Higher-order networks An introduction to simplicial complexes Lesson I

Franqui Chair Lessons

18-19 April 2023
Ginestra Bianconi
School of Mathematical Sciences, Queen Mary University of London Alan Turing Institute

The
Alan Turing Institute

Higher-order networks

Higher-order networks are characterising the interactions between two ore more nodes and are formed by nodes, links, triangles, tetrahedra etc.

d=2 simplicial complex

d=3 simplicial complex

Higher-order networks

Higher-order networks are characterising the interactions between two or more nodes

Hypergraph

Simplicial complex

Network with triadic interactions

Networks

Simple network

Higher-order networks

Simplicial complex

Higher order network

Collaboration network

Higher-order network

Triadic interactions

A triadic interaction occurs when a node
affects the interaction
between other two nodes

Triadic interactions between neurons and glia

What Is Topology?

Ghrist 2008

Topological signals

Topological signals are not only defined on nodes but also on links, triangles and higher-order simplices

- Synaptic signal
- Edge signals in the brain

- Citations in a collaboration network

- Speed of wind at given locations
- Currents at given locations in the ocean
- Fluxes in biological transportation networks

Battiston et al. Nature Physics 2021

Boundary Operators

The boundary of the boundary is null

$$
\mathbf{B}_{[m-1]} \mathbf{B}_{[m]}=\mathbf{0}, \quad \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m-1]}^{\top}=\mathbf{0}
$$

Higher-order networks

New book
 by Cambridge University Press

Providing a general view of the interplay between topology and dynamics

Can we learn the dynamics from the complex system topology?

Can we learn the topology from the complex system dynamics?

Complexity challenge

Higher-order networks

New book
 by Cambridge University Press!!

Providing a general view of the interplay between topology and dynamics

The physics of higher-order interactions in complex systems

Federico Battiston ${ }^{1 \boxtimes}$, Enrico Amico ${ }^{2,3}$, Alain Barrat ${ }^{\left({ }^{4,5}\right.}$, Ginestra Bianconi $\odot^{6}{ }^{6,7}$, Guilherme Ferraz de Arruda \odot^{8}, Benedetta Franceschiello $\odot^{9,10}$, lacopo lacopini \odot^{1}, Sonia Kéfi ${ }^{11,12}$, Vito Latora $\odot^{6,13,14,15}$, Yamir Moreno $\odot^{8,15,16,17}$, Micah M. Murray $\odot^{9,10,18}$, Tiago P. Peixoto ${ }^{1,19}$, Francesco Vaccarino ${ }^{()^{20}}$ and Giovanni Petri ${ }^{8,21 区}$

Complex networks have become the main paradigm for modelling the dynamics of interacting systems. However, networks are Intrinsically limited to describing pairwise interactions, whereas real-world systems are often characterized by higher-order interactions invoiving groups of three or more units. Higher-order structures, such as hypergraphs and simpicial complexes, are therefore ics of higher-order systems. ics of higher-order systems

Edge dynamics

Upward projection

b

Downward projection

Outline of the course: Introduction to Algebraic Topology

1. Introduction to algebraic topology
2. Topological Kuramoto model
3. Dirac operator and Topological Dirac equation
4. Dirac and Global Topological synchronisation, Dirac Turing patterns

Lesson I:
 Introduction to Algebraic Topology

- Introduction to simplicial complexes
- Introduction to algebraic topology
- Higher-order operators and their properties

1. Topological signals
2. Chains and Co-chains
3. The boundary and the co-boundary operator
4. The Hodge Laplacian and Hodge decomposition

Introduction to

Simplicial complexes

Simplices

Faces of a simplex

FACES

A face of a d-dimensional simplex α is a simplex α^{\prime} formed by a proper subset of nodes of the simplex, i.e. $\alpha^{\prime} \subset \alpha$.

4 0-simplices
6 1-simplices

4 2-simplices

Simplicial complex

SIMPLICIAL COMPLEX
A simplicial complex \mathcal{K} is formed by a set of simplices that is closed under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its simplices.

If a simplex α belongs to the simplicial complex \mathscr{K} then every face of α must also belong to \mathscr{K}

```
K}={[1],[2],[3],[4],[5],[6],
    [1,2],[1,3],[1,4], [1,5], [2,3],
    [3,4], [3,5], [3,6], [5,6],
    [1,2,3],[1,3,4], [1,3,5],[3,5,6]}
```


Dimension of a simplicial complex

The dimension of a simplicial complex \mathscr{K}
is the largest dimension of its simplices

This simplicial complex has dimension 2

$$
\begin{aligned}
\mathscr{K}= & \{[1],[2],[3],[4],[5],[6], \\
& {[1,2],[1,3],[1,4],[1,5],[2,3], } \\
& {[3,4],[3,5],[3,6],[5,6], } \\
& {[1,2,3],[1,3,4],[1,3,5],[3,5,6]\} }
\end{aligned}
$$

Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any other simplex. Therefore a simplicial complex is fully determined by the sequence of its facets.

The facets of this simplicial complex are
 $$
\mathscr{K}=\{[1,2,3],[1,3,4],[1,3,5],[3,5,6]\}
$$

Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only d-dimensional simplices.

A pure d-dimensional simplicial complex is fully determined by an adjacency matrix tensor with ($\mathrm{d}+1$) indices.
For instance this simplicial complex is determined by the tensor

$$
a_{r s p}=\left\{\begin{array}{l}
1 \text { if }(r, s, p) \in \mathscr{K} \\
0 \text { otherwise }
\end{array}\right.
$$

Example

A simplicial complex \mathscr{K} is pure
if it is formed by d -dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX

SIMPLICIAL COMPLEX THAT IS NOT PURE

Generalized degree

The generalized degree $k_{m^{\prime}, m}(\alpha)$ of a m-face α is given by the number of m^{\prime}-dimensional simplices incident to the m-face α.

Simplicial complex skeleton

From a simplicial complex is possible to generate a network salled the simplicial complex skeleton by considering only the nodes and the links of the simplicial complex

Clique complex

From a network is possible to generate a simplicial complex by Assuming that each clique is a simplex

Note:

Poisson networks have a clique number that is 3 and actually on a finite
expected number of triangles in the infinite network limit
However
Scale-free networks have a diverging clique number, therefore the clique complex of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)

Concatenation of the operations

Attention!
By concatenating the operations you are not guaranteed to return to the initial simplicial complex

Simplicial complex models

Emergent Geometry Network Geometry with Flavor (NGF) [Bianconi Rahmede , 2016 \& 2017]

Maximum entropy model
Configuration model
of simplicial complexes
[Courtney Bianconi 2016]

Network Topology and Geometry

Are expected to have impact in a variety of applications, ranging from
brain research to biological transportation networks

Higher-order structure and dynamics

Introduction to
 Algebraic Topology

Betti numbers

Point
Circle

$\beta_{0}=1$
$\beta_{1}=1$
$\beta_{2}=0$
$\beta_{2}=0$

Sphere

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=0 \\
& \beta_{2}=1
\end{aligned}
$$

Torus

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=2 \\
& \beta_{2}=1
\end{aligned}
$$

Euler characteristic

$$
\chi=\sum_{m=0}^{d}(-1)^{m} \beta_{m}
$$

Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)

Simplicial complex:notation

We consider a d-dimensional simplicial complex \mathscr{K} having N_{m} positively oriented simplices α_{r}^{m} (or simply r) of dimension m.
We indicate the set of all the m positively oriented simplices of the simplicial complex

$$
Q_{m}(\mathscr{K})
$$

Orientation of a simplex

A m-dimensional oriented simplex α is a set of $m+1$ nodes

$$
\begin{equation*}
\alpha=\left[v_{0}, v_{1}, \ldots, v_{m}\right], \tag{3.1}
\end{equation*}
$$

associated to an orientation wuch that

$$
\begin{equation*}
\left[v_{0}, v_{1}, \ldots, v_{m}\right]=(-1)^{\sigma(\pi)}\left[v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(m)}\right] \tag{3.2}
\end{equation*}
$$

where $\sigma(\pi)$ indicates the parity of the permutation π.

$$
[r, s]=-[s, r]
$$

$$
[r, s, q]=[s, q, r]=[q, r, s]=-[s, r, q]=-[q, s, r]=-[r, q, s]
$$

Oriented simplicial complex

A typical choice of orientation of a simplicial complex, is to consider the orientation induced by the node labels, i.e. each simplex is oriented in an increasing (or decreasing) order of the node labels

Oriented simplicial complex

The set of positively oriented simplices on this simplicial complex are:
$\{[1,2,3],[1,2],[2,3],[1,3],[3,4],[1],[2],[3],[4]\}$

We adopt the convention that each 0-simplex is positively oriented

m-Chains

THE m-CHAINS

Given a simplicial complex, a m-chain C_{m} consists of the elements of a free abelian group with basis on the m-simplices of the simplicial complex. Its elements can be represented as linear combinations of the of all oriented m-simplices

$$
\begin{equation*}
\alpha=\left[v_{0}, v_{1}, \ldots, v_{m}\right] \tag{3.6}
\end{equation*}
$$

with coefficients in \mathbb{Z}.

$$
\text { m-chain } c_{m} \in C_{m}
$$

$$
c_{m}=\sum_{\alpha_{r} \in Q_{m}(\mathscr{K})} c_{m}^{r} \alpha_{r}^{m}, \text { with } c_{m}^{r} \in \mathbb{Z}
$$

Oriented simplicial complex and m-chains

Boundary operator

THE BOUNDARY MAP

The boundary map ∂_{m} is a linear operator

$$
\begin{equation*}
\partial_{m}: C_{m} \rightarrow C_{m-1} \tag{3.8}
\end{equation*}
$$

whose action is determined by the action on each m-simplex of the simplicial complex is given by

$$
\begin{equation*}
\partial_{m}\left[v_{0}, v_{1} \ldots, v_{m}\right]=\sum_{p=0}^{m}(-1)^{p}\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1}, \ldots, v_{m}\right] \tag{3.9}
\end{equation*}
$$

Boundary operator

The boundary map ∂_{n} is a linear operator

$$
\partial_{m}: \mathscr{C}_{m} \rightarrow \mathscr{C}_{m-1}
$$

whose action is determined by the action on each n-simplex of the simplicial complex

$$
\partial_{m}\left[v_{0}, v_{1} \ldots, v_{m}\right]=\sum_{p=0}^{m}(-1)^{p}\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1}, \ldots, v_{m}\right]
$$

Therefore we have

$$
\partial_{1}[1,2]=[2]-[1] .
$$

$$
\partial_{2}[1,2,3]=[2,3]-[1,3]+[1,2] .
$$

Boundary operator

THE BOUNDARY MAP

The boundary map ∂_{m} is a linear operator

$$
\begin{equation*}
\partial_{m}: C_{m} \rightarrow C_{m-1} \tag{3.8}
\end{equation*}
$$

whose action is determined by the action on each m-simplex of the simplicial complex is given by

$$
\begin{equation*}
\partial_{m}\left[v_{0}, v_{1} \ldots, v_{m}\right]=\sum_{p=0}^{m}(-1)^{p}\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1}, \ldots, v_{m}\right] . \tag{3.9}
\end{equation*}
$$

From this definition it follows that the $\operatorname{im}\left(\partial_{m}\right)$ corresponds to the space of ($m-1$) boundaries and the $\operatorname{ker}\left(\partial_{m}\right)$ is formed by the cyclic m-chains.

Special groups

$$
\begin{aligned}
& \text { Boundary group } \hat{B}_{m}=\operatorname{im}\left(\partial_{m+1}\right) \\
& \text { Cycle group } \hat{Z}_{m}=\operatorname{ker}\left(\partial_{m}\right)
\end{aligned}
$$

The boundary of a boundary is null

The boundary operator has the property

$$
\partial_{m} \partial_{m+1}=0 \quad \forall m \geq
$$

Which is usually indicated by saying that the boundary of the boundary is null.

This property follows directly from the definition of the boundary, as an example we have

$$
\partial_{1} \partial_{2}[r, s, q]=\partial_{1}([r, s]+[s, q]-[r, q])=[s]-[r]+[q]-[s]-[q]+[r]=0 .
$$

Proof

The boundary of the boundary is null.

Proof: Indicating with \hat{v}_{p} the $\mathrm{p}^{\text {th }}$ missing vertex we have

$$
\begin{aligned}
\partial_{m-1} \partial_{m}\left[v_{0}, v_{1}, \ldots, v_{m}\right] & =\sum_{p=0}^{m}(-1)^{p} \partial_{m-1}\left[v_{0}, v_{1}, \ldots \hat{v}_{p} \ldots v_{m}\right] \\
& =\sum_{p=0}^{m}(-1)^{p} \sum_{p^{\prime}=0}^{p-1}(-1)^{p^{\prime}}\left[v_{0}, v_{1}, \ldots \hat{v}_{p^{\prime}} \ldots \hat{v}_{p} \ldots v_{m}\right] \\
& +\sum_{p=0}^{m}(-1)^{p} \sum_{p^{\prime}=p+1}^{m}(-1)^{p^{\prime}-1}\left[v_{0}, v_{1}, \ldots \hat{v}_{p} \ldots \hat{v}_{p^{\prime}} \ldots v_{m}\right]=0
\end{aligned}
$$

Incidence matrices

Given a basis for the \mathbf{m} simplices and $\mathbf{m}-1$ simplices
the m-boundary operator
$\partial_{m}\left[v_{0}, v_{1} \ldots, v_{m}\right]=\sum_{p=0}^{m}(-1)^{p}\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1}, \ldots, v_{m}\right]$.
is captured by the $N_{m-1} \times N_{m}$ incidence (or boundary) matrix $\mathbf{B}_{[m]}$

	[1,2] [1,3]	[2,3]	[3,4]
[1]	$\begin{array}{ll}-1 & -1\end{array}$	0	0
$\mathbf{B}_{[1]}=[2]$	10	-1	0
[3]	0	1	-1
[4]	0 0	0	1
[1,2,3]			
[1,2]] 1		
$\mathbf{B}_{[2]}=[1,3]$] 1		
[2,3]]		
[3,4]]		

Boundary of the boundary is null

In terms of the incidence matrices the relation

$$
\partial_{m} \partial_{m+1}=0 \quad \forall m \geq 1
$$

Can be expressed as

$$
\mathbf{B}_{[m]} \mathbf{B}_{[m+1]}=\mathbf{0} \quad \forall m \geq 1 \quad \mathbf{B}_{[m+1]}^{\top} \mathbf{B}_{[m]}^{\top}=\mathbf{0} \quad \forall m \geq 1
$$

Homology groups

The Homology groups

The homology group \mathcal{H}_{m} is the quotient space

$$
\begin{equation*}
\mathcal{H}_{m}=\frac{\operatorname{ker}\left(\partial_{m}\right)}{\operatorname{im}\left(\partial_{m+1}\right)}, \tag{3.14}
\end{equation*}
$$

denoting homology classes of m-cyclic chains that are in the $\operatorname{ker}\left(\partial_{m}\right)$ and they do differ by cyclic chains that are not boundaries of $(m+1)$-chains, i.e. they are in $\operatorname{im}\left(\partial_{m+1}\right)$.

It follows that $a \in \operatorname{ker}\left(\partial_{m}\right)$ is in the same homology class than $a+b \in \operatorname{ker}\left(\partial_{m}\right)$ with $b \in \operatorname{im}\left(\partial_{m+1}\right)$

Homology

> The two 1-chains $\begin{aligned} & a=[2,4]-[3,4]-[2,3] \\ & b=[1,2]+[2,4]-[3,4]-[1,3]\end{aligned}$
are in the same homology class

$$
a \sim b
$$

in fact

$$
b=a+\partial_{2}[1,2,3]=[2,4]-[3,4]-[2,3]+[1,2]+[2,3]-[1,3]
$$

Betti numbers

Betti numbers

The Betti number β_{m} indicates the number of m-dimensional cavities of a simplicial complex and is given by the rank of the homology group \mathcal{H}_{m}, i.e.

$$
\begin{equation*}
\beta_{m}=\operatorname{rank}\left(\mathcal{H}_{m}\right)=\operatorname{rank}\left(\operatorname{ker}\left(\partial_{m}\right)\right)-\operatorname{rank}\left(\operatorname{im}\left(\partial_{m+1}\right)\right) \tag{3.15}
\end{equation*}
$$

Betti number

> The two 1-chains $\begin{aligned} & a=[2,4]-[3,4]-[2,3] \\ & b=[1,2]+[2,4]-[3,4]-[1,3]\end{aligned}$
are in the same homology class

$$
\begin{gathered}
\mathscr{H}_{1}=\mathbb{Z} \\
\beta_{1}=\operatorname{dim} \mathscr{H}_{1}=1
\end{gathered}
$$

$$
a \sim b
$$

in fact

$$
b=a+\partial_{2}[1,2,3]=[2,4]-[3,4]-[2,3]+[1,2]+[2,3]-[1,3]
$$

Euler characteristic

The Euler characteristic and the Euler-Poincaré formula

The Euler characterisic χ is defined as the alternating sum of the number of m-dimensional simplices, i.e.

$$
\begin{equation*}
\chi=\sum_{m \geq 0} s_{m} \tag{3.16}
\end{equation*}
$$

where s_{m} is the number of m-dimensional simplices in the simplicial complex. According to the Euler-Poincaré formula, the Euler characteristic χ of a simplicial complex can be expressed in terms of the Betti numbers as

$$
\begin{equation*}
\chi=\sum_{m \geq 0}(-1)^{m} \beta_{m} \tag{3.17}
\end{equation*}
$$

Boundary Operators

Boundary operators

	Boundary operators					
						[1,2,3]
	[1,2]	[1,3]	[2,3]	[3,4]	[1,2]	1
[1]	-1	-1	0	0	$\mathbf{B}_{[2]}=[1,3]$	-1
$\mathbf{B}_{[1]}=[2]$	1	0	-1	0	[2,3]	1
[3]	0	1	1	-1	[3,4]	0
[4]	0	0	0	1		

The boundary of the boundary is null

$$
\mathbf{B}_{[m-1]} \mathbf{B}_{[m]}=\mathbf{0}, \quad \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m-1]}^{\top}=\mathbf{0}
$$

Persistent homology

Filtration: distance/weights
Ghrist 2008

Persistent homology Barcode

Topological clustering

The node neighbourhood is the clique simplicial complex formed by the set of all the neighbours of a node and their connections

Properties of the node
The degree k_{r}
The local clustering coefficient C_{r}

Properties of the node neighbourhood

Number of nodes n

Density of the links ρ

Topological signals, coboundary operators

Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals) not only defined on nodes but also defined on higher order simplices
these signals are called topological signals

Topological signals

- Citations in a collaboration network
- Speed of wind at given locations
- Currents at given locations in the ocean
- Fluxes in biological transportation networks
- Synaptic signal
- Edge signals in the brain

Boundary Operators

The boundary of the boundary is null

$$
\mathbf{B}_{[m-1]} \mathbf{B}_{[m]}=\mathbf{0}, \quad \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m-1]}^{\top}=\mathbf{0}
$$

Cochains

m-cochains

A m-dimensional cochain $f \in C^{m}$ is a linear function $f: C_{m} \rightarrow \mathbb{R}$, that associates to every m-chain of the simplicial complex a value in \mathbb{R}.

$$
\text { m-cochain } f \in C^{m}
$$

$$
f\left(c_{m}\right)=\sum_{r \in Q_{m}(\mathscr{K})} c_{m}^{r} f\left(\left[\alpha_{r}^{m}\right]\right), \text { with } c_{m}^{r} \in \mathbb{Z}
$$

Oriented simplicial complex and m-chains

$$
\begin{aligned}
& \text { Example of } 1 \text {-chain } \\
& \qquad a \in \mathscr{C}_{1} \\
& a=[1,3]-[2,3]+[2,4]
\end{aligned}
$$

Example

Given $\quad f \in C^{1}$
then
$f(a)=f([1,3])-f([2,3])+f([2,4])$

Cochains:properties

m-cochains

A m-dimensional cochain $f \in C^{m}$ is a linear function $f: C_{m} \rightarrow \mathbb{R}$, that associates to every m-chain of the simplicial complex a value in \mathbb{R}.

Upon a change of orientation of a simplex the value of the cochain associated to a simplex changes sign

$$
f\left(\left[\alpha_{r}^{m}\right]\right)=-f\left(-\left[\alpha_{r}^{m}\right]\right) \forall \alpha_{r}^{m} \in Q_{m}(\mathscr{K})
$$

Cochains:properties

m-cochains

A m-dimensional cochain $f \in C^{m}$ is a linear function $f: C_{m} \rightarrow \mathbb{R}$, that associates to every m-chain of the simplicial complex a value in \mathbb{R}.

Given a basis for the m-simplices of the simplicial complex, A m-cochain can be expressed as a vector \mathbf{f} of elements

$$
f_{r}=f\left(\left[\alpha_{r}^{m}\right]\right) \forall \alpha_{r}^{m} \in Q_{m}(\mathscr{K})
$$

L^{2} norm between cochains

We define a scalar product between m-cochains as

$$
\langle f, f\rangle=\mathbf{f}^{\top} \mathbf{f}
$$

Which has an element by element expression

$$
\langle f, f\rangle=\sum_{r \in Q_{m}(\mathscr{K})} f_{r}^{2}
$$

This scalar product can be generalised by introducing metric matrices (see lecture III)

Coboundary operator

Coboundary operator δ_{m}
The coboundary operator $\delta_{m}: C^{m} \rightarrow C^{m+1}$ associates to every m-cochain of the simplicial complex $(m+1)$-cochain

$$
\delta_{m} f=f \circ \partial_{m+1} .
$$

Therefore we obtain
$\left(\delta_{m} f\right)\left[v_{0}, v_{1}, \ldots, v_{m+1}\right]=\sum_{p=0}^{m+1}(-1)^{p} f\left(\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1} \ldots v_{m+1}\right]\right)$
If follows that if $g \in C^{m+1}$ is given by $g=\delta_{m} f$.

$$
\text { Then } \mathbf{g}=\mathbf{B}_{m+1}^{\top} \mathbf{f} \equiv \overline{\mathbf{B}}_{m+1} \mathbf{f}
$$

Coboundary operator

Coboundary operator δ_{m}
The coboundary operator $\delta_{m}: C^{m} \rightarrow C^{m+1}$ associates to every m-cochain of the simplicial complex $(m+1)$-cochain

$$
\delta_{m} f=f \circ \partial_{m+1} .
$$

Therefore we obtain

$$
\left(\delta_{m} f\right)\left[v_{0}, v_{1}, \ldots, v_{m+1}\right]=\sum_{p=0}^{m+1}(-1)^{p} f\left(\left[v_{0}, v_{1}, \ldots, v_{p-1}, v_{p+1} \ldots v_{m+1}\right]\right)
$$

if follows that

$$
\delta_{m+1} \circ \delta_{m}=0 \forall m \geq 1 \text { hence } \mathbf{B}_{[m+1]}^{\top} \mathbf{B}_{[m]}^{\top}=\mathbf{0}
$$

Discrete Gradient

If $f \in C^{0}$, then $g=\delta_{1} f \in C^{1}$ indicates its discrete gradient
Indeed we have

$$
\mathbf{g}=\mathbf{B}_{[1]}^{\top} \mathbf{f}
$$

which implies

$$
g_{[r, s]}=f_{s}-f_{r}
$$

Discrete Curl

If $f \in C^{1}$, then $g=\delta_{2} f \in C^{2}$ indicates its discrete curl
Indeed we have

$$
\mathbf{g}=\mathbf{B}_{[2]}^{\top} \mathbf{f}
$$

which implies

$$
g_{[r, s, q]}=f_{[r, s]}+f_{[s, q]}-f_{[r, q]}
$$

Adjoint of the coboundary operator

Adjoint operator δ_{m}^{*}

The adjont of the coboundary operator $\delta_{m}^{*}: C^{m+1} \rightarrow C^{m}$ satisfies

$$
\left\langle g, \delta_{m} f\right\rangle=\left\langle\delta_{m}^{*} g, f\right\rangle
$$

for any $f \in C^{m}$ and $g \in C^{m+1}$.

It follows that if $f^{\prime}=\delta_{m}^{*} g$ then $\mathbf{f}^{\prime}=\mathbf{B}_{[m+1]} \mathbf{g}$

Adjoint of the coboundary operator

Adjoint operator δ_{m}^{*}

The adjont of the coboundary operator $\delta_{m}^{*}: C^{m+1} \rightarrow C^{m}$ satisfies

$$
\left\langle g, \delta_{m} f\right\rangle=\left\langle\delta_{m}^{*} g, f\right\rangle
$$

where $f \in C^{m}$ and $g \in C^{m+1}$.

If follows that if $f^{\prime} \in C^{m}$ is given by $f^{\prime}=\delta_{m}^{*} g$.

$$
\text { Then } \mathbf{f}^{\prime}=\overline{\mathbf{B}}_{[m+1]}^{\top} \mathbf{g}=\mathbf{B}_{[m+1]} \mathbf{g}
$$

Discrete Divergence

If $g \in C^{1}$, then $f=\delta_{0}^{*} g \in C^{0}$ indicates its discrete divergence
Indeed we have

$$
\mathbf{f}=\mathbf{B}_{[1]} \mathbf{g}
$$

which implies

$$
f_{r}=\sum_{s} g_{[s r]}-\sum_{s} g_{[r s]}
$$

Coboundary action

In summary, the coboundary operator and its adjoint act on the cochains according to the following diagram

$$
\begin{aligned}
& C^{m+1} \stackrel{\delta_{m}}{\longleftrightarrow} C^{m} \stackrel{\delta_{m-1}}{\longleftrightarrow} C^{m-1} \\
& C^{m+1} \xrightarrow{\delta_{m}^{*}} C^{m} \xrightarrow{\delta_{m-1}^{*}} C^{m-1}
\end{aligned}
$$

Boundary Operators

The boundary of the boundary is null

$$
\mathbf{B}_{[m-1]} \mathbf{B}_{[m]}=\mathbf{0}, \quad \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m-1]}^{\top}=\mathbf{0}
$$

Hodge Laplacians

Hodge Laplacian

The Hodge-Laplacians

The m-dimensional Hodge-Laplacian L_{m} is defined as

$$
L_{m}=L_{m}^{u p}+L_{m}^{\text {dow } n}
$$

where up and down m-dimensional Hodge Laplacians are given by

$$
\begin{aligned}
L_{m}^{u p} & =\delta_{m}^{*} \delta_{m}, \\
L_{m}^{\text {down }} & =\delta_{m-1} \delta_{m-1}^{*}
\end{aligned}
$$

Graph Laplacian in terms of the boundary matrix

The graph Laplacian of elements

$$
\left(L_{[01}\right)_{r s}=\delta_{r r} k_{r}-a_{r s}
$$

Can be expressed in terms of the 1-incidence matrix
as

$$
\mathbf{L}_{[0]}=\mathbf{B}_{[1]} \mathbf{B}_{[1]}^{\top}
$$

Hodge Laplacians

The Hodge Laplacians describe diffusion
from n-simplices to m-simplices through ($m-1$) and ($m+1$)
simplices

$$
\mathbf{L}_{[m]}=\mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m]}+\mathbf{B}_{[m+1]} \mathbf{B}_{[m+1]}^{\top} .
$$

The higher order Hodge Laplacian can be decomposed as

$$
\begin{gathered}
\mathbf{L}_{[m]}=\mathbf{L}_{[m]}^{d o w n}+\mathbf{L}_{[m]}^{\mu p}, \\
\text { with } \\
\mathbf{L}_{[m]}^{d o w n}=\mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m]}, \\
\mathbf{L}_{[m]}^{\mu p}=\mathbf{B}_{[m+1]} \mathbf{B}_{[m+1]}^{\top} .
\end{gathered}
$$

Simplicial complexes and Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
from m-simplices to m-simplices through $(m-1)$ and $(m+1)$ simplices

For a 2-dimensional simplicial complex we have

$$
\mathbf{L}_{[0]}=\mathbf{B}_{[1]} \mathbf{B}_{[1]}^{\top} \quad \mathbf{L}_{[1]}=\mathbf{B}_{[1]}^{\top} \mathbf{B}_{[1]}+\mathbf{B}_{[2]} \mathbf{B}_{[2]}^{\top} \quad \mathbf{L}_{[2]}=\mathbf{B}_{[2]}^{\top} \mathbf{B}_{[2]}
$$

Properties of the Hodge Laplacians

- The Hodge Laplacians $L_{m}, L_{m}^{u p}, L_{m}^{\text {down }}$ are semidefinite positive.
- They obey Hodge decomposition
- The dimension of the kernel of the Hodge Laplacian L_{m} is the m-Betti number β_{m}

The Hodge-Laplacians are semi-definitive positive

The Hodge Laplacians $L_{m}, L_{m}^{u p}, L_{m}^{\text {down }}$

are semidefinite positive.
Indeed we have:

$$
\begin{aligned}
& \left\langle f, L_{m}^{u p} f\right\rangle=\left\langle f, \delta_{m}^{*} \delta_{m} f\right\rangle=\left\langle\delta_{m} f, \delta_{m} f\right\rangle \geq 0 \\
& \left\langle f, L_{m}^{\text {down }} f\right\rangle=\left\langle f, \delta_{m-1} \delta_{m-1}^{*} f\right\rangle=\left\langle\delta_{m-1}^{*} f, \delta_{m-1}^{*} f\right\rangle \geq 0 \\
& \left\langle f, L_{m} f\right\rangle=\left\langle f, L_{m}^{u p} f\right\rangle+\left\langle f, L_{m}^{\text {down }} f\right\rangle \geq 0
\end{aligned}
$$

Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed
in a irrotational, harmonic and solenoidal components

$$
C^{m}=\operatorname{im}\left(\mathbf{B}_{[m]}^{\top}\right) \oplus \operatorname{ker}\left(\mathbf{L}_{[m]}\right) \oplus \operatorname{im}\left(\mathbf{B}_{[m+1]}\right)
$$

which in the case of topological signals of the links can be sketched as

Hodge-decomposition

$$
\begin{array}{cl}
\text { Given that } \mathbf{B}_{[m]} \mathbf{B}_{[m+1]}=\mathbf{0} & \mathbf{B}_{[m-1]}^{\top} \mathbf{B}_{[m]}^{\top}=\mathbf{0} \\
\text { and that } \mathbf{L}_{[m]}^{u p}=\mathbf{B}_{[m+1]} \mathbf{B}_{[m+1]}^{\top}, & \mathbf{L}_{[m]}^{d o w n}=\mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m]}
\end{array}
$$

We have:

$$
\begin{array}{ll}
\mathbf{L}_{[m]}^{d o w n} \mathbf{L}_{[m]}^{u p}=\mathbf{0} & \operatorname{im} \mathbf{L}_{[m]}^{u p} \subseteq \operatorname{ker} \mathbf{L}_{[m]}^{d o w n} \\
\mathbf{L}_{[m]}^{u p} \mathbf{L}_{[m]}^{d o w n}=\mathbf{0} & \operatorname{im} \mathbf{L}_{[m]}^{d o w n} \subseteq \operatorname{ker} \mathbf{L}_{[m]}^{u p}
\end{array}
$$

Hodge decomposition

Every m-cochain (topological signal) can be decomposed in a unique way thanks to the Hodge decomposition as

$$
\left(\mathbb{R}^{D_{m}}=\operatorname{im}\left(\mathbf{B}_{[m]}^{\top}\right) \oplus \operatorname{ker}\left(\mathbf{L}_{[m]}\right) \oplus \operatorname{im}\left(\mathbf{B}_{[m+1]}\right)\right.
$$

therefore every m-cochain can be decomposed in a unique way as

$$
\mathbf{x}=\mathbf{x}^{[1]}+\mathbf{x}^{[2]}+\mathbf{x}^{\text {harm }} \text { With }
$$

$$
\begin{aligned}
\mathbf{x}^{[1]} & =\mathbf{L}_{[m]}^{u p} \mathbf{L}_{[m]}^{u p,+} \mathbf{x} \\
\mathbf{x}^{[2]} & =\mathbf{L}_{[m]}^{d o w n} \mathbf{L}_{[m]}^{\text {down },+} \mathbf{x}
\end{aligned}
$$

Hodge decomposition

The Hodge decomposition can be summarised as

$$
C^{m}=\operatorname{im}\left(\mathbf{B}_{[m]}^{\top}\right) \oplus \operatorname{ker}\left(\mathbf{L}_{[m]}\right) \oplus \operatorname{im}\left(\mathbf{B}_{[m+1]}\right)
$$

This means that $\mathbf{L}_{[m]}, \mathbf{L}_{[m]}^{u p}, \mathbf{L}_{[m]}^{d o w n}$ are commuting and can be diagonalised simultaneously. In this basis these matrices have the block structure
$\mathbf{U}^{-1} \mathbf{L}_{[m]} \mathbf{U}=\left(\begin{array}{ccc}\mathbf{D}_{[m]}^{d o w n} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{D}_{[m]}^{u p}\end{array}\right) \quad \mathbf{U}^{-1} \mathbf{L}_{[m]}^{d o w n} \mathbf{U}=\left(\begin{array}{ccc}\mathbf{D}_{[m]}^{d o w n} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right) \quad \mathbf{U}^{-1} \mathbf{L}_{[m]}^{u p} \mathbf{U}=\left(\begin{array}{ccc}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{D}_{[m]}^{\mu p}\end{array}\right)$

- Therefore an eigenvector in the ker of $\mathbf{L}_{[m]}$ is also in the ker of both $\mathbf{L}_{[m]}^{\mu p}, \mathbf{L}_{[m]}^{d o w n}$
- An eigenvector corresponding to an non-zero eigenvalue of $\mathbf{L}_{[m]}$ is either a non-zero eigenvector of $\mathbf{L}_{[m]}^{u p}$ or a non-zero eigenvector of ${ }_{\mathbf{L}_{[m]}}^{\text {down }}$

Betti numbers

The dimension of the kernel of the Hodge Laplacian L_{m} is the m-Betti number β_{m}

Indeed, thanks to Hodge decomposition

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mathbf{L}_{[m]} & =\operatorname{dim}\left(\operatorname{ker} \mathbf{L}_{[m]}^{u p} \cap \operatorname{ker} \mathbf{L}_{[m]}^{\text {down }}\right) \\
& =\operatorname{dim}\left(\operatorname{ker} \mathbf{L}_{[m]}^{u p}\right)-\operatorname{dim}\left(\operatorname{im} \mathbf{L}_{[m]}^{d o w n}\right) \\
& =\operatorname{dim}\left(\operatorname{ker} \mathbf{L}_{[m]}^{d o w}\right)-\operatorname{dim}\left(\operatorname{im} \mathbf{L}_{[m]}^{u p}\right) \\
& =\operatorname{dim}\left(\operatorname{ker} \mathbf{B}_{[m]}\right)-\operatorname{dim}\left(\operatorname{im} \mathbf{B}_{[m+1]}\right) \\
& =\operatorname{rank} \mathscr{H}_{m}=\beta_{m}
\end{aligned}
$$

Expression of the matrix elements of the Hodge Laplacians

$\mathbf{L}_{m}^{\operatorname{up}_{m}}(r, s)= \begin{cases}k_{m+1, m}\left(\alpha_{r}^{m}\right), & r=s . \\ -1, & r \neq s, \alpha_{r}^{m} \frown \alpha_{s}^{m}, \alpha_{r}^{m} \sim \alpha_{s}^{m} . \\ 1, & r \neq s, \alpha_{r}^{m} \frown \alpha_{s}^{m}, \alpha_{r}^{m} \nsim \alpha_{s}^{m} . \\ 0, & \text { otherwise } .\end{cases}$

The m-dimensional up- Hodge Laplacian has nonzero elements only among upper incident m-simplices
(simplices which are faces of a common $m+1$ simplex)
The eigenvectors have support on the m-connected components
The m-dimensional down-Hodge Laplacian has nonzero elements only among lower incident \mathbf{m}-simplices
(simplifies sharing a $\mathbf{m - 1}$ face)
The eigenvectors have support on the (m-1)-connected components
Here ~ indicates similar orientation with respect to the lower-simplices

m-connected components

Expression of the matrix elements of the Hodge Laplacians

$$
\mathbf{L}_{m}(r, s)= \begin{cases}k_{m+1, m}\left(\alpha_{r}^{m}\right)+m+1, & r=s \\ 1, & r \neq s, \alpha_{r}^{m} \nprec \alpha_{s}^{m}, \alpha_{r}^{m} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \sim \alpha_{s}^{m} \\ -1, & r \neq s, \alpha_{r}^{m} \not \alpha_{s}^{m}, \alpha_{r}^{m} \smile \alpha_{s}^{m}, \alpha_{r}^{m} \times \alpha_{s}^{m} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { for } 0<m<d
$$

The matrix elements of the Hodge Laplacian is only non zero among lower adjacent simplices that are not upper-adjacent

Clique communities

The m-clique communities are the m-connected components of the clique complex of the network

[^0]
The skeleton of a simplicial complex and its clique complex

Attention!
By concatenating the operations you are not guaranteed to return to the initial simplicial complex

Higher-order communities

non-zero eigenvectors of $L_{1}^{u p}$

non-zero eigenvectors of $L_{2}^{\text {dow }}$
 down-communities of down-communitit
2 -simplices

Inference of higher-order interactions

We can infer which higher-order interactions using higher-order communities and ground-truth community assignments
S. Khrisnagopal and GB (2021)

Lesson I:
 Introduction to Algebraic Topology

- Introduction to algebraic topology
- Higher-order operators and their properties

1. Topological signals
2. Chains and Co-chains
3. The boundary and the co-boundary operator
4. The Hodge Laplacian and Hodge decomposition

Boundary Operators

The boundary of the boundary is null

$$
\mathbf{B}_{[m-1]} \mathbf{B}_{[m]}=\mathbf{0}, \quad \mathbf{B}_{[m]}^{\top} \mathbf{B}_{[m-1]}^{\top}=\mathbf{0}
$$

[^0]: Palla et al. Nature 2005

