E.1: “Natural” sex ratios from Chao et al. (2019)

Natural Sex Ratio
Albania 106.37
Armenia 106.26
Azerbaijan 106.24
Bangladesh 105.01
Cameroon 102.71
Colombia 104.73
Comoros 102.97
DR Congo 102.62
Egypt 106.29
Gabon 102.06
India 105.73
Jordan 106.56
Kenya 101.95
Kyrgyzstan 105.27
Nepal 104.82
Niger 104.02
Pakistan 106.24
Rwanda 102.33
Sierra Leone 103.3
Tajikistan 106.22
Turkey 104.69
Yemen 106.16
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Chapter 3
Stopping rule and girls

mortality: Evidence from South
Asian countries.

François Woitrin

Abstract: The stopping rule refers to a behaviour by
which parents continue child bearing until they reach their
desired number of boys. In societies in which gender prefer-
ences prevails, this method can heavily affects fertility prac-
tices. Under this stopping rule, girls have a higher probability
of having younger siblings and, therefore, are exposed to more
sibling competition. If competition is associated with higher
probability to die, this higher competition faced by girls re-
sults in higher death rate for girls, even in the absence of any
other form of discrimination. We therefore study the level of
competition faced by boys and girls, as well as the extent to
which competition causes deaths. This allows us to estimates
the number of girls who died because of the stopping rule. We
find that the stopping rule explains up to 20% of girls mortality
in the less privileged part of some countries.
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3.1 Introduction
In many developing countries, women face a disadvantage
compared to men in various aspects of human developement
(education, health, etc.). Among the reasons often put
forward to explain this pattern is a strong preference for
having sons, which results from cultural environment. These
cultural factors may include patrilocality (Ebenstein (2014)),
old age support (Ebenstein and Leung (2010); Lambert and
Rossi (2016)), or the burden of the dowry (Arnold et al.
(1998)), among others (see Williamson (1976), Das Gupta et
al. (2003), or Jayachandran (2015)). The channel through
which these cultural characteristics translate into gender
differences in outcome is usually thought to be differential
investment from parents into their children (itself caused by
differential return on the investments or differential costs of
children), meaning parents tend to give less resources to their
daughters than to their sons.

In this paper, we build on the intuition of Arnold et
al. (1998) and Ray (1998) who suggested that even if they
were treated in the same way as their brothers, i.e., even if
parents invested as much in their daughters than in their
sons, girls may end up worse-off. We explore a specific
channel of discrimination, related to the preference for having
male offspring, which creates different outcomes for girls
without necessarily coming from differential treatment from
parents within the household. Indeed, in many countries,
the preference for sons manifests itself under the form of a
stopping rule: parents continue childbearing until a given
number of sons is obtained. This practice has been widely
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studied and his known to have many consequences in terms
of fertility: total fertility may be higher than desired (Sheps
(1963)), the birth order of girls within families is, on average,
lower for girls than for boys (Basu and de Jong (2010)), and,
most importantly, the total number of siblings is higher for
girls than for boys (Yamaguchi (1989); Basu and de Jong
(2010)). In other words, girls live in larger household. The
underlying intuition behind this mechanism is the following:
because they continue to have children until they reach their
desired number of boys, parents are less likely to continue
childbearing after the births of a boy than after the birth
of a girl. We argue that these additional siblings, through
an increase in competition for resources, may lead to higher
mortality rates for girls. Moreover, this additional mortality
occurs, independently of the way girls are treated once being
born.

We therefore propose a decomposition of the impact of the
stopping rule on the gender differential in young-age mortality
into two parallel mechanisms. The first mechanism, indirect
discrimination, characterize the excess mortality caused by the
additional siblings of girls if they had been treated in the same
way as boys within the household. We call it “indirect” for it
originates from fertility preferences (developed before the birth
of any specific child) which do not automatically translate into
behaviors detrimental to girls. The second mechanism identify
the excess mortality caused by the extra competition faced by
girls, taking into account that girls may in fact not be treated
in the same way as their brothers. Such discrimination may
materialize into redistribution of resources to the benefit of
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boys when competition increases. We call this second mecha-
nism the direct discrimination effect of the stopping rule. We
add on Jensen (2003) who finds that a significant proportion
of the disparities in education between boys and girls can be
attributed to fertility behaviors. While he analyses the stop-
ping rule by comparing the education outcomes by gender in
different subgroups of households identified on the basis of de-
clared son preference, we use the fertility distortions produced
by the stopping rule to infer its impact on mortality at the pop-
ulation level. Unlike Jayachandran and Kuziemko (2011) who
study discrimination in breastfeeding and its associated health
outcomes in a context of son preference, this paper wants to
focus discrimination produced at the population level, while
parents do not individually discriminate boys and girls within
the household (unlike breastfeeding).

Taking advantage of the DHS surveys for Bangladesh,
India, Nepal, and Pakistan, we first discuss and document
the more intense competition faced by young girls when the
stopping rule prevails. We then estimate, through a survival
analysis, the impact of competition on under-five mortality,
before measuring the effect of the prevailance of the stopping
rule on mortality for each of these countries. We show that
this mechanism explains a non-trivial share of mortality
among young girls, even in the absence of any form of direct
discrimination. This indirect discrimination accounts for close
to 2% of total female mortality in India, most of this deaths
occurring in the poorest part of the population. This accounts
for around 2.5 million deaths in India between 1980 and 2015.

The structure of the paper is as follows: we first present the
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data, before presenting the theoretical framework and measur-
ing the difference in sibling competition in our four countries
in Section 3.3. In Section 3.4 we estimate the effect of sibling
competition on mortality which will allow us to compute the
excess female mortality generated by the stopping rule.

3.2 The data

We use the Demographic and Health Survey (DHS) from four
south Asian countries: Bangladesh, India, Nepal, and Pak-
istan. These countries were selected for their well-documented
strong preferences for boys, while also featuring high mortal-
ity rates at young ages1. The DHS surveys record the fertility
history of ever-married women aged 13 to 49. From these data
we know whether and when a child died, which allows us to
precisely investigate the link between mortality and fertility
outcomes. We select the surveys for which we have informa-
tion on wealth (this includes the surveys from 2007, 2011, and
2014 in Bangladesh, 2006 and 2025 in India, 2007, 2011, and
2017 in Nepal, and 2006, 2012, and 2018 in Pakistan), and, to
ensure comparability across countries, we restrict the sample
to children born between 1980 and 2015. We choose this par-
ticular time window to maximize the number of observations,
while keeping a similar distribution in the years of births in
each country. Our main sample consists of 41,883 mothers,
and 117,837 children in Bangladesh, of 544,576 mothers, and
1,518,216 children in India, of 24,805 mothers, and 75,816 chil-
dren in Nepal, and of 32,031 mothers, and 131,093 children in

1We chose not to include Afghanistan because the data behaved oddly,
making our interpretation unclear
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Pakistan.
We also use the official estimates published by the

Population Division of the Department of Economic and
Social Affairs of the United Nations Secretariat2. It presents
population estimates from 1950 to the present. From these
we retrieve to number of girls born during the period under
scrutiny.

3.3 Son preference and fertility
Throughout the developing world, son preference as been
shown to be widely prevalent, particularly in South Asia, but
also in Eastern Europe, North Africa, or the Near/Middle East.
In many of these places, this preference for sons leads parents
to continue having children until they reach an ideal number
of sons. In the demographic literature, this behavior is known
as the ”stopping rule”. The consequences of this practice have
been largely studied, particularly in terms of the specific fer-
tility outcomes it generates (e.g. Sheps (1963); Yamaguchi
(1989); Clark (2000); Basu and de Jong (2010)).

3.3.1 Demographic consequences of the Stopping
Rule

In order to understand the fertility distortions caused by the
stopping rule, suppose that parents are only interested in
having a certain number b∗ of boys and are willing to have
as many children as needed to reach that goal. Suppose also

2Retrieved 10 April 2023
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that, at each birth rank, parents have a given probability p
of having a boy3. Then, each birth can be seen as a lottery
draw in which having a boy is a success, while having a girl
is a failure (as she will not contribute to its parents’ fertility
goal). This ”bad” draw therefore needs to be compensated by
the birth of a least one additional child, meaning that a girl
of a particular rank will have on average exactly the same
number of younger siblings as a boy of the same rank, plus
the expected number of additional births required to have
the boy that she is not. On the other hand, children can
not differ in terms of their number of older siblings. Indeed,
because there is always a probability p to have a boy and
(1 − p) to have a girl, at any rank k, both boys and girls have
exactly k − 1 older siblings, and the number of boys among
older siblings of children of any gender follows a binomial
distribution with k − 1 trials and probability p of success. As
a result, at the population level (i.e. aggregating birth ranks),
the only difference in the distribution of siblings of boys and
girls comes from the younger siblings.

Table 3.3.1 below illustrates the consequences of the
stopping rule for a set of 10,000 households which only want
one boy, a maximum family size of four, and with a 50% prob-
ability to have a boy at each birth. Suppose also that parents
stop their fertility as soon as they get the boy they desired.

3Note that the results below hold for all b∗, g∗ ≥ 0 and any finite
maximum family size, as long as b∗/g∗ ≥ p/(1 − p). That is, parents de-
sire relatively more boys than their ’natural’ prevalence in the population.
They also hold for different structure of preferences: parents want a num-
ber n∗ with at least b∗ of boys, parents are ready to have more children
to reach b∗ than g∗, etc.
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In that particular setting, there are five possible household
compositions, each represented in a certain proportion in a
large population. Although there are as many boys than
girls at each birth rank and in the population (the stopping
rule can not itself skew the sex ratio, as there is always a
probability p to have a boy), girls disproportionately live in
the largest households. Indeed, 50% of boys are only-child,
while none of the girls are. From the table, one can easily
compute the average number of older and younger siblings of
both boys and girls. Boys and girls both have an average of
0.733 older siblings4, boys never have younger siblings while
girls have 1.466 on average5. As predicted, the reason why
girls live in larger household comes from their greater amount
of younger siblings. A key assumption of this paper is that the
stopping rule is the only mechanism that can distort fertility
distributions in such a way. This assumption will allow us to
attribute any difference in the number of siblings directly to
the stopping rule, without the need to strictly establish causal
empirical relationship6.

4Among the 9375 children of each gender, 5000 are first-born and have
no older siblings, 2500 have 1, 1250 have 2, and 625 have 3, which makes
an average of 0.733 older siblings.

5Among the 9375 girls, 625 have no younger siblings (the last-born
girls in the fifth category of household), 5000 have only one (2500 girls
from the second category of households, 1250 from the third, 625 from
the fourth, and 625 from the fifth), 2500 have 2, and 1250 have 3.

6Note also that, in the remainder of the paper, we will somewhat im-
precisely use to term “stopping rule” to refer to the special case of “gender-
biased stopping rule”. When parents desire the same number of boys and
girls, and continue childbearing until reaching both of these numbers, the
stopping rule is gender-unbiased. Total fertility will still be higher than
what it would have been if parents were gender-indifferent (parents only
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Table 3.3.1: Illustration of the stopping rule

prop. #♂ #♀
1. ♂ 0.5 5000 0
2. ♀ ♂ 0.25 2500 2500
3. ♀ ♀ ♂ 0.125 1250 2500
4. ♀ ♀ ♀ ♂ 0.0625 625 1875
5. ♀ ♀ ♀ ♀ 0.0625 0 2500

Total 9375 9375

Table 3.3.2 illustrates the theory’s main prediction with
the number of ever-born older and younger siblings at the time
of the survey in Indian DHS. There is indeed no difference
(at 5% significance level) in the number of older siblings
between boys and girls. As expected, the largest part of the
observed difference in the number of ever-born siblings comes
from the number of younger sibling of girls (1.1617) which
is much higher than that of boys (1.0233). Note that the
magnitude of these differences depends on the parameters b∗,
g∗, p and maximum family size, as well as other factor such
as the intensity with which parents practice the stopping rule
for instance (are they willing to have as many children in
order to reach b∗ than to reach g∗). This means that a same
difference could be observed for completely different kind of
preference profiles. More importantly for our study, it also

desire a specific number of children), but boys and girls will on average
have the same number of younger siblings.
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means that the difference in the number of siblings that girls
have compared to boys will vary from one environment to the
other. In particular ? highlights that, for a given number
of desired boys (and girls), the difference in the number of
ever-born siblings is monotonically increasing in maximum
family size. Conversely, for a given maximum family size,
the difference is monotonically decreasing in the number of
desired boys.

Table 3.3.2: Stopping Rule and ever-born siblings in India

Number of Siblings
All Younger Older

♂ ♀ ♂ ♀ ♂ ♀
Population Average 2.1559 2.2899 1.0233 1.1617 1.1327 1.1282

Difference .1340∗∗∗ .1384∗∗∗ -.0044∗

(.0032) (.0024) (.0025)
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Finally, it is worth pointing that the practice of sex-
selective abortion has developed rapidly, particularly in
Asia, as a mean to achieve the desired gender composition
in the family (Park and Ho (1995); Arnold et al. (2002);
Abrevaya (2009); Jayachandran (2017); Dimri et al. (2019)).
In the context of gender-biased preferences, parents can now
directly interrupt pregnancies and control the gender of their
children. While both mechanisms have the same underlying
causes, their demographic consequences are entirely different:
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if parents fully control the gender of their children, girls
born when sex-selective abortion is possible are the result
of a choice (Qian et al. (2014)). Hence, these girls will not
necessarily be followed by more pregnancies and will not
live in larger families. As a result, one may think that the
widespread adoption of sex-selective abortion should eliminate
the competition consequences of the stopping rule. While
essentially true, it needs to be qualified: when sex-selective
abortion does not lead to a perfect control of the gender of
the child, but simply affects the relative probability for each
gender to be born, young girls will still be exposed to a more
intense sibling competition, even though the difference with
boys will be mitigated. The major demographic consequence
of sex-selective abortion is that it distorts the sex-ratio
(which, remember, the stopping rule by itself does not affect
on the aggregate). Nevertheless, as we study the effect of
the number of siblings and not the effect of their gender
composition, the prevalence of sex-selective abortion only
affects our mechanism in that it reduces the competition
faced by children.

3.3.2 Siblings and Intra-household competition

In order to investigate the effect of those additional siblings
through the channel of intra-household competition, we are
interested in the number of siblings each child has had to
actually compete with, instead of the number of ever-born
siblings she had at some point in time. In the remainder of
the paper we will talk about ’intra-household competition’ or
’sibling competition’ to refer to the number of alive siblings
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any child had to live with during a period of interest. The
specific mechanism we have in mind is that if a child has
many siblings, his share of a given quantity of resources (food
or health care in our context, but education for instance could
be another example) will be smaller. We therefore build a
measure of siblings competition that is better suited to our
analysis. This measure is defined as the average number of
siblings, older and younger, per years that a child has been
exposed to from his birth, and is constructed as the cumulated
number of months during which she was competing with all
of her alive siblings. Thus, a sibling born when the child
of interest is 18 months old and who died after 10 months,
will compete with that child for the 10 months she lived.
Moreover, if the child of interest herself dies at 24 months old,
they will compete for only 6 months. The cumulated number
of months a child was competing with her siblings is then
divided by the number of month the child lived. Therefore,
if a child who was observed at age 5, had a first younger
sibling born when he was 12 months old, and a second when
he was 36 months (assuming neither of the two die), she will
be in competition with those younger siblings for a total of 72
months, which makes our measure equal to 1.2 : the child has
competed with an average of 1.2 siblings per year during his
first 5 years. In a similar manner, if a child (also observed at
age 5) had two older siblings when he was born, among which
one died when he was age 30 months old, our measure of older
sibling competition will be equal to 1.5. The fundamental
difference between this measure and the theory on ever-born
siblings is that mortality is now taken into account so that a
child who dies will be considered as only partially competing
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with his siblings. If the probability for the siblings of girls
and boys to die is the same, more ever-born siblings trivially
implies more competition7.

Table 3.3.3 presents the differences in sibling competition
(on the living period of each individual at the time of the in-
terview) between gender for each country in our sample. In
each country the difference in sibling competition is positive
and significant, implying that son preference leads to addi-
tional competition for girls. In Nepal for instance, girls face
an average of 0.221 additional siblings per year compared to
their brothers. Considering the average living-time in the our
sample (132 months old), this translates into around 30 cumu-
lated months of additional competition with siblings for girls
on average.

Table 3.3.3: Gender differences in Sibling Competition, by
country

Bangladesh India Nepal Pakistan

Diff. in Sibling Competition 0.103∗∗∗ 0.166∗∗∗ 0.221∗∗∗ 0.125∗∗∗

(0.011) (0.003) (0.014) (0.014)
Observations 117,826 1,518,216 75,816 123,423

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p <

0.01

Wealth will play a crucial role in our analysis for two main
reasons. Adding on the obvious impact it has on whether a

7If the siblings of girls have a higher mortality rate than the siblings of
boys, more ever-born siblings does not imply more competition. This is
something that will straightforwardly be taken into account in our analysis
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child will actually die from the competition he faces, we high-
lighted that the differential in the number of ever-born siblings
(and therefore in sibling competition) itself depends on fertility
preferences. If these preferences are related to wealth, then the
differences in sibling competition will also be related to wealth.
Household wealth is proxied by a standardized index gener-
ated in the DHS with a principal components analysis. The
dimensions considered in this analysis may vary from one coun-
try to the other, but typically include the ownership of goods
(phone, televisions, bicycles, refrigerator for instance) or the
living environment of the household (materials used for hous-
ing construction, water access or sanitation facilities, among
others). This index claims to represents the economic status of
the household in a more permanent and easy-to-measure way
than income and consumption for instance. In their paper dis-
cussing this particular index, ? find that it correlates with
many factors such as mortality or education, and advocate for
its use as a proxy for wealth. The continuous-valued index
from the PCA is then used to separate households into the
five wealth quintiles considered in the remainder of the paper.
Figure 3.3.1 presents the differences in competition by wealth
in our four countries. In all quintiles of the four countries, girls
indeed face more competition from their siblings compared to
boys. Breaking down the effect by wealth suggests for instance
that the poorest Pakistani girls compete with only 0.067 more
siblings than boys on average, while this number is twice as
high in other quintiles. Interestingly, in the four countries, the
gender differences are smallest in the poorest fraction of the
population. While not always large, the differences in the esti-
mates from one quintile to another turns out to be significant,
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particularly in India and Pakistan.

Figure 3.3.1: Gender difference in Sibling Competition by
wealth quintile, by country
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3.4 Sibling competition and mortality
A large literature already documented various forms of
discrimination against girls as an important source of dif-
ferential mortality by gender (Qian (2008); Barcellos et al.
(2014)). These “direct” forms of discrimination (investment
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in childcare, breastfeeding practices, or access to healthcare
and nutrition, among others) are not the focus of this paper.
Instead, we focus on excess mortality of girls caused by the
practice of the stopping rule and its consequences in terms
of fertility, which is, at least to some extent, not a direct
and deliberate attempt from parents to treat girls and boys
differently. In this section, we investigate the impact on
mortality of a more intense sibling competition, again defined
as the number of alive siblings living with a child of interest.

We therefore run a survival analysis in order to estimate
the impact of additional siblings on the probability for a child
to die before age 58. Because the number of siblings that
a child has typically varies over time, we need to take into
account that our variable of interest is not constant. In order
to take the time-varying characteristic of our variable into
account, we reshape our data so that each child is observed
multiple times on four possible occasions: his birth, the birth
of (younger) siblings, the death of sibling and his own death
(or the date of the interview if not observed). Thanks to the
DHS, we know the date (in month) at which all these events
occurred. For instance, a child who was born at any time
t and who died at age 4, who had a first younger sibling
born 10 months after his birth and second 20 months later
will be observed 4 times. Instead of using the more popular
semi-parametric Cox model with common baseline hazard,

8We choose this threshold in order to restrain our analysis on a given pe-
riod, while including as many deaths as possible. This represents 92.25%
of the deaths in Bangladesh, 90.45% in India, 92.31% in Nepal, and 94%
in Pakistan)
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we specify a parametric survival model9. This category of
survival models relies on more assumptions in that one needs
to specify the underlying hazard function. We choose the
Weibull distribution which fits most appropriately survival
time in our data allowing us to take into account the variation
(decrease in particular) of the hazard rate over time. The para-
metric model also relaxes the constant hazard ratio hypothesis
of the Cox model, which arguably does not fit to our context10.

Having a child is an endogenous choice and this will create
obvious omitted variable issues: individual and parental
characteristics may determine both mortality and the number
of siblings. To tackle this issue, we propose various child-level
variables controlling for mechanisms associating children
characteristics to mortality. In particular, we control for
birth spacing, which has been shown to have a direct impact
on mortality (see Palloni and Millman (1986); Retherford et
al. (1989); Jayachandran and Kuziemko (2011); Rossi and
Rouanet (2015)), by including dummies indicating whether
a sibling was born at least 18 months before, or at least 18
months after the birth of the child of interest. Jayachandran

9The main reason is that our within-household analysis (see below) can-
not be performed with standard statistical software due to a dimension-
ality issues. In Stata for instance, Cox models with fixed effects (shared
frailty) are fitted using a likelihood function in which the fixed effects are
estimated along with the other regression parameters. Each household
represents a parameter to estimate, meaning that too many households
may exceed the maximum number of estimable parameters. Parametric
models, on the other hand, have the benefit that fixed effects are not
directly estimated, but instead integrated out of the likelihood.

10Babies being typically weaker early on their lives, the impact of com-
petition may not be the same throughout the hazard period.
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and Pande (2017) also show that the first born (in particular
boys) may be treated differently than the other children. We
therefore control for whether a child is the first born of his or
her gender. We also include year of birth FE, gender-birth
rank FE, as well as a dummy for whether the child is part
of a twin birth. Finally, we include household fixed effects
which control for all unobserved parental characteristics. A
complete description of the variables used in this specification
is given in Appendix 3.A. Finally, the standard errors are
clustered at the state level, and observations are weighted
according to DHS weights.

The remaining difficulty for a credible identification comes
from reverse causality. Parents observing a child health
condition for instance, may anticipate his death and have
more siblings to ‘replace’ that child. To address the bias
this may create, we investigate two potential solutions. The
first one is an instrumentation strategy adjusted to survival
models as described in?. This method is a straightforward
two-stage regression approach analogous to the two-stage least
squares approach commonly used for IV analysis for linear
regression. In order to account for the additional uncertainty
from the first-stage estimation, we additionally perform a
non-parametric bootstrap to produce more accurate estimates
of standard error. For this analysis, we propose the age of
the mother at the birth of each child as an instrument for
his number of siblings. While correlated with the number
of children a mother will still have at the birth of any of
her children, this instrument is obviously not exogenous per
se. Nevertheless, we argue that conditional on the control
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variables described above, this instrument meets the exclusion
restriction. In particular, the household fixed effect controls
for all characteristics of the mother that do not vary through-
out her fertility period, so that, within a same household, the
age of the mother of each child needs not to directly impact
their probability to die. The literature however finds that
babies born to adolescent mothers or mother older than 35
(sometimes 40) have a significantly higher risk of death (see ?,
?, ?, ?, ?, ? for instance). Importantly, these studies all focus
on mortality up to 6 months and do not discuss similar effects
on children on longer periods. The exact threshold for when
age directly impact mortality is therefore not a consensus,
but it seems reasonable to consider that between 20 and 35,
the age of the mother has no consistent significant impact
on mortality. Through birth rank FE we take into account
mother’s experience at taking care of a child, and through
birth-spacing we control for potential variations in the time
between pregnancies that could occur as the mothers’ fertility
period shortens.
The second solution we propose is to make use of the panel
structure of our data (children being typically observed
several times on the period) and of the time-varying nature of
our variable of interest to include children fixed effects. We
argue that controlling for all time-invariant characteristics
of the child (i.e., the known characteristics described above,
plus all the unknown ones) captures a consistent part of the
remaining endogeneity cause by reverse causality. Note also
that this strategy cannot be combined with our instrumenta-
tion strategy since our instrument is time-invariant and will
therefore be absorbed by the children fixed effects.
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Appendix 3.B presents and discuss the results of both spec-
ifications in different settings. Because of the instability of
the results from the instrumentation strategy arising from the
choice of the threshold for the age of the mother at birth, we
choose to focus on the results from the specification with chil-
dren fixed effects. Table 3.4.1 presents these estimated effects
for each country in our sample.

Table 3.4.1: Effects of sibling competition on under-five mor-
tality

Bangladesh India Nepal Pakistan

sibling_competition 0.036∗∗∗ 0.126∗∗∗ 0.033 -0.033∗∗

(0.013) (0.006) (0.020) (0.015)
Observations 184,207 2,633,671 131,466 255,358
Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

These coefficients measure the additional probability to
die before age 5 as a consequence of an increase in competition
with siblings. For instance, in India, our estimate indicates
that one additional sibling in the first 5 years of life increases
the probability of death before age 5 by 12.61 percentage
points, on average. In Pakistan the effect is negative sug-
gesting than more siblings decreases the probability of dying.
Nevertheless, if one considers the possibility that the actual
effect of competition depends on other characteristics of the
child, looking only at the country-level estimates may not
give us the most accurate understanding of what is really
happening. In particular, because our mechanism relies on
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the idea that children with more siblings suffer from more
competition for resources, one should expect the effect to de-
pend on the availability of resources themselves, and therefore
on the economic status of the household. Figure 3.4.1 displays
the results when replicating our first estimations with hetero-
geneous effects by wealth quintile. As expected, the effect
of additional siblings on mortality is consistently decreasing
with wealth. Surprisingly, in each country, the effects even get
negative in higher quintiles, suggesting that when wealth is
high enough additional sibling could be beneficiary to children.

Because the mechanism we study is gender-specific,
another important point is whether the effect of siblings on
mortality differs by gender. Such difference could have two
origins. First, one of the genders could be naturally more sen-
sitive to the scarcity of resources. As infant girls are generally
considered as more robust than infant boys, we would expect,
if anything, siblings to have a more negative effect on boys.
Letting δ∗

g be the “natural” effect of additional competition
on girls, and δ∗

b the “natural” effect on boys, we would expect
δ∗

g ≤ δ∗
b . The second sources of difference in the effect of

competition could be some kind of direct discrimination not
captured through our controls and related to competition
itself. For instance, when competition increases, parents may
reallocate resources between children. In our context of son
preference, we expect this mechanism to be at the expense of
girls so that δg > δb, with δg and δb the effects of competition
on girls’ and boys’ when taking potential active discrimination
mechanisms into account. Given these definitions, we expect
δg > δ∗

b ≥ δ∗
g > δb. Running our model with heterogeneous
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Figure 3.4.1: Effects of sibling competition on under-five mor-
tality, by wealth quintile
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effects by gender would allow us to capture the impact of
competition on mortality for each gender separately. A
typical way to write the estimated results of a regression is
the following:

Mortaℓityi = δ̂i ∗ Xi with i = {g, b}

where Mortaℓityi is the average mortality for gender i
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caused by additional siblings, Xi is the average number of
siblings in the period of interest, and δ̂i is the estimated
effects of X in the corresponding group. From the expression
above, the BlinderOaxaca method allows us to decompose
the gender difference in the mortality resulting from sibling
competition:

Mortaℓityg − Mortaℓityb = δ̂gXg − δ̂bXb

= δ∗
g(Xg − Xb) + (δ̂g − δ∗

g)(Xg − Xb)
+ (δ̂g − δ̂b)Xb

(3.1)

The first term of Equation 3.1 accounts for the excess
probability to die from the difference in sibling competition
if girls had not been treated differently. This is the measure
of “indirect” discrimination we are aiming to estimate: even
when parents do not actively discriminate against girls (i.e.,
they die from sibling competition at the “natural rate” δ∗

g),
they still face worse outcomes due to the fertility path followed
by their parents. The second term represents the additional
probability to die from the difference in sibling competition
caused by the stopping rule, taking into account that girls
are in fact not necessarily treated in the same way than their
brothers. This represents the “direct” discrimination effect
of the stopping rule introduced in the Introduction. The last
term captures the ’pure’ effect of sibling competition if only
“active” discrimination was prevalent. That is, even if girls
faced the same amount of competition than boys on average,
i.e. if the stopping rule was unbiased, they would die more
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than boys because of differential treatment δ̂g − δ̂b
11. Because

we investigate the mortality consequences of the gender-biased
stopping rule, as well as because it represents the combination
of numerous effects, each of which deserving to be studied
separately, this last term will not be discussed further as part
of this paper. It will only be interpreted as the residual effect
of sibling competition if the stopping rule had been unbiased.
Finally, because we do not have strong arguments suggesting
that δ∗

b > δ∗
g we simplify our decomposition by considering

that δ∗
g = δ∗

b = δ∗. Without loss of generality, we suppose
hereafter that, in the absence of direct discrimination, the
effect of competition is the same for both boys and girls. This
hypothesis implies that any significant difference between δ∗

b

and δ∗
g can be attributed to active discrimination. Parallelly,

it allows us to use the results of Figure 3.4.1, call them
δ̂∗, as estimators for the δ∗ of each wealth quintile, which
could not have been derived otherwise12. The differential
mortality explained by our passive and active discrimination

11Note that this last expression could be decomposed further. Defin-
ing X

∗ as the competition boys and girls would have faced without any
stopping rule, and Xusr, the competition if the stopping rule had been
implemented in an unbiased way (with Xg > Xb > Xusr > X

∗), one
could have transformed it into an expression which would include terms
like (Xb − Xusr), or even (Xusr − X

∗). This more advanced decompo-
sition would allow us to study the specific impact of implementing the
biased stopping rule (compared to its unbiased counterpart), as well as
understanding the impact of implementing the stopping rule at all. How-
ever, this would only be possible if we knew the counterfactual Xusr and
X

∗, which require to know parents’ preferences.
12It also makes the results presented below more conservative. One

could indeed have argued that when the difference between δ̂∗ and δ̂g is
not significant, the ‘natural’ effect of competition for girls is the latter
term, taking an upper bound of the results (since δ̂g > δ̂∗).
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mechanisms are now given by the following expressions:

(3.2)Diff. Mortalitypassive = δ∗
g(Xg − Xb)

(3.3)Diff. Mortalityactive = (δ̂g − δ∗
g)(Xg − Xb)

Equation 3.3 highlights that the attribution of deaths to
the active discrimination mechanism of the stopping rule relies
on a differential effect of sibling competition on mortality
between boys and girls. If the difference is not significant,
the whole differential mortality that can be attribute to the
stopping rule comes from passive discrimination13. Note
however that an insignificant difference between the mortality
effects does not mean that girls are not treated differently
compared to boys as δ̂g − δ∗

g is to be interpreted as the
differential effect caused by variations in sibling competition.
Nevertheless, other sort of differential treatment, linked to
other mechanism than sibling competition could still prevail.

Table 3.4.2 presents the results when running the re-
gressions with heterogeneous effects by gender. In India,
Bangladesh, and the higher wealth quintiles of Nepal, increas-
ing competition does not have the same impact on boys and

13δ̂∗ is a linear combinaison of δ̂g and δ̂b. As a consequence, the classical
t-test for the difference between δ̂g and δ̂∗ will not be valid as it does not
take into account the positive but unknown covariance between the two
estimates. Implementing this test will therefore too often fail to conclude
in the statistical difference between the effects, making our estimates for
the number of deaths from direct discrimination more conservative.
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girls. The difference between the effects for both gender is in-
deed significant, and the difference tends to be increasing (or
at least non-decreasing) in wealth, suggesting that wealthier in-
dividuals exhibit higher levels of discrimination, other charac-
teristics given. An explanation is that, having more resources
to begin with, discrimination can be practice on a larger range,
while providing a certain minimum level for each child. This
would justify the higher differential, combined with both gen-
ders dying less from competition. The consequences of such
differential treatment therefore remains of lesser importance
as long as girl do not actually die from it.
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Table 3.4.2: Effects of sibling competition on under-five mortality, by wealth quintile
and gender

Bangladesh

Child died between 3 and 60 months
Girls Boys Girls - Boys

Sibling Competition ×
Wealth Quantile 1 0.120∗∗∗ 0.054 0.070∗

(0.028) (0.034) (0.038)
2 0.128∗∗∗ 0.058∗∗ 0.073∗∗

(0.032) (0.029) (0.036)
3 0.089∗∗∗ -0.016 0.108∗∗∗

(0.034) (0.035) (0.041)
4 -0.018 -0.141∗∗∗ 0.125∗∗

(0.040) (0.044) (0.053)
5 -0.083 -0.208∗∗∗ 0.127∗∗

(0.051) (0.060) (0.063)

India

Child died between 3 and 60 months
Girls Boys Girls - Boys

Sibling Competition ×
Wealth Quantile 1 0.256∗∗∗ 0.159∗∗∗ 0.095∗∗∗

(0.008) (0.009) (0.010)
2 0.203∗∗∗ 0.095∗∗∗ 0.106∗∗∗

(0.010) (0.012) (0.014)
3 0.104∗∗∗ -0.041∗∗ 0.142∗∗∗

(0.015) (0.016) (0.019)
4 0.017 -0.102∗∗∗ 0.116∗∗∗

(0.026) (0.036) (0.027)
5 -0.181∗∗∗ -0.348∗∗∗ 0.164∗∗∗

(0.034) (0.038) (0.047)

Nepal

Child died between 3 and 60 months
Girls Boys Girls - Boys

Sibling Competition ×
Wealth Quantile 1 0.094∗∗∗ 0.086∗∗∗ 0.005

(0.027) (0.023) (0.035)
2 0.066∗∗ 0.038 0.023

(0.033) (0.053) (0.072)
3 0.074∗ -0.053 0.143∗∗

(0.042) (0.045) (0.060)
4 -0.014 -0.209∗∗∗ 0.223∗∗∗

(0.047) (0.054) (0.077)
5 -0.166∗∗ -0.313∗∗∗ 0.162∗

(0.074) (0.080) (0.096)

Pakistan

Child died between 3 and 60 months
Girls Boys Girls - Boys

Sibling Competition ×
Wealth Quantile 1 0.063∗∗∗ 0.043∗ 0.035

(0.019) (0.023) (0.027)
2 0.010 -0.035∗ 0.059∗∗

(0.019) (0.021) (0.028)
3 -0.022 -0.054∗∗ 0.047

(0.027) (0.023) (0.036)
4 -0.069∗∗∗ -0.105∗∗∗ 0.049

(0.024) (0.029) (0.036)
5 -0.335∗∗∗ -0.244∗∗∗ -0.070

(0.048) (0.042) (0.058)
Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.5 Stopping rule and mortality
Using the two decomposition proposed in Equation 3.2 and
3.3, we are now in a position to compute the number of deaths
caused by the gender-biased stopping rule. We therefore
combine the estimates from Figure 3.4.1 and Table 3.4.2 with
a measure of difference in sibling competition in the spirit of
the one introduced in Figure 3.3.1. Importantly, our study
of mortality being done on a 5-year period, our measure
of difference in sibling competition must be computed on
the same time-window. However, as the period of interest
gets smaller (or finite, in general), our measure becomes
increasingly influenced by birth spacing. Indeed, if birth
spacing is longer after the birth of a boy than after the
birth of a girl, the observed difference at 5 years old will be
impacted. As this is a form of discrimination against girls not
directly related to fertility behaviors, we look at the difference
in sibling competition conditional on birth spacing. We then
multiply these expressions with the total number of female
births between 1980 and 2015 to estimate the amount of
girls who died because of our two mechanisms in each wealth
quintile j of each country c:

Mortalitycj =
[
δ̂∗

cj(Xgcj − Xbcj)
]

∗ Girlscj

+
[
(δ̂gcj − δ̂∗

cj)(Xgcj − Xbcj)
]

∗ Girlscj

Table 3.5.1 presents, for each country, the estimated death
counts for both mechanisms, with confidence intervals derived
from the lower and upper bounds of both constituting effects.
The first columns of each category can be interpreted as the
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minimum number of deaths that each mechanism explains. In
India, we estimate that more than 2 million girls died in the
poorest 40% of the population as a result of our indirect dis-
crimination mechanism. The estimated number of deaths is
smaller for the three other countries, mainly due to the size
of their population. In the poorest quintiles of Bangladesh,
Nepal and Pakistan, we estimate around 120,000, 25,000 and
90,000 deaths. On the other hand, in the higher wealth quin-
tiles, the number of deaths is negative. This suggests that, in
households in which additional siblings have a negative effect
on the probability to die, girls are actually the beneficiary of
living in larger household. These negative number are there-
fore represents the number of girls who would have died if
they had faced the same amount of competition that their
brothers. Note that the numbers of deaths to be attributed
to our passive mechanism do not necessarily decline as wealth
increase. Indeed, while the effect of mortality was smaller as
wealth increased, the difference in sibling competition tended
to increase with wealth. This highlights the dual nature of
our mechanism: if girls faced less competition, they will not
die from indirect discrimination, even if competition increases
the probability to die. On the other hand, if girls face intense
competition compared to their brothers, but do not die from
it, then no excess mortality is to be expected.
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Table 3.5.1: Deaths and Stopping Rule

Number of deaths
(min) Indirect discrimination (max) (min) Direct discrimination (max)

Bangladesh
1 -11,157 26,512 108,388 -10,856 3,643 58,713
2 612 51,797 149,136 -570 8,381 85,159

Wealth Quintile 3 -662 37,526 127,538 -10,561 25,392 135,122
4 762 -31,486 -5,730 -128 31,383 146,588
5 -33,922 -77,093 -48,430 -5,137 49,080 203,029

India
1 869,786 1,131,530 1,418,303 -9,675 86,171 217,570
2 832,792 1,082,099 1,363,888 78,156 260,516 487,109

Wealth Quintile 3 97,134 290,157 526,715 272,441 561,240 910,925
4 -498,923 -240,549 116,495 49,828 498,729 1,074,585
5 -1,455,835 -1,417,121 -1,288,737 260,660 731,562 1,330,542

Nepal
1 733 12,295 33,473 -983 -636 15,143
2 -551 10,837 36,638 -6,061 2,186 30,557

Wealth Quintile 3 -4,446 3,783 27,925 -3,258 13,783 54,961
4 -25,472 -23,813 -5,017 -3,428 25,318 80,467
5 -15,069 -33,822 -26,000 -3,831 13,851 70,291

Pakistan
1 14,189 89,147 227,066 -15,121 50,434 205,938
2 -34,323 -19,420 51,271 -4,193 73,736 238,572

Wealth Quintile 3 -55,822 -63,461 4,357 -19,223 67,116 280,796
4 -43,009 -113,605 -102,594 -7,996 50,428 230,573
5 -65,964 -297,401 -408,596 -22,498 -7,279 203,735
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Figure 3.5.1 presents the mortality rates by country, i.e.,
the probability at birth to die from our mechanisms. In In-
dia for instance, around 1.7% of the girls in the 2 poorest
quintiles die because of the indirect effect of the stopping rule.
This number goes down in wealthier household. In the poor-
est quintiles of the other countries, this probability is constant
around 0.5%. While there is no direct discrimination effect on
mortality in Bangladesh, Nepal, and Pakistan, India interest-
ingly displays a switch in the relative prevalence of each mech-
anism as wealth increases. This is because the effect of sibling
competition strongly decreases as wealth increases, while, as
briefly discussed before, the resource reallocation effect tends
to increase with wealth.

Figure 3.5.1: Probability of dying because of the stopping rule.

-4

-2

0

2

4

%

Pakistan Nepal Bangladesh India

1st
2nd
3rd
4th
5th

Wealth Quintile

(a) Indirect discrimination
mechanism

-4

-2

0

2

4

%

Pakistan Nepal Bangladesh India

1st
2nd
3rd
4th
5th

Wealth Quintile

(b) Direct discrimination
mechanism

Figure 3.5.2 depicts the share of deaths that our mecha-
nisms explain. That is the number of deaths relative to the
total number of girls who were born between 1980 and 2015
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and who died (at any point in time) during this period. In
India, the passive discrimination mechanism explains almost
20% of deaths in the lowest wealth quintiles, while reaching
half of that number in the other countries. The contribution
to mortality of the stopping rule through sibling competition
is therefore substantial.

Figure 3.5.2: Share of deaths caused by the stopping rule.
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3.6 Conclusion
In many countries, young girls face higher mortality rates than
boys. This disadvantage partly follows from active discrimina-
tion in the family in terms of access to health care or essential
resources. In this paper, we explore a specific channel that
explains part of the higher mortality of girls, some in the ab-
sence of active and direct discrimination, showing that indirect
or implicit discrimination also plays an important role. In an
environment where male children are strongly preferred, par-
ents tend to keep having children until they reach their desired
number of boys, a behavior known as the stopping rule. As a
result, girls have on average more younger siblings than their
brothers and therefore experience a stronger intra-household
competition for resources. This means that even if girls were
not discriminated against after their births, they still die more
because of the higher competition they face. Between 1980 and
2015, we estimate over 2,500,000 deaths of girls directly linked
to our mechanism in India, 120,000 in Bangladesh, 90,000 in
Pakistan, and 25,000 in Nepal. These numbers account for a
significant proportion of girls mortality in South Asia, the vast
majority of which in the poorest part of the population.
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Appendix

3.A Controls variables and descriptive
statistics
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India

Mean S.d. Min Max
Child died between 3 and 60mo 0.04 0.20 0 1
Younger siblings competition 0.43 0.43 0 5
Age of the mother at birth 22.90 4.99 0 49
Older siblings competition 1.15 1.34 0 15
Time to next child < 18 months 0.13 0.33 0 1
Time from previous child < 18 months 0.12 0.33 0 1
Girls 0.48 0.50 0 1
Birth rank 2.46 1.60 1 17
Child is from twin birth 0.01 0.11 0 1
Observations 1694986

Bangladesh

Mean S.d. Min Max
Child died between 3 and 60mo 0.07 0.25 0 1
Younger siblings competition 0.34 0.38 0 3
Age of the mother at birth 21.81 5.54 10 46
Older siblings competition 1.21 1.46 0 13
Time to next child < 18 months 0.10 0.29 0 1
Time from previous child < 18 months 0.09 0.29 0 1
Girls 0.49 0.50 0 1
Birth rank 2.73 1.86 1 20
Child is from twin birth 0.01 0.12 0 1
Observations 172064

Nepal

Mean S.d. Min Max
Child died between 3 and 60mo 0.08 0.27 0 1
Younger siblings competition 0.40 0.39 0 2
Age of the mother at birth 23.48 5.28 9 45
Older siblings competition 1.21 1.42 0 11
Time to next child < 18 months 0.11 0.31 0 1
Time from previous child < 18 months 0.11 0.31 0 1
Girls 0.49 0.50 0 1
Birth rank 2.76 1.82 1 16
Child is from twin birth 0.01 0.12 0 1
Observations 107431

Pakistan

Mean S.d. Min Max
Child died between 3 and 60mo 0.05 0.21 0 1
Younger siblings competition 0.62 0.52 0 4
Age of the mother at birth 24.64 5.64 9 46
Older siblings competition 1.80 1.90 0 13
Time to next child < 18 months 0.22 0.42 0 1
Time from previous child < 18 months 0.21 0.41 0 1
Girls 0.48 0.50 0 1
Birth rank 3.28 2.18 1 19
Child is from twin birth 0.02 0.13 0 1
Observations 127983
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3.B Different specifications of the main
regression

The first four tables displays the results for different specifica-
tions of the model presented in Section 3.4 for each country.
The first columns present the results of the survival model
with the ”basic” controls, while the second columns show the
results of the specification with children fixed effects instead
of the controls at the child level. The third columns present
the results for the IV regression on the full samples, and the
last columns shows the results for the IV regression on the
sub-sample of children whose mother was between 20 and 35
years old at the time of their births.
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Table 3.B.1: Specifications
Bangladesh

Mortality
Survival Survival Survival IV Survival IV (20-35)

# of siblings -0.012 0.036∗∗∗ -0.020 0.134∗∗∗

(0.028) (0.013) (0.115) (0.130)
First-Stage F-Stat 960 735
Observations 184207 184207 184207 106665
Child FE No Yes No No
Mother FE Yes No Yes Yes
Year of Birth FE Yes No Yes Yes
First of Gender FE * Gender FE Yes No Yes Yes
Birth rank FE * Gender FE Yes No Yes Yes
Birth Spacing previous Yes No Yes Yes
Birth Spacing next Yes No Yes Yes
Twin FE Yes No Yes Yes

India
Mortality

Survival Survival Survival IV Survival IV (20-35)

# of siblings -0.111∗∗∗ 0.126∗∗∗ -0.076∗∗∗ 0.011∗

(0.010) (0.006) (0.028) (0.035)
First-Stage F-Stat 10,454 8,204
Observations 2633671 2633671 2633671 1911299
Child FE No Yes No No
Mother FE Yes No Yes Yes
Year of Birth FE Yes No Yes Yes
First of Gender FE * Gender FE Yes No Yes Yes
Birth rank FE * Gender FE Yes No Yes Yes
Birth Spacing previous Yes No Yes Yes
Birth Spacing next Yes No Yes Yes
Twin FE Yes No Yes Yes

Nepal
Mortality

Survival Survival Survival IV Survival IV (20-35)

# of siblings -0.120∗∗∗ 0.033 -0.052∗∗∗ -0.001
(0.030) (0.020) (0.099) (0.113)

First-Stage F-Stat 707 567
Observations 131466 131466 131466 93897
Child FE No Yes No No
Mother FE Yes No Yes Yes
Year of Birth FE Yes No Yes Yes
First of Gender FE * Gender FE Yes No Yes Yes
Birth rank FE * Gender FE Yes No Yes Yes
Birth Spacing previous Yes No Yes Yes
Birth Spacing next Yes No Yes Yes
Twin FE Yes No Yes Yes

Pakistan
Mortality

Survival Survival Survival IV Survival IV (20-35)

# of siblings -0.299∗∗∗ -0.033∗∗ -0.077∗∗∗ -0.0109
(0.022) (0.015) (0.070) (0.083)

First-Stage F-Stat 640 761
Observations 255358 255358 255358 198266
Child FE No Yes No No
Mother FE Yes No Yes Yes
Year of Birth FE Yes No Yes Yes
First of Gender FE * Gender FE Yes No Yes Yes
Birth rank FE * Gender FE Yes No Yes Yes
Birth Spacing previous Yes No Yes Yes
Birth Spacing next Yes No Yes Yes
Twin FE Yes No Yes Yes

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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The two specifications which were potential candidates
(columns 2 and 4) always agree on the sign of the effect but
the differences between them are quantitatively important, al-
though never statistically significant (standard errors from the
IV being quite big). The decision of choosing the basic survival
model with children fixed effects instead of the IV was made
because of the huge variability of the IV results over the choice
of the ages at which the sample was censored . Table 3.B.2
below replicates the results of the IV for several plausible min-
imum (rows) and maximum (columns) values of age at which
the age of your mother at birth has no impact on your mor-
tality. This variation is either because our instrument is not
strong enough. While significant, most variation in the First-
Stage is captured by the household and the birth rank fixed
effects with which the age of the mother is obviously strongly
correlated. Its remaining explanatory power is therefore rela-
tively low. Moreover, being time-invariant, this instrument is
unable to capture the variation in time of the number of sib-
lings. This could also simply be that the instrument, despite
our controls and censoring, is not indeed exogenous. Note that
for each country, the estimate from the model with children
fixed effect is inside the range of the IV results, which encour-
age the use of this specification. For instance, inn Bangladesh,
it closely matches the IV results when selecting mothers be-
tween 20 and 33. In India, Nepal, and Pakistan, the estimates
from the children fixed effects regressions matches the IV esti-
mates on the selection of mothers between 22 and 33, 21 and
36, and 20 and 34 respectively.
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Table 3.B.2: Results from IV with censored samples

Estimate
33 34 35 36 37

Bangladesh
18 0.0145 0.0666 0.1090 0.1555 0.1459
19 0.0616 0.0492 0.0946 0.1267 0.1360
20 0.0367 0.0845 0.1344 0.1686 0.1845
21 -0.0180 0.0604 0.1217 0.1625 0.1735
22 0.0524 0.1125 0.1808 0.2235 0.2371

NA
India

18 -0.0412 -0.0199 -0.0558 0.0132 0.0290
19 -0.0129 0.0096 -0.0229 0.0442 0.0113
20 0.0213 0.0453 0.0106 0.0365 0.0999
21 0.0524 0.0291 0.0463 0.0641 0.0856
22 0.1171 0.1435 0.1009 0.1169 0.1411

NA
Nepal

18 -0.1128 -0.1001 -0.0542 -0.0443 -0.0487
19 -0.0858 -0.0734 -0.0232 -0.0129 -0.0190
20 -0.0691 -0.0573 -0.0017 0.0092 0.0014
21 -0.0661 -0.0525 0.0108 0.0232 0.0135
22 -0.0174 -0.0041 0.0665 0.0796 0.0656

NA
Pakistan

18 -0.1888 -0.1431 -0.1290 -0.1097 -0.0725
19 -0.1534 -0.1139 -0.0853 -0.0261 -0.0350
20 -0.0945 -0.0394 -0.0190 0.0426 0.0338
21 -0.0907 -0.0456 -0.0123 0.0104 0.0436
22 -0.0788 -0.0237 0.0133 0.0393 0.0594

NA
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