Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Training machine learning models for vulnerability prediction and injection using
datasets of vulnerability-inducing commits

DIERICKX, Jérémie

Award date:
2023

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. May. 2024

https://researchportal.unamur.be/en/studentTheses/96c40c75-9ef1-40da-a59c-d6aff29f46f5

UNIVERSITE DE NAMUR
Faculté d’informatique
Année académique 2022-2023

UNIVERSITE
DE NAMUR

FACULTE
D'INFORMATIQUE

Training machine learning models for
vulnerability prediction and injection using
datasets of vulnerability-inducing commits

Dierickx Jérémie

........................ (Signature pour approbation du dépot - REE art. 40)
Promoteur : Perrouin Gilles

Co-promoteur : Devroey Xavier

Mémoire présenté en vue de 'obtention du grade de Master 120 en Sciences Informatiques

a finalité spécialisée en Software Engineering

Faculté d’Informatique — Université de Namur

RUE GRANDGAGNAGE, 21 @ B-5000 NAMUR(BELGIUM)

Acknowledgments

With this internship I learned a lot about the machine learning field, more precisely the
deep learning field, and its various applications.

I would like to thank my promoter and my co-promoter, Dr. Perrouin Gilles and Dr.
Devroey Xavier from the University of Namur, who allowed me to do this thesis at the SnT
of Luxembourg and helped me in its writing.

I would also like to thank Dr. Michail Papadakis and Dr. Renzo Degiovanni who helped
me to develop the subject of this thesis.

I am also thankful to Dr. Aayush Garg, who helped with the concepts behind the
TROVON paper and their use for this thesis.

Finally, I would like to thank all members of the Serval team, as well as the other interns
present during the realisation of this thesis, for their friendliness and the good working
atmosphere.

Résumé

Plusieurs techniques existent pour trouver des vulnérabilités dans du code, tel que 'analyse
statique et le machine learning. Bien que les techniques de machine learning soient promet-
teuses, elles nécessitent une grande quantité d’exemples. Puisqu’il n’existe pas de si grande
quantité de données de code vulnérable, des techniques d’injection de vulnérabilités ont été
développées pour créer celles-ci. Les techniques de détection et d’injection de vulnérabilités
basées sur du machine learning utilisent généralement le méme type de donnée, c’est-a-dire
des paires de code vulnérable, juste avant d’étre corrigé, et sa version corrigée. Cependant,
utiliser la version corrigée n’est pas réaliste, puisque la vulnérabilité a été introduite lors
d’une autre version qui peut étre bien différente par rapport & la version corrigée. Donc,
nous proposons 'utilisation de paires de code ayant introduit la vulnérabilité et sa version
précédente. En effet, ceci est plus réaliste, mais aussi seulement pertinent si les techniques de
machine learning peuvent apprendre correctement de celles-ci et que les structures apprises
sont significativement différentes qu’avec la méthode habituelle. Pour s’en assurer, nous
avons entrainé des modéles de détection de vulnérabilité pour les deux types de données et
comparé leurs performances. Notre analyse a démontré qu’un modéle entrainé sur des paires
de code vulnérable et leur version corrigée n’est pas capable de détecter les vulnérabilités
des versions ayant introduit une vulnérabilité. Il en va de méme dans le sens inverse, malgré
que les deux modéles sont capables d’apprendre correctement de leurs données et de détecter
les vulnérabilités sur des données similaires. Donc, nous concluons que 'utilisation de codes
ayant introduit une vulnérabilité pour I’entrainement de modéles de machine learning est
plus pertinente que les versions corrigées.

Mots-clés : vulnérabilité logicielle, injection de vulnérabilité, encodeur-décodeur, détection
de vulnérabilité, traduction automatique

Abstract

Multiple techniques exist to find vulnerabilities in code, such as static analysis and machine
learning. Although machine learning techniques are promising, they need to learn from a
large quantity of examples. Since there is not such large quantity of data for vulnerable code,
vulnerability injection techniques have been developed to create them. Both vulnerability
prediction and injection techniques based on machine learning usually use the same kind of
data, thus pairs of vulnerable code, just before the fix, and their fixed version. However,
using the fixed version is not realistic, as the vulnerability has been introduced on a different
version of the code that may be way different from the fixed version. Therefore, we suggest
the use of pairs of code that has introduced the vulnerability and its previous version.
Indeed, this is more realistic, but this is only relevant if machine learning techniques can
properly learn from it and the patterns learned are significantly different than with the
usual method. To make sure of this, we trained vulnerability prediction models for both
kind of data and compared their performance. Our analysis showed a model trained on
pairs of vulnerable code and their fixed version is unable to predict vulnerabilities from the
vulnerability introducing versions. The same goes for the opposite, despite both models are
able to properly learn from their data and detect vulnerabilities on similar data. Therefore,
we conclude that the use of vulnerability introducing codes for machine learning training is
more relevant than the fixed versions.

Keywords : software vulnerability, vulnerability injection, encoder-decoder, vulnerability
prediction, machine translation

Contents

[2__Background|

2.1 achine Learning|.

2.1.1 Natural Language Processing|

2.1.4 Sequence-to-Sequence learning| Lo

2.1.5 Machine learning weaknesses|

ET6 TROVORN o

P2 577 algorithm|

ApPp hl

3.2 Splitting into functions|. oL oL

3.3 Abstracting the code| Lo

4 D o . .

3.6 ramning| . . .

3.6.2 Hyperparameters| oo o

4 Experimentation|

4.1 Small dataset]

2.1 Mefricd
p.3 Large dataset|

10
10
10
10
11
12
13
13
13

15
16
16
17
20
20
22
23
23

24
24
25
26
27

28
28
28
29
30
30
30

6_Discussion

|7 Threats to validity|

7.1 External validity| o

[7.2 Internal validity|
B—_Conclusion

31
31
31
31
32
32
33

34
34
34

35

List of Figures

L1 Codesubsets 8
1.2 Difterent pairs on the code history| oL 8
2.1 Basic Encoder-Decoder architecture using RNNs. "Hello world" translation.|. 11
2.2 Seqg25eq Model. "Hello world" translation.. 12
3.1 AINING.|. . .« .« o o e e e e e e 15
3.2 Difterences in a pair of tunctions| oL 19
[3.3 Difterences in a pair ot tunctions after abstraction by pairs[. 19
[3.4 Differences 1n a pair ot functions after a simple abstraction| 20
Bo ROCcurvel 21
3.6 Area under the ROC Curvel 22
4.1 Small dataset extraction and trainings| Lo 25
4.2 10-Fold trainingf. L 26
4.3 Creation and training of the large dataset| 27

Chapter 1

Introduction

1.1 Context

Security is an important concern in software development. While some bugs and vulnera-
bilities are harmless enough to be ignored, others can lead to more important repercussions
like data leaks, service unavailability or even leading a system to be fully compromised.

To help organizations and their developers to detect and fix these vulnerabilities from
their software, different techniques have been developed. Some of them are software test-
ing, static analysers as well as various machine learning techniques for vulnerability
prediction. Unfortunately, all of these techniques have their limitations and they are ei-
ther time consuming or their ability to find vulnerabilities is limited.

In order to improve these techniques, we need to be able to also test them on various,
realistic vulnerabilities, to measure their performances. This is one reason why vulnerability
injection techniques are developed. These techniques include genetic programming based
techniques, where the code is iteratively transformed in a way analogous to natural genetic
processes, and machine learning based techniques, where the code transformation is
based on learned patterns. [11]

By injecting vulnerabilities into source code, we are able to create diverse samples that
can be used to test vulnerability detection techniques. However, vulnerability injection
also serves a second purpose that is to overcome the scarcity of vulnerability datasets for
machine learning based vulnerability prediction techniques. Indeed, vulnerability prediction
models suffer from a the lack of quality datasets of realistic vulnerabilities, compared to
models trained on any code examples or bugs. The reason is that in reality, vulnerable code
represent a very small part of any project and we are not always aware they are present in
a specific program.

Figure 1.1: Code subsets

Any code

Buggy code

Vulnerable
code

In this thesis, we focus on machine learning based vulnerability prediction and vulner-
ability injection techniques, that are both promising but also both suffer from this scarcity
of realistic datasets. We found out that various techniques have been developed to reduce
the impact of this scarcity in order to improve their models. However, datasets of pairs of
pre-fix and fix are usually used for training. This kind of dataset is easier to create but is
not really realistic as inducing a bug or vulnerability is usually not the same as reversing its
fix.

Figure 1.2: Different pairs on the code history

Usually used

Pre- T
wulnerability

Vulnerable

Code history

1.2 Research objectives

The main objective of this thesis is to assess the use of vulnerability inducing samples, older
on the code history (left side of figure , as a replacement to fixes samples (right side of
ﬁgure for training of vulnerability injection and prediction models. For that we also need
to assess whether these two kind of datasets provide similar patterns to be learned by the
machine learning models or not, as well as whether or not a model trained on vulnerability
inducing codes could properly learn from them.

1.3 Research methodology

In order to achieve our objective, we choose to train a Seq2Seq machine learning model
using a Long-Short Term Memory (LSTM) network and based on the method described

in the TROVON [7] paper. TROVON originally propose a vulnerability prediction model
trained on pairs of pre-fix and fix, we will follow the same methodology but using pairs of
pre-vulnerability inducing and vulnerability inducing codes.

Actually, we trained two models for each experimentation. Each model was trained on
one kind of dataset (of vulnerability inducing or fixing codes) and tested on the other (of
fixing or vulnerability inducing codes). In other words, each model is trained on one side of
the code history (figure and tested on the other side.

We considered two bases to create the said datasets. The first one was a dataset of
manually verified vulnerability inducing commits and their corresponding fixing commits,
provided with the V-SZZ [1] paper, an algorithm made to find vulnerability inducing commits
from fixing commits. The second one was a dataset we made by retrieving fixing commits
from the National Vulnerability Database (NVD) and using the V-SZZ algorithm on them.

Once we got our two bases for our datasets, we first split their files into functions to
augment the amount of examples and reduce the complexity per example. Then, we applied
a source code obfuscation algorithm on them to reduce the vocabulary size, as well as getting
rid of extra information like comments.

Finally, we trained our models on these datasets to assess their ability to predict patterns
of the opposite dataset to the one they were trained on.

1.4 Thesis structure

This thesis has the following structure:

e the Background chapter describes the state-of-the-art, tools and theoretical concepts
needed in order to understand the thesis.

e the Approach chapter describes the different steps of our approach, the metrics we
made and the parameters we choose for the trainings.

e the Experimentation chapter applies concretely what is explained in the Approach
and adds some details to it.

e the Results chapter shows the different results we obtained from our experimentation
with a short description.

e the Discussion chapter allows us to interpret the results and answering our research
questions.

e the Threats to validity chapter lists different issues that could threaten the external
or internal validity of our approach.

e the Conclusion chapter summarize what has been done during this thesis and suggests
possible future works.

1.5 Replication package

A replication package is available for this thesis at the following github repository: https:
//github.com/jdxHub/replication_packagel This package includes:

e all datasets in the json format.

e every notebook created during this thesis, in order to generate our datasets.

all python scripts used to train and test our models.

e the different models we trained.

graphs and tables for all metrics obtained for our models.

https://github.com/jdxHub/replication_package
https://github.com/jdxHub/replication_package

Chapter 2

Background

2.1 Machine Learning

State-of-the-art methods usually use pairs of vulnerable codes and their fixes, coming from
popular open source projects, as this is the most accessible and reliable data that can be used
for training. [15| [L0, [22] Indeed, open source projects like Linux-Kernel can have a lot of
publicly available fixing commits. These fixing commits are manually made and potentially
verified by many developers thanks to the popularity and accessibility of these projects,
so we usually make the assumption they are actually fixing the vulnerability. Though,
using vulnerable codes and their fixes have some limitations as we still cannot be sure the
vulnerability is accurately fixed neither if the fix did not create another vulnerability. Also,
this kind of training is not really realistic as a real developer does not fix a vulnerability
by simply reverting their code to an older version, so the original vulnerability injection is
likely different from the injection made by reverting a fixed code to its previous version, as
current methods are trained on.

2.1.1 Natural Language Processing

In machine learning, the Natural Language Processing (NPL) consists of automatically ex-
tract linguistic knowledge from a dataset of natural language texts. NPL methods are used
in multiple domains like speech recognition, syntactic parsing, semantic processing, informa-
tion extraction, natural language generation or machine translation. [4] Machine Translation
is also useful in cases of vulnerability injection and prediction as this is able to translate a
given text to another. This can be from one language to another but can also be from a
first version of a text to a second, modified, version of this one (as rewording).

2.1.2 Machine Translation
There exists different approaches of Machine Translation (MT) including:

e Rule based. Rule-based MT relies on different levels of linguistic rules for translation,
this makes use of a dictionary and a grammar, which must be developed by linguists.
This approach is time-consuming and its computational cost is high [5].

e Corpus based. Corpus-based MT is a first alternative to overcome the knowledge
acquisition problem of the rule-based approach. It automatically acquires the trans-
lation knowledge or models from bilingual corpora and is designed to work on large
sizes of data [5]. The approach can be statistical (SMT), using statistical models to
learn the probability of a target sentence given a source, or example-based (EBMT),
using examples of similar sentence pairs from the bilingual corpus |13} 19].

Another Corpus-based approach, the one that interests us, is the Neural Machine
Translation (NMT). This approach makes use of neural networks and so is a deep

10

learning approach to Machine Translation. The idea of NMT is to map the source
into a semantic representation and then generate the translation by using attention
mechanism [19]. With its ability to directly learn from the training corpora, NMT is
the most used method in Machine Translation.

A Neural Machine Translation model is typically made following what is called the
“Encoder-Decoder” architecture.

2.1.3 Encoder-Decoder

The “Encoder-Decoder” architecture is the standard neural machine translation method.
The idea is to capture the context of the sequence given as input and encoding it into a
“hidden state” vector first, then the decoder transforms this vector into another sequence as
an output.

There are different kinds of neural networks that can be used for the encoder and decoder,
as long as they are sequence based. This includes the Recurrent Neural Networks
(RNN), the Gated Recurrent Units (GRU) and the Long-Short Term Memory
(LSTM).

Recurrent Neural Networks (RNN)

RNN are the most basic kind of neural networks used for MT. For every element from
the input sequence, the RNN encoder will apply the given element as well as the previous
generated hidden state to another instance of itself to generate the next hidden state. The
use of the previous generated hidden state as a second input at each iteration allows the
model to remember the previous elements of the sequence and thus the context. Once the
encoding is done, the last generated hidden state is passed to the RNN decoder that will
produce outputs and new hidden states following the same process.

Figure 2.1: Basic Encoder-Decoder architecture using RNNs. "Hello world" translation.
Encoder Decoder

State 2 Decoder State 2 Decoder State 3 Decoder

Y Y Y

Hello world Bonjour le monde

Unfortunately, the RNNs face some weaknesses in its ability to remember the context in
a sequence:

e RNNs suffer from “short-term memory”. That means the neural network has difficulties
to remember elements that are far from the current state (long-term memory). This
is due to the RNN making use of gradients and two problems called the “vanishing
gradient” and the “exploding gradient” problems |[2].

Even if RNN can process an infinitely large sequence thanks to its recursive aspect,
what it can learn is actually very limited because of this “short-term memory” issue.

e RNNs cannot take into account the elements present after the current state. The
basic RNNs only read each element one time and in order, so it cannot be aware of an
element that comes after in this order while generating the next outputs.

A basic alternative to overcome this is the Bidirectional-RNN (BRNN), mostly
consisting of processing again each element in the reverse order.

11

Long-Short Term Memory (LSTM)

The main difference with RNN is that, in addition to the hidden state, the LSTM also output
at each iteration what is called the cell state. The cell state contains the memory from the
previous iteration, allowing the neural network to remember its “short term” memory for a
longer time, thus the name “Long-Short Term Memory” [9]. The LSTM also has another
feature known as the forget gate that is able to decide whether or not a previous state is
no longer useful and should be discarded [8].

Gated Recurrent Units (GRU)

GRU networks are another alternative to the original RNNs, also aiming at adding a long
term memory to it. It is similar to LSTM as it also passes the memory of the previous
iteration to the current one, but this memory does not need the creation of a new state (the
cell state in LSTM) and is passed in the hidden state. In addition, GRU uses what is called
a reset gate that is able to decide also how much the memory from previous iterations
should be forgotten.

2.1.4 Sequence-to-Sequence learning

Sequence-to-Sequence models (Seq2Seq) use an Encoder-Decoder architecture to take a se-
quence of items and gives another sequence of items as an output. This is this type of model
we will train in this thesis, with LSTM encoders and decoders. Again, the most intuitive
use case of this kind of models is for natural language translation, where it could take a
sequence of words in English as an input and outputs a sequence of these words translated
in French.

Figure 2.2: Seq2Seq Model. "Hello world" translation.

Input Output

Hello | world

Seq2Seq Bonjour | le |monde|

In addition to the simple Encoder-Decoder architecture, a Seq2Seq model also comes with
some new features: the Copy mechanism, the Attention mechanism and the Beam
search.

Copy mechanism

When training a NMT model with the Encoder-Decoder architecture, your training data
contains a certain vocabulary that the model is trained on. Unfortunately, this training
data is unlikely to contain all the possible vocabulary and should not (until necessary), as
the bigger is the vocabulary, the more there is to learn and there is a performance decrease.
That means the model can have to translate a word it does not know, that is where the
Copy mechanism is used. The Seq2Seq model will copy this word it does not know and
use it in its output.

Attention mechanism

In the traditional Encoder-Decoder architecture, only the last hidden state from the encoder
is passed to the decoder and so it has to predict the output sequence from only this last
hidden state. Even if LSTM and GRU exist to overcome the short term memory issue, they
still have limitations when facing long sequences. The Attention mechanism helps to
overcome this limitation by passing not only the last hidden state to the decoder but all of
them. Allowing it to focus on different parts of the input sequence as needed.

12

Beam search

The Beam search is a heuristic algorithm consisting in letting the decoder consider not
only the prediction with the best score but the k top predictions. At each iteration, the
decoder tries to make its predictions based on the k previous top predictions and outputs
the next k top predictions. This algorithm helps at finding better outputs at the cost of
more computational resources. The size k of the beam search is usually chosen based on the
vocabulary size and the sequence length for that reason.

2.1.5 Machine learning weaknesses

Some recent papers like VULGEN [15] are trying to overcome the weak ability of ma-
chine learning models to understand code semantically, when training on small datasets, by
combining it with other, deterministic, methods such as pattern mining. Indeed, machine
learning methods are probabilistic and require a large quantity of quality data to be trained
on to be reliable. Since we do not have that much data for vulnerability injection and vul-
nerability detection, machine learning methods are still performing poorly in this domain
compared to other domains where we can train it on more data. To overcome this weakness,
VULGEN only uses a CodeT5 [21] model fine-tuned on vulnerabilities to determine where to
inject the vulnerability and then use a deterministic method (pattern mining) to effectively
inject the vulnerability. However, all these methods still use pairs of pre-fixed and fixed code
to train their models.

2.1.6 TROVON

TROVON [7] is a method consisting of training a Seq2Seq model to identify vulnerable
code and not to fir it despite Seq2Seq models being able to generate an output sequence
from the input sequence. The reason is again the scarcity of quality data for vulnerabilities.
TROVON assert that information gained is inevitably incomplete and thus the Seq2Seq is
not reliable. However, this output sequence can still be used to indicate the presence of
a vulnerability. Indeed, in cases where the model modifies the input, TROVON considers
the input code was vulnerable, otherwise they are non-vulnerable. For the model to be
as reliable as possible for this purpose, the dataset is made by using pairs of vulnerable
files and their fix, splitting them into pairs of functions and abstracting them to reduce the
vocabulary. The result is a dataset of pairs of vulnerable functions and their fix but also of
unmodified, assumed non-vulnerable, functions. The abstraction allowing the model to not
taking into account this like variable and function names, that are unnecessary information
in this context.

This is this method that we will use for our comparison. As vulnerability inducing code
suffer from the same scarcity as the fixing ones, this would be irrelevant to compare the
exact generated, inevitably incomplete, outputs. The TROVON method seems to be best
suited for our comparison as it allows us to only compare vulnerability patterns learned by
both models (fixes based and vulnerability inducing base).

2.2 SZ77 algorithm

The SZZ algorithm is usually used to identify changes that are likely to introduce bugs. For
this purpose, an SZZ algorithm relies on historical data and tracking systems to identify
changes in source code. More precisely, it locates previous changes of the lines modified in
a fixing commit and the last ones made before any bug report are flagged as being bug-
inducing. [16]

For this purpose, an SZZ algorithm uses different tools, such as git (or any other version
control system), as well as a diff tool and a blame tool.

13

e As the name suggests, a diff tool is able to recognise differences between two inputs.
It allows the SZZ algorithm to know what has been modified between two commits.

e A blame tool is able to identify all previous commits that last modified each line of
a file. An example of blame tool is the git blame command |[3].

The accuracy of SZZ implementations is usually low and one of the causes is that the
SZ7Z algorithm is usually sensitive to refactoring changes, that should not be considered as
bug-inducing. The Refactoring Aware SZZ Implementation (RA-SZZ [14]) aims at fixing
this weakness, slightly improving the accuracy.

Since there is no existing dataset of vulnerability inducing commits, a refactoring aware

implementation of the SZZ algorithm, specifically aiming at finding vulnerability-inducing
commits and called V-SZZ, will be used in our approach.

14

Chapter 3

Approach

With this approach, we will try to answer the two following research questions during our
experimentation.

RQ1.Are patterns learned by both models similar?

If patterns are similar, that means there is near to no point to use vulnerability inducing
codes for training. We try to determine whether or not patterns are similar by comparing
models performance on each other dataset. A similar performance for both models could
indicate patterns learned are similar, a model performing significantly better than the other
would mean patterns are different.

RQ2.Are vulnerability inducing codes suitable for training?

We try to assess whether or not a Seq2Seq model can learn efficiently from our vulnerability
inducing datasets. If our models do not learn correctly from it, it could mean that this
kind of training is not suitable or that our approach to extract and label the data has to be
improved. We could also consider the vulnerability inducing code is not suitable for training
in case models trained on fixes perform a lot better.

To answer these, we are training a vulnerability prediction model using pairs of vul-
nerability inducing commits and their previous commits as its data and testing it on the
corresponding vulnerable-fixed pairs. We also train another model on the vulnerable-fixed
pairs, as usually done, and test it on the pairs of vulnerability inducing code and their pre-
vious version.

Figure 3.1: Training.

| Training |} » Testing |
Vul to Fix
Pre-
vulnerability
Fix to Vul
[Testing |« { Training |

To summarize, for our approach we need to:

15

e get or create two datasets. One is composed of fixing commits and their corre-
sponding previous commits (Pre-fix/Fix pairs), the other is composed of vulnerability
inducing commits and their corresponding previous commits (Pre-vulnerability induc-
ing/vulnerability inducing pairs). Later we will consider these two datasets are one
composed of both pairs.

e augment the dataset by splitting files into functions. It means that instead of
having the original code containing multiple functions in a single file, we have a different
file for each function. Thanks to this, we have a lot more, smaller, examples for training
and testing.

e label the functions as vulnerable or not vulnerable.
e abstract the functions to reduce the vocabulary size.
e train the two Seq2Seq models using a LSTM Encoder-Decoder.

e evaluate the performances of both models on the other one’s dataset.

3.1 Used datasets

For this approach, we made three different datasets of different sizes.

The smallest one is composed of vulnerability inducing commits and the corresponding
fixing commits. These commits have been extracted from the dataset of manually verified
inducing commits from the V-SZZ paper [1|. This dataset contains a total of 1492 functions
for its inducing commits part and 3275 functions for the fixing commits one. We have more
confidence in the quality of this dataset as its content has been verified manually.

The largest one where fixing commits have been extracted from the National Vulnera-
bility Database (NVD) then the vulnerability inducing commits have been found using the
V-SZZ algorithm. This dataset is made using these vulnerability inducing commits and con-
tains a total of 104.588 functions, including 6051 vulnerable ones. We have less confidence
in the quality of this dataset, as the V-SZZ has a low accuracy according to the V-SZZ paper
(around 60%).

Finally, the third one has been made because we could not train the largest one because
of a lack of resource and time. This dataset is a reduced version of the largest one and
contains a total of 13073 functions including 756 vulnerable ones.

All datasets were then processed following the TROVON method described in We
firstly used SrcML [12] to decompose files into functions. Then we applied src2abs |17,
18| on these functions to abstract them and reduce the vocabulary size. We finally labelled
them as the following. All functions that have been modified from the vulnerability inducing
commit or by the fixing commit are considered as vulnerable. The others are Non-vulnerable.

3.2 Splitting into functions

As mentioned before, each file of our datasets has been split into functions. There are two
reasons to this choice:

e Augmenting the datasets. Since there is not many examples of realistic pairs of
vulnerable and non-vulnerable code files, splitting them into functions is an easy way
to greatly increase the amount of different pairs.

16

¢ Reducing the sequence length of our data. Because Seq2Seq models still work
better on smaller sequence length, and also because a bigger sequence length needs
more memory (RAM) to be trained on. On larger datasets, we will need to reduce the
maximum sequence length to reduce the memory usage. That means our data will be
truncated, leading to information loss. The bigger is the sequence length of our data,
the greater is the loss once truncated.

3.3 Abstracting the code

Each function of our datasets is abstracted. That means we replace some words (variable
names, class names, ...) by other, generic ones. It allows us to reduce the vocabulary
size, leading to the two following benefits:

e a better performance of the model. As the model is trained on a smaller vocabulary,
mostly the same for every example, it can better learn the semantic of our data rather
than the syntax.As an example, training a model with the original variable names
could lead the model to link some variable names to specific vulnerabilities, thus its
predictions could depend on the variable names in the input rather than the semantic.

e a smaller memory usage. As the model has fewer words to map.

Because some function pairs could call their variables in a different order or having a
different number of variables, we abstract our functions by pairs. That means the abstraction
is mapped for both functions at the same time, so two functions (in a pair) with one of these
differences will keep this difference in their abstracted versions.

Here is an example with the ext4 ext try to merge function from the Linux
Kernel repository:

e First we have a version of ext4d ext try to merge coming from a vulnerability
inducing commit.

static int ext4_ext_try_to_merge(struct inode *inode,
struct ext4_ext_path *path,
struct ext4_extent *ex) {
struct ext4_extent_header *eh;
unsigned int depth;
int merge_done = 0;
int ret = 0;

depth = ext_depth(inode);
BUG_ON(path[depth] .p_hdr == NULL);
eh = path[depth].p_hdr;

if (ex > EXT_FIRST_EXTENT (eh))
merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);

if (!merge_done)
ret = ext4d_ext_try_to_merge_right(inode, path, ex);

return ret;

e Then we have a version of extd ext try to merge coming from the previous com-
mit to the vulnerability inducing one.

17

static int ext4_ext_try_to_merge(struct inode *inode,
struct ext4_ext_path *path,
struct ext4_extent *ex)

struct ext4_extent_header *eh;
unsigned int depth, len;

int merge_done = 0;

int uninitialized = O;

depth = ext_depth(inode);
BUG_ON(path[depth] .p_hdr == NULL);
eh = path[depth].p_hdr;

while (ex < EXT_LAST_EXTENT(eh)) {

if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
break;

/* merge with next extent! */

if (ext4_ext_is_uninitialized(ex))
uninitialized = 1;

ex->ee_len = cpu_to_lel6(ext4_ext_get_actual_len(ex)

+ ext4d_ext_get_actual_len(ex + 1));

if (uninitialized)

ext4_ext_mark_uninitialized(ex);

if (ex + 1 < EXT_LAST_EXTENT(eh)) {

len = (EXT_LAST_EXTENT(eh) - ex - 1)

* sizeof (struct extd_extent);

memmove(ex + 1, ex + 2, len);
}
le16_add_cpu(&eh->eh_entries, -1);
merge_done = 1;
WARN_ON (eh->eh_entries == 0);
if ('eh->eh_entries)

EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");

return merge_done;

}

We can see there are a lot of changes. Among these changes, we can notice both versions
start with different variables. By abstracting by pairs, the results are the following.

e First, the abstracted version of ext4d ext try to merge coming from a vulnerabil-
ity inducing commit.

static int VAR_1 (VAR_2 VAR_3 * VAR_3 , VAR_2 VAR_4 * path , VAR_2 VAR_5 *
VAR_6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 ; int VAR_11 = 0 ; int
VAR_12 = 0 ; VAR_10 = VAR_13 (VAR_3) ; VAR_14 (path [VAR_10]

VAR_15 == NULL) ; VAR_8 = path [VAR_10] . VAR_15 ; if (VAR_6 > VAR_16
(VAR_8)) VAR_11 = VAR_17 (VAR_3 , path , VAR_6 - 1) ; if (! VAR_11
) VAR_12 = VAR_17 (VAR_3 , path , VAR_6) ; return VAR_12 ; }

e Then the abstracted version of ext4d ext try to merge coming from the previous
commit to the vulnerability inducing one.

static int VAR_1 (VAR_2 VAR_3 * VAR_3 , VAR_2 VAR_4 x path , VAR_2 VAR_5 *
VAR_6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 , VAR_18 ; int VAR_11 =
0 ; int VAR_19 = 0 ; VAR_10 = VAR_13 (VAR_3) ; VAR_14 (path [VAR_10]
. VAR_15 == NULL) ; VAR_8 = path [VAR_10] . VAR_15 ; while (VAR_6 <

18

VAR_20 (VAR_8)) { if (' VAR_21 (VAR_3 , VAR_6 , VAR_6 + 1)) break
; if (VAR_22 (VAR_6)) VAR_19 =1 ; VAR_6 - > VAR_23 = VAR_24 (VAR_25
(VAR_6) + VAR_25 (VAR_6 + 1)) ; if (VAR_19) VAR_26 (VAR_6) ; if
(VAR_6 + 1 < VAR_20 (VAR_8)) { VAR_18 = (VAR_20 (VAR_8) - VAR_6 -
1) % VAR_27 (VAR_2 VAR_5) ; VAR_28 (VAR_6 + 1 , VAR_6 + INT_1 ,
VAR_18) ; } VAR_29 (& VAR_.8 - > VAR_30 , - 1) ; VAR_11 =1 ; VAR_31 (
VAR_8 - > VAR_30 == 0) ; if (' VAR_8 - > VAR_30) VAR_32 (VAR_3 ,
STRING_1) ; } return VAR_11 ; }

For a better visualization, here is also the original and abstracted versions with high-
lighted differences.

Figure 3.2: Differences in a pair of functions

1lines - 4 Removals 1lines + 6 Additions
static int extd_ext_try_to_merge (struct inode * inode, struct ext4_ext_path * static int ext4_ext_try_to_merge (struct inode * inode, struct ext4_ext_path
path, struct ext4 extent * ex) { struct extd_extent_header * eh ; unsigned int path, struct extd_extent * ex) { struct ext4_extent_header * eh ; unsigned int
depth ; int merge_done = @ ; int Pet = @ ; depth = ext_depth (inode) ; BUG_ON depth , len ; int merge_done = © ; int uninitialized = @ ; depth = ext_depth (
(path [depth] . p_hdr == NULL) ; eh = path [depth 1 . p_hdr ; 5 (x5 EX inode) ; BUG_ON (path [depth] . p_hdr == NULL) ; eh = path [depth 1 . p_h
T_FIRST_EXTENT (eh)) merge done = extd_ext_try_to_merge_right (inode , path dr ; while (ex < EXT_LAST_EXTENT (eh)) { if (! ext4_can_extents_be merged
Lex - 1) ; if (! merge_done) ret = ext4_ext_try_to_merge_right (inode , pa (inode , ex , ex + 1)) break ; if (extd_ext_is_uninitialized (ex)) unini
th , ex) ; return ket ; } tialized = 1 ; ex - > ee len = cpu_to lel6 (extd ext get actual len (ex) + e

xt4_ext_get_actual len (ex + 1)) ; if (uninitialized) ext4_ext_mark_uninit
jalized (ex) ; if (ex + 1 < EXT_LAST_EXTENT (eh)) { len = (EXT_LAST_EXTE
NT (eh) - ex - 1) * sizeof (struct ext4_extent) ; memmove (ex + 1 , ex +
2, len) 5 } lel6 add cpu (& eh - > eh_entries , - 1) ; merge_done = 1 ; WAR
N_ON (eh - > eh_entries == 8) ; if (! eh - > eh_entries) EXT4_ERROR_INODE (
inode , "eh-eh_entries = 81") ; } return merge_done ; }

Figure 3.3: Differences in a pair of functions after abstraction by pairs

1lines - 8 Removals 1lines + 10 Additions
static int VAR 1 (VAR_2 VAR_3 ¥ VAR_3 , VAR_2 VAR 4 ¥ path , VAR_2 VAR5 * VAR static int VAR_1 (VAR_2 VAR_3 * VAR_3 , VAR 2 VAR 4 * path , VAR_2 VAR5 ¥ VAR
_6) { VAR_2 VAR_7 * VAR_8 ; VAR 9 int VAR_1@ ; int VAR_11 = @ ; int VAR(12 - o _6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 , VAR_18 ; int VAR_11 = @ ; int V
5 VAR_10 = VAR 13 (VAR_3) ; VAR_14 (path [VAR 10] . VAR_15 == NULL) ; VAR BR.19 = @ ; VAR 10 = VAR 13 (VAR_3) ; VAR_14 (path [VAR 10] . VAR 15 == NU
8 =path [VAR 10] . VAR 15 ; if (VAR 6 > VAR 16 (VAR 8)) VAR 11 = VAR 17 LL) ; VAR 8 = path [VAR 10] . VAR 15 ; while (VAR 6 < VAR 20 (VAR 8)) {
(VAR_3 , path , VAR_6 - 1) ; if (! VAR_11) VAR_12 = VAR 17 (VAR_3 , path , if (| VAR 21 (VAR_3 , VAR 6 , VAR6 + 1)) break ; if (VAR 22 (VARG)) V
VAR 6) ; return VAR_12 ; } AR_19 = 1 ; VAR_6 - > VAR 23 = VAR 24 (VAR 25 (VAR 6) + VAR 25 (VAR 6 + 1)
) ; if (VAR_19) VAR 26 (VAR 6) ; if (VAR 6 + 1 < VAR 20 (VAR.B)) { VAR_
18 = (VAR.20 (VARS8) - VARL6 - 1) * VAR 27 (VAR_2 VAR5) ; VAR 28 (VAR 6
+ 1, VAR6 + INT_L , VAR 18) ; } VAR 29 (& VAR 8 - > VAR 30 , - 1) ; VAR 1l
=1 ; VAR31 (VARS8 - > VAR30 == @) ; if (| VAR.8 - > VAR 30) VAR 32 (VAR

3 , STRING_1) ; } return VAR_11 ; }

We can see that the differences between the two functions in this pair are preserved.
Names that are the same between the original versions are also the same between the ab-
stracted versions. We can also notice that the abstraction discards the formatting to have
everything in one line, as well as the comments that are no longer present in the abstracted
version.

In comparison, here are the results when abstracting the two versions separately.

e First, the abstracted version of ext4 ext try to_ merge coming from a vulnerabil-
ity inducing commit.

static int VAR_1 (VAR_2 VAR_3 * VAR_3 , VAR_2 VAR_4 * path , VAR_2 VAR_5 *
VAR_6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 ; int VAR_11 = 0 ; int
VAR_12 = 0 ; VAR_10 = VAR_13 (VAR_3) ; VAR_14 (path [VAR_10]

VAR_15 == VAR_16) ; VAR_8 = path [VAR_10] . VAR_15 ; if (VAR_6 >
VAR_17 (VAR_8)) VAR_11 = VAR_18 (VAR_3 , path , VAR_6 - 1) ; if (!
VAR_11) VAR_12 = VAR_18 (VAR_3 , path , VAR_6) ; return VAR_12 ; }

e Then the abstracted version of ext4d ext try to merge coming from the previous
commit to the vulnerability inducing one.

static int VAR_1 (VAR_2 VAR_3 * VAR_3 , VAR_2 VAR_4 * path , VAR_2 VAR_5 *
VAR_6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 , VAR_11 ; int VAR_12 =
0 ; int VAR_13 = 0 ; VAR_10 = VAR_14 (VAR_3) ; VAR_15 (path [VAR_10]
. VAR_16 == VAR_17) ; VAR_8 = path [VAR_10] . VAR_16 ; while (VAR_6 <

19

VAR_18 (VAR_8)) { if (' VAR_19 (VAR_3 , VAR_6 , VAR_6 + 1)) break

; if (VAR_20 (VAR_6)) VAR_13 =1 ; VAR_6 - > VAR_21 = VAR_22 (VAR_23
(VAR_6) + VAR_23 (VAR_6 + 1)) ; if (VAR_13) VAR_24 (VAR_6) ; if

(VAR_6 + 1 < VAR_18 (VAR_8)) { VAR_11 = (VAR_18 (VAR_8) - VAR_6 -

1) * VAR_25 (VAR_2 VAR_5) ; VAR_26 (VAR_6 + 1 , VAR_6 + 2 , VAR_11)

; Y VAR_27 (& VAR_8 - > VAR_28 , - 1) ; VAR_12 =1 ; VAR_29 (VAR_8 - >
VAR_28 == 0) ; if (! VAR_8 - > VAR_28) VAR_30 (VAR_3 , STRING_1) ; }
return VAR_12 ; }

Here is the abstraction with highlighted differences.

Figure 3.4: Differences in a pair of functions after a simple abstraction

1lines - 13 Removals 1lines + 15 Additions

static int VAR (VAR_2 VAR3 * VAR_3 , VAR_2 VAR_4 * path , VAR_2 VAR5 * VAR static int VAR.1 (VAR_2 VAR_3 * VAR_3 , VAR_2 VAR_4 * path , VAR_2 VAR5 * VAR

_6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 ; int VAR_11 - @ ; int VAR 12 = @ _6) { VAR_2 VAR_7 * VAR_8 ; VAR_9 int VAR_10 , VAR_11 ; int VAR 12 = @ ; int V

5 VAR_10 = VAR.A3 (VAR_3) ; VARL14 (path [VAR 10] . VARL1S == VAR 16) ; V AR 13 = @ ; VAR 10 = VAR_14 (VAR_3) ; VAR_15 (path [VAR 10] . VAR_16 == VA

AR_8 = path [VAR_10] . VAR5 ; if (VAR 6 > VAR17 (VAR 8)) VAR 11 = VAR R(17) ; VAR_8 = path [VAR_10] . VAR 16 ; while (VAR_6 < VAR 18 (VAR 8))

48 (VAR 3 , path , VAR 6 - 1) ; if (I VAR 11) VAR 12 = VAR 18 (VAR 3 , pat { if (! VAR 19 (VAR 3 , VAR 6 , VAR 6 + 1)) break ; if (VAR 20 (VAR 6))

h, VAR6) ; return VAR 12 ; } VAR_13 = 1 ; VAR6 - > VAR_21 = VAR_22 (VAR_23 (VAR_6) + VAR_23 (VARG + 1
)) ; if ((VAR13) VAR 24 (VAR6) ; if (VAR 6 + 1 < VAR 18 (VAR8)) { VA
R 11 = (VAR_18 (VAR 8) - VAR 6 - 1) = VAR 25 (VAR 2 VAR 5) ; VAR 26 (VAR
6+1, VARG6+2, VAR11) ; } VAR 27 (& VAR - > VAR 28 , - 1) ; VAR 12
=1 ; VAR 29 (VAR8 - > VAR28 == 0) ; if (| VAR.8 - > VAR_28) VAR 30 (VAR
3, STRING_1) ; } return VAR 12 ; }

We can see that each new variable names are incremented following their apparition order
in each function separately, leading the differences between the two to be lost information.

3.4 Labelling

As we only have two possibilities, vulnerable and non-vulnerable, we have a binary classifica-
tion with O corresponding to a non-vulnerable function and 1 corresponding to a vulnerable
one. As for how we consider a function is vulnerable or not during labelling, we set as
vulnerable every function that were modified between two files of the same pair. The rest
is left as non-vulnerable.

3.5 Used metrics

When testing our models, we extract different metrics to evaluate the performances. Here
we explain these different metrics and what is calculated. First, the most basic metrics.

Computations of the others are made based on these:

e True Negatives (TIN). This is the number of predicted non-vulnerable code that are
also actually labelled as non-vulnerable in our testing dataset. The prediction is cor-
rect.

o False Negatives (FIN). This is the number of predicted non-vulnerable code that are
actually labelled as vulnerable in our testing dataset. The prediction is incorrect.

e True Positives (TP). This is the number of predicted vulnerable code that are also
actually labelled as vulnerable in our testing dataset. The prediction is correct.

e False Positives (FP). This is the number of predicted vulnerable code that are actually
labelled as non-vulnerable in our testing dataset. The prediction is incorrect.

Second, the more relevant metrics.
e Accuracy

Number of correct predictions — TP+ TN
Total number of predictions TP+TN+ FP+ FN

(3.1)

20

e Precision. This is the proportion of correct positive predictions.

TP

—_— 2
TP+ FP (3:2)
e Recall. This is the proportion of correct positives that have been correctly predicted

as positive.
TP

TP+ FN (3.3)

e F-measure. This metric combines Precision and Recall into a single value by calcu-
lating their harmonic mean.

2 x Precision x Recall

(3.4)

Precision + Recall

e AUC. This is a metric based on the ROC curve (receiver operating character-
istic curve) [6]. The ROC curve plots the True Positive Rate (same as the Recall)
and the False Positive Rate (%) at different thresholds of classification, as in
the following figure.

Figure 3.5: ROC curveE|

—
-

TP vs. FP rate at

one decision

threshold
2 v
N /.
& / TP vs. FP rate at
another decision
I threshold
/
- I'
0 FP Rate 1

AUC stands for Area under the ROC Curve. That means this is the measure of
this area as shown in the following figure.

Thttps://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

21

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Figure 3.6: Area under the ROC Curve

-

TP Rate

0 FP Rate 1

The bigger is this area, the better it is, and the AUC score comes close to 1.

Precision-Recall AUC. This metric is the same as the AUC, except the curve is
based on Recall and Precision instead of Recall and the False Positive Rate. This
metric works better than the original AUC for heavily imbalanced datasets (with a
high amount of negative instances) as it focuses more on positive instances.

Matthews Correlation Coefficient (MCC). This metric exists because accuracy
is a less relevant metric when a label have (a lot) more instances than another (we
have heavily imbalanced data).

The MCC is calculated as the following:

TPxTN —FP x FN
V(ITP+ FP)TP+FN)(TN + FP)(TN + FN)

(3.5)

The resulting value varies between -1 and 1. A score near to -1 means terrible perfor-
mances, a score of 0 means that the model is no better than random and a score of 1
indicates a perfect match.

Loss. The loss indicates, during training, how bad was the model prediction on a
single example from the training dataset. Also considered as a “penalty” for a bad
prediction, that means the model should be better when close to 0. There exists
various loss functions to evaluate this score for different kinds of problems. In case
of classification problems, some are cross-entropy, logarithmic, exponential or pinball.

Validation Loss (Val Loss). This is the same as the (Training) Loss but from
bad predictions of the validation dataset. The validation dataset is a portion of our
dataset that is not used to train the model. That means the Validation Loss indicates
the performance of the model on new data.

3.6 Training

To have an idea of whether or not the model is overfitting during the training and try to
avoid it, the dataset originally used for the training is split into a training dataset and a
validation dataset.

22

The training dataset is effectively used for the training while the validation dataset is
smaller and contains functions that are unknown to the model and are of the same category
(Pre-Fix/Fix or Pre-Vulnerability /Vulnerability inducing) as the training dataset.

This way we can keep track of the model performance during the training using both the
Loss (on known data) and the Validation Loss (on unknown data).

3.6.1 Dataset distribution

All models have been trained on their corresponding dataset with the following distribution:

e 90% of the dataset is used for training. Since training properly a model usually
requires a lot of data, we need to keep as much data as possible for the training
dataset over the validation dataset.

e 10% of the dataset is used for validation. We do not need as much data as for training,
since the validation dataset is used to quickly validate the model on unknown data
during training and calculate the Validation Loss.

e The testing dataset corresponds to the whole dataset of the opposite category (Pre-
Fix/Fix or Pre-Vulnerability/Vulnerability inducing) to the training and validation
dataset.

3.6.2 Hyperparameters

The hyperparameters used for every training are the following and are the same as in the
original TROVON repository.

e Batch size: 64

e Num heads: 8

Separator: “\t”
e Reserved tokens: [PAD], [UNK], [START], [END]

The only difference between models is that models trained on the small dataset had a
Maximum Sequence Length of 900 and the model trained on the medium dataset had a
Sequence Length of 100 as for the original TROVON model.

23

Chapter 4

Experimentation

All experiments have been made on google colab notebooks, allowing us to use GPU
acceleration and run them at all time. It also makes the replication easier as every instance
of google colab are on the same operating system and mostly the same hardware.

4.1 Small dataset

The small dataset has been made using a dataset of manually verified pairs of fixing commits
and their corresponding vulnerability inducing commits on multiple projects. We made a
python script to extract the commit ids from this dataset and download the modified files
from their repositories using the Git and PyDriller libraries for python. Once all files are
downloaded, we split them into functions as explained in the approach before
training our Seq2Seq model on them. We did that twice as we need a model trained on
fixes and another one trained on vulnerability inducing functions, as shown on the following
figure.

24

Figure 4.1: Small dataset extraction and trainings
Fixes Model

1
1
:
1
) —— Pairs Abstraction
1
\
1
\

Download

fixing i E """" 1 """" -
- O |Encoder-Decoder|

Fixing and
Vulnerability
inducing commit
ids

Vulnerability Model

Pre-vuinersbiity Vulnersbility Unmaodified

1
'
i
1
! —— Pairs Abstraction
1
1
1
1

]
1
]
1
'
]
'
1
]
1
]
1
'

Download | | Lo e oo Saquence Pars
vulnerability T ot
inducing

4 1
: [N : 1
\..: Pre- [
#0 |wuinerabiity :
! p | Encoder-Decoder |
p b

Multiple pairs of models have been trained on this dataset for two main reasons:

e as the dataset is very small, it may not generalize well on new data. So we wanted to
get the best possible evaluation out of it by doing a cross-validation.

e it was very quick to be trained on, even multiple times, thanks to its small size.

A training was made on a shuffled version of the dataset and the rest was made in 10 folds,
for both the vulnerability-inducing to fixes model and the fixes to vulnerability-inducing
model.

Here is the distribution of functions per project for the small dataset.

’ Type ‘ ImageMagick ‘ FFmpeg ‘ Linux-kernel ‘ OpenSSL ‘ Php-src ‘

Inducing 45 526 516 200 205
Fixes 227 769 1404 429 446
Total 272 1295 1920 629 651

4.1.1 Shuflled

We randomly shuffle the dataset so that the model is not trained on an ordered dataset.
This helps to minimise variance and ensures the model is not overfitting to certain patterns.
To make sure we had both vulnerable and non-vulnerable samples in both training and
validation parts, we chose to do the following steps:

25

e We split the dataset into two parts, one with vulnerable code only and the other with
non-vulnerable code.

e We shuffled the two datasets and made a training set and a validation set for both of
them separately.

e We merged the two training sets and the two validation sets into one of each.

4.1.2 10-Fold

The K-Fold Cross-Validation allows us to better evaluate a machine learning model for a
limited dataset. The dataset is split into K groups, allowing us to train K models using K-1
groups for the training data and 1 group for the validation. Once all the K models have been
trained, we can compare and evaluate them. Here we trained on a 10-Fold Cross-Validation
and so we trained 10 models.

As for the shuffled version, to make sure we keep the same portion of vulnerable code
in training data and validation data for each model, we first split the original into two, a
dataset of non-vulnerable code and another of vulnerable code, we split each of them into
K groups then we merged each group of non-vulnerable code with the matching group of
vulnerable code. The following figure represents this.

Figure 4.2: 10-Fold training

Pre-
vulnerability

2
OITTITTTT]

[Training [VValidation

26

4.2 Medium dataset

The medium dataset is a reduced version of the large dataset we made as, with the free tier
hardware provided by google colab, we could not train on this last one. That means the
method used to create the large dataset also applies to this one and is represented by the
following figure.

Figure 4.3: Creation and training of the large dataset
TROVON

Pre-vulnerability ~ Vulnerabilty ~ Unmodified

I
1
i
Ll
! —— Pairs Abstraction
1
1
1
1

o

______________________ Sequence Pairs
T Input output

V-877

Download : R N 1
o modified files ol) 1
- » [ol !
vulnerability i : | Encoder-Decoderl
i]
1

inducing
commits N A A A L

For this dataset we only trained one model, not shuffled, as we no longer had the time
to make more for this thesis. Also both the large and medium datasets contain code from
the Linux kernel repository only.

27

Chapter 5

Results

5.1 Small dataset

Models were trained on the small dataset with the following settings.

’ Type \ Training pairs (90%) \ Validation pairs (10%) \ Vulnerable ‘

Inducing 1342 150 160
Fixes 2946 329 101

’ Vocabulary size \ Sequence length ‘
y 1301 \ 900 \

5.1.1 Shufifled

Because our dataset is very imbalanced, we choose here to only retain the epochs with the
best MCC. All metrics for every epochs are available in our replication package.

Fixes Inducing
Epoch 37 9
TN 866 2638
FP 466 536
FN 52 48
TP 108 53
Accuracy 0.65 0.82
Precision 0.19 0.09
Recall 0.68 0.52
F-measure 0.29 0.15
Precision-Recall AUC 0.16 0.06
AUC 0.66 0.68
MCC 0.21 0.16
Loss 0.01 1.75
Val loss 0.01 1.74

We can see that the two models have a low MCC score and thus have rather bad perfor-
mances when testing them on each other datasets. The most noticeable differences between
the two models are the Loss and Validation Loss. Indeed, the model trained on fixes has
low Loss and Validation Loss, meaning it did not make many bad predictions during the
training. On the other hand, the model trained on vulnerability inducing codes had a high
Loss and Validation Loss, meaning it was not able to make good predictions even on its own
training and validation sets.

28

5.1.2 10-Fold

Here, we only retain the epochs with the best MCC when testing on the opposite dataset.

All metrics for every epoch for both training are available in our replication package.

Table 5.1: 10-Fold models trained on fixes and tested on vulnerability inducing

w1 | #2 | #3 | w4 | #5 | w6 | w7 | w8 | w0 | #o

Epoch 7 1 1 1 21 1 1 1 1 1
TN 1262 1331 1331 1332 1135 1332 1332 1332 1332 1332
FP 70 1 1 0 197 0 0 0 0 0
FN 110 147 148 148 83 148 148 148 148 146
TP 50 13 12 12 77 12 12 12 12 14
Accuracy 0.879 0.901 09 0901 0.812 0.901 0.901 0.901 0.901 0.902
Precision 0.417 0.929 0.923 1 0.281 1 1 1 1 1
Recall 0.313 0.081 0.75 0.75 0.481 0.75 0.75 0.75 0.75 0.088
F-measure 0.357 0.149 0.139 0.14 0.355 0.14 0.14 0.14 0.14 0.161
Precision-Recall AUC 0.204 0.174 0.168 0.174 0.191 0.174 0.174 0174 0.174 0.185
AUC 0.63 0.54 0.537 0.538 0.667 0.538 0.538 0.538 0.538 0.544
MCC 0.296 0.258 0.247 0.26 0.266 0.26 0.26 0.26 0.26 0.281
Loss 1.687 2465 2469 2486 1.557 2484 2485 2475 2.465 2.45
Sparse categorical accuracy 0.531 0.448 0.446 0445 0.556 0.444 0.444 0446 0449 0451
Val loss 1.981 2005 1961 1.836 1.552 1.83 1.843 1.889 1983 2.127
Val sparse categorical accuracy 0.474 0.5 0.504 0.53 0.563 0.524 0.523 0.508 0.484 0.455

We can see we have the best MCC in the #1 model, with a score of 0.296. Also,

both #1 and #5 have a lot of False Positives along with their higher amount of True

Positives compared to other models, despite being trained on more epochs.

The MCC

seems to decrease when the model is trained on more epochs, this can be due to a lack of
generalization or to differences in patterns of vulnerability inducing commits.

Table 5.2: 10-Fold models trained on vulnerability inducing and tested on fixes

| #2 | #3 | #a | #5 | #6 | w7 | #8 | #9 | #o
Epoch 1 2 2 2 5 8 2 1 2 9
TN 3074 2939 3024 3099 2900 2254 3096 3072 3032 2714
FP 100 235 150 75 274 920 78 102 142 460
FN 83 70 75 83 62 29 80 80 68 45
TP 18 31 26 18 39 72 21 21 33 56
Accuracy 0.944 0907 0931 0.952 0.897 0.71 0952 0944 0936 0.846
Precision 0.153 0.117 0.148 0.194 0.125 0.073 0.212 0.171 0.189 0.109
Recall 0.178 0.307 0.257 0.1778 0.386 0.713 0.208 0.208 0.327 0.554
F-measure 0.164 0.169 0.188 0.186 0.188 0.132 0.21 0.188 0.239 0.182
Precision-Recall AUC 0.053 0.057 0.061 0.06 0.067 0.061 0.069 0.06 0.082 0.074
AUC 0.573 0.616 0.605 0.577 0.65 0.712 0.592 0.588 0.641 0.705
MCC 0.136 0.147 0.161 0.161 0.176 0.159 0.185 0.16 0.217 0.194
Loss 2998 2.058 2.059 2.06 1.851 1.793 2.056 3.034 2.06 1.75
Sparse categorical accuracy 0.401 0.488 0.488 0.487 0.505 0.511 0.488 0.394 0.488 0.518
Val loss 2.3 193 1903 1931 1725 1.635 1.913 2.03 1945 1.913
Val sparse categorical accuracy | 0.456 0.491 0.492 0.5 0.513 0.542 0.493 0.499 0.495 0.491

We can see we have the best MCC in the #9 model, with a score of 0.217. Also they all

have a lot more False Positives than True Positives.

29

5.2 Medium dataset

The model was trained on the medium dataset with the following settings.

’ Type \ Training pairs (90%) \ Validation pairs (10%) \ Vulnerable ‘
[Tnducing | 11766 \ 1307 [76 |

’ Vocabulary size \ Sequence length ‘
y 830 \ 100 \

5.2.1 Metrics

Here we only retain the epochs with the best and worst MCC. All metrics for every epochs
are available in our replication package.

Inducing Best Inducing Worst
Epoch 1 27
TN 3254 3192
FP 30 92
FN 185 200
TP 17 2
Accuracy 0.94 0.92
Precision 0.36 0.02
Recall 0.08 0.01
F-measure 0.14 0.01
Precision-Recall AUC 0.08 0.06
AUC 0.54 0.49
MCC 0.15 —0.03
Loss 1.38 5.67-1077°
Val loss 1.20 3.51-107%

Here we can see again a low MCC for the best one at the 1st epoch. After 27 epochs, the
model has learned a lot more from its dataset but its MCC on the opposite one has become
even worse than for a random algorithm.

5.3 Large dataset

The model would have been trained on the large dataset with the following settings.

] Type \ Training pairs \ Validation pairs \ Vulnerable ‘
[Inducing | 94130 | 10458 | 6051 |

’ Vocabulary size \ Sequence length ‘
y 1166 \ 100 \

As we could not train a model on this dataset, there are no results to show.

30

Chapter 6

Discussion

6.1 Small dataset

6.1.1 Shuffled
RQ1.Are patterns learned by both models similar?

At first, we thought we could not tell much from the shuffled models and models trained on
this dataset as we cannot really expect a training to be good for this size of dataset. Both
models have a lot of false positives and the overall results are roughly the same as random
considering the low MCC values.

Actually, the MCC score is calculated on the opposite dataset while the similar Loss
and Validation Loss indicate us that the model does not seem to overfit on its own dataset.
The low Loss on the model trained on fixes indicate us that it does a good job at pre-
dicting functions coming from the Pre-Fix/Fix dataset but, on the other hand, its MCC
score on its opposite dataset means it does not properly predict patterns from the Pre-
vulnerability /Vulnerability inducing dataset.

Considering these metrics, it seems the models do not learn similar enough patterns
to be able to make good prediction on their opposite dataset, whether they are good or not
at making predictions on their own data.

RQ2.Are vulnerability inducing code suitable for training?

We cannot really conclude something from this dataset as it is too small to expect a good
generalization. Also, the model trained on vulnerability inducing code had a high loss re-
gardless of how many epochs it was trained on, meaning it was not able to predict on its own
dataset properly. We need to see if predictions are better once trained on a bigger dataset
or not. However, if we can train a model that does a good job at predicting vulnerability in-
ducing code, then we could consider vulnerability inducing code depending on RQ1 results.

6.1.2 10-Fold
RQ1.Are patterns learned by both models similar?

In the 10-Fold models, the MCC score is still low for every model and the Loss on their own
dataset is rather high. However, we still can notice a few things compared to the previous
section for shuffled models.

Indeed, we can notice that almost all models get their best MCC score on their opposite

dataset in the very few firsts epochs. At this point, their Loss score on their own dataset is
at its highest and they still have a lot to learn from it. Considering the low MCC scores, that

31

probably means the predictions are just random, but it also means that the more a model
learn patterns from its own dataset, the worst are its predictions on its opposite dataset.

As for the shuffled models, we tend to consider the patterns learned are different. To the
point where learning on one dataset seems to worsen predictions on the other.

RQ2.Are vulnerability inducing code suitable for training?

Once again, we cannot really conclude anything since every model of both categories are
not even good on their own dataset. Still we can notice the vulnerability inducing models
seem to predict a lot more False Positives on fixes than the other models on vulnerability
inducing codes.

A possible reason for this difference would be that a lot of functions modified between
the Pre-Vulnerability inducing commits and the inducing ones were not actually vulnerable.
The model would then consider some functions from the fixes as vulnerable because the same
functions were present in our vulnerability inducing dataset and labelled as vulnerable.

That would mean our dataset of vulnerability inducing code could contain a lot of noise
and not be suitable for training. However, it would not mean vulnerability inducing code are
not suitable for training but only that our approach for the labelling need to be improved.

6.2 Medium dataset

RQ1.Are patterns learned by both models similar?

Once again, our vulnerability inducing model is unable to predict vulnerabilities from the
fixes dataset even with more training data.

The dataset used for training is almost 10 times bigger than our small dataset, however
the results are similar. The model has its best prediction of the opposite dataset at the first
epoch and this prediction is almost the same as random. We can also notice that the worst
MCC score of the model were after 27 epochs and indicates a performance even worse than
random despite the very low Loss and Validation Loss indicate a rather good performance
on its own dataset.

It is important to keep in mind that the medium dataset is still small to have a good
training. Though, this dataset is also a lot bigger than our small one and still shows the
same kind of results, making us more confidant that the patterns learned are not similar.

RQ2.Are vulnerability inducing codes suitable for training?

This time our Loss and Validation Loss scores are clearly decreasing during the training.
With the medium dataset, the vulnerability inducing model seems to really learn from it
without overfitting, as both Loss scores face roughly the same decrease.

With a big enough dataset, vulnerability inducing code could be suitable for training.

6.3 Limitations

Some of these results could be affected by the way we label functions in our datasets.
Indeed, every function modified or added between two files of the same pair were considered
as vulnerable, however this could actually be simple refactoring or addition of new features
that do not induce the vulnerability.

In case of the medium dataset, we also have no guarantee of the quality of our dataset as
we use an SZZ algorithm, whose accuracy is rather low. That means we could have pairs of

32

functions that are actually both vulnerable. To overcome this, we could take the unit tests
made for the fix and run them on the pre-vulnerability and vulnerability inducing codes.
However, in order to do this, two conditions must be met:

e Unit tests have been made to verify the fix.

e The involved functions specifications did not change between the pre-vulnerability
inducing version and the fixed version. Otherwise the unit test implementation may
not work for all versions.

6.4 Summary

RQ1.Are patterns learned by both models similar?

Our results on the small and medium datasets showed that the different models are unable
to properly predict the vulnerabilities from their opposite dataset. This inability to predict
patterns of the opposite dataset is even worse when the model is getting better at predicting
its own dataset.

‘Patterns learned by both models are NOT similar.

RQ2.Are vulnerability inducing codes suitable for training?

Our results on the medium dataset showed us that a model can be trained on vulnerability
inducing codes and being able to learn without overfitting.

Considering patterns learned are also not similar between vulnerability inducing codes
and fixes, this training could actually be more relevant to predict or inject more realistic
vulnerabilities.

Vulnerability inducing codes are suitable for training.

33

Chapter 7

Threats to validity

7.1

7.2

External validity

Our large and medium datasets are only made of code from the Linux-Kernel reposi-
tory, thus any model trained on them may not generalize well to other projects.

Internal validity

Noise due to uncertainty. Although the fixing commits and the vulnerability in-
ducing commits from the small dataset have been verified manually, we cannot be sure
these are absolutely corrects. A fixing commit could not correctly fix the vulnerability
or could induce another one. There could be other commits inducing the vulnerability
before the labelled vulnerability inducing commit, or there could be another vulnera-
bility in the previous commit.

Noise due to V-SZZ. The use of the V-SZZ to generate the larger dataset likely
create a lot of noise, considering the low accuracy of this algorithm. Some of our
vulnerability inducing codes may actually not be vulnerability inducing, meaning we
could actually have some pairs where both functions are vulnerable.

Noise due to our categorization of functions. We assume that functions that
were modified by the vulnerability inducing commit or from the fixing commit are
vulnerable. Though, we cannot be sure of this. The modification could also be due to
refactoring or the addition of a new feature that does not induce the vulnerability.

Lack of direct association between the two datasets. The pre-fixing/fixing
commits dataset is larger than the pre-vulnerability inducing/vulnerability inducing
commits dataset. This size difference exists because of 3 reasons:

— V-SZZ sometimes could not find any vulnerability inducing commit.

— Vulnerability inducing commits are sometimes made by the creation of new files
and features and so there is not any previous commit for these files.

— We could not download some commits that could not be found by PyDriller or
Git modules for python.

— In some cases, files were renamed between commits and we could not always find
the previous name.

Lack of direct association between our large dataset and the TROVON
dataset. VulData7, that was used in TROVON to retrieve vulnerability fixing com-
mits from the National Vulnerability Database (NVD), is not working anymore. We
made our own alternative, but there can be differences between the original dataset
from TROVON and our large one, that was made to be compared with the TROVON
model.

34

Chapter 8

Conclusion

To conclude, during this thesis we showed that patterns learned from fixes are very different
from the ones coming from the code that has introduced the vulnerability and so are more
realistic. A model trained on vulnerability inducing codes is unable to predict properly
vulnerabilities from a dataset of fixes, as well as a model trained on fixes is unable to predict
properly vulnerabilities from a dataset of vulnerability inducing code for the same projects.

We also showed that a model trained on a large enough dataset of vulnerability inducing
codes, even with some noises in it, is able to learn from it and predict unknown vulnerability
inducing codes. We conclude that machine learning techniques for vulnerability prediction,
as well as vulnerability injection, may benefit more from training on vulnerability inducing
code than on fixes as it is usually done.

Finally, we have some suggestions for future works to improve the one done in this thesis.

Equalize the fixes and inducing datasets for more relevant comparison. During this
thesis, we made the different datasets without taking into account whether or not a pair
of pre-fixing/fixing functions always had its corresponding pre-vulnerability /vulnerability
inducing functions pair, resulting in a large size difference between datasets. Making the
two datasets so that we always have the exact same functions in both, with the only difference
being their version. That way we reduce the differences between the two datasets and we
only keep the one that interests us, thus the versions of the different functions.

Find a better function categorization. As mentioned in internal threats to validity
(7.2), the way we label the functions in our datasets present some flaws. As we only check
if a function was modified by the vulnerability inducing commit or from the fixing commit
to label it as vulnerable, refactoring and irrelevant additions are also labelled as vulnerable.
We need to find a way to be aware of these irrelevant changes and to not label them as
vulnerabilities.

Fine-tuning a pre-trained model. We could try again by fine-tuning another, bigger

model as done in the VULGEN [15] paper with CodeT5 for their purpose. Since our datasets
are too small to expect a good generalization, we could get different results that way.

35

Bibliography

[1]

2]

3]

[4]

[5]
[6]

7]

18]

19]

[10]

[11]

[12]

Lingfeng Bao et al. “V-SZZ: Automatic Identification of Version Ranges Affected by
CVE Vulnerabilities”. In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Association for Computing Machin-
ery, 2022, pp. 2352-2364. 1SBN: 9781450392211. DOI1:{10.1145/3510003.3510113. URL:
https://doi.org/10.1145/3510003.3510113,

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning long-term dependencies
with gradient descent is difficult”. In: IEEFE transactions on neural networks 5.2 (1994),
pp. 157-166.

Markus Borg et al. “SZZ Unleashed: An Open Implementation of the SZZ Algorithm
- Featuring Example Usage in a Study of Just-in-Time Bug Prediction for the Jenkins
Project”. In: CoRR abs/1903.01742 (2019). arXiv: |1903.01742. URL: http://arxiv.
org/abs/1903.01742.

Eric Brill and Raymond J. Mooney. “An Overview of Empirical Natural Language
Processing”. In: AI Magazine 18.4 (Dec. 1997), p. 13. DOIL: |10.1609/aimag.v18i4.
1318. URL: https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/
view/1318.

Mohamed Amine Chéragui. “Theoretical Overview of Machine translation.” In: ICWIT
(2012), pp. 160-169.

Tom Fawcett. “An introduction to ROC analysis”. In: Pattern Recognition Letters
27.8 (2006). ROC Analysis in Pattern Recognition, pp. 861-874. 1SsN: 0167-8655.
DOIL: https://doi.org/10.1016/j.patrec.2005.10.010. URL: https://www.
sciencedirect.com/science/article/pii/S016786550500303X.

Aayush Garg et al. “Learning from what we know: How to perform vulnerability
prediction using noisy historical data”. In: Empir. Softw. Eng. 27.7 (2022), p. 169.
DOI: [10.1007/s10664-022-10197-4. URL: https://doi.org/10.1007/s10664-022-
10197-4.

Felix A. Gers, Jirgen Schmidhuber, and Fred Cummins. “Learning to Forget: Con-
tinual Prediction with LSTM”. In: Neural Computation 12.10 (Oct. 2000), pp. 2451
2471. 1sSN: 0899-7667. DOI:|10.1162/089976600300015015, eprint: https://direct.
mit.edu/neco/article-pdf/12/10/2451/814643/089976600300015015 . pdf. URL:
https://doi.org/10.1162/089976600300015015.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1997), pp. 1735-80. DOI: [10.1162/neco.1997.9.8.1735.

Ahmed Khanfir et al. “IBiR: Bug-Report-Driven Fault Injection”. In: ACM Trans.
Softw. Eng. Methodol. 32.2 (Mar. 2023). 1sSN: 1049-331X. DOI: |10 . 1145 /3542946
URL: https://doi.org/10.1145/3542946,

JohnR. Koza. “Genetic programming as a means for programming computers by nat-
ural selection”. In: Statistics and Computing 4.2 (1994). DOI: 10.1007/bf00175355.

Jonathan I. Maletic and Michael L. Collard. “Exploration, Analysis, and Manipulation
of Source Code Using SrcML”. In: Proceedings of the 37th International Conference
on Software Engineering - Volume 2. ICSE ’15. Florence, Italy: IEEE Press, 2015,
pp. 951-952.

36

https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3510003.3510113
https://arxiv.org/abs/1903.01742
http://arxiv.org/abs/1903.01742
http://arxiv.org/abs/1903.01742
https://doi.org/10.1609/aimag.v18i4.1318
https://doi.org/10.1609/aimag.v18i4.1318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1318
https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.010
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://doi.org/10.1007/s10664-022-10197-4
https://doi.org/10.1007/s10664-022-10197-4
https://doi.org/10.1007/s10664-022-10197-4
https://doi.org/10.1162/089976600300015015
https://direct.mit.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf
https://direct.mit.edu/neco/article-pdf/12/10/2451/814643/089976600300015015.pdf
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3542946
https://doi.org/10.1145/3542946
https://doi.org/10.1007/bf00175355

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Makoto Nagao. “A framework of a mechanical translation between Japanese and En-
glish by analogy principle”. In: Artificial and human intelligence (1984), pp. 351-354.

Edmilson Campos Neto, Daniel Alencar da Costa, and Uird Kulesza. “The impact of
refactoring changes on the SZZ algorithm: An empirical study”. In: 2018 IEEE 25th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
2018, pp. 380-390. po1: |10.1109/SANER.2018.8330225|

Yu Nong. VULGEN: Realistic Vulnerability Generation Via Pattern Mining and Deep
Learning. Jan. 2023. DOI: [10.5281/zenodo . 7569854. URL: https://doi.org/10.
5281/zenodo.7569854.

Gema Rodriguez-Pérez, Gregorio Robles, and Jests M. Gonzalez-Barahona. “Repro-
ducibility and credibility in empirical software engineering: A case study based on a
systematic literature review of the use of the SZZ algorithm”. In: Information and
Software Technology 99 (2018), pp. 164-176. 1ssN: 0950-5849. DOI: https://doi .
org/10.1016/j.infsof .2018.03.009. URL: https://www.sciencedirect . com/
science/article/pii/S0950584917304275.

Michele Tufano et al. “An Empirical Study on Learning Bug-Fixing Patches in the
Wild via Neural Machine Translation”. In: CoRR abs/1812.08693 (2018).

Michele Tufano et al. “On Learning Meaningful Code Changes via Neural Machine
Translation”. In: Proceedings of the 41st International Conference on Software Engi-
neering. ICSE '19. Montréal, Candada, 2019.

Haifeng Wang et al. “Progress in Machine Translation”. In: Engineering 18 (2022),
pp. 143-153. 18sN: 2095-8099. DOI: https://doi.org/10.1016/j.eng.2021.03.023.
URL: https://www.sciencedirect.com/science/article/pii/S2095809921002745.

Qi Wang et al. “A comprehensive survey of loss functions in machine learning”. In:
Annals of Data Science 9.2 (2020), pp. 187-212. DOI: [10.1007/s40745-020-00253-5.

Yue Wang et al. “CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Mod-
els for Code Understanding and Generation”. In: CoRR abs/2109.00859 (2021). arXiv:
2109.00859. URL: https://arxiv.org/abs/2109.00859.

Laura Wartschinski et al. “VUDENC: Vulnerability Detection with Deep Learning
on a Natural Codebase for Python”. In: Information and Software Technology 144
(2022), p. 106809. 1sSN: 0950-5849. DOI: https://doi.org/10.1016/j . infsof .
2021 .106809. URL: https://www. sciencedirect . com/science/article/pii/
S50950584921002421.

37

https://doi.org/10.1109/SANER.2018.8330225
https://doi.org/10.5281/zenodo.7569854
https://doi.org/10.5281/zenodo.7569854
https://doi.org/10.5281/zenodo.7569854
https://doi.org/https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/https://doi.org/10.1016/j.infsof.2018.03.009
https://www.sciencedirect.com/science/article/pii/S0950584917304275
https://www.sciencedirect.com/science/article/pii/S0950584917304275
https://doi.org/https://doi.org/10.1016/j.eng.2021.03.023
https://www.sciencedirect.com/science/article/pii/S2095809921002745
https://doi.org/10.1007/s40745-020-00253-5
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106809
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106809
https://www.sciencedirect.com/science/article/pii/S0950584921002421
https://www.sciencedirect.com/science/article/pii/S0950584921002421

	Introduction
	Context
	Research objectives
	Research methodology
	Thesis structure
	Replication package

	Background
	Machine Learning
	Natural Language Processing
	Machine Translation
	Encoder-Decoder
	Sequence-to-Sequence learning
	Machine learning weaknesses
	TROVON

	SZZ algorithm

	Approach
	Used datasets
	Splitting into functions
	Abstracting the code
	Labelling
	Used metrics
	Training
	Dataset distribution
	Hyperparameters

	Experimentation
	Small dataset
	Shuffled
	10-Fold

	Medium dataset

	Results
	Small dataset
	Shuffled
	10-Fold

	Medium dataset
	Metrics

	Large dataset

	Discussion
	Small dataset
	Shuffled
	10-Fold

	Medium dataset
	Limitations
	Summary

	Threats to validity
	External validity
	Internal validity

	Conclusion

