
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Computational construction grammar for visual question answering

Nevens, J.; Van Eecke, P.; Beuls, K.

Published in:
Linguistics Vanguard

DOI:
10.1515/lingvan-2018-0070

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Nevens, J, Van Eecke, P & Beuls, K 2019, 'Computational construction grammar for visual question answering',
Linguistics Vanguard, vol. 5, no. 1, 20180070, pp. 1-16. https://doi.org/10.1515/lingvan-2018-0070

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1515/lingvan-2018-0070
https://researchportal.unamur.be/en/publications/2ddc9f72-9391-4079-b20d-43c8f864d915
https://doi.org/10.1515/lingvan-2018-0070

Linguistics Vanguard 2019; 20180070

Jens Nevens*, Paul Van Eecke and Katrien Beuls

Computational construction grammar
for visual question answering
https://doi.org/10.1515/lingvan-2018-0070
Received December 3, 2018; accepted July 18, 2019

Abstract: In order to be able to answer a natural language question, a computational system needs three

main capabilities. First, the system needs to be able to analyze the question into a structured query, reveal-

ing its component parts and how these are combined. Second, it needs to have access to relevant knowledge

sources, such as databases, texts or images. Third, it needs to be able to execute the query on these knowl-

edge sources. This paper focuses on the first capability, presenting a novel approach to semantically parsing

questions expressed in natural language. The method makes use of a computational construction grammar

model for mapping questions onto their executable semantic representations. We demonstrate and eval-

uate the methodology on the CLEVR visual question answering benchmark task. Our system achieves a

100% accuracy, effectively solving the language understanding part of the benchmark task. Additionally,

we demonstrate how this solution can be embedded in a full visual question answering system, in which

a question is answered by executing its semantic representation on an image. The main advantages of the

approach include (i) its transparent and interpretable properties, (ii) its extensibility, and (iii) the fact that

the method does not rely on any annotated training data.

Keywords: Computational Construction Grammar; Fluid Construction Grammar; Natural Language

Understanding; Procedural Semantics; Visual Question Answering

1 Introduction
Imagine a scene like the one on the left side of Figure 1, where three pets are sleeping on a bed. If you would

ask a child whether there are more cats than dogs on the bed, how would he or she get to the answer “no”?

In order to answer the question, the child needs to be able to recognize cats and dogs, to count them, and to

compare these counts. Correspondingly, if you wanted a computational system to answer this question, you

would need to endow it with three main capabilities. First, upon receiving the question, the system should

retrieve its logical structure in the form of a sequence of steps that need to be taken to find the answer, as

shown on the right side of the figure. Second, it needs to have access to the scene, in this case in the form of

a bitmap image. Third, the steps specified by the logical structure of the question need to be executed on the

image. This involves identifying the dogs and cats that are present (as indicated by the green dots), counting

them (2 dogs and 1 cat), and comparing these numbers (2 > 1).

In this paper, we focus on the first capability, namely analyzing natural language questions into a series

of actions that need to be taken in order to retrieve their answers. We present a novel approach, based

on computational construction grammar, that semantically parses questions into their executable mean-

ing representations. The methodology is demonstrated and evaluated using CLEVR (Johnson et al. 2017a), a

community-wide benchmark task that evaluates howwell computational systems perform at answering logi-

cally complex questions about images of simple scenes.Our approachhas threemain advantageswith respect

*Corresponding author: Jens Nevens, Artificial Intelligence Laboratory – Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium, E-mail: jens@ai.vub.ac.be
Paul Van Eecke and Katrien Beuls: Artificial Intelligence Laboratory – Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium

https://doi.org/10.1515/lingvan-2018-0070
mailto:jens@ai.vub.ac.be

2 | J. Nevens et al.: Computational construction grammar for visual question answering

Are there more cats than dogs?

recognise dogs recognise cats

count count

greater than?

No

2 1

Figure 1: Schematic representation of the processes involved in visual question answering.

to the state of the art. First, the models are fully transparent and explainable in human-understandable cate-

gories. Second, themodels are extensible, as their coverage can be broadenedwithout the need to rebuild the

existing system. Finally, themethodology does not require any annotated training data, as it allows capturing

expert linguistic knowledge in the model.

The paper is structured as follows. Section 2 introduces the CLEVR benchmark task, which is used for

demonstrating and evaluating themethodology. Section 3 discusses prior work onmapping natural language

questions to structured queries. Our computational construction grammar solution to this challenge is pre-

sented in Section 4, and subsequently evaluated in Section 5. Section 6 and 7 go beyond the benchmark task

by presenting how our approach can be embedded in a full visual question answering system, and how the

model that was used for semantically parsing questions can also be used for producing questions expressing

structured queries. Finally, Section 8 discusses the contributions of this paper.

2 The CLEVR benchmark
The CLEVR benchmark task (Johnson et al. 2017a) was designed to facilitate the development and evalua-

tion of computational techniques for answering natural language questions that involve logical reasoning.

CLEVR is set up as a visual question answering task. This means that each question is accompanied by an

image, in which the answer needs to be found. The images, of which an example is shown on the left side

of Figure 2, depict scenes that consist of 3D geometrical objects (spheres, cylinders and cubes). These objects
differ in color (blue, brown, cyan, grey, green, purple, red or yellow), size (small or large), material (metal or
rubber) and position relative to each other (behind, left of, in front of or right of).

Answering the questions, of which a few examples are shown in Figure 2, requires logical reasoning

skills, such as counting (e.g. “how many spheres are there?”), comparison (e.g. “are there more spheres than
squares?”), attribute identification (e.g. “what is the color of the cube?”), spatial relations (e.g. “what color
is the sphere left of the cube?”) and logical relations (e.g. “how many things are either red spheres or blue
cubes?”). The images and questions are automatically generated with uniform probabilities in order to con-

trol for biases in the dataset. For example, the probability that a large, blue, metal sphere is located left of a
small, green, rubber cube is exactly the same as the probability that a small, red, rubber cylinder is located
right of a small, grey, metal ball. This ensures that answering the questions requires actual logical reasoning,
and cannot be done by exploiting statistical biases of the dataset (for example if spheres were always red or

if cubes were always located on the right of cylinders). As the questions are automatically generated, they

do not reflect actual language use. However, all questions follow patterns that are typical for English ques-

tion sentences and they also feature a challenging amount of lexical and syntactic variation. For instance, a

question that queries thematerial of a large blue ball could, among other possibilities, be expressed as “what
material is the big blue ball?”, “what is the large blue sphere made of?” or “there is a large blue ball; what is its
material?”.

J. Nevens et al.: Computational construction grammar for visual question answering | 3

Q: Is there an equal number of large things

and metal cubes?

Q: What size is the cylinder that is left of the

brown metal thing that is in front of the big
sphere?

Q: There is a cylinder of the same size as

the brown metal cube; is it made of the same

material as the small green ball?

Q: How many objects are either small cylin-

ders or red things?

Figure 2: An example image from the CLEVR dataset, together with questions displaying the reasoning skills required by the
visual question answering model: counting, comparison, attribute identification, spatial relations and logical operations.
Examples from Johnson et al. (2017a).

What size is the red sphere?

get-context

unique-object

query size

filter shape sphere

filter color red

Figure 3: Example of a scene and a question from the CLEVR dataset, annotated with the semantic representation of the
question in the form of a sequence of steps that need to be executed to find the answer.

The CLEVR dataset consists of more than 860,000 questions about 100,000 different scenes. Each ques-

tion is annotated with its answer and with its semantic representation in the form of a sequence of steps that

need to be executed on the image to find the answer. The answers to the questions can be used to evaluate

the full visual question answering task, while the semantic representations allow for a separate evaluation of

the language understanding subtask. An example of a scene and a question that is annotated with its seman-

tic representation is shown in Figure 3. Here, the question “what size is the red sphere?” is annotated with

a semantic program that consists of 5 steps: get-context, which reads in the image, filter shape sphere,

which returns all spheres in the image, filter color red, which filters the set of spheres that was found

by red objects, and returns thus the set of red spheres, unique-object, which asserts that only a single red

sphere was found, and query size, which qualifies this red sphere in terms of size.

3 State of the art
State-of-the-art approaches to (visual) question answering can be divided into two main groups, based on

whether they perform an explicit semantic analysis of the input question or not. The first group does not

perform any such analysis, and tries to model a direct mapping between a question and its answer. This is

typically done using large end-to-end neural networks, which are trained on huge amounts of annotated data

(Malinowski et al. 2015; Ren et al. 2015; Zhou et al. 2015;Noh et al. 2016; XuandSaenko 2016; Yang et al. 2016).

4 | J. Nevens et al.: Computational construction grammar for visual question answering

While these systems perform well on a large variety of tasks, they have a number of major shortcomings

(Agrawal et al. 2016; Zhang et al. 2016). They fall into the trap of exploiting the statistical biases that are

present in their training data, thus failing to perform any explicit reasoning about the question or to even

look into the image. For example, in training data, the question “what covers the ground?” will almost always

be accompanied with an image of a snowy landscape and the answer “snow”. The association between this
question and the answer “snow” will be so strong, that this answer will always be given regardless of the

actual input image. Furthermore, it has been shown that these kinds of visual question answering models

poorly generalize to substantially novel questions and images, and that they only consider the first fewwords

of the input question to formulate an answer (Agrawal et al. 2016).

The secondgroupof approaches tries to overcome these shortcomingsbydividing thequestionanswering

process into two parts. First, a semantic analysis of the input question is performed. The semantic repre-

sentation of a question specifies a sequence of actions that need to be performed to retrieve the answer.

In other terms, the semantic representation takes the form of a query that can be executed by a computa-

tional system on one or more sources of knowledge. Second, the semantic representation is executed on a

computational system on which the query language is implemented, so that the answer can be found. Dif-

ferent ways of semantically parsing questions have been explored in the literature. A first group of models is

grammar-based. These models use linguistically-informed computational grammars to retrieve the semantic

representation of a question. This representation can either be a query-like structure that can be directly exe-

cuted (McFetridge et al. 1996), or a more abstract meaning representation that is later mapped to an actual

query (Frank et al. 2007; Li and Liao 2012; Zettlemoyer and Collins 2005). Question answering systems with a

grammar backbone have used many different grammar formalisms, including Head-Driven Phrase Structure

Grammar (HPSG) (McFetridge et al. 1996; Abou-Assaleh et al. 2005; Frank et al. 2007), Lexical-Functional

Grammar (LFG) (Yarmohammadi et al. 2008; Shamsfard and Yarmohammadi 2010), Combinatorial Catego-

rial Grammar (CCG) (Li and Liao 2012; Zettlemoyer and Collins 2005), and dependency parsing (Andreas et al.

2016a; Andreas et al. 2016b). Themain advantages of the grammar-based approaches are their precise nature,

in the sense that an analysis is always linguistically motivated, as well as the fact that (usually) no annotated

training data is required. A disadvantage of most systems is that only an abstract meaning representation

can be built, rather than an actual query. Mapping this representation to an executable query is then still a

highly non-trivial task. A second disadvantage of these approaches is that their coverage is typically limited

to a closed domain.

Alternatively, semantic parsing of questions can be performed without any explicit grammar represen-

tation. Instead, the mapping between the sequence of words in a question and the sequence of actions to

perform is modelled using statistical or neural approaches, typically some form of Recurrent Neural Net-

works (Hu et al. 2017; Johnson et al. 2017b; Yi et al. 2018; Mao et al. 2019). These models implement thus a

direct mapping between questions and queries, and are well-suited for broad-coverage open-domain pars-

ing. They rely on large amounts of training data, which is not always available. Moreover, the decisions

made by these models are not transparent, as it is not clear how and why they come up with a particular

analysis.

The language understanding part of the CLEVR benchmark task has been virtually solved using non-

grammar based approaches (Mascharka et al. 2018; Yi et al. 2018). In this paper, we revisit the benchmark

using a grammar-based approach, obtaining the same level of accuracy, while offering a transparent model

that does not rely on annotated training data.

4 A computational construction grammar approach
In this paper, we present for the first time a computational construction grammar approach to semantically

parsing questions into directly executable queries. The query language is used as themeaning representation

of the grammar, which allows mapping from questions to queries in a single step, hence remediating one of

the major shortcomings of earlier grammar-based approaches.

J. Nevens et al.: Computational construction grammar for visual question answering | 5

form: {string(jill-1, "jill"),

transient structure

root

string(takes-1, "takes"),

string(john-1, "john"),

string(for-1, "for"),

string(granted-1, "granted"),

meets(jill-1, takes-1),

meets(takes-1, john-1),

meets(john-1, for-1),

meets(for-1, granted-1)}

meaning: {does-not-value(x-4, y-1),

transient structure

root

john(y-1),

jill(x-4)}

Figure 4: Initial transient structures for the utterance “Jill takes John for granted’ in comprehension’ (left) and production
(right).

4.1 Computational construction grammar

Computational construction grammar (CCxG) is a branch of linguistics that aims to operationalize insights

and analyses from construction grammar into concrete processingmodels. CCxG implements the basic tenets

of construction grammar, in particular the assumptions that (i) all linguistic knowledge can be captured as

form-meaning parings, called constructions, (ii) there exists a lexicon-grammar continuum rather than a

lexicon-grammar split, and (iii) the same grammar can be used for both comprehending and producing nat-

ural languageutterances. As constructions can capture structures that range in complexity from simplewords

andmeanings to whole phrases and semantic structures, CCxG provides an elegant and effective way to deal

with the non-compositional nature of language, both on the form side (e.g. “many a year”) and the meaning

side (e.g. “a piece of cake” in the figurative sense).

Fluid Construction Grammar (FCG)¹ is a computational construction grammar implementation that sup-

ports the representation and bidirectional processing of construction grammars (Steels 2011; Steels 2017). As

such, FCG can be thought of as a special-purpose programming language that provides adequate building

blocks for operationalizing constructionist approaches to language. Since particular linguistic phenomena

can be analyzed in many different ways, FCG does not impose a single analysis, but provides the tools to

implement all of these, and compare them to each other.

4.1.1 The transient structure

In the context of FCG, language processing amounts to mapping between natural language utterances and

a representation of their meaning, by means of constructions that capture linguistic knowledge. In compre-

hension, this process starts from an input utterance. In a stepwise manner, the constructions of a grammar

add more and more information until a full analysis is achieved. This analysis includes the meaning of the

utterance, which can be extracted at the end. In formulation, the process starts from a meaning representa-

tion. The same constructions add information until a full analysis is built, from which the utterance can be

extracted. All information that is known at a certain point in processing is represented as a feature structure,

called the transient structure.
Figure 4 shows the transient structure at the start of the comprehension and production processes of the

utterance “Jill takes John for granted”. The transient structures contain a computational representation of

the input utterance in comprehension (left Figure) and of the meaning representation in production (right

Figure). In comprehension, the initial transient structure contains a single unit (drawn as a box), called root,

with a form feature that holds a set of form-related predicates. Here, there are two types of predicates. The

string predicates describe the words that were found in the input and assign them a unique identifier, e.g.

1 https://www.fcg-net.org

https://www.fcg-net.org

6 | J. Nevens et al.: Computational construction grammar for visual question answering

jill-1. These identifiers allow unambiguous reference to the tokens in the utterance. The meets predicates

encode the word order that was observed, e.g. that for-1 immediately precedes granted-1. In formulation,

the initial transient structure also contains a single root unit, which this time holds a meaning feature. The

value of this feature is the set of meaning predicates that need to be expressed in an utterance. In this case,

themeaning predicates indicate that there exists an entity ‘John’, that there exists an entity ‘Jill’, and that the

‘Jill’ entity does not value the ‘John’ entity.

4.1.2 Constructions

Constructions have the power to add more information to a transient structure, in the form of units and fea-

tures. This happens in two stages. First, it is checked whether a construction is applicable, by matching its

preconditions with the transient structure. If the preconditions are satisfied, the linguistic knowledge con-

tained in the construction is added. Consider for example the jill-cxn shown in Figure 5. The preconditions

of this construction are situated on the right side of the arrow. The units on this side, in this case only the

?jill-unit, are split in two by a horizontal line. The preconditions in production are written above the line,

while the preconditions in comprehension are written below. In this case, the construction looks in the tran-

sient structure for a form feature that contains a predicate string(?jill-unit, ‘‘Jill’’) in comprehension

and for a meaning featurewith a predicate jill(?x) in production. Note that the symbols startingwith a ques-

tion mark are logical variables, which means that they can match any value, and that the features preceded

by a # need to be found in the root unit of the transient structure.

When the preconditions of the construction in the direction of processing (comprehension or production)

are satisfied, the features on the left side of the arrow, as well as the preconditions in the other direction, are

added to the transient structure. For example, when the jill-cxn applies in comprehension, a new unit is

created, to which the features on the left side are added, as well as the meaning predicate from the precon-

ditions in production. The novel information that has been added to the transient structure, can then satisfy

the preconditions of other constructions. One construction that relies on information that was contributed by

other constructions, such as the jill-cxn, is the x-take-y-for-granted-cxn, as discussed in Hoffmann and

Trousdale (2013 p. 2) (see Figure 6). This construction combines (i) a ?subject-unitwith features indicating

that it is an animate noun phrase, (ii) a form of the verb “take” that agrees with the ?subject-unit, (iii) an

?object-unitwith features indicating that it is a nounphrase, and the strings (iv) “for” and (v) “granted”. The

meets constraints in the ?clause-unit reflect the order in which these elements need to appear. The meaning

feature in the same unit contains themeaning predicate does-not-value(?x,?y), where ?x and ?y are bound

to the referent of the ?subject-unit and ?object-unit respectively. The construction can be applied both in

comprehension and production, depending on the activated preconditions. Note that FCG is entirely open-

ended when it comes the the features and values that are used, and that they do not need to be declared

anywhere outside the constructions.

referent: ?x

syn-cat:

sem-cat :

?jill-unit

lex-class: proper-noun

phrase-type: np

agreement:
person: 3

number: sg

gender: f

sem-class: animate

sex: female

meaning: {jill(?x)}

form: {string(?jill-unit, "jill")}

jill-cxn (cxn 0.50) show attributes

?jill-unit

Figure 5: A construction that matches in comprehension on the string “Jill” and in production on the meaning predicate
(jill ?x).

J. Nevens et al.: Computational construction grammar for visual question answering | 7

syn-cat:

subunits:

?clause-unit

phrase-type: clause

{?subject-unit, ?take-unit, ?object-unit, ?for-unit,

?granted-unit}

referent: ?x

sem-cat:

syn-cat:

lex-id: take

syn-cat:

referent: ?y

syn-cat:

form:

form:

meaning:

form:

x-take-y-for-granted (cxn 0.50) show attributes

?subject-unit

sem-class: animate

phrase-type: np

agreement: ?agr

?take-unit

lex-class: verb

agreement: ?agr

?object-unit

phrase-type: np

?for-unit

{string(?for-unit, "for")}

?granted-unit

{string(?granted-unit,

"granted")}

?clause-unit

{does-not-value(?x, ?y)}

{meets(?subject-unit,

?take-unit),

meets(?take-unit,

?object-unit),

meets(?object-unit,

?for-unit),

meets(?for-unit,

?granted-unit)}

Figure 6: The x-take-y-for-granted-cxn combines an animate subject noun phrase, a form of the verb “take” that agrees with
this noun phrase, an object noun phrase, and the words “for“ and “granted”, and indicates that the utterance expresses the
meaning that the subject does not value the object.

4.1.3 Constructional processing

Constructional processing boils down to the problem of finding a sequence of constructions that collabora-

tively build up a transient structure until it contains a full constructional analysis. This process starts from a

transient structure that initially only contains an utterance (in comprehension) or a meaning representation

(in production), as shown in Figure 4. Then, if their preconditions are satisfied, constructions expand the

transient structure with more information. Finally, when all relevant constructions have applied, the form

predicates (in production) or meaning predicates (in comprehension) are extracted from the transient struc-

ture as a solution. Figure 7 shows a network representation of the meaning predicates extracted from the

transient structure after processing the utterance “Jill takes John for granted” in comprehension. Note that

the predicate jill(?x-12)was contributed by the jill-cxn in Figure 5 and the does-not-value(?x-12 ?y-4)

predicate was added by the x-take-y-for-granted-cxn in Figure 6. It is also this construction that has linked

the arguments of the two predicates.

8 | J. Nevens et al.: Computational construction grammar for visual question answering

(does-not-value ?x-12 ?y-4)

(john ?y-4)(jill ?x-12)

Figure 7: The meaning network resulting from the comprehension process of the utterance “Jill takes John for granted”.

4.2 A grammar for the CLEVR benchmark task

This section presents a CCxG grammar implemented in FCG that solves the language part of the CLEVRbench-

mark task, i.e. mapping between questions and their executable semantic representations. The grammar

consists of 170 constructions, of which 55 are morphological or lexical constructions. The remaining 115 con-

structions collaboratively capture the grammatical structures that are used in the dataset (e.g. noun phrases,

prepositional phrases, and a wide range of interrogative structures). In this section, we first focus on the

semantic representation that is used by the grammar, and then show how the constructions of the grammar

collaborate to analyze questions into directly executable semantic programs.

4.2.1 Executable semantic representations

The FCG platform is completely open to the kind of semantic representation that is used (e.g. frame seman-

tics, predicate calculus or AbstractMeaning Representation). In this case, the grammar employs a procedural

semantic representation that is inspired by the annotations in the CLEVR dataset. Each semantic repre-

sentation consists of a number of predicates that correspond to function calls that can be executed by the

computational system on an image. For example, the predicate (filter ?output ?input ?attribute) calls

the filter function with as arguments ?output, ?input and ?attribute. Some of these arguments can be

variables, in which case the name of the argument will be preceded by a question mark, as in ?input. In gen-

eral, the arguments are ordered in such a way that the output argument comes first, followed by the input

argument and optionally by additional input arguments. An overview of the predicates that are used is given

in Figure 8.

Using these predicates, complex semantic networks can be built by repeatedly unifying the output argu-

ment of one predicate to the input argument of another predicate, linking them together. This is done through

(get-context ?context)

(filter ?output-set ?input-set ?attribute)

(query ?output-value ?input-object ?attribute)

(same ?output-set ?input-object ?attribute)

(equal ?boolean ?input-value-1 ?input-value-2 ?attribute)

(count ?number ?input-set)

(exist ?boolean ?input-set)

(unique ?output-object ?input-set)

(relate ?output-set ?input-object ?spatial-relation)

(intersect ?output-set ?input-set-1 ?input-set-2)

(union ?output-set ?input-set-1 ?input-set-2)

(equal-integer ?boolean ?input-count-1 ?input-count-2)

(less-than ?boolean ?input-count-1 ?input-count-2)

(greater-than ?boolean ?input-count-1 ?input-count-2)

(bind type ?variable entity)

Figure 8: The predicates used by the CLEVR grammar.

J. Nevens et al.: Computational construction grammar for visual question answering | 9

(get-context ?context)

(filter ?cube-set ?context ?shape-1)

(filter ?red-cube-set ?cube-set ?color-1) (bind shape-category ?shape-1 cube)

(unique ?red-cube ?red-cube-set) (bind color-category ?color-1 red)

(query ?target ?red-cube ?attribute-1)

(bind attribute-category ?attribute-1 material)

Figure 9: A complete semantic network for the question “what material is the red cube?”. Read from top right to bottom left.

the process of construction application, as wewill discuss in the following section. An example semantic net-

work is shown in Figure 9. This network is the semantic representation of the question “what material is the
red cube?”. Note that the topmost predicate, get-context, is a special predicate. It has a single output argu-

ment and no input arguments. This operation binds the set of all objects in the current scene to its output

argument. The set of objects is filtered for cubes, and the resulting set is filtered for red objects. The next

predicate checks if a single object remains (the red cube), and finally, its material is queried.

4.2.2 From CLEVR questions to executable queries

The grammar that we present allows parsing natural language questions into directly executable queries,

which are built up using the predicates introduced above. This means that during processing, constructions

have the crucial task of contributingmeaning predicates to the transient structure, and linking the arguments

of these predicates. We will now demonstrate this process in detail by means of the question “what material
is the red cube?”, which is parsed into the semantic representation shown in Figure 9. An overview of the

constructions that apply is shown in Figure 10, together with the part of the semantic network that has been

built up after each construction application.²

The first construction that applies is the cube-morph-cxn. This construction does not add any mean-

ing predicates, but contributes morphological features which are later used to satisfy the preconditions of

the cube-lex-cxn. Then, three lexical constructions apply, which add meaning predicates that reflect the

meaning of the the words “material”, “red” and “cube”. After this, the base-nominal-cxn adds a filter

predicate ofwhich the last argument is unifiedwith the output argument of themeaning predicate for “cube”,

indicating that a set of objects, which is still unbound at this moment, needs to be filtered for cubes. The

nominal-cxn adds a second filter predicate that specifies that the output of the filter-for-cube operation

(i.e. a set of cubes) serves as the input of a filter operation for the color red. The unique-determined-cxn

adds a predicate that checks whether the output of the filter-for-color operation yields a single object. The

what-t-is-cxn adds a predicate that queries the material of an object that is for now unbound. Finally, the

hop-query-property-cxnbinds the input variable of the querypredicate to the output variable of the unique

predicate. This construction also adds a get-context predicate, which binds the input of the filter-for-cube

operation to the set of objects in the scene. The complete semantic network specifies thus that (i) a set of

objects in the scene needs to be considered, (ii) this set needs to be filtered for cubes, (iii) the resulting set

needs to be filtered for red objects, (iv) the resulting set needs to consist of a single object, and (v) thematerial

of this object needs to be queried.

2 Interactive demonstrations of the comprehension process of other utterances, as well as a complete specification of all

constructions in the grammar can be found at https://ehai.ai.vub.ac.be/demos/clevr-grammar.

https://ehai.ai.vub.ac.be/demos/clevr-grammar

10 | J. Nevens et al.: Computational construction grammar for visual question answering

1
.
c
u
b
e
-m

o
rp

h
-c

x
n

2
.
m

a
te

ri
a
l-
le

x
-c

x
n

(b
in

d
a
tt

ri
b
u
te

-c
a
te

g
o
ry

?
a
tt

ri
b

u
te

-1
m

a
te

ri
a
l)

3
.

re
d
-l
e
x
-c

x
n

(b
in

d
a

tt
ri
b

u
te

-c
a

te
g

o
ry

?
a

tt
ri
b

u
te

-1
m

a
te

ri
a
l)

(b
in

d
c
o

lo
r-

c
a

te
g

o
ry

?
c
o

lo
r-

1
re

d
)

4
.

c
u
b
e
-l
e
x
-c

x
n

(b
in

d
a

tt
ri
b

u
te

-c
a

te
g

o
ry

?
a

tt
ri
b

u
te

-1
m

a
te

ri
a

l)

(b
in

d
c
o

lo
r-

c
a

te
g

o
ry

?
c
o

lo
r-

1
re

d
)

(b
in

d
s
h

a
p

e
-c

a
te

g
o

ry
?

s
h

a
p

e
-1

c
u

b
e
)

5
.
b
a
s
e
-n

o
m

in
a
l-
c
x
n

(b
in

d
a
tt
ri
b
u

te
-c

a
te

g
o

ry
?
a
tt
ri
b

u
te

-1
m

a
te

ri
a
l)

(b
in

d
c
o
lo

r-
c
a

te
g
o
ry

?
c
o
lo

r-
1

re
d

)

(b
in

d
s
h
a
p
e
-c

a
te

g
o

ry
?

s
h
a

p
e

-1
c
u
b
e
)

(f
ilt

e
r

?
ta

rg
e
t-

1
1
5

?
s
o

u
rc

e
-4

9
?
s
h
a
p
e
-1

)

6
.

n
o

m
in

a
l-
c
x
n

(b
in

d
a
tt

ri
b

u
te

-c
a

te
g
o
ry

?
a
tt

ri
b

u
te

-1
m

a
te

ri
a
l)

(b
in

d
c
o
lo

r-
c
a
te

g
o

ry
?
c
o
lo

r-
1

re
d
)

(f
ilt

e
r

?
ta

rg
e
t-

1
1
4

?
ta

rg
e
t-

1
1
5

?
c
o

lo
r-

1
)

(f
ilt

e
r

?
ta

rg
e

t-
1
1
5

?
s
o

u
rc

e
-4

9
?
s
h

a
p
e
-1

)

(b
in

d
s
h

a
p
e

-c
a
te

g
o

ry
?
s
h

a
p
e
-1

c
u

b
e

)

7
.

u
n
iq

u
e
-d

e
te

rm
in

e
d
-c

x
n

(b
in

d
a

tt
ri
b

u
te

-c
a

te
g

o
ry

?
a

tt
ri
b

u
te

-1
m

a
te

ri
a

l)

(b
in

d
c
o

lo
r-

c
a

te
g

o
ry

?
c
o

lo
r-

1
re

d
)

(f
ilt

e
r

?
ta

rg
e

t-
1

1
4

?
ta

rg
e

t-
1

1
5

?
c
o

lo
r-

1
)

(f
ilt

e
r

?
ta

rg
e

t-
1

1
5

?
s
o

u
rc

e
-4

9
?

s
h

a
p
e

-1
)

(u
n

iq
u

e
?

ta
rg

e
t-

o
b

je
c
t-

3
1

?
ta

rg
e

t-
1

1
4

)

(b
in

d
s
h

a
p

e
-c

a
te

g
o

ry
?

s
h

a
p
e
-1

c
u
b
e
)

8
.
w

h
a
t-

t-
is

-c
x
n

(b
in

d
c
o
lo

r-
c
a
te

g
o
ry

?
c
o

lo
r-

1
re

d
)

(f
ilt

e
r

?
ta

rg
e

t-
1
1
4

?
ta

rg
e
t-

1
1

5
?

c
o
lo

r-
1
)

(f
ilt

e
r

?
ta

rg
e
t-

1
1
5

?
s
o
u
rc

e
-4

9
?
s
h
a
p
e
-1

)
(u

n
iq

u
e

?
ta

rg
e
t-

o
b
je

c
t-

3
1

?
ta

rg
e
t-

1
1
4

)

(b
in

d
s
h
a

p
e
-c

a
te

g
o
ry

?
s
h
a
p
e
-1

c
u

b
e
)

(b
in

d
a
tt
ri
b

u
te

-c
a
te

g
o
ry

?
a
tt

ri
b
u
te

-1
m

a
te

ri
a
l)

(q
u
e
ry

?
ta

rg
e
t-

2
1

0
?
s
o
u
rc

e
-8

8
?
a
tt
ri
b
u

te
-1

)

9
.

h
o
p
-q

u
e
ry

-p
ro

p
e
rt

y
-c

x
n

(b
in

d
c
o

lo
r-

c
a

te
g

o
ry

?
c
o

lo
r-

1
re

d
)

(f
ilt

e
r

?
ta

rg
e

t-
1

1
4

?
ta

rg
e

t-
1

1
5

?
c
o

lo
r-

1
)

(f
ilt

e
r

?
ta

rg
e

t-
1

1
5

?
s
o

u
rc

e
-4

9
?

s
h

a
p

e
-1

)
(u

n
iq

u
e

?
ta

rg
e

t-
o

b
je

c
t-

3
1

?
ta

rg
e

t-
1

1
4

)

(b
in

d
s
h

a
p

e
-c

a
te

g
o

ry
?
s
h
a

p
e
-1

c
u
b
e
)

(g
e

t-
c
o

n
te

x
t

?
s
o

u
rc

e
-4

9
)

(q
u

e
ry

?
ta

rg
e

t-
2
1

0
?

ta
rg

e
t-

o
b

je
c
t-

3
1

?
a

tt
ri
b

u
te

-1
)

(b
in

d
a

tt
ri
b

u
te

-c
a

te
g

o
ry

?
a

tt
ri
b

u
te

-1
m

a
te

ri
a

l)
P

re
d
ic

a
te

 a
d
d
e
d

P
re

d
ic

a
te

s
 l
in

k
e

d

Fi
gu
re
10
:O

ve
rv
ie
w
of
th
e
co
ns
tru

ct
io
ns

th
at
ap
pl
y
w
he
n
co
m
pr
eh
en
di
ng

th
e
qu

es
tio

n
“w

ha
tm

at
er
ia
li
s
th
e
re
d
cu
be
?”
,v
is
ua
liz
in
g
ho

w
th
e
co
ns
tru

ct
io
ns

co
lla
bo

ra
tiv
el
y
bu

ild
up

a
se
m
an
tic

re
pr
es
en
ta
tio

n.
Fo
re
ac
h
co
ns
tru

ct
io
n
ap
pl
ic
at
io
n,
pr
ed
ic
at
es

th
at
w
er
e
ad
de
d
ar
e
en
ci
rc
le
d
us
in
g
a
re
d
so
lid

lin
e.
Ar
gu
m
en
ts
of
th
es
e
pr
ed
ic
at
es

th
at
w
er
e
bo
un
d
th
ro
ug
h
th
e
co
ns
tru

ct
io
n

ap
pl
ic
at
io
n
ar
e
en
ci
rc
le
d
us
in
g
a
gr
ee
n
da
sh
ed

lin
e.

J. Nevens et al.: Computational construction grammar for visual question answering | 11

args: {input(nil),

sem-cat:

syn-cat:

?cube-unit-1

sem-class: shape

lex-class: noun

syn-function: nominal

number: ?number

syn-cat:

cube-lex-cxn (lex 0.50 cube *shape) show attributes

?cube-unit-1

number: ?number

output(?shape-2)}

meaning: {bind(shape-category, ?shape-2, cube)}

lex-id: cube

Figure 11: The cube-lex-cxn. Note that the variable in the meaning feature (?shape-2) is also explicitly represented using the
args feature, for easier access by other constructions.

args: {sources(?source),

 target(?target)}

leftmost-unit: ?noun-unit

rightmost-unit: ?noun-unit

syn-cat:

sem-cat:

subunits: {?noun-unit}

?nominal-unit

syn-function: nominal

lex-class: np

number: ?number

sem-class: object

?noun-unit

sem-cat:

syn-cat:

base-nominal-cxn (nom 0.50) show attributes

?nominal-unit

?noun-unit

sem-class: shape

lex-class: noun

syn-function: nominal

number: ?number

args: {target(?shape)}

meaning: {filter(?target, ?source, ?shape)}

Figure 12: The base-nominal-cxnmatches on a noun unit and creates a new nominal unit with an additional meaning predicate.

Let us have a look at two constructions that were used in the comprehension process, namely the cube-

lex-cxn shown in Figure 11 and the base-nominal-cxn shown in Figure 12. The meaning predicates that are

added when these constructions apply are listed under their meaning features. The variables in these predi-

cates are also explicitly represented using a feature called args, for easier access by other constructions. The

constructions clearly show how these variables are shared across units (e.g. the variable ?shape both in the

?nominal-unit and the ?noun-unit of the base-nominal-cxn), allowing them to create links in the mean-

ing network through unification. Note that also morpho-syntactic features are necessary for finding a correct

semantic representation, as reflected for example by the number feature in both constructions.

5 Evaluation
The CLEVR dataset provides ground-truth annotations for more than 800,000 questions, in the form of so-

called “functional programs”. Verymuch like our semantic representation, these functional programs consist

of a sequence of operations that need to be executed in order to answer the question, albeit in a different for-

mat. In order to compare these ground-truth annotations with our semantic networks, both representations

were first transformed into a tree data structure. Every node in this tree represents an operation with its argu-

ment(s). The root of the tree is the last function of the program that needs to be called. Each tree node thus

points to the other function node(s) that provide its input. The comparison of the trees is done by traversing

them simultaneously, starting from the root. At every node, both the function name and its arguments are

compared. If these are equal across all nodes, we conclude that the tree data structures are equal and the

analysis performed by our grammar is correct. An additional difficulty arises when a node in the tree has

multiple children, as is for example the case for a “union” or “compare” operation. Since both trees are build

up by different procedures (one by reading from the ground-truth functional program, the other by trans-

forming ameaning network), the order of the children of a certain node is not necessarily equal in both trees.

12 | J. Nevens et al.: Computational construction grammar for visual question answering

For example, the left child in one tree might be the right child in the other tree. Despite this difference, the

trees are still functionally equivalent. In order to accommodate such cases, all orders of traversals are tried

when a tree-node with multiple children is encountered.

When evaluated on the more than 800,000 annotated questions in the CLEVR dataset, an accuracy of

100% was achieved. This result proves that the grammar effectively solves the language understanding part

of the CLEVR benchmark task.

6 Towards an operational VQA system
The grammar described in the previous sections allows parsing natural language questions into structured

queries. These queries can then be executed on knowledge sources to retrieve the answers to the questions.

As explained above, the queries consist of a network of function calls that can take as input the output of

other calls. These functions, which form the query language, can be implemented using a wide variety of

techniques. Certain functions, such as filtering images for particular objects, are for example well suited to

be implemented as neural networks. Others, like comparing two integers, can bemore precisely implemented

as symbolic operations.

In this section, we demonstrate how the grammar can be integrated into a full visual question answering

system, in which all functions are implemented as symbolic computations. It is important to note that the

functions do not operate on the actual bitmap images, but on a structured representation of their content,

which is included asmeta-data in the CLEVRdataset. For each object in an image, the annotation specifies the

object’s properties (color, size, material and shape) and additionally states the spatial relations between the

get-context

filter(sphere)

union!

count!

filter(cube)

How many things are cubes or spheres?

4 6

7 5 0 4 6

1 3 5 70 2 4 6

0 5 7

5

5

2

6

7

3

1

40

Figure 13: Integrating the grammar into a full visual question answering system. The meaning predicates that are executed are
shown in circles, the intermediate answers in boxes. The last step and final answer are shown in yellow.

J. Nevens et al.: Computational construction grammar for visual question answering | 13

objects. These annotations can be thought of as the result of a segmentation and feature extraction process.

As the system works with these annotations and not with the images themselves, it is not meant to compete

on the benchmark test, but to demonstrate that the meaning representation used by the grammar is directly

executable, and can thus be used in a task where answers to the questions need to be formulated.

For executing the semantic networks, we use a procedural semantics framework called Incremental

Recruitment Language (IRL) (Spranger et al. 2012). IRL provides an interface for defining cognitive opera-

tions and semantic entities (as introduced by (Steels 2007)). We use the former to provide an implementation

for the variousmeaning predicates such as count and filter and the latter to represent the symbolic annota-

tion of the input image. Furthermore, IRL provides mechanisms for executing themeaning networks through

a search process. At every processing step, the system will search for the next meaning predicate it can exe-

cute. This is possible when enough variables are instantiated. The execution of ameaning predicate can then

in turn instantiate new variables in the meaning network. This is repeated until all variables are bound, the

output variable of the semantic network being bound to the answer to the question.

A live demonstration of this system is provided as supplementary material with this paper.³ A snapshot

of this demonstration is provided in Figure 13, for the question “how many things are cubes or spheres?” The
objects in the picture on the left are annotated with an id, and the semantic network on the right is executed

on the meta-data describing this image. The meaning predicates that are executed are shown in circles, and

their answers in boxes. We can see that the context consists of 8 objects (objects 0–7). Objects 4 and 5 are

spheres, and objects 0, 5, 7 are cubes. The union of these two sets is taken, and the cardinality of the resulting

set is 5. The yellow color indicates that this box contains the final answer to the question.

7 Bi-directional language processing
Up until this point, we have focused on parsing natural language questions into structured queries, a lan-

guage understanding task that is of great importance to (visual) question answering. Here, we shift our focus

to producing questions that express such queries in natural language. Language production is typically not

part of question answering tasks, but it is easy to see its relevance for interactive intelligent systems such as

chatbots or personal assistants.

As discussed in Section 4.1 above, the FCG system can use the same grammar and processing mecha-

nisms for comprehending and producing utterances. The only difference is that a construction nowmatches

its production preconditions against the transient structure to decide whether it is applicable (instead of its

comprehension preconditions), and if so, that its comprehension preconditions are added to the transient

structure (instead of its production preconditions).

In production, the grammar has the task of addingword forms andword order constraints to the transient

structure. Word forms are added in the form of string predicates, while word order constraints are added in

the form of meets and precedes predicates, indicating adjacency and precedence relations respectively. At

the end of processing, the output utterance is rendered based on these strings and the word order constraints

between them. Figure 14 illustrates the production process of the question “what material is the red cube?”,
based on the meaning representation that was shown in Figure 9. The blue boxes show the constructions

that have applied, together with the part of the utterance that has been constructed after each construction

application. If word order constraints have been imposed on two or more elements, they are written within a

single pair of quotation marks. The first three (lexical) constructions add word forms to the transient struc-

ture. Note that ?cube is still a variable at this point, as its final morphological form (“cube” or “cubes”) is only

decided on later on in the construction application process, based onnumber constraints added by other con-

structions. The nominal-cxn imposes a constraint that “red” and “?cube” need to be adjacent to each other.

The what-t-is-cxn adds the word forms “what” and “is” and specifies the word order of “what material

is”. The unique-determined-cxn adds the word form “the” and imposes the word order of “the red ?cube”.

3 https://ehai.ai.vub.ac.be/demos/visual-question-answering

https://ehai.ai.vub.ac.be/demos/visual-question-answering

14 | J. Nevens et al.: Computational construction grammar for visual question answering

1. red-lex-cxn 2. cube-lex-cxn 3. material-lex-cxn

4. base-nominal-cxn 5. nominal-cxn 6. what-t-is-cxn

7. unique-determined-cxn 8. hop-query-property-cxn

9. cube-morph-cxn

Figure 14: Overview of the constructions that apply when formulating the question “what material is the red cube?”, and the
part of the utterance that has been built up after each construction application. Quotation marks group parts of the utterance
that are subject to word order constraints. Variables hold the place of words of which the concrete morphological realization is
only decided on later in the construction application process.

Utterances:

"what is the material of the red block"–

–

–

–

–

–

"what material is the red cube"

"what material is the red cube made of"

"the red block is made of what material"

"there is a red cube ; what is its material"

"there is a red block ; what material is it"

Figure 15: Syntactic variation leads to multiple possible utterances when formulating the meaning network in Figure 9.

It is also this construction that imposes a constraint that ?cubemust be singular. The hop-query-property-

cxn constrains that “what material is” immediately precedes “the red ?cube”. Finally, the cube-morph-cxn

instantiates the ?cube variable with the singular word form “cube”.

The grammar includes a considerable amount of lexical and syntactic variation, as the same meaning

network can be expressed in many different ways. The lexical variation is due to (exact) synonyms in the

dataset, such as “cube”-“block” and “shiny”-“metal”. The grammar handles this by including these word

forms as morphological instantiations of the same lexical items. The grammatical variation in the dataset is

more interesting, and is handled by having different combinations of constructions of which the application

leads to the same meaning network. For example, when asking for all syntactically different solutions, the

meaning network in Figure 9 is mapped by the grammar to the utterances in Figure 15. When comprehending

a question and using the resulting meaning network for producing more questions, the grammar and FCG

system can thus readily be used as a paraphrasing tool.

8 Discussion and conclusion
This paper has introduced a novel methodology for semantically parsing natural language questions into

structured queries. The methodology adopts a computational construction grammar approach, in which the

query language is used as themeaning representation of the grammar. This way, the meaning representation

can be directly executed on knowledge sources, without requiring any intermediate transformation steps.We

have demonstrated the approach in the domain of visual question answering using the CLEVR benchmark

task, on which the grammar yielded a perfect accuracy score. Additionally, we have shown how the grammar

J. Nevens et al.: Computational construction grammar for visual question answering | 15

can be used as a component in a full visual question answering system, and how the same grammar that is

used for comprehending questions can also be used for producing questions expressing structured queries.

The main contribution of our methodology to the state of the art in (visual) question answering, in

particular with respect to the CLEVR benchmark task, is that it combines the main strengths of grammar-

based approaches with a level of accuracy that was previously only achieved using deep learning techniques

(Mascharka et al. 2018; Yi et al. 2018). One of these strengths is that no annotated training data is required,

as expert linguistic knowledge is captured in the grammar. A second strength is that the analyses are trans-

parent and interpretable, as the linguistic motivation of each step in the semantic parsing process can be

inspected. A final strength of the methodology is its open-endedness, in the sense that the coverage of a

grammar can be extended with new constructions, e.g. covering new interrogative structures, without hav-

ing to retrain or rebuild the existing model. An additional advantage is that the same model cannot only be

used for comprehending questions, but also for producing questions based on their meaning representation.

Compared to other grammar-based approaches, one of the main advantages of computational construc-

tion grammar is that it provides an elegant and effective way to deal with the non-compositional nature of

linguistic expressions, both when it comes to their form and to their semantics. This results from the opera-

tionalization of basic construction grammar insights, such as the lexicon-grammar continuum, and the tight

integration of morpho-syntax with semantics. For instance, a how-many-x-are-y construction can capture

at once all relevant linguistic information that is associated with utterances instantiating the construction.

This includes, among other aspects, the fact that its meaning (filtering x by y and counting the result) is only

parametrized on the specific values of x and y, that x needs to be a bare noun phrase in the plural form, that

y needs to be a predicative expression that agrees with x, and that the word “many” cannot be replaced by a

different determiner or adjective (such as “few” or “numerous”). Apart from making grammar design easier,

this way of dealingwith non-compositionality in language also facilitates the use of an actual query language

as the meaning representation of the grammar, which avoids the highly non-trivial step to transform more

abstract meaning representations into executable queries.

In sum, we have introduced computational construction grammar as a methodology for tackling chal-

lenges that involve mapping between natural language expressions and their executable meaning represen-

tations, and have demonstrated its potential for the first time on a community-wide benchmark task.

Acknowledgements: We would like to thank Roxana Radulescu, Mathieu Reymond and Kyriakos

Efthymiadis for the brainstorming sessions that have led to this publication. We also thank Remi van Trijp

for his constructive feedback on earlier versions of this paper. Finally, we are grateful to the two anonymous

reviewers for their valuable comments that greatly improved the final version of this paper. This work was

supported by the Research Foundation Flanders (FWO), funder id: http://dx.doi.org/10.13039/501100003130,

through grant 1SB6219N.

References
Abou-Assaleh, T., N. Cercone & V. Keselj. 2005. Question-answering with relaxed unification. In Proceedings of the Confer-

ence Pacific Association for Computational Linguistics, volume 5. Tokyo, Japan: Pacific Association for Computational
Linguistics.

Agrawal, A., D. Batra & D. Parikh. 2016. Analyzing the behavior of visual question answering models. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, 1955–1960. Austin, TX, USA: Association for
Computational Linguistics.

Andreas, J., M. Rohrbach, T. Darrell & D. Klein. 2016a. Learning to compose neural networks for question answering. In Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 1545–1554. San Diego, CA, USA: Association for Computational Linguistics.

Andreas, J., M. Rohrbach, T. Darrell & D. Klein. 2016b. Neural module networks. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition, 39–48. Las Vegas, NV, USA: IEEE.

Frank, A., H.-U. Krieger, F. Xu, H. Uszkoreit, B. Crysmann, B. Jörg & U. Schäfer. 2007. Question answering from structured
knowledge sources. Journal of Applied Logic 5(1). 20–48.

http://dx.doi.org/10.13039/501100003130

16 | J. Nevens et al.: Computational construction grammar for visual question answering

Hoffmann, T. & G. Trousdale. 2013. Construction Grammar: Introduction. In Thomas Hoffmann & Graeme Trousdale (eds.), The
Oxford Handbook of Construction Grammar, Oxford: Oxford University Press.

Hu, R., J. Andreas, M. Rohrbach, T. Darrell & K. Saenko. 2017. Learning to reason: End-to-end module networks for visual ques-
tion answering. In Proceedings of the 2017 IEEE International Conference on Computer Vision, 804–813. Venice, Italy:
IEEE.

Johnson, J., B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick & R. Girshick. 2017a. Inferring and executing
programs for visual reasoning. In Proceedings of the 2017 IEEE International Conference on Computer Vision, 3008–3017.
Venice, Italy: IEEE.

Johnson, J., B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick & R. Girshick. 2017b. CLEVR: a diagnostic dataset for com-
positional language and elementary visual reasoning. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition, 1988–1997. Honolulu, HI, USA: IEEE.

Li, P. & L. Liao. 2012. Web question answering based on CCG parsing and DL ontology. In 8th International Conference on
Information Science and Digital Content Technology, volume 1, 212–217. Hyatt Regency Jeju, Korea: IEEE.

Malinowski, M., M. Rohrbach & M. Fritz. 2015. Ask your neurons: A neural-based approach to answering questions about
images. In Proceedings of the 2015 IEEE International Conference on Computer Vision, 1–9. Santiago, Chile: IEEE.

Mao, J., C. Gan, P. Kohli, J. B. Tenenbaum & J. Wu. 2019. The Neuro-symbolic concept learner: Interpreting scenes, words, and
sentences from natural supervision. In International Conference on Learning Representations. New Orleans, LA, USA: Open
Review. https://openreview.net/forum?id=rJgMlhRctm.

Mascharka, D., P. Tran, R. Soklaski & A. Majumdar. 2018. Transparency by design: Closing the gap between performance
and interpretability in visual reasoning. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern
Recognition, 4942–4950. Istanbul, Turkey: IEEE.

McFetridge, P., F. Popowich & D. Fass. 1996. An analysis of compounds in HPSG (head-driven phrase structure grammar) for
database queries. Data & Knowledge Engineering 20(2). 195–209.

Noh, H., P. Hongsuck Seo & B. Han. 2016. Image question answering using convolutional neural network with dynamic parame-
ter prediction. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 30–38. Las Vegas,
NV, USA: IEEE.

Ren, M., R. Kiros & R. S. Zemel. 2015. Exploring models and data for image question answering. In Proceedings of the 28th
International Conference on Neural Information Processing Systems, volume 2, 2953–2961. Montreal, Canada: MIT Press.

Shamsfard, M. & M. A. Yarmohammadi. 2010. A semantic approach to extract the final answer in SBUQA question answering
system. International Journal of Digital Content Technology and its Applications 4(7). 165–176.

Spranger, M., S. Pauw, M. Loetzsch & L. Steels. 2012. Open-ended procedural semantics. In L. Steeks and M. Hild (eds.),
Language grounding in robots, 159–178. New York: Springer.

Steels, L. 2007. The recruitment theory of language origins. In C. Lyon, C. L. Nehaniv, & A. Cangelosi (eds.), Emergence of
Language and Communication, 129–151. Berlin: Springer.

Steels, L. (ed.). 2011. Design Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.
Steels, L. 2017. Basics of Fluid Construction Grammar. Constructions and Frames 9(2). 178–225.
Xu, H. & K. Saenko. 2016. Ask, attend and answer: Exploring question-guided spatial attention for visual question answering.

In European Conference on Computer Vision, 451–466. Amsterdam, The Netherlands: Springer.
Yang, Z., X. He, J. Gao, L. Deng & A. Smola. 2016. Stacked attention networks for image question answering. In Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 21–29. Las Vegas, NV, USA: IEEE.
Yarmohammadi, M. A., M. Shamsfard, M. A. Yarmohammadi and M. Rouhizadeh. 2008. SBUQA question answering system. In

Computer Society of Iran Computer Conference, 316–323. Kish Island, Iran: Springer.
Yi, K., J. Wu, C. Gan, A. Torralba, P. Kohli & J. Tenenbaum. 2018. Neural-symbolic VQA: disentangling reasoning from vision

and language understanding. In Advances in Neural Information Processing Systems, 1031–1042. Montreal, Canada: MIT
Press.

Zettlemoyer, L. S. & M. Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilis-
tic categorial grammars. In UAI’05 Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence,
658–666. Edinburgh, Scotland: AUAI Press Arlington.

Zhang, P., Y. Goyal, D. Summers-Stay, D. Batra & D. Parikh. 2016. Yin and yang: Balancing and answering binary visual ques-
tions. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 5014–5022. Las Vegas, NV,
USA: IEEE.

Zhou, B., Y. Tian, S. Sukhbaatar, A. Szlam & R. Fergus. 2015. Simple baseline for visual question answering. arXiv e-prints.
arXiv:1512.02167.

https://openreview.net/forum?id=rJgMlhRctm

	Computational construction grammar for visual question answering
	1 Introduction
	2 The CLEVR benchmark
	3 State of the art
	4 A computational construction grammar approach
	4.1 Computational construction grammar
	4.1.1 The transient structure
	4.1.2 Constructions
	4.1.3 Constructional processing

	4.2 A grammar for the CLEVR benchmark task
	4.2.1 Executable semantic representations
	4.2.2 From CLEVR questions to executable queries

	5 Evaluation
	6 Towards an operational VQA system
	7 Bi-directional language processing
	8 Discussion and conclusion

