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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/[

d=2 simplicial complex d=3 simplicial complex



Simplicial complex models




Higher-order structure and dynamics
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Lesson ll:
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- Spectral properties of the Laplacians

- Topological Kuramoto model
 The Kuramoto model on graphs
 The Topological Kuramoto model
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Topological signals,
Hodge Laplacian



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Comparison between spectral
properties of graphs and
simplicial complexes



Graphs and networks

Definition
A graph is an ordered pair G = (V, E) comprising a set V of vertices
connected by the set E of edges.

A graph is a 1-dimensional simplicial complex

Definition

A network is the graph G = (V, E) describing the set of interactions between
the constituents of a complex system. The vertices of a network are called
nodes and the edges /inks.

The network size N is the total number of nodes in the network N=|V/|.
The total number of edges L is given by L=|E]|.



Simple networks

Adjacency matrix
A simple network is fully determined by its adjacency matrix.

The adjacency matrix dof a simple network is a N X N matrix of elements given by

rs

1 if ris linked to s
0 otherwise.

The adjacency matrix of a simple network is symmetric.

Definition

In a simple network the degree k; of node i is given by the total number of links incident to node , i.e.
N

kr = Zars

s=1



Random

Random graphs

Uncorrelated maximally random graphs with given
degree sequence

Are generated by ensembles in which each edge
(r, s) is drawn independently

with probability




Graph Laplacian in terms of
the boundary matrix

The graph Laplacian of elements

<L[O]>rs — 5rskr — Uy

Can be expressed in terms of the 1-boundary matrix

as
_ T
Loy = BBy,
we have

dim ker(Lo) = 5



Graph Laplacian

The graph Laplacian matrix is defined as
L= 6,k — a;
The graph Laplacian is a semi-definite positive matrix that in a
connected network has eigenvalues
O=p <pp<pus<...<py
The Laplacian is key for describing diffusion processes and

the Kuramoto model on networks and constitutes a natural
link between topology and dynamics



Harmonic eigenvectors of
the graph Laplacian

The quadratic form of the graph Laplacian
reads

1
X'LgX==) a.(X. —X)
[0] 22 rs( r s)

r,S

Therefore the harmonic eigenvectors of the
graph Laplacian are constant on each
connected component of the graph and zero
everywhere else.



Connected network

A connected network has a single eigenvector
in the kernel of the graph Laplacian.

This eigenvector is constant on each node of
the network, i.e.

1
u=——

JN



Hodge Laplacians

The higher order Laplacians can be defined in terms of the incidence
matrices as

_RT
L,,=B

-
B T Bpag1 B

[n+1] "

The higher order Laplacian can be decomposed as

L[n] — Ldown + L

[n] [n]’

with
down _ pT
Lig" =By Bpa,

up __ T
L = BrrBru-



Expression of the matrix elements
of the Hodge Laplacians

m —

kmet,m(@g), 1 =s. m+1, r=s.

m m m m
up -1, rES,Q D g, ~ag. down 1, ris,afvagn,a/,mfvag”.
Lm(r,s):< Lm (r,s): » »

m m m m

1, r#&Es,af ~af,al fay. -1, rES, @ —ay,a +al

0 otherwise. 0, otherwise.

b

The m-dimensional up- Hodge Laplacian has nonzero elements
only among upper incident m-simplices
(simplices which are faces of a common m+1 simplex)
The eigenvectors have support on the m-connected components

The m-dimensional down-Hodge Laplacian has nonzero elements
only among lower incident m-simplices
(simplifies sharing a m-1 face)
The eigenvectors have support on the (m-1)—connected components

Here ~ indicates similar orientation with respect to the lower-simplices



m-connected components

A Simplicial complex B 0-connec ted component

A
A

C 1-connected components

vALA W

D 2-connec ted component

¢




Expression of the matrix elements
of the Hodge Laplacians

ksl m(@)+m+1, r=s.

m m m m m m
Lon(rs) =] " r# s.al £ ool < ol ~ ol
neane —1, r#s,at A~alt, o — o', ot » ol
0 otherwise. forO<m<d

The matrix elements of the Hodge Laplacian is only non zero
among lower adjacent simplices that are not upper-adjacent



Harmonic eigenvectors of
the Hodge Laplacian

The dimension of the kernel of the Hodge Laplacian

is given by the corresponding Betti number

dim ker(L[,,,l) — /))m

The harmonic eigenvectors

are associated to the generators of the homology

They are in general non-uniform over the m-simplices of the simplicial complex




Eigenvectors of the

L, Hodge Laplacian
0 [1]

[12] 23] [13] o “’?’3] [1,2] [1,3] [L3]

_ _ _ [, 121 3 0 0
B[1]=[1] o b Bm_[23] 1 L[1]=[ ] :
P] 1 -1 0 , 23] 0 3 0

Bl 0 1 1 (1,31 -1 13 0 0 3



Eigenvectors of the
L, Hodge Laplacian

@

[12] [2,3] [1,3]

N £
M~=pr 1 -1 o0 ° By =0

B3] 0 1 1

[1,2] [1,3] [1.3]

2 o2 -1 1
L“]"[2,3]—1 2 1
[13] 1 1 2

=0 pu=3 u=3

(121 14/3 14/2 0

Vi, = , o=
T R3 13 0 1K/2 2

[1,3] —1/4/3 1/4/2 11/2




Homology of molecular
molecules

Harmonic eigenvectors Non-harmonic eigenvectors

Wee et al. (2023)




Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RP» = im(B] ) @ ker(L;,) ® im(B,,,)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Hodge-decomposition

GiventhatB, B ., =0 B[Tm_l]B[Tm] =0
and that L = B 1B Lo =B, B,
We have:
LiL? =0 imL? C kerL{™

up Y down __ - down up
L[m]L[m] = |mL[m] lerL[m]



Hodge decomposition

The Hodge decomposition can be summarised as

This means that Lim» L, Lin"are commuting and can be diagonalised
simultaneously. In this basis these matrices have the block structure

D 0 0 00
0 0

0
0

up
D[m]

* Therefore an eigenvector in the ker of L, is also in the ker of both L~ Liown

. An eigenvector corresponding to an non-zero eigenvalue of L
is either a non-zero eigenvector of L’E‘Z]or a non-zero eigenvector of Lﬂ[%m




Hodge decomposition

Every m-cochain (topological signal) can be decomposed in a
unique way thanks to the Hodge decomposition as

@Dm = im(B[Tm]) D ker(L,,)) D im(B[mH]))

therefore every m-cochain can be decomposed in a unique
way as

x = L# Pty
[m]™[m]
[2] — 1 downyydown,+
X —L[m] D[ X




Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] _D

QE_Z] Discrete Curl J




Complexity challenge

‘
\

Nonlinear
ey dynamics




Kuramoto
model
on a graph



Synchronization is a
fundamental dynamical process
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Founding fathers of
synchronisation

Christiaan Huygens .
Yoshiki Kuramoto



Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9 =w +02a s1n 9 9

where the internal frequencies of the nodes
are drawn randomly from

@~ N(,1)

and the coupling constant is ¢

The oscillators are non-identical



Order parameter for
synchronization

We consider the global order parameter R

1.0
N
0.8
r=1 0.6+
L o
which indicates the
0.4
synchronisation transition such that for 0l
lo—0,.| <1 0.0
0 1

0 foro <o,

c(o — ac)l/2 foroc > o,

Kuramoto (1975)



Gauge invariance of the
Kuramoto equation

Given the Kuramoto dynamics

9 =W +02a sm 0 0

If we perform the transformation

Gr—>9r—£2t—c

We obtain

0, =, —Q+62a sin (6, - 6,),
s=1

i.e. the dynamics is invariant under rescaling

of the average of the intrinsic frequencies , i.e. Q=0




Solution of the Kuramoto model
on a fully connected network

On a fully connected network the coupling constant is rescaled as

o
c— —

N

The Kuramoto equation

N
0,=w,+0) a,sin (0, -0,

s=1
can be written in terms of the complex order parameter X as
0. = w, — Q— olm(Xe %)
Thanks to the gauge invariance we can study the dynamics in the rotating frame which reads

0. =w,—Q—oRsin(6,)




Solution of the Kuramoto model
on a fully connected network

Looking for the stationary states 8. = 0 of

0. =w.—Q—cRsin(d)

}"_

We obtain sin(f,) = only valid for nodes such that

oR

®, — €2
oR

<1

(frozen nodes)




Solution of the Kuramoto model
on a fully connected network

Assuming that only the frozen nodes contribute to the order parameter, since X = R
in the rotating frame, we obtain the self-consistent equation for the order parameter

1 -Q\°
Rzﬁ Z cos@,,:ﬁ Z 1_<waR>

r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(w) for the intrinsic

frequencies,




Solution of the Kuramoto model
in the annealed approximation

The e Kuramoto model on a random graph with given degree distribution can be studied
within the annealed approximation obtained by making the substitution

kk,
(k)N

Ups = Drs =

Therefore the Kuramoto model becomes

k.k

0, =w,—0) <kr>;v sin(d, — 0,)

Which can be written as

. A . N 1 :
0.=w, — akrlmXe_lgr with X = —— kse‘las
(kN 4

which can be studied following similar steps detailed for the fully connected case.




Topological Kuramoto
model
on simplicial complexes



The higher-order simplicial
Kuramoto model

O12)

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological signals

Simplicial complexes can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called topological signals

B W e
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Standard Kuramoto model in
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms

of the boundary matrix Bpjjas

- S
0 = — oB;;sinB 0

where we have defined the vectors

0 = (61,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



The standard Kuramoto model
In terms of boundary matrices

Let us show that the Kuramoto equations

can be also written in matrix form as

- . T
0 =w — GB[I] S1n B[1]0

Using the explicit expression of the elements of the boundary matrix B[l]

-1 if £ = [r,s]
[Biyle =141 if £ = [s, r]

0 otherwise




Proof

To prove the above statement we write element wise the equations
o o
0 =w —oBsinB; 0

obtaining
er = W, — 62 [B[l]]rfSin 2 [B[l]]fses
4 s
For the link £ = [r, s] we obtain

[Bl,esin | D [Byjlpbs | = — a,sin6, - 6,)



Proof

To prove the above statement we write element wise the equations
o o
0 =w —oBsinB; 0

obtaining

6’, = a)r — 62 [B[l]]rfSIH ( Z [B[l]]fses>
4 s

For the link £ = [, r] we obtain



The harmonic mode of the
Kuramoto model

Let us now study the full nonlinear Kuramoto equation

T

narm & 17 of the graph Laplacian

Let us consider the harmonic eigenvector u

_ T
Loy = BBy,

Since the graph Laplacian is symmetric we have u;armB[l] =0

du, .0
By multiplying (1) by uZarmwe obtain < hjlrm ) = (W, @)
4

Therefore the harmonic mode oscillates at constant frequency also in the nonlinear
Kuramoto model.




Linearised dynamics

Let us study the linearisation of the Kuramoto dynamics.

Let us start from the nonlinear system

. . . T

Using sin X ~ X we get the linearised dynamics




Linearised Dynamics

The linearised dynamics is dictated by the graph

The phases and the intrinsic frequencies can be decomposed in the basis of the
eigenvectors of the graph Laplacian

01) =) cdu,
U
w = Z O)Mllﬂ
U

The dynamical equation in this basis reduce to

¢, = W, — oUc,



Linearised Dynamics
(continuation)

The dynamical equations

¢, = W, — ojc,

have solution

Charm(t) = charm(o) + wharmt
4);

() =— (1 — &™) + ¢ (0)e ™
gz
Therefore the harmonic mode undergoes an unperturbed motion,

while the non-harmonic modes are freezing with time.



The harmonic mode of the
Kuramoto model

Let us now study the full nonlinear Kuramoto equation

T

narm & 17 of the graph Laplacian

Let us consider the harmonic eigenvector u

_ T
Loy = BBy,

Since the graph Laplacian is symmetric we have u;armB[l] =0

du, .0
By multiplying (1) by uZarmwe obtain < hjlrm ) = (W, @)
4

Therefore the harmonic mode oscillates at constant frequency also in the nonlinear
Kuramoto model.




Topological Kuramoto
model



Topological signals

We associate to each

m-dimensional simplex « a phase ¢_

For instance for m=1 we might associate to each link a oscillating flux

The vector of phases is indicated by

d=Cnchy.)T




Standard Kuramoto model in
terms of boundary matrices

The standard Kuramoto model, can be expressed in terms

of the boundary matrix Bpjjas

- S
0 = — oB;;sinB 0

where we have defined the vectors

0 = (61,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



Topological synchronisation

We propose to study the higher-order Kuramoto model

defined as

. A . -I- T .
P =w-— aB[m+1] sin B[mH]qﬁ — aB[m] sin B[m]cl),

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
p=(..0,.)"

&=(.0,..)"

with the internal frequencies

o, ~ N(Q,1)



Topologically induced

many-body interactions
@

®

© ®

(121 = @p1p) — oSz — Pz + P — 0 [Sin(¢[12] — ¢po3p + sin(py3 + ¢[12])] ,
P13 = @3+ o sin(@pz — Pz + Py — o [sin(¢[13] + Ppiap) + sin(yyz)+ Pz — 45[34])]’
D3 = Dz — 0 SIN(Ppz — Pz + P — 0 [sin(¢[23] — $pop + i@z + Ppozy — 4)[34])]’

D341 = Dp3g— 0 [Sin(¢[34]) — sin(y 3 + Ppo3; — ¢[34])],



In the Topological Kuramoto model

o A . T T .
¢ =w-oB, SlnB[m+1]¢ —oB;,; sin B,

the dynamics of the synchronised state
is localised on the

n-dimensional holes

d<uharm’ ¢> _ <ll o
At harm>®

The free dynamics is localised on harmonic components




The harmonic mode of the
non-linear Kuramoto model

Let us now study the full nonlinear Topological Kuramoto equation
o A - pT T o
¢ =w —oB,,sinB, ¢ —oB,;sinB, P, 2

Let us consider any harmonic eigenvector uZarm of the Hodge Laplacian

— T T
L[n] - B[n+1]B[n+1] + B[n]B[n]'

Since Hodge decomposition applies u;L-armB[n+1] = uZarmB[Tn] =0

dlw, .. R
By multiplying (2) by w, we obtain < hjlr;n $) = (uy,,,,, D)

Therefore the harmonic modes oscillate at constant frequency also in the
nonlinear Topological Kuramoto model.



Linearised Dynamics

The linearised dynamics is dictated by the Hodge-Laplacian

The harmonic component of the signal oscillates freely

The other modes freeze asymptotically in time




Linearised Dynamics

The linearised dynamics is dictated by the graph

The phases and the intrinsic frequencies can be decomposed in the basis of the
eigenvectors of the m-Hodge Laplacian

$() =) cdu,
U
® = Z w,u,
U

The dynamical equation in this basis reduce to

¢, = W, — oUc,



Linearised Dynamics
(continuation)

The dynamical equations

¢, = W, — ojc,

have solution

Charm(t) = charm(o) + wharmt
4);

() =— (1 — &™) + ¢ (0)e ™
gz
Therefore the harmonic mode undergoes an unperturbed motion,

while the non-harmonic modes are freezing with time.



Properties of linearized
dynamics

The linearised dynamics stabilises on the homological
eigenvectors

- The homological eigenvectors are localised on holes
> The Betti number can be zero or greater than one.
Therefore a non-trivial steady state is reached only if
the Betti number is positive.

In presence of more than one hole the stabilisation of the flow
on one more more holes will depend on the initial condition



If we define a higher-order Kuramoto model on
m-simplices,
(let us say links, m=1) a key question is:
What is the dynamics induced
on (m-1) faces and (m+1) faces?

i.e. what is the dynamics induced on nodes and triangles?

Edge dynamics Upward projection Downward projection



Projected dynamics on
m-1 and m+1 faces

A natural way to project the dynamics is to use the
incidence matrices obtaining

¢ [+ — BE’_71+1]¢ Discrete curl

¢ = = B[m]¢ Discrete divergence



Projected dynamics on
m-1 and m+1 faces

Thanks to Hodge decomposition,
the projected dynamics
on the (m-1) and (m+1) faces

decouple

i[+] — pT A [down] ; [+]
P = B[m+1]w aL[m+]] sin(gh'™)

¢! =By, ;& — oL sin(@!)




Simplicial Synchronization
transition
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Order parameters using the
n-dimensional phases
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Order parameters using the
n-dimensional phases
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Only if we perform

the correct topological filtering

of the topological signal

we can reveal higher-order topological synchronisation




Explosive topological
synchronisation

We propose the Explosive Topological Kuramoto model

defined as

b =d— aRHB[m+1] sinB! . — GRH]B[Tm] sin B, @

[m+1]




Projected dynamics

The projected dynamics on
(m+1) and (m-1) are now coupled

by their order parameters

pltl — BT A [—1y [down] ; [+]
¢ =B, @ —0oR L[m+1] sin(¢p'™)

hl—1 — N — R Pl g5 [-]
¢ =B, ®—oR | Pt sin(gp' ™)




The explosive
simplicial synchronisation transition
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Order parameters
associlated to n-faces
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Higher-order synchronisation
on real Connectomes
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Coupling topological signals
of different dimer)sion

R. Ghorbanchian, J. Restrepo, J.J. Torres and G. Bianconi (2020)



Explosive synchronisation of
globally coupled topological signals
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Coupled node and link
topological signals on networks

0 = w — oRI"B;sin B/, 0 ; ~ N (L, 1/7))

¢ = d — oRB/, sin B}, ¢ @; ~ N(Q,1/7)

Dynamics projected on the nodes

Y= B[n]¢ 0 =@ — GRI[_]B[I] sin BE_I]o

@=B & ¥ =@ — oRyL,\ siny

1
Q =AY — (i Mo ) = _
1 <a)ra)s> <a)r><a)s> - [L[O]]rsle



The node order parameter
on a fully connected network

The node order parameter can be obtained similarly as for the standard Kuramoto model

2
1 w— Q
Z cosl, = — Z 1 - < >
[—]
N r|r are frozen N r|r are frozenJ GRORl

Or, equivalently considering the probability density distribution g(w) for the intrinsic
frequencies,

Ry = @) |1 - [ ——
0 [ veo | ® J ( RoR
oRoRTT | T




The link order parameter on
a fully connected network

The link order parameter can be obtained following similar steps obtaining

2
1 1
R[_] = — COS = — I -1 —
1 N 2 Vr N 2 \J < oR, >
r|r are frozen r|r are frozen

Or, equivalently considering the probability density distribution g(@) for the

intrinsic frequencies,

2
g(@)\Jl - (ﬂ> di
1 oRy




Solution on a fully
connected network

Fully connected
networks undergo
a discontinuous
synchronisation transition
of topological signals
defined on nodes and links

The hysteresis loop is not
closed in the infinite network
limit and on finite size
networks
is driven by finite size effects
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Annealed solution on
random networks

The annealed solution
captures
the backward transition

Reveals that the transition
is discontinuous

Gives very reliable results
for connected networks
that are not too sparse
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Complexity challenge

‘
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Nonlinear
ey dynamics
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Topological Kuramoto model

- Spectral properties of the Laplacians

- Topological Kuramoto model
 The Kuramoto model on graphs
 The Topological Kuramoto model
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