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Predicate Anti-unification
in (Constraint) Logic Programming

Gonzague Yernaux1[0000−0001−6430−8168]

and Wim Vanhoof1[0000−0003−3769−6294]

University of Namur, Belgium
gonzague.yernaux@unamur.be

Abstract. The concept of anti-unification refers to the process of de-
termining the most specific generalization (msg) of two or more input
program objects. In the domain of logic programming, anti-unification
has primarily been investigated for computing msgs of tree-like program
structures such as terms, atoms, and goals (the latter typically seen as
ordered sequences).
In this work, we study the anti-unification of whole predicate definitions.
We provide a definition of a predicate generalization that allows to char-
acterize the problem of finding the most specific generalization of two
predicates as a (computationally hard) search problem. The complexity
stems from the fact that a correspondence needs to be constructed be-
tween (1) some of the arguments of each of the predicates, (2) some of
the clauses in each of the predicate’s definitions, and (3) some of the
body atoms in each pair of associated clauses. We propose a working al-
gorithm that simultaneously computes these correspondences in a greedy
manner. While our algorithm does not necessarily compute the most spe-
cific generalization, we conjecture that it allows to compute, in general,
a sufficiently good generalization in an acceptable time.

Keywords: Anti-unification · Generalization · Approximation Algorithm

1 Introduction

Anti-unification, the dual operation of unification, is the process of computing so-
called most specific generalizations. Such generalizations are defined as common
templates for sets of code artifacts that harbor as much common structure as
possible. Since its first formal introduction by Plotkin [10], anti-unification has
become a fundamental ingredient in, for example, Inductive Logic Programming
(ILP) where new, general rules are learned from specific facts [9] or in program
transformation techniques such as supercompilation or partial deduction, where
generalizing program terms is a necessary ingredient to control the unfolding
process and thus to guarantee termination [15, 3].

Other applications in which anti-unification plays a role include bug detec-
tion, program repair, and even code compression [2]. Our own work on (semantic)
clone detection in logic programming [19], which is the direct motivation for the



current work, also relies on the availability of a anti-unification operator capable
of computing generalizations at the predicate level. Semantic clone detection [12]
is a powerful tool given its direct applications in program comprehension [11,
14], plagiarism detection [22], malware detection [21] and finding vulnerabilities
in binaries [8]. Computing a (most specific) generalization of two code fragments
allows not only to compare the degree of similarity of the fragments, it also al-
lows to steer the search process that may be involved in clone detection. As an
example, the idea of using anti-unification to detect Erlang code clones is the
focus of [7]. The approach exploits the abstract syntax trees of Erlang functions
to detect duplication: to this effect, each function’s tree is compared– through
anti-unification– with templates belonging to known classes of clones.

Computing the most specific generalization of tree-like syntactical structures
such as terms and atoms is widely understood and can easily be done in linear
time by a straightforward recursive algorithm [10, 15]. However, when considering
more liberal structures (such as sets of atoms), the problem becomes NP-hard
necessitating the need for abstractions, such as the k-swap stability abstraction
that we have developed in previous work [18].

In the present work we consider the generalization of complete predicate
definitions. Defining and computing the best – typically most specific – such
generalization is a non-trivial problem that, to the best of our knowledge, has
not received much attention in the literature. As we will show, searching for
the most specific predicate generalization involves searching for a mapping be-
tween the clauses of both predicates such that a pairwise generalization of the
corresponding clauses gives the best result. However, when the clause bodies
are considered to be sets of atoms, a similar mapping needs to be considered
between the individual literals of the corresponding clause bodies. To add yet
another difficulty, the constructed generalization must be coherent, in the sense
that in the resulting clauses each argument consistently generalizes a single ar-
gument in both of the generalized predicates, possibly different in each of both
definitions.

Although the search of anti-unification processes operating at the level of
predicates is thus in itself a rather novel quest, a few researchers did address
similar or related problems. In [4], subsumption, i.e. the historical ancestor of
anti-unification described in [10], is used to quantify the syntactic ”closeness” of
logic clauses and even entire ILP programs. Another orthogonal approach to our
own that is worth mentioning is that of [6], where so-called higher-order anti-
unification, allowing for generalization of functor and predicate names, is used
to mimic analogical thinking in an ILP or, more broadly, a machine learning
context. Meanwhile in the works of Schmid et al., the generalization of couples
of functions is intended to be used as a blueprint of the functions’ algorithmic
core, in an effort to enhance machine learning processes [13]. While not far away
from our own intent when anti-unifying predicates, this idea was only mentioned
by Schmid and her team, and to this date no published work actually delivered
the envisioned recipe.
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The remainder of the paper is organized as follows. In Section 2 we provide
some basic definitions involving the generalization of terms and goals and we
define the quality function that should be optimized in order to compute the
most specific generalization. Next, in Section 3, we provide a workable definition
of what constitutes a common generalization of two predicate definitions and we
discuss where the additional complexity in computing such generalizations stems
from. In Section 4 we develop an algorithm allowing to compute an approximate
solution using greedy search. The main highlight of our algorithm is that it
computes the above-mentioned interdependent mappings between the clauses,
arguments, and body atoms in one go. While the resulting algorithm does not
necessarily compute the most specific generalization and while its performance
needs to be established on real examples, we feel that it provides an elegant
solution that allows to compute, in general, a sufficiently good generalization in
an acceptable time. We end with some concluding remarks in Section 5.

2 Preliminaries

A CLP program is traditionally defined [5] over a CLP context, which is a 5-
tuple ⟨X,V,F ,L,Q⟩, where X is a non-empty set of constant values, V is a set
of (uppercase) variable names, F a set of function names, L is a set of constraint
predicates over X and Q a set of predicate symbols. The sets X,V,F ,L and Q
are all supposed to be disjoint sets. Symbols from F , L, andQ have an associated
arity and as usual we write f/n to represent a symbol f having arity n. Given
a CLP context C = ⟨X,V,F ,L,Q⟩, we can define the set of terms over C as
TC = X∪V∪{f(t1, t2, ..., tn)|f/n ∈ F where ∀i ∈ 1..n : ti ∈ TC}. Likewise, the set
of constraints over C is defined as CC = {L(t1, t2, ..., tn) |L/n ∈ L and ∀i ∈ 1..n :
ti ∈ TC} and the set of atoms as AC = {p(t1, . . . , tn) | p/n ∈ Q and ∀i : ti ∈ TC}.
A goal G ⊆ (CC∪AC) is a set of atoms and/or constraints. We will use the notion
of a literal to refer to either a constraint or an atom. A program is then defined
as a set of constraint Horn clause definitions where each clause definition is of
the form p(t1, . . . , tn)← G where p(t1, . . . , tn) is an atom called the head of the
clause with t1, . . . , tn terms, and G a goal called the body of the clause. For a
predicate symbol p/n, we use def (p/n) to denote the definition of p/n in the
program at hand, i.e. the set of clauses having a head atom using p as predicate
symbol and harboring n arguments. We might refer to a predicate p/n simply as
p, provided that its arity n is obvious or irrelevant. Terms, literals, goals, clauses
and predicates will sometimes be referred to as program objects.

In what follows we will often consider the CLP context to be implicit and talk
simply about two CLP programs and the predicates and clauses defined therein.
As for semantics we consider the purely declarative CLP paradigm exposed in [5].

As usual, a substitution is a mapping from variables to terms. For any map-
ping σ, dom(σ) represents its domain. For a program object e (be it a term, a
literal, a goal, a clause or a predicate) and a substitution σ, eσ represents the
result of simultaneously replacing in e those variables V that are in dom(σ) by
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σ(V ). A fresh renaming of some program object e is a variant of e where all
variables have been renamed to new, previously unused variables.

Given the notion of a substitution, we can define common generalizations.

Definition 1. Given three terms (or three literals) g1, g2 and g, we say that g
is a common generalization of g1 and g2 if ∃σ1, σ2, two substitutions verifying
gσ1 = g1 ∧ gσ2 = g2.

The definition above is sufficient for terms and literals, which are tree struc-
tures. To extend it to clause bodies we need to introduce a partial order. The
definition is taken from our earlier work [18].

Definition 2. Let G and G′ be goals. We say that G is more general than (or,
equivalently, is a generalization of) G′, denoted G ⪯ G′, if and only if there
exists a substitution σ such that Gσ ⊆ G′.

Hence, a goal is more general than another goal if the former is a subset of
the latter modulo a substitution. While our notion of generalization is simple
and purely of syntactic nature, it is in line with what one could consider to
be a generalization at the semantic level, since generalizing a goal corresponds
to removing computational units (terms, constraints or atoms) and introducing
new variables.

In the following example as well as in the remainder of the paper, we write
terms and constraints in infix style when possible.

Example 1. The goals {X = Y + Z}, {V = 6 +W, q(3)}, {K = 6 + (2 ∗ L)} and
{q(A)} are all generalizations of {D = 6 + (2 ∗ 5), q(3)}.

Also note that our relation ⪯ resembles the θ-subsumption relation of [10].
However, the latter is concerned with sequences of atoms rather than sets and
is therefore more adapted to situations where the underlying semantics are not
fully declarative. We now define common generalizations of goals as follows.

Definition 3. For two goals G1 and G2, we say that any goal G such that
G ⪯ G1 and G ⪯ G2 is a common generalization of G1 and G2.

The process of computing common generalizations is usually called anti-
unification [2]. However, given two program objects, one is typically interested
in the most specific common generalizations, which definition depends on the
context. For instance, larger common generalizations (in number of generalized
elements) are often considered to be more interesting than shorter ones. This is
at least the approach taken by Plotkin [10]. But other criteria than size alone
can interfere in what is expected of ”better” common generalizations: for ex-
ample, the level of injectivity of the substitution (or renaming) σ involved in
Definition 2 [18]. To keep our approach generic in that regard we will use the
notion of quality to quantify the interest of a given generalization.

Definition 4. Given a set of program objects E of the same nature that one
wants to generalize, we define a quality function ωE as a function that associates
a real value ωE(e) to each possible program object e of the same nature.
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The definition of a quality function ωE is generic in the sense that there is no
constraint on the exact criterion to be measured as ”quality” of a generalization,
except being a function of real values. A value ωE(e) can thus simply represent
the size of e – counting, e.g. the number of literals or the number of (distinct or
not) terms that appear in e – or it can be more sophisticated and reflect the size
of the object relative to the objects it is supposed to generalize (the set E) or
any other optimization criterion that makes sense for the application at hand. In
the following, whenever the set E is obvious or irrelevant, we will omit it from
the notation and we will simply talk about a quality function ω.

Definition 5. For a given quality function ω, we say that a common generaliza-
tion g of two program objects e1 and e2 is an ω-maximal generalization (ωmg)
for e1 and e2 iff no other common generalization g′ is such that ω(g′) > ω(g).

A rather straightforward and intuitive quality function can be based on the
notion of a norm [1] which is a function |.| : T 7→ N that associates a natural
number to any term, basically representing the term’s size.

Definition 6. Given |.| a norm on terms, let τ|.| denote the quality function
derived from the norm defined such that

– for a term t we have τ|.|(t) = |t|;
– for the empty literal true we have τ|.|(true) = 0;

– for a non-empty literal L ≡ p(t1, . . . , tn) we have τ|.|(L) = 1 +
∑n

i=1 τ|.|(ti);

– for a goal G ≡ {L1, . . . , Ln} we have τ|.|(G) =
∑n

i=1 τ|.|(Li);

– for a clause c ≡ L← G we have τ|.|(c) = τ|.|(L) + τ|.|(G);

– for a predicate p/n we have τ|.|(p) =
∑

c∈def (p/n) τ|.|(c).

In the case of a literal L, the 1+ appearing in the formula for computing
τ(L) is a way to ensure later that a generalization containing any (non-empty)
literal is of higher quality that a generalization containing none. This is useful to
ensure that norms returning a value of zero on given terms still encourage larger
generalizations in number of atoms. The quality function from Definition 6 can
be instantiated on a norm capturing the number of functors in an expression
(often called the termsize norm).

Example 2. Let us consider the termsize norm |.|s defined for a term t as equal
to the cardinality of the multiset of functors appearing in t. Given this norm,
we have τ|.|s(f(g(X,h), h)) = #{f/2, g/2, h/1, h/1} = 4. Likewise, we have that
τ|.|s(app([X|Xs], Y, [X|Zs])← {app(Xs, Y, Zs)}) = 1 +#{[|], [|]}+ 1 = 4.

As we will use this quality function based on the termsize norm in the re-
mainder of the paper, we will simply refer to it by τ without mentioning the
underlying norm.
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3 Predicate Anti-unification

The notion of a generalization can rather easily be extended to the level of
clauses, as shown by the following definition.

Definition 7. A clause c ≡ p(t1, . . . , tn) ← G is a generalization of a clause
c′ ≡ q(u1, . . . , um) ← G′, denoted c ⪯ c′, if and only if n ≤ m and there
exists a substitution σ and an injection α : 1..n 7→ 1..m such that Gσ ⊆ G′,
and ∀i ∈ 1..n : tiσ = uα(i). We call α the involved argument mapping of the
generalization.

The definition states that for a clause c to be the generalization of another
clause c′, the body of cmust be a generalization of the body of c′ (first condition).
Moreover, the n arguments of c must be a generalized version of n corresponding
arguments in c′ (second condition), possibly appearing in another order than
they do in the generalized clause c′. The two conditions in the definition ensure
that one and the same substitution is used both for matching the clauses’ heads
and their bodies.

Example 3. Consider the clauses c1 ≡ q(Y1, Y2, 5 + Y2) ← Y1 > Y2, Z = 5 + Y2

and c2 ≡ r(V1, 5 + V1)←W = 5+ V1. The clause c ≡ p(X1, X2)← A = X2 is a
common generalization of c1 and c2.

The definition is fine as long as we consider isolated clauses. When generaliz-
ing multiple clauses belonging to a single predicate, it is important that the indi-
vidual clause generalizations are all in line with the involved argument mapping
α. Another mapping, identified by γ and called a clause mapping, determines
which couples of clauses are generalized with one another in the generalization.

Definition 8. Let p/n and q/m be predicates. We say that p/n is a generaliza-
tion of q/m, denoted p ⪯ q, if and only if n ≤ m and |def (p)| ≤ |def (q)| and
there exists

1. an injective mapping α : 1..n 7→ 1..m, and
2. an injective mapping γ : def (p) 7→ def (q),

such that ∀c ∈ dom(γ) it holds that c ⪯ γ(c) with involved argument mapping α.

The definition above states that a predicate is a generalization of another if
each clause of the generalization can be mapped on a clause in the generalized
predicate by means of a substitution, provided that all of clause generalizations
share the same argument mapping α.

While the definition of a predicate generalization is elegant, it is immedi-
ately clear that computing a common predicate generalization will not be that
straightforward. Let p/n and q/m be the predicates one wants to generalize (ide-
ally such that the resulting generalization is maximal with respect to the chosen
quality function). We can then define what constitutes a common predicate gen-
eralization with respect to the two underlying mappings:
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Definition 9. Consider predicates p/n and q/m and let α and γ be, respectively,
an argument mapping and a clause mapping between p and q. Then a common
generalization of p and q with respect to α and γ is a predicate comprised of the
set of clauses g = {g(c,c′) | (c, c′) ∈ γ} where g(c,c′) ⪯ c with involved argument
mapping α1, g(c,c′) ⪯ c′ with involved argument mapping α2, and ∀i ∈ dom(α1) :
α(α1(i)) = α2(i).

Example 4. Let us consider the two following predicates, take/3, which extracts
the E first elements of a list, and negsum/3, which succeeds if its third argument
is the negative sum of the I first elements of the list in its first argument.

take(0, Xs, []).
take(E, [], []).
take(E, [X|Xs], [X|Y s])← E > 0, E1 = E − 1, take(E1, Xs, Y s).

negsum(V s, 0, 0).
negsum([], I, 0).
negsum([V |V s], I, U)← I > 0, I1 = I − 1, negsum(V s, I1, U1), U = U1 − V.

The predicate g/2 such that def (g) = {g(0, A)., g(A, []).} is a relatively triv-
ial common generalization of the two predicates, mapping the first and second
clauses of take onto the first and second clauses of negsum respectively, and
such that α = {(1, 2), (3, 1)}. A presumably better generalization, one that bet-
ter exhibits the common functionality of the two predicates is the following:

g(0,Ws,Null).
g(C, [], Null).
g(C, [W |Ws], R)← C > 0, C1 = C − 1, g(C1,Ws,R).

This corresponds to a predicate that decrements a counter as it crawls through
a list, and performs recursively on each encountered element of the list. It can,
indeed, be seen as the functionality that is shared by both take and negsum.

Note that a clause mapping γ and argument mapping α do not by themselves
determine a unique generalization but rather a set of possible generalizations
(since different generalizations compatible with α might exist for a given clause
pair c and c′). Formally, if we use mτ (c, c

′, α) to represent the τ -maximal gener-
alization compatible with α of clauses c and c′, then computing the τ -maximal
predicate generalization can be seen as the problem of finding α and γ such that∑

(c,c′)∈γ τ(mτ (c, c
′, α)) is maximal. By the above definition, the τ -maximal gen-

eralization of two predicates p and q is a generalization whose τ -value, computed
over the definition of the predicate as a whole, is maximal among all possible
generalizations of p and q. While in our approach this is the generalization we
would ultimately like to compute, other definitions (resulting in somewhat dif-
ferent search or optimization problems) might be of interest as well. We briefly
return to this point in the discussion at the end of the paper.

4 Computing Common Generalizations

Computing a τ -maximal predicate generalization is clearly a computationally
hard problem. In fact, even computing a τ -maximal common generalization of
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two clause bodies is a computationally hard problem in itself due to goals be-
ing sets of literals [18]. In what follows, we will devise a method that does not
necessarily compute a τ -maximal predicate generalization, but that arguably
computes a sufficiently good (τ -wise) approximation of the τ -maximal general-
ization.

4.1 Terms and Literals

Terms and literals being ordered tree structures, it is easy to define an anti-
unification operator that computes, in a time linear in the number of nested
subterms, the τ -maximal generalization of two terms, respectively literals [10,
15]. The operator is based on a variabilization function that introduces, when
necessary, fresh variable names.

Definition 10. Let V ⊂ V denote a set of variables. A function ΦV : T 2 7→
V ∪X is called a variabilization function if, for any (t1, t2) ∈ T 2 it holds that if
ΦV (t1, t2) = v, then

1. v /∈ V ;
2. ∄(t′1, t′2) ∈ T 2 : (t′1, t

′
2) ̸= (t1, t2) ∧ ΦV (t

′
1, t

′
2) = v;

3. v ∈ X ⇔ t1 = t2 ∈ X and in that case, v = t1 = t2.

Note that a variabilization function ΦV introduces a new variable (not present
in V ) for any couple of terms, except when the terms are the same constant. It can
thus be seen as a way to introduce new variable names when going through the
process of anti-unifying two program objects. In what follows, we will consider
V to be the set of variables appearing in the structures to generalize so that all
variables in the generalization are fresh variables, and abbreviate the function
to Φ. The following is an example of a typical term (and literal) anti-unification
operator based on the process of variabilization. In the remainder of the paper,
we consider it as our working anti-unification tool for the quality function τ and
the norm of Example 2.

Definition 11. Given some variabilization function Φ defined over some nu-
meric CLP context, let ▷◁ denote the function such that for any two terms or
two literals t = t̂(t1, . . . , tn) and u = û(u1, . . . , um) it holds that

▷◁ (t, u) =

 true if t̂, û ∈ P ∪ L ∧ t̂/n ̸= û/m
t̂
(
▷◁ (t1, u1), . . . , ▷◁ (tn, un)

)
if t̂ = û ∧ n = m ∧ t, u /∈ V

Φ(t, u) otherwise

It is easy to see that computing ▷◁ (t, u) can be done in a time that is propor-
tional to the minimal termsize of both arguments, that is a time proportional to
O(min{|t|, |u|}).

Example 5. Let us consider the predicates take and negsum from Example 4.
Several applications of ▷◁ on pairs of terms or literals are depicted in Table 1.

8



t u ▷◁ (t, u) τ(▷◁ (t, u))

[X|Xs] [] Φ([X|Xs], []) 0
[X|Xs] [V |V s] [Φ(X,V )|Φ(Xs, V s)] 1
E1 = E − 1 U = U1 − V Φ(E1, U) = Φ(E,U1)− Φ(1, V ) 2
E1 = E − 1 I1 = I − 1 Φ(E1, I1) = Φ(E, I)− 1 3

Table 1. Example results for ▷◁.

For two literals L and L′, the output of their anti-unification through ▷◁ is only
valuable if both L and L′ are based on the same predicate symbol. Note that
this prevents recursive calls to be part of a generalization when the two clauses
are part of predicates that have different names. To overcome this, we suppose
in the rest of the paper that recursive calls are replaced with a special literal λ
that will at least allow the recursion to be explicitly part of the generalization.
Note that the call’s arguments are not taken into account when generalizing
two recursive calls. This makes sense as such a generalization should take the
argument mapping α into account. We will return to this point later in the
discussion.

4.2 Predicates

When the mappings α and γ need to be computed from scratch, it is easy to see
that the combinations of potential mappings to consider is exponential in the
number of clauses and arguments, especially when partial mappings (i.e. map-
pings that concern only a subset of arguments and/or clauses) are allowed. Now,
for a fixed argument mapping, computing a clause mapping giving rise to an ωmg
boils down to the resolution of an instance of the classical assignment problem,
which can be solved by existing Maximum Weight Matching algorithms, for
which polynomial routines exist [17]. The same is true the other way round, i.e.
when computing an argument mapping for a given clause mapping.

However, the mappings γ and α are not independent. Considering a clause
mapping without taking an argument mapping into account makes little sense,
as the different clause generalizations (resulting from the mapping γ) could map
the arguments differently, making them incompatible and impossible to combine
into a single predicate generalization. On the other hand, a wrongly chosen
argument mapping can result in clauses being generalized in a sub-optimal way
due to the fact that better generalizations exist that are incompatible with the
chosen argument mapping.

Based on these observations, we develop an algorithm that does not necessar-
ily compute the maximal generalization of two predicates, but a sufficiently good
approximation (τ -wise). The algorithm constructs the argument- and clause
mappings at the same time, basically implementing a greedy search algorithm
that tries to maximize the τ -value of the resulting generalization as a whole,
including the generalization of the clause bodies.

Let p and q denote the predicates we wish to generalize. Let N represent their
maximal arity and, likewise, K the maximal number of clauses to be found in
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either definition. A basic ingredient of our algorithm is knowledge (basically, the
τ -value) of the result of generalizing individual items, be it arguments or body
atoms. To represent these individual τ -values, we will use two weight matrices.
First, a square matrixH of dimension (N×K)2 representing the τ -value resulting
from anti-unifying each argument term occurring in the definition of p with each
argument term occurring in the definition of q. The matrix has thus as many
rows (and columns) as the maximal number of argument terms (N × K) that
could occur in p and/or q. In H, any coordinate i ∈ 1..N×K can be decomposed
as i = c × N + d with c and d natural numbers and 0 ≤ d < N) such that c
represents a clause and d an argument position (in zero-based numbering). For
ease of notation, we define cl(i) = c and al(i) = d when i can be decomposed
as per the above formula. The entries of H are then computed as follows: for
a position (i, j), we have H[i, j] = τ(▷◁ (t, t′)), where t represents the al(i)th
argument from the cl(i)th clause of p (if it exists) and, likewise, t′ represents
the al(j)th argument of the cl(j)th clause of q (if it exists). If either of those
arguments does not exist, then H[i, j] = −∞.

Secondly and in a similar manner, if M represents the maximum number of
body literals found in the clauses of p and q then a square matrix B of dimension
(M×K)2 represents the τ -value resulting from anti-unifying the individual body
literals from p with those of q. For a value 0 ≤ i < M × K, we will use bl(i)
to represent the value l where (0 ≤ l < K) such that i = c × K + l. As such,
B[i, j] = τ(▷◁ (L,L′)) where L represents the bl(i)th literal from the cl(i)th
clause of predicate p and L′ represents the bl(j)th literal from the cl(j)th clause
of q. Again, if either of those literals does not exist, B[i, j] = −∞.

Example 6. Let us once more consider the predicates of Example 4. The corre-
sponding matrices H and B (restricted to the submatrix that does not contain
exclusively −∞ values) are displayed in Figure 1. For clarity we have added to
each line and column the terms and literals that are concerned by it, when these
exist. The literals λ represent the recursive calls.

Constructing a generalization boils down to selecting a set of positions SH

from H and a set of positions SB from B in such a way that the chosen positions
correctly represent an argument mapping, a clause mapping, and a generalization
of the corresponding clause bodies. When a position (i, j) is selected in one of
the matrices, it implies that the clause mapping γ being constructed associates
the cl(i)th clause of p with the cl(j)th clause of q. Therefore, after selecting (i, j),
we need to exclude from further selection those positions that concern only one
of cl(i) and cl(j), in either matrix. In what follows we use the notation (i, j)W
to refer to the position (i, j) in the matrix W (where W can be one of H or
B). The set of all positions to be considered in H is noted PH = {(i, j)H |i, j ∈
1..N ×K ∧H[i, j] ̸= −∞} and, likewise, the set of all the positions of interest
in B is noted PB = {(i, j)B |i, j ∈ 1..M ×K ∧ B[i, j] ̸= −∞}. We will use PW

to refer to the set of positions of a matrix W , with W being either H or B and
simply P for PH ∪ PB . We will use (i, j)W or sometimes simply (i, j) to denote
a position from either PH or PB .
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V s 0 0 [] I 0 [V |V s] I U

0 0 1 1 0 0 1 0 0 0

Xs 0 0 0 0 0 0 0 0 0

[] 0 0 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0

[] 0 0 0 1 0 0 0 0 0

[] 0 0 0 1 0 0 0 0 0

E 0 0 0 0 0 0 0 0 0

[X|Xs] 0 0 0 0 0 0 1 0 0

[X|Y s] 0 0 0 0 0 0 1 0 0

I > 0 I1 = I − 1 λ U = U1 − V
E > 0 2 0 0 0

E1 = E − 1 0 3 0 2
λ 0 0 1 0

Fig. 1. The matrix H (top) and the submatrix B[9− 11, 9− 12] of interest (bottom)

Definition 12. Let (i, j) ∈ P be a position. Its cl-exclusion zone is defined as
Rcl(i, j) = {(h, l)W ∈ P |(cl(h) = cl(i)⊕cl(l) = cl(j))}, where ⊕ is the traditional
”exclusive or” operator.

Intuitively, the cl-exclusion zone represents the constraint that a clause from
p can only be mapped upon a single clause from q (and vice versa). Indeed, as
soon as a pair of clauses is ”fixed” by selecting a position (i, j) (whether that
represents a generalization of two argument terms or two body literals), no other
position can be selected that would generalize a term or a literal from either cl(i)
or cl(j) with a term or literal from a third clause.

In addition, when selecting a position (i, j)H in the matrix H, representing
as such the generalization of two argument terms, it furthermore implies that
the argument mapping α under construction maps the argument position al(i)
to al(j), thereby excluding from further selection those matrix elements that
would map either of these argument positions to a third argument position,
even in other clauses. Formally this is captured in the following notion.

Definition 13. The al-exclusion zone of a cell position (i, j)H ∈ PH is defined
as Ral(i, j) = {(h, l)H ∈ PH |(al(h) = al(i)⊕ al(l) = al(j))}.

With respect to the matrix B on the other hand, there is a similar but
less stringent constraint. Indeed, a literal from p cannot be mapped onto more
than one literal from q (or vice-versa). However, literals at the same position in
different clauses of p do not necessarily need to be mapped to literals occupying
the same positions in clauses defining q (and vice-versa). This is formalized by
the notion of bl-exclusion zone:

Definition 14. The bl-exclusion zone of a position (i, j)B is defined as Rbl(i, j) =
{(h, l)B ∈ PB |cl(h) = cl(i) ∧ cl(l) = cl(j) ∧ (bl(h) = bl(i)⊕ bl(l) = bl(j))}.

11



Example 7. Let us consider the selection of a specific position, namely (8, 7)H , in
the matrices shown in Figure 1. This position corresponds to the mapping of the
second argument of the last clause in the take predicate onto the first argument
of the last clause in negsum. The exclusion zones associated with (8, 7)H can
be visualized as the cells highlighted in the figure. Specifically, these exclusion
zones consist of cells involving one of the aforementioned clauses but not the
other (Rcl(8, 7)), as well as cells that map an argument in second position in
take or in first position in negsum with other positions (Ral(8, 7)). Candidate
positions in PB that are part of Rcl(8, 7) are not showed in the figure, since
the concerned literals do not exist; the cells in question thus contain −∞ which
is ignored in our selection process. In other words, the only positively valued
submatrix B[9− 11, 9− 12] being restricted to the literals populating the third
clauses of each predicate, it is not part of the exclusion zones of (8, 7)H .

A generalization under construction being a set S of positions in P , we can
now define the set of positions in P that are still compatible with S.

Definition 15. The compatible zone of a set of positions S ⊆ P is defined as
A(S) = AH(S) ∪AB(S) where

AH(S) = PH \
⋃

(i,j)∈S(Rcl(i, j) ∪Ral(i, j))

AB(S) = PB \
⋃

(i,j)∈S(Rcl(i, j) ∪Rbl(i, j))

At any point of our search process, all the selected positions should be com-
patible with one another.

Definition 16. A set S ⊆ P is said to be a valid selection if and only if
∀(i, j)W ∈ S : (S \ {(i, j)W }) ⊆ A({(i, j)W }).

Note that the maximal size of a valid selection is (N+M)×K, corresponding
to the assignment of each argument and literal of p to an argument, resp. literal
of q (provided that these argument and literal couples exist, i.e. yield a anti-
unification weight different from −∞).

To develop an algorithm, we will rely on the fact that a valid selection can
be built by iteratively selecting new compatible cells.

Proposition 1. Let S be a valid selection, and let (i, j)W ∈ A(S) be a cell
position. Then, S ∪ (i, j)W is a valid selection.

From any valid selection, one can retrieve the underlying mappings as follows.

Definition 17. Let S be a valid selection. The induced argument mapping α(S)
is defined as α(S) = {(a, a′)|∃(i, j)H ∈ S : al(i) = a ∧ al(j) = a′}. The induced
clause mapping is defined as γ(S) = {(c, c′)|∃(i, j)W ∈ S : c is the clause ap-
pearing in cl(i)th position in def (p) and c′ in cl(j)th position in def (q)}.

Now our purpose is to find a valid selection of positions in the matrix re-
specting the constraints above while harboring a promising weight, according to
the following straightforward definition of weight of a selection.
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Definition 18. Given a set S of positions in the matrices H and B, we define
the weight of S as w(S) =

∑
(i,j)W∈S W [i, j].

Note that, in practice, the matrices H and B will presumably be sparse, as
many pairs of terms or literals are expected to have different outermost functors
or predicate symbols and hence will yield an anti-unification weight equal to
zero. Based on this observation, we propose an algorithm for computing a set
S of compatible positions in H and B. The algorithm, depicted as Algorithm 1
basically performs greedy search (selecting the highest-weight positions first),
but performs backtracking when there are multiple positions having the same
maximal weight.

In the algorithm, Comp represents the set of positions compatible with the
current selection S and having maximal weight. The helper function max is
defined on A(S) as follows: max (A(S)) = {(i, j)W ∈ A(S) | ∀(h, l)W ′ ∈ A(S) :
W [i, j] ≥W ′[h, l]}. Note that the positions retained in Comp can be part of H as
well as B. Also note that, initially, when S = {}, A(S) contains all positions of H
and B with weight other than −∞. Further down the algorithm, Compd is used
to denote the positions in Comp that are compatible with all other positions
in Comp. These positions can all at once be added to S, thanks to the fact
that they will in any case not be excluded by later iterations – a consequence of
Proposition 1. If some of the positions having maximal weight were not added to
S by the previous operation, they are individually added to the previous version
of S and pushed onto the stack Q for further exploration as an alternative
solution. The algorithm also prunes the search when all remaining weights are
equal, including the special case when all remaining weights are zero-valued.

Algorithm 1

S ← {}, Smax ← {}, Q← []
push(Q,S)
while Q ̸= [] do

S ← pop(Q), S0 ← S
Comp← max (A(S))
Compd ← {(i, j)W ∈ Comp : A({(i, j)W }) ⊃ Comp}
for all (i, j)W ∈ Compd do

S ← S ∪ {(i, j)W }
for all (i, j)W ∈ Comp \ Compd do

push(Q,S0 ∪ {(i, j)W })
if #{W (i, j)|(i, j)W ∈ A(S)} = 1 then

break out of the for loop

if w(S) > w(Smax) then
Smax ← S

if S ̸= S0 then
push(Q,S)

return Smax
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Example 8. Let us consider how Algorithm 1 could perform on the predicates
take/3 and negsum/3 from earlier examples, with the relevant parts of matrices
H and B depicted in Figure 1. During the first round of the algorithm, only
one position is of maximal weight, namely (10, 10)B of weight 3, which is added
to the (initially empty) selection under construction S. In the second round of
the algorithm, there are two positions of maximal weight, namely (9, 9)B and
(10, 12)B of weight 2. However, the latter position belonging to Rbl(10, 10), it
is not part of A(S) and thus excluded from selection. Consequently, the other
position being the only remaining point of weight 2, it is added to S. During a
third iteration, the positions of maximal weight are those having a weight of 1.
Only one of these positions, namely (11, 11)B , is compatible with all the available
1-valued cell positions, and can thus once more be added to S. However, the other
positions are also tentatively added to (the old version of S) and each resulting
set of positions is pushed onto the stack as an alternative for further exploration.
The search continues, however, with the current version of S having now the
positions (10, 10)B , (9, 9)B , and (11, 11)B . Note that this selection constrains the
underlying clause mapping γ in such a way that the third clause from take/3 is
associated with the third clause of negsum/3 but imposes no other constraints
(yet).

The positions of maximal weight are still those of weight 1, but none of them
is available without excluding others (in other words, Compd is empty). So each
of the remaining 1-weighted positions is tentatively added to S and pushed on the
stack for further exploration. The last of these variants, say S∪(8, 7)H , is popped
from the stack and the algorithm continues with this alternative. Note that this
choice constraints the underlying argument mapping α by associating the second
argument of take/3 to the first argument of negsum/3. The underlying clause
mapping γ remains unchanged, as the associated argument terms belong, each, to
the third clause of their respective definition. The selection of (8, 7)H eliminates
a number of 1-weighted positions from those that were available earlier, namely
{(9, 7)H , (6, 4)H , (3, 4)H} ⊂ Ral(8, 7). Suppose the algorithm chooses (1, 2)H (by
again pushing all alternatives on the stack and popping the last one) to continue.
This implies associating the first clause of take to the first clause of negsum,
and the first argument of take to the second argument of negsum. This excludes
(1, 3)H ∈ Ral(1, 2) as well as (1, 6)H ∈ Rcl(1, 2)∩Ral(1, 2) among the remaining
1-valued cells. The only cell left of positive weight is the cell at position (5, 4)H .
Incorporating it in S, the clause mapping γ(S) now maps the second clauses
on the predicates together. Finally, since no more available cells are of non-zero
weight, remaining 0-valued positions are selected in A(S) without allowing new
backtracking, eventually yielding S = Smax being the set of positions of the cells
that are shown in bold in the matrices from Figure 1, with total weight w(S) = 9.
Backtracking on earlier versions of S is then activated, but no better solution in
terms of total weight is found, so that S is the final selection of the algorithm.
The resulting generalization maps the arguments according to their role in the
predicates: the lists to be browsed (Xs and V s), the number of elements to be
considered (E and I), and the result (Y s and U). The generalization thus takes
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the following form:
g(0, Φ(Xs, V s), Φ([], 0).
g(Φ(E, I), [], Φ([], 0)).
g(Φ(E, I), [Φ(X,V )|Φ(Xs, V s)], Φ([X|Y s], U))← Φ(E, I) > 0,

Φ(E1, I1) = Φ(E, I)− 1, λ.
When the occurrences of the variabilization function Φ are replaced with new
variables and when the recursive calls are manually generalized taking α into
account, this effectively amounts to the generalization g that was depicted in
Example 4 on page 7.

The algorithm’s termination is guaranteed by the fact that the stack Q even-
tually runs out of candidate selections. Indeed, at each iteration, a new such
selection S of cells is popped. Although more than one extended versions of this
selection can be pushed on the stack again, all of these extended versions will
comprise at least one more cell than those constituting S, so that the successive
stacked selections will be of increasing size, ultimately running out of available
compatible cells. While several stacked selections can be composed of the same
cells, two different selections will necessarily vary at least in the order in which
the cells are selected. Since the number of permutations of a finite number of
cells (corresponding to the worst-case scenario of the algorithm) is itself a finite
number, the process is guaranteed to reach an end in a finite time frame.

The algorithm’s runtime depends on the amount of backtracking carried out,
which is proportional to the number of cells harboring the same nonzero value.
This amount of (potential) backtracking is thus reduced when the matrices are
filled with a large number of zeroes. Interestingly, we observe the following result.

Proposition 2. Given a weight matrix W and a coordinate i ∈ 1..N (where
N = N if W = H and N = M if W = B), let us denote by FW

i the set
{j ∈ 1..K|W [i, j] ̸= 0}, that is the set of non-zero values of line i in W . Then,
∀W ∈ {H,B}, l ∈ 1..N it holds that either FW

i ∩ FW
l = ∅, in which case

|FW
i |+ |FW

l | ≤M ; or FW
i = FW

l .

Regarding the matrix H, the proposition above stems from the fact that two
terms are either based on the same functor (in which case they only unify with
the terms based on said functor) or they are not (in which case they do not
unify with any term with which the other term unifies). Likewise, in B, two
literals are either built upon the same predicate symbol from L ∪ P, in which
case the anti-unification weight is strictly positive, or not, in which case it is
zero. The implication on our matrix is important: whenever two lines have dif-
ferent non-zero positions, there are at least N × K (or M × K) zeroes in the
two lines combined (the same is true for columns). This situation is expected
to occur frequently in H since predicates either use different functors in their
heads for pattern matching, or do not use pattern matching at all, resulting in all
weights being zero. In contrast, in B, it is not rare that the same predicate sym-
bols occur multiple times, particularly for constraint predicates like the equality
constraint = /2. However, as our running example shows, and in particular in
recursive predicates, some clause have empty bodies (typically for the basic case
of recursion), resulting in several ignored, −∞-valued cells in B.

15



5 Conclusions and Future Work

In this work we have studied anti-unification in the context of predicate defini-
tions. We have given an incarnation of what could be called the most specific
generalization – as the τ -maximal generalization – whose computation can be
formalized as an optimization problem that is computationally hard due to the
number of possible clause mappings, argument mappings, and clause body gener-
alizations. To manage this complexity, we have given an approximate algorithm
that combines greedy search with a limited amount of backtracking and that
constructs the underlying (and interdependent) mappings simultaneously.

While the algorithm tries to maximize the resulting generalization’s size (as
represented by its τ -value), it is clear that it does not necessarily compute a
τ -maximal generalization. Nevertheless, the resulting generalizations are inter-
esting as they are themselves predicate definitions and the algorithm provides as
such the missing link in our own framework for semantic clone detection [16]. In
that work, we suppose a given (but undefined) generalization operator to decide,
given two predicates under transformation and their generalization, how much
code of the predicates is shared and how the differences could be used to steer
the continuation of the transformation process. Until now we had no algorithm
to concretely compute such generalizations and in further work we intend to
investigate our algorithm’s performance in that particular context.

As for the time complexity of the algorithm, it is clear that – except for some
contrived examples – the matrices H and B are generally sparse and the algo-
rithm can presumably be further optimized by better exploiting the structure of
the search space, in particular with respect to the handling of the exclusion zones
of a selected position. For practical applications, one could further alleviate the
computational intensity of the anti-unification process by reducing the involved
search space even more. One approach would be using type and/or mode in-
formation for limiting the pairs of arguments from both predicates that need
to be considered. More generally, one could use more involved program analysis
techniques (and/or take the order of the arguments and clauses into account) to
approximate suitable subsets of mappings to consider for α and γ, which boils
down to excluding more parts from H and B from the search. An encouraging
approach for this is taken in [20], where a dataflow analysis is devised that is
capable of ordering predicate arguments based on their involvement in differ-
ent operations (atoms and unifications). The order of the arguments can then
become a significant indicator regarding their roles in the predicates. We sus-
pect that this technique, if properly used, can significantly ease the search for a
promising argument mapping α.

In its current form, our algorithm tries to maximize the τ -value of the gen-
eralization as a whole. According to the application at hand, other definitions
of what constitutes a desirable generalization might be of interest. For example,
when generalizing predicates that deal with a lot of unifications in their heads,
it might be advantageous to have the algorithm maximize the τ -value of only
the heads of the generalized predicate, disregarding the bodies. Or the other way
round for predicates that do less processing in the heads of their clauses. Note
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that this could easily be achieved by a variant of our algorithm, by introduc-
ing weights that make the algorithm prioritize positions from H (or B) when
selecting the positions of maximal weight.

In further future work, we intend to investigate how we can better integrate
the handling of recursive calls, somehow estimating the weight of their potential
generalizations (rather than supposing, as we do now, that each recursive call
in p anti-unifies with each recursive call in q with weight 1). Doing so is far
from straightforward, as the generalization should take the argument mapping–
which is under construction– into account. In addition, we plan to develop other
variants of the algorithm that go beyond using the quality measure τ alone. One
important aspect that is not treated by τ is data flow optimization, which is
the process of minimizing the number of variables appearing in the computed
common generalizations of each pair of clauses that are mapped during the
anti-unification process. As the examples in the paper suggest, different gener-
alizations yielding the same quality (as measured by τ) can indeed exist and be
computed by the algorithm; some of these generalizations, however, harbor less
different variables than others (thanks to Φ being applied on the same pairs of
variables or terms), thereby better capturing the data flow information between
different literals in the resulting generalization, which can thus be considered as
more specific. To achieve more specific results in that regard, we will need to
modify the anti-unification algorithm to dynamically account for the number of
”new” variables introduced (i.e. different occurrences of Φ(t1, t2)) when selecting
a position.

Yet another interesting line of future research would be investigating and
formalizing the semantic or operational properties, if any, linking a generalized
predicate and its instances. This should allow to better appreciate what is lost
and what is maintained during the generalization process.
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