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ABSTRACT
This paper examines the security of eBPF andWebAssembly (Wasm),
two technologies that have gained widespread adoption in recent
years, despite being designed for very different use cases and en-
vironments. While eBPF is a technology primarily used within
operating system kernels such as Linux, Wasm is a binary instruc-
tion format designed for a stack-based virtual machine with use
cases extending beyond the web. Recognizing the growth and ex-
panding ambitions of eBPF, Wasm may provide instructive insights,
given its design around securely executing arbitrary untrusted pro-
grams in complex and hostile environments such as web browsers
and clouds. We analyze the security goals, community evolution,
memory models, and execution models of both technologies, and
conduct a comparative security assessment, exploring memory
safety, control flow integrity, API access, and side-channels. Our re-
sults show that eBPF has a history of focusing on performance first
and security second, while Wasm puts more emphasis on security
at the cost of some runtime overheads. Considering language-based
restrictions for eBPF and a security model for API access are fruitful
directions for future work.

CCS CONCEPTS
• Security and privacy→Operating systems security;Browser
security; • Software and its engineering→ Software design
tradeoffs.
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1 INTRODUCTION
About a decade ago, eBPF got merged into the Linux kernel as a
technology for running custom eBPF programs at specific hook
points within the privileged context of the kernel without directly
modifying the kernel [16]. In gist, it made the kernel dynamically
programmable. Since then, eBPF has seen wide adoption, ranging
from support in multiple operating systems (e.g., Windows [42]
and FreeBSD [25]), new use cases (e.g., XDP [28] and tracing [10]),
and broader support beyond operating system kernels (e.g., eBPF
in hardware [26] and userspace [46]). Recently, due to the scope
and importance of eBPF growing, the IETF has started a working
group on standardizing the core of eBPF [30].

In parallel with the developments of eBPF, all majorweb browsers
have shipped support for WebAssembly (Wasm) [24]. Wasm is a bi-
nary instruction format designed for a stack-based virtual machine,
intended to serve as a portable target for high-level languages like C
and Rust. With its efficient execution speed, compact binary format,
and a high degree of security, Wasm has gained widespread use
on the web. Much like eBPF, Wasm has also expanded beyond the
confines of the web, with various use cases including edge com-
puting (e.g., Fastly’s Compute@Edge [18]), serverless computing
(e.g., Cloudflare Workers [12]), and standalone applications (e.g.,
Wasmer runtime [56] and Wasmtime [5]).

In this paper, we compare eBPF andWasm, focusing on the security
of the technologies (as opposed to how to use the technologies for
security purposes, e.g., Cilium [11]). As the scope and ambitions of
eBPF grow, our starting point is that Wasm may provide valuable
lessons, as Wasm was designed around securely and safely running
untrusted programs in web browsers [24]: a highly complex and
hostile environment on par with operating system kernels.

While designed for widely different use cases and environments,
the lifecycle of eBPF and Wasm programs have many similarities.
Figure 1 shows an overview of a possible lifecycle for both technolo-
gies, starting from source code in some supported language (e.g., C,
C++, or Rust) that is compiled (e.g., using LLVM) into either eBPF
or Wasm. Next, the program is verified as safe (eBPF) or placed in
a locked-down runtime (Wasm) prior to execution within a trust
boundary (light grey background). Programs then execute in the
respective environments, e.g., the Linux kernel (eBPF) or a runtime
(Wasm). The program is either isolated from the host (Wasm) or
determined not to harm the kernel (eBPF). Any system interaction
outside the respective isolated environments is through dedicated
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Figure 1: An overview of a possible lifecycle of eBPF andWasm programs: from source code to execution of potentially untrusted
programs within some trust boundary (shaded area).

APIs, e.g., through allow-list functions called “helpers” for eBPF in
the kernel or WASI (WebAssembly System Interface) for Wasm.

The structure of the remainder of the paper is as follows: Sec-
tion 2 surveys related work on the security of eBPF and Wasm.
Sections 3 and 4 dissect eBPF and Wasm, respectively, scrutinizing
their main security goals, community evolution, memory models,
and execution models. Section 5 performs a comparative security
analysis of eBPF and Wasm, examining memory safety, control
flow integrity, API access, and side-channel vulnerabilities. It also
juxtaposes the security approaches of eBPF and Wasm relating to
potential vulnerabilities like buffer overflows and infinite loops, ex-
plained through code examples. Section 6 presents key findings and
suggests directions for future work. In particular, Wasm’s emphasis
on security led to language-based restrictions and a capability-
based security model for API access. Considering such changes for
eBPF—with a focus on minimizing the potential negative impact
on performance— are fruitful directions for future work.

2 RELATEDWORK
Several solutions use either eBPF or Wasm to sandbox untrusted
code [5, 11, 12, 15, 17–21, 43, 52, 56, 62]. In addition, some frame-
works combine the best from both technologies to offer even more
efficient solutions (cf. [1]). However, more research must be con-
ducted to compare the security aspects between eBPF and Wasm.

Huang and Paradies [29] qualitatively and quantitatively evalu-
ated eBPF and Wasm as offloading mechanisms in the context of
computational storage. They evaluated compatibility, ergonomics,
language agnosticism, portability, tooling, and safety. In summary,
they find that Wasm is favourable across the board, except for
ergonomics (a tie) and safety. In the context of safety, they rate
Wasm as good and eBPF as unknown. By unknown, they mean that
the dependency on the Linux kernel verifier for safety could be
more practical in their context of computational storage. They high-
light that they only considered safety, and not security, by defining
safety as protection against human errors and security as protec-
tion against attacks. In this paper, we fill this gap by comparing the
security and safety aspects of eBPF and Wasm.

2.1 eBPF security
Kirzner and Morrison [35] showed how unprivileged eBPF and a
verifier vulnerability could be used to create a Spectre universal
read gadget in Linux. Vishwanathan et al. [54] provided formal

proof of correctness and optimality of addition, subtraction, and
multiplication operations in the verifier. Their research reinforces
the accuracy and dependability of eBPF programs, enhancing their
overall security. Gershuni et al. [22] designed an advanced static
analyzer for eBPF using abstract interpretation, named PREVAIL,
the default verifier in the Windows eBPF ecosystem. This analyzer
provides enhanced precision and a broader scope, enabling the
verification of eBPF programs that include loops. Importantly, their
approach maintains safety while addressing complex control flow
in eBPF programs. Nelson et al. [45] applied formal methods to
BPF just-in-time compilers in the Linux kernel, providing a verified
optimization step after a program is deemed safe by the verifier. Lu
et al. [38] suggest isolating the execution of BPF programs post-
verification as a hardening mechanism using the emerging Intel
Memory Protection Keys hardware extension. Part of this entails
categorizing the 200+ existing BPF helper functions based on their
type of access to kernel memory.

2.2 WebAssembly security
We distinguish between binary and host security [37].

Binary security concerns the security of the code running in-
side a Wasm runtime. Vulnerabilities can propagate from unsafe
languages being compiled to Wasm and may even pose a more
significant threat due to the lack of exploit mitigation techniques
(e.g., stack canaries, ASRL) [6, 27, 37, 41].

Host security concerns the security of the host system execut-
ing the Wasm code with a runtime. Bosamiya et al. [9] classify
existing runtimes regarding security and performance trade-offs
and introduce two high-performance sandboxing compilers using
F* and Rust. Fundamentally, APIs exposed to the sandboxed code
in the runtime are not within the scope of any security or safety
guarantees, e.g., file access provided through WebAssembly Sys-
tem Interface (WASI) [23] may threaten host security. Johnson et
al. [33] present WaVe, a verifiably secure WASI runtime. Note that
WASI has apparent security goals that make this possible. Jangda
et al. [31] identify safety checks that are inherent to Wasm’s safety
guarantees: stack overflow checks, indirect call checks, and reserved
registers, which all contribute to increased code size and runtime
overheads in comparison to native code.
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3 EBPF
3.1 Main goals
Initially, eBPF programs, modeled around untrusted, unprivileged
BPF, had limited kernel capabilities and aimed to make this ap-
proach safe and secure. However, due to the overwhelming com-
plexity of Linux, most distributions today require root or CAP_BPF
privileges to run eBPF programs [14]. What remains is that the
main goal is to protect kernel integrity through the use of the eBPF
verifier [51]. Programs deemed safe for the kernel can call BPF
helpers—kernel functions eBPF programs use to interact with the
kernel, perform operations, and access kernel data structures.

3.2 Community and evolution
The development and governance of eBPF, which primarily focuses
on the Linux kernel development process, is overseen by the Linux
community and its maintainers.

Beyond its original purpose of network packet filtering, eBPF
has evolved through the contributions of a thriving open-source
community. It is now used for various applications, including per-
formance monitoring, security monitoring, network analysis, and
more [39]. The community remains committed to advancing its
development, expanding its capabilities, and ensuring its value to
developers and system administrators in the Linux ecosystem.

The eBPF development process entails the submission of patches
and enhancements to the eBPF subsystem inside the Linux kernel
via a designated mailing list. The community and maintainers re-
view the code, provide feedback, and ensure that the modifications
are in line with the Linux kernel’s goals and principles [34].

3.3 Memory model
In eBPF, the concept of memory refers to the memory space utilized
by eBPF programs for storing and manipulating data. eBPF does
not have its specific memory model but instead relies on the Linux
kernel memory model, at best [13].

Local variables are stored in stack memory. This stack memory
is a continuous block of memory, and the stack pointer is respon-
sible for keeping track of the current position within the stack.
Memory in eBPF is restricted due to a maximum stack of 512 bytes
and not allowing heap allocations. To overcome these constraints,
eBPF programs use BPF maps to facilitate communication and data
sharing between eBPF programs and user processes. BPF maps
exist in various types and sizes, allowing for various data storage
and retrieval processes [48]. They can be accessed by several eBPF
programs and user processes at the same time, enabling efficient
communication and data sharing [44]. It is essential to understand
that eBPF programs operate within a controlled memory environ-
ment in the kernel and are not granted arbitrary access to system
memory. The eBPF verifier is crucial in ensuring memory safety by
scrutinizing eBPF programs for potential issues such as accessing
memory beyond its bounds or reading uninitialized memory. The
verifier keeps track of the memory each register points to during
simulated execution and prohibits unsafe access. This verification
process significantly mitigates security risks and memory access
violations, thus promoting the overall safety of the kernel.

3.4 Execution model
The abstract eBPF virtual machine provides a lightweight execution
environment with 10 general-purpose registers and a read-only
frame pointer dedicated to stack access [49]. eBPF programs consist
of one or more subprograms (functions) of bytecode instructions.
When eBPF programs are compiled from source code, the compiler
also produces BTF (BPF Type Format) debug information of the
program, which is used by the verifier together with existing BTF
information about the kernel [50].

Programs are loaded into the kernel with the BPF_PROG_ LOAD
system call, which invokes the eBPF verifier to ensure the program’s
safety. The verified program is typically JIT compiled if deemed
safe, and a file descriptor is returned to user space. The user may
then attach the program using BPF_PROG_ATTACH to predefined
hooks in the kernel that give programs direct access to system calls,
kernel functions, and network events. Programs are executed by
the kernel when relevant events occur within the kernel.

Fundamentally, the eBPF instruction set is permissive: all security
and safety of programs stem from using the eBPF verifier [49, 51].
The eBPF verifier ensures the safety of eBPF programs through a
multi-phase approach. In the parsing phase, the bytecode is checked
for syntactic correctness. In the control flow verification phase, the
program’s control flow graph is analyzed to prevent unbounded
loops, invalid code, and ensure proper termination. This is done by
exhaustively analyzing every possible path through the program—
potentially falsely rejecting safe programs due to state explosion. In
the type-checking phase, the verifier enforces the compatibility of
variables and expressions with their types using BTF information
and prevents type mismatches, invalid memory accesses, and buffer
overflows. In the data flow analysis phase, the verifier tracks register
and stack state to enforce bound checks, prevent invalid operations,
and validate helper function usage. The verifier also ensures safe
program execution by preventing access to uninitialized or out-of-
bounds memory, checking for NULL values before dereferencing
and validating the use of spin locks to prevent deadlocks and ensure
synchronization.

4 WEBASSEMBLY
4.1 Main goals
Wasm is a portable low-level bytecode. It aims to enable safe, fast,
portable, and compact programs on the web [24, 60]. However,
Wasm does not make any web-specific assumptions, so it can be
deployed in other environments as well [60]. Wasm comes with
two main goals regarding security: protecting users from buggy or
malicious code and providing developers with useful primitives for
developing safe applications [59].

Those main goals of Wasm motivated choices towards hard-
ware, language, and platform independence. Indeed, Wasm is a
portable compilation target that can eventually be compiled once
more to native opcodes. Additionally, the choice is left to the de-
veloper regarding the platform on which Wasm is compiled: web
browser, stand-alone virtual machine, or integrated into other envi-
ronments [60].
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4.2 Community and evolution
Wasm is defined in multiple specification documents. The core
specification [60] defines the semantics of the modules in one doc-
ument, independently from any embedding. This independence
between the specification of the language and its embedding en-
ables hardware and platform independence. In addition to this core
specification, other specifications exist for APIs. The interaction
with the host system has its own specification.

New features to Wasm or specified APIs are submitted via fea-
ture proposals. Such proposals go through a multiple-step process
leading to the eventual standardization of the features [61].

Aside from the specifications of Wasm and the APIs, the Byte-
code Alliance [2]—a non-profit organization—focuses on creating
a shared implementation of the standards presented in the speci-
fications. Those shared implementations enable industrial actors,
researchers, and individuals to experience Wasm and provide feed-
back to inform the standardization process. Current projects driven
by the Bytecode Alliance include Wasmtime [5] (a standard compli-
ant Wasm runtime), Cranelift [3] (the code generator used by the
just-in-time compiler of Wasmtime), and WAMR [4] (a lightweight
runtime for Wasm).

4.3 Memory model
The main memory of a Wasm program is an array of bytes, called
linear memory. This linear memory is disjoint from code space,
execution stack, and runtime data structure [24], preventing Wasm
modules from accessing other memory areas than the linear mem-
ory. The execution stack mainly stores local variables, global vari-
ables, and return addresses. Modules can access the data stored
on the execution stack via dedicated instructions. The actual data
address on the execution stack is never shown to the module.

As the execution stackmay only hold data of one of the four prim-
itive types defined by Wasm, compilers targeting Wasm implement
their own stack, residing in the linear memory. This enables the
program to store non-scalar data and any variable whose address
needs to be taken by the module [37].

Compilers targeting Wasm also create an area for the heap in the
linear memory. This area is reserved at the end of the linear memory
so it can dynamically grow when additional space is allocated for
the linear memory.

Access to the linearmemory by themodule is dynamically bound-
checked, preventing modules from accessing data outside their
allocated memory [24]. However, bound checking is performed at
the level of the linear memory: modules can access the entire linear
memory of the module without restriction. Linear memory is not
protected by standard techniques like stack canaries [55] or guard
pages.

4.4 Execution model
Wasm code is executed when instantiating a module or when an
exported function is invoked on a given instance [60]. The execu-
tion behavior of a Wasm module is defined in terms of an abstract
machine that models the program state. This abstract machine in-
cludes a stack (recording the operand values and control constructs)
and an abstract store (containing the global state).

A compliant runtime ensures that the module does not break
Wasm’s memory model [60]. This is done by bound checking the
access to the linear memory: if the module accesses the memory
outside of the linear memory, the program traps.

The definition of the Wasm bytecode [60] limits the constructs
that are possible to express. Arbitrary jumps (e.g., go-to statements)
are not allowed, only structured control flow is provided by Wasm.
Consequently, a grammatically valid Wasm module can only jump
to the beginning of valid constructs (e.g., conditional constructs or
functions) [24].

Similarly, restrictions are applied regarding functions that the
module can indirectly call. To indirectly call a function, the module
provides a runtime index to a table. This table holds the signatures
of the functions that the module defines or imports and that can be
indirectly called. When an indirect call is done, the runtime checks
that the calling signature and the signature of the called function
match. In case of a type mismatch or an out-of-bounds table access,
a trap occurs [24].

5 COMPARISON
To supplement the comparison, we summarize results in Table 1
and provide textbook code examples in the following gist: https://gi
st.github.com/Rekindle2023/ca6a072205698925fa80f928eebe172e.

5.1 Threat model
While eBPF as a language lacks a threat model, eBPF in the context
of the Linux kernel is focused on kernel integrity with the help
of the eBPF verifier acting as a gatekeeper. Executing programs
is typically a privileged system operation (i.e., root or CAP_BPF).
Despite excessive checks and limitations imposed by the verifier, the
developments around eBPF have essentially given up on untrusted
programs [14].

Wasm focuses on enabling untrusted code to run on a system
without being able to compromise the host. This threat model is
in line with one of the first goals of Wasm: bringing a portable
bytecode format to the web, where payloads are downloaded from
sources that are often untrusted. To this end, Wasm limits the
actions that a module can take on the system regarding memory
access (see Section 4.3) and branching (see Section 4.4). By following
the specifications [60], the host’s runtime has to implement runtime
checks that ensure the isolation of the modules.

5.2 Memory safety
Both eBPF and Wasm aim to provide memory safety during exe-
cution. However, their respective approaches are fundamentally
different.

eBPF enables programmers to write programs with few limita-
tions regarding the constructs they can use. Some programs written
in eBPF are unsafe to execute and result in corrupted kernel mem-
ory. For this reason, the eBPF verifier is in charge of inspecting the
eBPF programs and ensuring that they are safe to execute. If the
verifier cannot prove safety, the program will not be executed in
the kernel.

On the other hand, the Wasm bytecode specification [60] only
provides a limited set of constructs (see Section 4.4). All grammat-
ically correct programs in Wasm can be executed in a runtime.

https://gist.github.com/Rekindle2023/ca6a072205698925fa80f928eebe172e
https://gist.github.com/Rekindle2023/ca6a072205698925fa80f928eebe172e
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Table 1: Comparison results between eBPF in the Linux kernel and WebAssembly in Wasmtime.

Feature Linux Kernel eBPF Wasmtime and WebAssembly

Threat model – Kernel integrity and safety
– Trusted programs

– Untrusted code
– Distinguish binary and host security

Memory safety
– Type check
– Memory bound check
– Pointer and stack bound check

– Sandbox with runtime checks
– Managed stack
– Traps

Control flow integrity

– Bounded loops and instructions (1 million)
– Checks and rejects unreachable instructions
– Symbolic execution jump verification
– Ensures program termination

– Type checking
– Return address on the managed stack
– Structured control flow only
– Jump only to start of constructs

API access – BPF helpers
– Disable unprivileged BPF

– API access provided by the host
– WASI capability-based security model

Side-channels
– Constant blinding
– Impossible path verification
– Retpolines

– Wasm language is potentially vulnerable,
not in scope of specification

– Wasmtime started to implement mitigations

Due to the runtime checks, Wasm modules are constrained in their
memory accesses and indirect function calls (see Sections 4.3 and
4.4).

To illustrate how eBPF and Wasm deal with memory safety, we
implemented C programswith textbook examples of buffer overflow
(misusing strcpy()) and reading outside the allocated buffer. The
eBPF verifier halted on both examples to prevent their execution.
Wasm let both examples run to completion: the programs were
compiled to valid Wasm bytecode and did not exceed the bounds
of their linear memory (see Section 4.3).

These observations raise pertinent questions regarding the bal-
ance between flexibility and safety. Is the trade-off of greater pro-
gramming freedom in eBPF worth the additional verification step?
Conversely, does the constrained nature of Wasm compromise
developers’ capabilities, or does it offer stronger memory safety
guarantees?

5.3 Control flow integrity
eBPF and Wasm have mechanisms to enforce control flow integrity
but handle it in different ways. In eBPF, the control flow integrity
is primarily enforced by the verifier, which analyzes the control
flow structure and ensures it conforms to established rules (see
Section 3.4). If any violations are detected, the verifier flags them as
errors and prevents the program from being loaded into the kernel.

Wasm, on the other hand, primarily achieves control flow in-
tegrity through the execution semantics of the language itself. As
mentioned in Section 4.4, Wasm defines valid code constructs and
how control flow may only jump to the beginning of a valid con-
struct. Indirect function calls (also described in Section 4.4) prevent
call redirection in Wasm.

As a simple illustration of the control flow integrity strategies of
eBPF andWasm, wewrote an infinite C loop. The program compiled

to eBPF was rejected by the verifier and could not be loaded in the
kernel. However, Wasmtime executed the program and hanged
in the loop: this does not violate the memory safety of the host,
while some runtimes implement controls (e.g., Wasmtime [5, 57])
to prevent programs from consuming too many CPU cycles.

5.4 API access
By default, Wasm does not have access to the resources of the host
(e.g. file system, network, system calls). Modules can import exter-
nally defined functions provided by the host or other modules. APIs
common to many use cases are currently being standardized in the
WebAssembly System Interface (WASI) [23]. The capability-based
security model of WASI enabled Johnson et al. [33] to introduce a
verified secure runtime system that implements WASI.

On the contrary, eBPF programs within the Linux kernel have
access to over 200 helper functions by default [47]. Certain helper
functions, such as bpf_probe_write_user() (write bytes to a user-
spacememory address) and bpf_override_return() (override the
return value of a function), can be detrimental to system security,
allowing manipulation of user space memory, overriding return
values, dropping packets, and trigger reads and writes to kernel
memory that may leak information or put the overarching system
into an insecure state [7, 38]. Access to helpers is restricted based
on eBPF program type and if unprivileged BPF is enabled [32].

5.5 Side-channels
eBPF uses various security measures to mitigate side-channel at-
tacks, including Spectre-like attacks [36]. The verifier incorporates
measures such as constant blinding and enforcing speculation
bounds [8, 53]. It also analyzes the control flow of the eBPF pro-
gram, validates impossible paths, and uses retpolines to direct the
flow of execution predictably. It also inserts nospec instructions
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as a speculation barrier, mapped to potential CPU architecture
mitigations.

The Wasm language specification [60] clearly states that side-
channel attacks are to be addressed by the runtime. Currently,
Wasmtime implements a few forms of Spectre mitigations. Bounds
checks for the runtime index used in indirect calls are mitigated.
Some other instructions are mitigated to ensure that speculation
goes to a deterministic place [58]. New Spectre mitigations will be
added to Wasmtime as it still is a subject of ongoing research.

6 CONCLUSIONS
Both eBPF and Wasm, with their respective technology stacks, aim
to provide secure, safe, and fast execution of a portable bytecode
format. However, their approaches on how to enforce this are fun-
damentally different.

While the eBPF bytecode leaves the programmer with much
freedom, Wasm provides a limited number of constructs to the pro-
grammer. The eBPF verifier is the designated gatekeeper in charge
of flagging unsafe programs and preventing them from being loaded
in the kernel. As the verifier uses a heuristic technique to verify
programs conservatively, some safe programs may be rejected, and
unforeseen unsafe constructs might be accepted. WebAssembly
runtimes, on the other hand, can rely on the bytecode specification
to determine what actions a module may perform. Runtimes then
have to dynamically check some designated operations the modules
take to ensure safety and security at a performance cost compared
to native code.

Both eBPF and Wasm started with different threat models that
reflect their original design goals. While eBPF assumes mainly
trusted software, Wasm enables the execution of untrusted code.
These threat models influenced the technologies’ approaches to
addressing issues such as memory safety, control flow integrity,
and access to host functions.

eBPF in the Linux kernel delegates the memory safety and con-
trol flow integrity to the verifier and provides a wide range of helper
functions to the programs to call host functions. Wasm performs
memory safety checks at runtime and uses type checking, struc-
tured control flow, and a managed stack to provide control flow
integrity by design. The host provides the Wasmmodules only with
the necessary host functions.

eBPF programs in the Linux kernel can access a wide range of
helper functions by default, enabling greater system interaction.
However, this raises security concerns as certain helper functions
can be misused, potentially compromising system integrity. Wasm
modules do not have direct access to host resources by default.
Instead, controlled and secure access is enabled through externally
defined functions and standardized APIs like the WebAssembly
System Interface (WASI). To further advance the research, future in-
vestigations could explore ways to leverage the runtime checks and
security measures employed by Wasm to enhance eBPF, providing
valuable insights into concrete strategies for improving security
and memory safety while minimizing performance overhead.

Overall, eBPF has a history of focusing on performance first
and then implementing security. Wasm does the opposite by first
defining the security property via sandboxing and isolation and
then minimizing the overhead. Depending on the use case, similar

overheads as in Wasm may not be acceptable in eBPF programs
that are meant to run in the kernel. eBPF enables native execution
by accepting the limitations introduced by the verifier.

Future research could focus on quantifying the performance
differences between eBPF and Wasm. Assessing performance in
light of the respective security measures would provide valuable
insight into the actual performance cost of the additional secu-
rity considerations in Wasm. With a better understanding of the
performance differences, another research direction would be to in-
vestigate if the eBPF language itself could be redesigned to improve
security—perhaps with inspiration from Wasm—while minimizing
any negative impact on performance. Finally, BPF helpers could
likely benefit from a security model to enable users to reason about
their effects on system security, regardless of if unprivileged BPF
remains disabled or not [14, 40]. As eBPF and WebAssembly are
being used in an increasing number of applications, a quantitative
comparison of their performance may help future researchers and
developers to choose the most appropriate technology. Similarly,
highlighting their differences and respective strengths in a deeper
analysis may guide future design decisions.
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