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Abstract—Teaching software testing can be challenging due to
low student interest, high cognitive load, and lack of alignment
with industry needs. Previous research has attempted to address
these challenges by using mutation testing, which involves inten-
tionally introducing faults into the code to measure the ability
of a test suite to detect faults. Although this method has been
proven effective in teaching software testing, it can sometimes be
difficult for a novice to write a test to kill some mutants because
they are too subtle and there are no hints. In contrast, extreme
mutation testing involves more evident changes (e.g., removing a
method body) that may be easier for novice testers to identify.
This paper investigates extreme mutation testing as an alternative
to teaching software testing by comparing it to regular mutation
testing in an empirical evaluation with two undergraduate classes.
Our results show that both can help teach software testing, with
regular mutation testing slightly more effective, and both types
of reports were considered clear by a similar number of students.

Index Terms—Software Testing Education, Mutation Testing,
Extreme Mutation Testing

I. INTRODUCTION

Software testing can be challenging to teach for various
reasons. These include a lack of student motivation due to
the tediousness of writing tests, the need to learn new tools
and libraries, and the increased cognitive load of learning
tests alongside learning programming [1]. In this study, we
focus on three Learning Challenges (LCs): lack of motivation
or interest (LC1), increased cognitive load due to learning
testing, programming and new tools simultaneously (LC2), and
alignment with the industry needs (LC3).

Related work has addressed software testing education chal-
lenges in several ways, for instance, by relying on automated
platforms [2]–[4] where students can submit their code and
receive feedback on the quality of their tests. This feed-
back can include more than code coverage [5], for instance,
non-functional aspects such as readability and understand-
ability [6], [7]. Also, mutation analysis [8], which involves
artificially introducing defects (called mutants) to assess the
ability of tests to ”kill” them, i.e. to detect defects [8]. Code
Defenders [9] is a game in which one team creates mutants,
and the other writes tests to kill them. Mutation testing
tools, such as PIT [10], have also been used in industrial
settings [11], [12].

Mutation testing is effective for teaching software test-
ing [13], [14] because it brings gamification (addressing LC1),

can decrease the learning curve with the clear reports gener-
ated by mutation testing tools (addressing LC2) and is already
used in industrial settings (addressing LC3). Yet mutations can
often be complex for inexperienced developers to kill due to
their subtle nature [15], [16] and a lack of guidance on how
to write the test that would kill it.

To alleviate this issue, extreme mutation testing involves
replacing an entire block of code rather than introducing a
small error, which can help identify methods that have not
been thoroughly tested (called pseudo-tested methods) [17].
For example, it can reveal if a boolean method has only been
tested for the true case, not the false one. Thus, it may be
more effective at addressing LC2 with the more apparent
mutations it introduces. Vera-Pérez et al. developed a tool
called Reneri [18], which combined extreme mutation with
program analysis to provide suggestions for killing extreme
mutants that are still alive. This tool may help simplify
the interpretation of results, also addressing LC2. To our
knowledge, extreme mutation testing has not been used in
software testing education.

This paper compares the effectiveness of regular and ex-
treme mutation testing in teaching software testing by conduct-
ing an empirical evaluation with 43 undergraduate students
using PIT and Reneri on a Java implementation of the game
2048. The results showed that both approaches are beneficial.
However, regular mutation testing is slightly more effective.
Nonetheless, students found both reports to be clear.

In summary, our paper contributions are: (i) a replication
of previous qualitative studies in another context, confirm-
ing previous results on mutation testing for education [13],
[14]; (ii) an evaluation of the effectiveness of using extreme
mutation analysis for teaching software testing; and (iii) a
comparison of regular and extreme mutation operators in
software testing education. Our replication package, which
includes collected tests and data, is available on Zenodo [19].

II. BACKGROUND

A. Mutation Testing

Mutation testing involves introducing defects into a pro-
gram’s source code to produce mutants [8], which are then
tested against a test suite to determine its ability to detect
defects. If at least one test fails, the mutant is considered
killed, while if all tests pass, the mutant is considered live.



TABLE I
BASIC MUTATION OPERATORS SET [8], [20].

Name Example Mutant

Absolute Value Insertion (ABS) return x;
return Math.abs(x);

Arithmetic Operator Replacement
(AOR)

int b = x + y;
int b = y;

Logical Connection Replacement
(LCR)

if (x && y)
if (x || y)

Relational Operator Replacement
(ROR)

for (int i = 0; i < s; i++)
for (int i = 0; i <= s; i++)

Unary Operator Insertion (UOI) return x * x;
return x * -x;

Thus, the test suite can be improved by writing a test that will
fail against the mutant but not the original code.

Defects are introduced into source code using mutation
operators, which create minor variations in the code. For ex-
ample, replacing a “+” with a “−” in an arithmetic expression.
The minimum standard set proposed by Offutt et al. [8], [20]
is described in Table I using examples applied to Java code.
The original code is presented at the top, and the mutant code
is presented below.

The mutation score measures the effectiveness of a test suite
in detecting defects. It is calculated as the number of mutants
killed out of the total number of mutants and can be used
to identify what to test, determine when testing is consid-
ered complete, and assess the reliability of a test suite [21].
However, it is important to note that the mutation score
may be biased as not all mutations contribute equally [15]:
equivalent mutants return the same output as the original
program and are thus undetectable, and redundant mutants
are killed alongside other mutants and thus do not contribute
much to the testing process. Detecting these kinds of mutants
is one of the main challenges in mutation testing [8], [15], as
it is undecidable [22].

B. Reachability, Infection, Propagation and Revealability

The Reachability, Infection and Propagation (RIP) [23]
model states that for a program fault to be detected, it must
be reached during execution, infect the program by changing
its state, and have this state change propagate to the output.
The RIPR model [24] adds an additional requirement for a
fault to be detected: it must be revealed through an assertion
in addition to being propagated. If a fault propagates to the
program state of a test case but is not revealed through an
assertion, the test will not detect it.

C. Extreme Mutation Testing

A special class of operators, called extreme mutation oper-
ators [17], remove the body of methods or replaces it with
trivial return statements (see an example in Listings 1 and 2).
Extreme mutation operators have been designed to automate
the detection of pseudo-tested methods [17]. A method is
pseudo-tested when the test suite only superficially tests its
side effects, which could lead to undetected failures. These
methods can be identified if the test suite covers them, yet

public class Amount {
private int value = 0;

@Override
public boolean equals(Object that) {

if (that == null) return false;
if (!(that instanceof Amount))

return false;
return this.value==((Amount)that).value;

}
}

Listing 1. Original code of the method equals.

public class Amount {
private int value = 0;

@Override
public boolean equals(Object that) {

return true;
}

}

Listing 2. Method equals after an extreme mutation.

no tests fail on extreme mutants. For instance, if the method
equals in Listing 1 is not called with different objects by any
test (i.e., only the true cases are tested), it is pseudo-tested
and the mutant of Listing 2 will live.

Niedermayr et al. [17] applied extreme mutation testing
to 14 Java open-source projects and found that, on average,
11.% (resp. 35.48%) of methods are pseudo-tested in unit
(resp. system) tests. Vera-Pérez et al. developed Descartes [25]
(a mutation engine for PIT [10], a state-of-the-art mutation
testing tool for Java) to reproduce those results on a different
dataset and further confirm their findings with developers.

Vera-Pérez et al. developed Reneri [18], a tool that leverages
Descartes to generate reports with suggestions for improving
a test suite based on identified pseudo-tested methods and the
RIPR model. For example, the Reneri report for a pseudo-
tested equals method is shown in Figure 3a. Vera-Pérez et
al. [18] evaluated Reneri on 15 open-source software projects.
The developers of 4 of these projects were contacted and
presented with generated suggestions, which were helpful and
even pointed to the exact solution in some cases. To the best
of our knowledge, the Reneri approach has never been used
in a software testing education context.

III. MOTIVATION

Mutation analysis is effective for teaching software test-
ing [13], [14]. Still, it can be challenging for students and
junior developers to write an appropriate test due to some
mutations’ nature and the lack of guidance on what test to
create. Following the classification on automated feedback
from Serral and Snoeck [26], the mutation score provides
summative feedback to the students. In addition, classical mu-
tation testing tools such as PIT provide informative feedback
as reports with the mutation score and undetected mutants,
while Reneri provides additional suggestive feedback through
reports containing suggestions to enhance the test suite.

To the best of our knowledge, Reneri has only been evalu-
ated with open-source developers [18]. Therefore, our research
aims to determine if feedback through Reneri’s suggestive
reports based on extreme mutation and RIPR analysis can
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Fig. 1. RQ1 assesses the improvement in students’ understanding of software
testing after receiving an informative regular mutation analysis report, RQ2
assesses the improvement in students after receiving a suggestive extreme
mutation analysis report, and RQ3 compares the improvements of both groups.
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Fig. 2. Evaluation overview

also benefit undergraduate computer science students with
little prior knowledge of software testing and compare it to
PIT informative reports based on regular mutation analysis.
The following research questions are outlined in Figure 1:
(RQ1) To what extent are informative reports effective for
teaching the basics of software testing to beginner students?
Consequently, answering RQ1 requires to replicates the results
of Oliveira et al. [13] and Delgado-Pérez et al. [14] using PIT
in our new context, the computer science undergraduates at the
University of Namur with the Java programming language.
(RQ2) To what extent are suggestive reports effective for
teaching the basics of software testing to beginner students?
This second research question focuses on Reneri, while the
third research questions compares usages of PIT and Reneri.
(RQ3) How does the effectiveness of suggestive reports com-
pare to that of informative reports for teaching the basics of
software testing to beginner students?

TABLE II
EVALUATION TASKS AND DURATION

Task Duration

(P1) Unit testing introduction and SUT presentation 30 minutes
(T1) Testing session without mutation analysis 60 minutes
(E1) First self-evaluation 5 minutes

Break 15 minutes
(P2) Introduction to Mutation testing 10 minutes
(T2) Testing session with mutation analysis 45 minutes
(E2) Second self-evaluation 5 minutes
(E2) Questionnaire 10 minutes

Total 180 minutes

IV. EVALUATION SETUP

Our empirical evaluation involved 43 computer science
undergraduates from the University of Namur divided into two
classes. The first class included 26 second-year students, while
the second class included 17 third-year students. Inspired by
both the work of Delgado-Pérez et al. [14] and Oliveira et
al. [13], the evaluation was divided into two phases. In the
first phase, students wrote unit tests for a Java game. In the
second phase, students were divided into two groups based
on their mutation scores and received either a PIT (v1.7.4)
or Reneri (v1.0-EXPERIMENTS) report to improve their test
suite. We measured the quality of the tests using instruction
coverage and mutation scores. We also assessed the impact of
each reporting approach on learning with a self-evaluation and
a questionnaire. Figure 2 presents an overview of the different
steps and the duration of each step can be found in Table II.

Before the first test writing session (P1), we introduced the
students to unit testing in Java. This introduction explained
the importance of automated testing, what a unit test is, and
how to write one. We also presented the System Under Test
(SUT), an adapted version of the 2048 game written in Java1,
described in Section IV-A. During the first test writing session
(T1), students were asked to manually write unit tests on the
given SUT without any tool. At the end of this session (E1),
we asked the students to fill in a self-evaluation form.

After the first session, there was a break during which the
students were split into two groups based on their mutation
scores. To preserve a similar distribution of skills, we ranked
the students according to the mutation scores of their initial test
suite and distributed similar students into the two groups.2 The
control group used PIT and the treatment group used Reneri.

Before the second test writing session (P2), we introduced
the students to the main concepts of mutation testing. During
this session (T2), students were asked to use the report
provided by the mutation testing tool they were assigned to
improve their test suite by adding or editing test cases. They
were able to regenerate the report at any time to update it.
At the end of the second session (E2), students completed a

1 The original implementation can be found on Rosetta Code: https://www.
rosettacode.org/wiki/2048\#Java.

2We used PIT with the default mutation operators: Conditionals Boundary,
Increments, Invert Negatives, Math, Negate Conditionals, Return Values, Void
Method Calls, Empty returns, False Returns, True returns, Null returns,
Primitive returns.



TABLE III
SELF-EVALUATION CRITERIA [14].

C1. Correctness The tests do not cause errors when executed on the
original program.

C2. Completeness The tests represent a sufficiently large portion of the
different use scenarios of the program.

C3. Assertions There are enough assertions in the tests to cover all the
state changes that occur during execution.

C4. Design Each test is designed to validate a single capability and
there are no duplicate or overlapping tests.

C5. Legibility The programming style is clear and makes it possible to
understand the purpose of the tests and their assertions.

second self-evaluation form and a questionnaire to assess the
impact of each mutation testing approach on learning.

A. System Under Test

The System Under Test (SUT) is an adapted version of
the popular game 2048, in which players combine numbered
tiles on a 4x4 grid by moving them up, down, left, or right.
When two tiles with the same value are merged, their values
are added, and the previous tile becomes empty. A tile can
only be merged once per move, and the game is won when
a tile reaches 2048. The game is lost if no more tiles can be
moved. We chose to use 2048 as the SUT because (i) it is well-
known and easy to understand, and (ii) it can increase students’
motivation, addressing LC1. To make the tests repeatable and
simplify the testing, we modified the rules of the original 2048
game to eliminate its randomness (i.e., new tiles appear at pre-
defined moments instead of randomly). The modified source
code is available in our replication package [19].

For the evaluation, students were asked to write tests for
three classes: (i) Tile (64 lines of code, 6 non-accessor
methods) represents a tile by its value and whether it has
already been merged for the current move; (ii) Grid (41
lines of code, 10 non-accessor methods) represents a two-
dimensional grid of tiles; (iii) GameController (150 lines of
code, 13 non-accessor methods) controls the grid, game state,
score, high score and number of tiles added.

B. Data Collection

We collected data at each step Pi, Ti, Ei of Figure 1. The
following subsections discuss the details of the data collected.

1) Mutation score and instruction coverage: We used the
mutation score and instruction coverage to analyze the quality
of students’ final test suites and their evolution. These metrics
are computed using PIT’s (v1.7.4) [10] default operators at the
end of the first (T1) and second (T2) testing sessions.

2) Self-Evaluation: We asked the students to rate their
tests using a scale of 1-4 (from poor to good) after each
test writing session (E1 and E2). These ratings, described in
Table III [14], help understand how students’ perceptions of
their work change based on the tool used.

3) Questionnaire: In the second evaluation phase (E2), we
provided the students with a questionnaire (Table IV) adapted
from Delgado-Perez et al. [14] and Oliveira et al. [13] with the

TABLE IV
QUESTIONNAIRE AND DISTRIBUTION OF THE ANSWERS.

PIT Reneri Total

Q1. What was your knowledge of Java before this experiment?
No knowledge 1 (5%) 0 (0%) 1 (2%)
Basic knowledge 13 (65%) 14 (67%) 27 (66%)
Intermediate knowledge 6 (30%) 5 (24%) 11 (27%)
Advanced knowledge 0 (0%) 2 (10%) 2 (5%)

Q2. What was your knowledge of software testing before this experiment?
No knowledge 4 (20%) 4 (19%) 8 (20%)
Basic knowledge 12 (60%) 12 (57%) 24 (59%)
Intermediate knowledge 4 (20%) 4 (19%) 8 (20%)
Advanced knowledge 0 (0%) 1 (5%) 1 (2%)

Q3. Do you think it is interesting to present the concepts of mutation testing together with the basics of
programming?
Yes 8 (40%) 9 (43%) 17 (41%)
Yes but superficially 10 (50%) 10 (48%) 20 (49%)
No 2 (10%) 2 (10%) 4 (10%)

Q4. What could be the consequences of using mutation testing by novice programmers?
Better programs 7 (35%) 3 (14%) 10 (24%)
More competent programmers 4 (20%) 2 (10%) 6 (15%)
Better programs and more competent programmers 9 (45%) 15 (71%) 24 (59%)
Neither 0 (0%) 1 (5%) 1 (2%)

Q5. Do you consider regular testing tools (JUnit) to be useful for teaching programming fundamentals?
Yes 11 (55%) 10 (48%) 21 (51%)
Yes, but only with basic functionality 8 (40%) 9 (43%) 17 (41%)
No 1 (5%) 2 (10%) 3 (7%)

Q6. Do you consider mutation testing tools useful for teaching the fundamentals of programming?
Yes 8 (40%) 7 (33%) 15 (37%)
Yes, but only with basic functionality 9 (45%) 12 (57%) 21 (51%)
No 3 (15%) 2 (10%) 5 (12%)

Q7. Considering your background so far (without taking this presentation into account), you feel that the
concepts of software testing have been
Fairly well presented 6 (30%) 8 (38%) 14 (34%)
Insufficiently presented 13 (65%) 13 (62%) 26 (63%)
Not presented 1 (5%) 0 (0%) 1 (2%)

Q8. Do you think using software testing tools for learning purposes could be useful for creating good
programming habits?
Yes 20 (100%) 21 (100%) 41 (100%)
No 0 (0%) 0 (0%) 0 (0%)

Q9. Do you think creating test cases through mutation testing is useful for improving the learning ability of
novice programmers?
Yes 18 (90%) 21 (100%) 39 (95%)
No 2 (10%) 0 (0%) 2 (5%)

Q10. How did you find creating tests manually without the help of a tool?
Easy in general 5 (25%) 8 (38%) 13 (32%)
Difficult, especially with regard to the completeness of my tests
(sufficient code coverage)

11 (55%) 9 (43%) 20 (49%)

Difficult, especially to follow a logical order in the design of test
cases

4 (20%) 4 (19%) 8 (20%)

Q11. What is your perception of software testing after applying mutation testing to your tests?
It has changed the way I design tests 4 (20%) 2 (10%) 6 (15%)
This allowed me to discover parts of the code that were not
sufficiently tested

15 (75%) 15 (71%) 30 (73%)

The mutants do not seem to me to be particularly useful for
improving the quality of my tests

1 (5%) 4 (19%) 5 (12%)

Q12. The reports generated by the tool used in the second session:
Were sufficiently understandable 19 (95%) 20 (95%) 39 (95%)
Lacked comprehensibility but were still usable 1 (5%) 1 (5%) 2 (5%)
Were not understandable enough to be usable 0 (0%) 0 (0%) 0 (0%)

Q13. Compared to your original self-assessment, you feel:
You have assessed yourself correctly 13 (65%) 13 (62%) 26 (63%)
You have overestimated yourself 5 (25%) 6 (29%) 11 (27%)
You have undervalued yourself 2 (10%) 2 (10%) 4 (10%)

Q14. From a practical point of view, mutation testing:
Is very useful 15 (75%) 17 (81%) 32 (78%)
Is very useful but not comfortable to use 4 (20%) 4 (19%) 8 (20%)
Does not compensate for the effort required to use it 1 (5%) 0 (0%) 1 (2%)

addition of two questions: one on the Java skills of the students
to assess their knowledge and one on the understandability
of the reports generated by Reneri or PIT. The questionnaire
was initially written in French. The English version of the
questionnaire can be found in Table IV.

C. Reneri hints

We have converted the standard text-only reports produced
by Reneri into an HTML report written in French to facilitate
their understanding using a Python script. An example is
shown in Figure 3 (both figures feature the same hint).
We designed the Python script to (i) directly generates an



The body of the method Tile.equals(java.lang.Object) was replaced by return
true; yet, the test Test2048.testTileEquals has not failed.
Running the tests with the altered or the original method causes no
observable difference in the program state.
Thus, one solution might be to create a variant of the tests listed above in
which the method returns a different value.

(a) Original Report

(b) Adapted Report

Fig. 3. Example of a Reneri Report

HTML report instead of a text file; (ii) includes additional
information about uncovered methods to avoid empty reports
when the students did not write any valid test; (iii) translates
it into the French.

D. Data Analysis

We use two non-parametric rank tests with a p-value thresh-
old of 0.05 to analyze our data, depending on whether the
observations are independent. For independent observations
(RQ3 in Figure 1), we use the Mann-Whitney U test, denoted
U . For dependent observations (RQ1 and RQ2 in Figure 1),
we use the Wilcoxon signed-rank test, denoted W .

We also rely on Vargha-Delaney’s Â12 [27] non-parametric
effect size measure. It compares the performance of two
techniques by calculating the probability that a random sample
from one group outperforms a random sample from the other
group. Values of Â12 above 0.5 indicate that the first group
is more likely to outperform the second, while values below
0.5 indicate the opposite. We use standard thresholds to
interpret the magnitude of the effect size [27]: Â12 > 0.56 or
Â12 < 0.44 is small, Â12 > 0.64 or Â12 < 0.36 is medium,
and Â12 > 0.71 or Â12 < 0.29 is large.

V. EVALUATION RESULTS

The data collected and answers to research questions are
described below. The replication package with the artefacts
and collected data is available on Zenodo [19].

A. Participants

The evaluation was conducted at the computer science
faculty of the University of Namur in Belgium on students
taking the ”Object Oriented Design and Programming” course
for the first run. This course teaches Java programming and
testing to second-year undergraduate computer science and
business engineering students. Third-year computer science
students taking the ”Introduction to Scientific Research” sem-
inar, which introduces students to computer science research
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Fig. 4. Evolution of the instruction coverage ratio for each class before and
after the introduction of the tool. Means are represented as blue diamonds.

through practical exercises, were also included in the evalua-
tion for a second run. These students have more programming
experience but are still juniors in software testing.

We ran the protocol with a total of 43 undergraduates,
26 second-year and 17 third-year students, divided into two
groups: 21 in the control group and 22 in the treatment group.
The first group received informative reports based on a regular
mutation analysis generated by PIT and the second group
received suggestive reports based on an extreme mutation
analysis generated by Reneri.

Based on responses to questions Q1 and Q2, 28 (68%) of
the students had no or only basic knowledge of Java, while 13
(32%) had intermediate or advanced knowledge. Additionally,
32 (79%) of the students had no or only basic knowledge of
software testing, while 9 (22%) had intermediate or advanced
knowledge. In response to question Q7, 27 (64%) students
felt that software testing was not sufficiently introduced in
their studies. These results may be due to the fact that the
students are still undergraduates and have not yet received
focused instruction on software testing in their curriculum.

We excluded missing data from our analysis following a
standard approach [28]. As a result, we had groups of 16
(control) and 15 (treatment) students for mutation scores,
coverage, and hint types, and groups of 20 (control) and 19
(treatment) students for self-evaluation criteria (reducing to 18
for C4 and 17 for C5 in the second group). This was because
some students had submitted a failing test suite with blank
values in the datasets, while others had not completed the
self-evaluation for one or more criteria.

For comparison, in our experiment, we had 21 students
using a regular mutation testing tool, while Delgado-Pérez et
al. [14] had 20 students and Oliveira et al. [13] had 28 students
using such a tool.

B. Impact of Informative Reports (RQ1)

1) Instruction Coverage and Mutation Score: According to
Figures 4 and 5, the instruction coverage and mutation score
of the tests written by students improved significantly after
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TABLE V
AVERAGE RATING FROM 1 (POOR) TO 4 (GOOD) OF THE SELF-EVALUATION

CRITERIA AFTER THE FIRST (1) AND THE SECOND (2) PHASES.

Group pit reneri
Part 1 2 ∆ 1 2 ∆

Correctness (C1) µ 3.35 3.15 -0.20 3.89 3.58 -0.32
σ 1.09 1.18 0.09 0.57 0.69 0.13

Completeness (C2) µ 1.75 2.10 +0.35 2.21 2.13 -0.08
σ 1.07 1.12 0.05 0.92 0.88 0.04

Assertions (C3) µ 2.45 2.25 -0.20 2.53 2.87 +0.34
σ 0.94 1.12 0.17 0.84 0.94 0.10

Design (C4) µ 2.90 2.75 -0.15 3.50 3.22 -0.28
σ 0.97 1.07 0.10 0.62 0.79 0.17

Legibility (C5) µ 2.90 2.85 -0.05 3.15 3.26 +0.12
σ 0.91 1.18 0.27 0.79 1.03 0.25

using PIT. The average instruction coverage increased from
32.2%; (σ = 19.5) to 46.2%; (σ = 24.1), with a statistically
significant difference (W = 16.00, p = .001) and a large effect
size (Â12 = 0.73). The average mutation score increased from
32.8%; (σ = 22.4) to 53.4%; (σ = 26.5), with a statistically
significant difference (W = 15.5, p < .001) and a large effect
size (Â12 = 0.76). These results, consistent with those of
Oliveira et al. [13], suggest that using PIT helps students learn
software testing and write effective tests.

2) Auto-Evaluation: According to Table V, the control
group’s average ratings for the criteria listed in Table III
changed as follows: Completeness (C2) increased from 1.75
to 2.1, and Design (C4) decreased from 2.9 to 2.75. These
trends differ from those observed by Delgado-Pérez et al. [14].
The increase in Completeness ratings suggests that students
believe their tests represent a larger portion of the different use
scenarios than initially thought, while the decrease in Design
ratings suggests that students believe their tests are not as well
designed to verify functionalities as they initially thought.

3) Questionnaire: According to the answers in Table IV,
students see the advantages of mutation testing for beginners
(Q3-Q6) and find that tools providing mutation analysis help
them learn programming (Q8, Q9) and write tests (Q10, Q11).

Similar to the results reported by Delgado-Pérez et al. [14],
most students (62%, Q10) found it difficult to design test cases
manually, and 71% (Q11) realized that some areas of code
were not properly covered thanks to mutation analysis.

4) Summary: Informative reports based on a regular mu-
tation analysis improve students’ unit testing skills, in line
with the findings of Oliveira et al. [13] and Delgado-Pérez et
al. [14]. Students find weaknesses in the assertions of the tests
they wrote before using PIT and report learning from the tool
and feeling that their test suite is more complete than they
initially thought. These results are similar to those observed
by Delgado-Pérez et al. [14], who also found an improvement
in assertions but a decrease in reported completeness.

C. Impact of Suggestive Reports (RQ2)

1) Instruction Coverage and Mutation Score: The Reneri
group shows an increase in average instructions covered (from
34.1%; (σ = 24.0) to 44.1%; (σ = 32), W = 24.00, p = .020,
Â12 = 0.58) and average mutation score (from 32.4%; (σ =
25.4) to 41.5; (σ = 32.1), W = 28.50, p = .020, Â12 = 0.66)
after using extreme mutation testing and receiving suggestive
reports. These changes were statistically significant and had
a small to medium effect size, suggesting that Reneri helped
novice programmers write more effective unit tests.

2) Auto-Evaluation: According to the right part of Table V,
students experienced a decrease in the ratings for Correctness
(C1) and Design (C4) after the second test writing phase,
with a delta of −0.32 and −0.28, respectively. This may
suggest that some students initially overestimated the quality
of their tests, as confirmed by 6 out of 21 students (29%)
who indicated that they overestimated themselves after the
first test writing session (Q13). Completeness (C2) was not
impacted by the use of Reneri (δ = −0.08). However, ratings
for Assertions (C3) and Legibility (C5) increased with a delta
of +0.34 and +0.12, respectively, suggesting that students
became more confident in their assertions and the purpose of
their tests after using Reneri.

3) Questionnaire: According to Table IV, most students
found Reneri useful and understandable, yet one student had
difficulty understanding the tool (Q12).

4) Summary: Extreme mutation analysis has a medium im-
pact on students’ unit testing skills, as indicated by the changes
in instruction coverage and mutation score. The use of Reneri
did not affect students’ self-evaluation of the completeness of
their test suites, but it did increase their confidence in the
assertions written before using the tool.

D. Informative vs Suggestive Reports (RQ3)

1) Instruction Coverage and Mutation Score: According to
RQ1 and RQ2, Figure 4 shows that students using PIT had an
average increase of 14%; (σ = 4.6) in instruction coverage
between the first and second testing sessions, while students
using Reneri had an average increase of 10%; (σ = 8).
The difference in individual increases was not statistically
significant (U = 263.50, p = .434, Â12 = 0.43). Fig-
ure 5 shows that students using PIT increased their mutation



score by an average of 20.6%; (σ = 4.1), while students
using Reneri increased their mutation score by an average
of 9.1%; (σ = 6.7). The difference in individual increases
was also not statistically significant (U = 304.5, p = .075,
Â12 = 0.34). These results suggest that both PIT and Reneri
help students achieve higher coverage and mutation scores, and
there is no significant difference between the two in terms of
individual increases.

2) Auto-Evaluation: Comparing the trends of the different
criteria in Table V, we see that the perception of Correctness
(C1) and Design (C4) follows the same direction for both
groups, while Completeness (C2), Assertions (C3), and Leg-
ibility (C5) show opposite trends. This suggests that students
have more confidence in their tests when receiving suggestive
reports from Reneri than informative reports from PIT.

3) Questionnaire: A total of 21 students (51%) think
that using testing tools such as JUnit helps to teach basic
programming concepts (Q5), while 15 students (37%) felt
the same way about mutation testing tools such as PIT or
Reneri (Q6). However, 17 (41%) students think that using
testing tools with basic functionality is helpful (Q5), and
21 (51%) find mutation testing tools with basic functionality
helpful (Q6). Thus, a similar proportion of students think that
using regular or mutation testing tools, at least partially, is
helpful for learning. However, they mostly feel that mutation
testing tools should be kept to basic functionality. This might
be due to the increased cognitive load of such tools for
novice programmers [1] (LC2). All students agreed that using
testing tools can create good programming habits (Q8), and
almost all students (95%) think designing test cases through
mutation testing helps improve the learning capacity of novice
programmers (Q9). 32 students (78%) think that mutation
testing is beneficial, while 8 students (20%) find it useful but
uncomfortable to use (Q14). In both groups, 39 students (95%)
found the reports sufficiently understandable (Q12).

4) Summary: PIT and Reneri both had a positive impact on
instruction coverage and mutation score of the final test suites
produced by the students. According to the questionnaire, a
slightly smaller number of students found Reneri useful for
learning compared to PIT. However, the same number of
students in both groups found the reports clear, indicating
no difference between PIT and Reneri reports in terms of
understandability.

VI. DISCUSSION

A. Instruction Coverage and Mutation Score

From the analysis of RQ3 and Figures 4 and 5, there was
no significant difference between the test suites written by the
two groups in terms of increase in instruction coverage and
mutation score after the second test writing phase. Students
receiving informative reports based on a regular mutation
analysis (PIT) achieved a slightly better final mutation score.
One possible explanation for this is that regular mutation
testing with PIT relies on finer-grained mutants, which can
be trickier to kill. In contrast, extreme mutation testing with
Reneri relies on coarse-grained mutants, which are easier to

kill. This could lead students using Reneri to spend less time
writing tests per method and cover more methods with weaker
tests. However, when comparing the increases of the individual
test suites, the difference was not statistically significant.

B. Informative and Suggestive Analysis Reports

On the one hand, PIT’s informative reports provide a regular
mutation analysis highlighting the mutants that survived and
the mutation score for the whole SUT and each class. Based
on this information, it is up to the student to decide how
to increase their mutation score. This can be done by either
writing more test cases targeting the surviving mutants in
already-covered methods or targeting uncovered methods.

On the other hand, Reneri’s suggestive reports present an
analysis of which methods have been pseudo-tested and which
have not yet been. It is up to the student to decide whether to
write more test cases for the pseudo-tested methods (even if
this does not include all the remaining regular mutants) or to
write test cases to cover a wide range of methods first. Thus,
following Reneri’s hints might lead the student to prioritize
covering methods before improving test assertions.

Students exposed to informative feedback (PIT) had an
increase in their perception of Completeness (C2), while
there was no significant change for those not exposed to it
(Reneri). This may be due to PIT users having direct access
to their mutation score, which was unavailable to Reneri users.
According to Delgado-Pérez et al. [14], this direct access to
the mutation score can affect how students view their code.

The PIT group perceived a decrease in the sufficiency of
their assertions (C3), while the Reneri group perceived an
increase. This may be because PIT users were directly exposed
to the surviving mutants, which indicated a lack of assertions
and induced PIT users to kill the mutants in the second step.
On the contrary, Reneri users may have perceived an increase
because it only provides specific hints without a global view
of test suite quality and because its extreme mutation analysis
cannot identify subtle faults. As a result, Reneri users may
feel that their test cases do not need as many improvements,
leading to a more optimistic self-evaluation.

Developing and evaluating alternative presentations to pro-
vide feedback to students about the overall quality of their test
suite is part of our future work.

C. Threats to Validity

1) External validity: Our experiment was conducted on a
sample of computer science students from a single institution,
and only one SUT written in Java, the game 2048, was
involved in the evaluation. Therefore, the results may not apply
to students from another institution or major. They may also
not apply to other SUTs written in Java or another language.
Nevertheless, the results for regular mutation analysis align
with previous findings in the literature [13], [14].

2) Internal validity: We controlled for potential biases by
providing students with uniform development environments
(desktop machines with Visual Studio Code without any ex-
tensions except syntax highlighting) and reminding them that



participation in the evaluation would not affect their grades.
Although some students may have cooperated during the first
stage, this is not a major concern because they would have
been placed in different groups, since students with similar
mutation scores are likely separated into different groups.
Another reason for separating the groups was to mitigate
the potential impact of students’ prior knowledge on their
performance. Finally, to address students’ motivation learning
challenge (LC2) [1], we emphasized to students that partici-
pating in this experiment would be beneficial in preparing for
the exam, which includes questions on unit testing for second-
years and empirical evaluations for third-years.

3) Construct validity: One potential issue with the exper-
iment is using self-evaluation as a measure. Self-evaluation
involves the participants assessing their performance, which
can be subjective and may not accurately reflect their actual
ability or learning. Additionally, junior students may have
difficulty understanding and distinguishing the criteria used
in the self-evaluation, which could affect the reliability of
the data. To mitigate this threat, we looked at the deltas
measured between the first and second parts of the evaluations.
Regarding equivalent and redundant mutants, we followed
standard practices [15] and excluded equivalent mutants from
our analysis. However, we did not analyse redundant mutants.

4) Conclusion validity: We split our initial set of 43 partici-
pants in two groups and removed incomplete data, resulting in
a sample of 16 (resp. 15) participants for the PIT (resp. Reneri)
approach. This sample size is similar to that of previous
studies [13], [14]. We accounted for the potential impact of
a small sample size by including absolute numbers and ratios
in our analysis. We assumed that missing data was missing
completely at random [28], although there might be a bias
towards certain student profiles producing more missing data.

VII. CONCLUSION

This study compared the use of suggestive reports based on
an extreme analysis with Reneri to informative reports based
on a regular mutation analysis with PIT for teaching software
testing in an educational setting. The results showed that
both methods were effective in teaching software testing, with
regular mutation testing slightly more effective. The difficulty
of handling the tools and the clarity of the reports were similar
for both methods. In future work, the combination of multiple
reports and alternative reports can be explored, depending on
the test suite and desired feedback information level.
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