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Higher-order networks

Higher-order networks are characterising the
interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/[

d=2 simplicial complex d=3 simplicial complex



Higher-order networks

Higher-order networks are
characterising the interactions
between two or more nodes

Network with
Hypergraph Simplicial complex triadic interactions



Networks

Simple network




Higher-order networks

Simplicial complex




Higher order network

Collaboration network




Higher-order network

Correlations
Mutual information
Information Decomposition

Activity

A 3-way
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Triadic Interactions
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A triadic interaction occurs
when a node
affects the interaction
between other two nodes



Triadic interactions
between neurons and glia

Neuron’

Neuron h




What Is Topology?

Point Circle Sphere Torus
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Ghrist 2008



Topological signals

Synaptic signal

Edge signals in the brain

Citations in a collaboration network
Speed of wind at given locations
Currents at given locations in the ocean

Fluxes in biological transportation networks
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Battiston et al. Nature Physics 2021



Boundary Operators

Boundary operators

[1,2,3]
[1,2] [1,3] [2.3] [34] 1,21 1
@ [y -1 -1t 0 0 By =013 -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—l]B[m] =0, B[m]B[m—I] - )

QE_Z] Discrete Curl J




Higher-order networks

'(é‘.laer:\nberidge: New book
by Cambridge University Press

Higher Order - _ i
Negtwo,ks Providing a general view of the interplay

An Introduction to between topology and dynamics

Simplicial Complexes

Ginestra Bianconi




Can we learn the
dynamics from the
complex system topology?



Can we learn the topology
from the complex system
dynamics?



Complexity challenge
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PERSPECTIVE

https://doi.org/10.1038/541567-021-01371-4

‘.) Check for updates

The physics of higher-order interactions in
complex systems

Federico Battiston'®, Enrico Amico?3, Alain Barrat®45, Ginestra Bianconi(®¢7,
Guilherme Ferraz de Arruda®8, Benedetta Franceschiello©9, lacopo lacopini®?, Sonia Kéfi"™'2,
Vito Latora®é3¥ Yamir Moreno 851677 Micah M. Murray (2%, Tiago P. Peixoto'",

Francesco Vaccarino®? and Giovanni Petri ©82'&

Complex networks have become the main paradigm for modelling the dynamics of Interacting systems. However, networks are
Intrinsically limited to describing pairwise Interactions, whereas real-world systems are often characterized by higher-order
Interactions Involving groups of three or more units. Higher-order structures, such as hypergraphs and simplicial complexes,

are therefore a better tool to map the real organization of many soclial, blological and man-made systems. Here, we highlight
recent evidence of collective behaviours induced by higher-order interactions, and we outline three key challenges for the phys-

Ics of higher-order systems.

Edge dynamics Upward projection Downward projection




Outline of the course:
Introduction to Algebraic Topology

1. Introduction to algebraic topology
2. Topological Kuramoto model
3. Dirac operator and Topological Dirac equation

4. Dirac and Global Topological synchronisation, Dirac Turing patterns



- Introduction to simplicial complexes

Introduction to algebraic topology

Higher-order operators and their properties

hoODNdA

Topological signals

Chains and Co-chains

The boundary and the co-boundary operator
The Hodge Laplacian and Hodge decomposition



Introduction to
Simplicial complexes



Simplices

O-simplex  1-simplex 2-simplex 3-simplex

SIMPLICES

A d-dimensional simplex a (also indicated as a d-simplex «) is formed by
a set of (d + 1) interacting nodes

a = [vo,vi,v2...,val.

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.



Faces of a simplex

FACES

A face of a d-dimensional simplex « is a simplex @’ formed by a proper
subset of nodes of the simplex, i.e. &’ C «.

3-simplex

Faces

© o—o

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex « belongs

to the simplicial complex 7%
then every face of «

must also belong to %

F = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Dimension of a simplicial complex

The dimension of a simplicial complex #*
IS the largest dimension of its simplices

This simplicial complex
has dimension 2

F = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the

sequence of its facets.

The facets of this
simplicial complex are

K ={[1,2,3],[1,3,4],[1,3,5],[3,5,6]}




Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.

Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
is determined by the tensor

1Lif (r,s,peXH
0 otherwise

arsp



Example

A simplicial complex # is pure
if it is formed by d-dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX
THAT IS NOT PURE



Generalized degree

The generalized degree k., (@)of a m-face «

is given by the number

of m’-dimensional simplices incident to the m-face a.

kz,o([r])

[1]
(2]
[3]
[4]
[5]
[6]

—_ N = R =W

[r,s]

k2,1([r’ S])

[1,2]
[1,3]
[1,4]
[1,5]
[2,3]
[3,4]
[3,5]
[3,6]
[5,6]
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Simplicial complex skeleton

-

From a simplicial complex is possible to generate a network
salled the simplicial complex skeleton by
considering only the nodes and the links of the simplicial complex



Clique complex

S —

From a network is possible to generate a simplicial complex by
Assuming that each clique is a simplex

Note:
Poisson networks have a clique number that is 3 and actually on a finite
expected number of triangles in the infinite network limit
However
Scale-free networks have a diverging clique number, therefore the clique complex
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex



Simplicial complex models




Network Topology and Geometry
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Are expected to have impact in a variety of applications,
ranging from

brain research to biological transportation networks



Higher-order structure and dynamics

e

Higher-order
networks \

. - Combinatorial - -
Simplicial Statictionl H Simplicial
Geometry H Properties Topology

Higher-order

dynamics




Introduction to
Algebraic Topology



Point
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Betti numbers
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Simplicial complex:notation

We consider a d-dimensional simplicial
complex & having N,

positively oriented simplices "
(or simply r) of dimension m.

We indicate the set of all the m positively
oriented simplices of the simplicial complex

Q,(F)



Orientation of a simplex

A m-dimensional oriented simplex a is a set of m + 1 nodes

a = [vo, Vi« Vinls 3.1

associated to an orientation wuch that

[VO’ V], ] Vm] = (_1)0'(71') [Vﬂ(0)7 vﬂ'(l)’ ML Vﬂ(m)] (32)

®

where o () indicates the parity of the permutation 7.

Q—>®

® ©

[r,s] = —[s,7]
[I",S,C]] = [S>Q>r] = [CLF’S] :_[SaraQ] =—[61a5,”] :—[l’,q,S]



Oriented simplicial complex
®

A typical choice of orientation
of a simplicial complex,
is to consider the orientation
induced by the node labels,
i.e. each simplex is oriented in an
increasing (or decreasing) order
of the node labels




Oriented simplicial complex

@

The set of positively
oriented simplices on
this simplicial complex
are:

{[1,2,3],[1,2],12,3], [1,3], [3,4], [1], [2], [3], [4]}
We adopt the convention that

each 0-simplex is positively
oriented



m-Chains

THE m-CHAINS

Given a simplicial complex, a m-chain C,, consists of the elements of a
free abelian group with basis on the m-simplices of the simplicial complex.

Its elements can be represented as linear combinations of the of all oriented

m-simplices
a=[vo,Vi,. ., Vil (3.6)
with coefficients in Z.

m-chainc, € C,,

m m=r ?

a,€0,(X)

C, = Z cral, with e, € Z




Oriented simplicial complex
and m-chains

Example of 1-chain @

aecgl

a=1[13]-1[2,3]+[2,4]



Boundary operator

THE BOUNDARY MAP

The boundary map 9, is a linear operator
Om : Cn — Ch—1 (3.8)
whose action is determined by the action on each m-simplex of the

simplicial complex is given by

Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0



Boundary operator

The boundary map ¢, is a linear operator
0,: €, = €,

whose action is determined by the action on each n-simplex of the simplicial complex

m
0,,[Vo, Vy-- 5 V,] = Z (=1D)[vg, vy oo VoI Vg 1o - o5 v,l.

p=0

®

Therefore we have

Q—>® O ®

0,[1.2] = [2] —[1]. 0,[1,2,3] =[2,3] — [1,3] + [1,2].



Boundary operator

THE BOUNDARY MAP

The boundary map 3,, is a linear operator
Om : Cn — Ch—1 (3.8)

whose action is determined by the action on each m-simplex of the

simplicial complex is given by

m
Omlvo,vi...,vm] = Z(—l)p[vo, VI oo s Vp—l, Vpils - - o> V). (3.9)
p=0
From this definition it follows that the im(d,,) corresponds to the space of
(m — 1) boundaries and the ker(d,,) is formed by the cyclic m-chains.

Special groups .
Boundary group B,, = im(d,,. )

Cycle group Zm = ker(d,,)



The boundary of a
boundary is null

The boundary operator has the property

0,0, =0 Vm> |

Which is usually indicated by saying that the boundary of the
boundary is null.

This property follows directly from the definition of the
boundary, as an example we have

0,0,[r,s,q1 = 0,([r,s] + [s,q] — [r,q]) = [s] = [r] + [q] = [s] — [g] + [r] = O.



Proof

The boundary of the boundary is null.

Proof: Indicating with f/p the pth missing vertex we have

Il
Ms

0,,—10,,[Vos Vs -5 V] (—=1)?0,,_{[vo, vy, ...f)p...vm]

p=0
=D ( 1)p2( DP s Vi o+ DDy ]
p=0 =0

Ms

~1y Z (=1 g vy ceBpe B

p=0 p=p+1



Incidence matrices

Given a basis for the m simplices and m-1 simplices
the m-boundary operator
m

0,,[Vps Vi--es V]l = Z (= DPDvos Vis oo s Voo 15 Vg 1o <0 Vil -

p=0
is captured by the N,,_; X N, incidence (or boundary ) matrix B
@ [1,2] [1,3] [2,3] [3.,4]
1] -1 -1 0 0
@ By=[21 I 0 -1 0,
[3] O 1 1 -1
4] O 0 0 1
[1,2,3]
[1,2] 1
By =[13] -1
[2,3] 1

[3,4] 0



Boundary of the boundary
Is null

In terms of the incidence matrices the relation

m-m+

Can be expressed as

[m~+1]7"[m]




Homology groups

THE HOMOLOGY GROUPS
The homology group H,, is the quotient space
ker(0,,)
im(G41)’
denoting homology classes of m-cyclic chains that are in the ker(d,,) and

they do differ by cyclic chains that are not boundaries of (m + 1)-chains,
i.e. they are in im(0,,,41).

H,, = (3.14)

It follows that a € ker(0,)) is in the same homology class
than a + b € ker(d,,) with b € im(9,,., )



©

Homology

®

The two 1-chains

a=1[24]-[3,4] -1[2,3]

b=1[12]+[2,4]-[3,4] —[1,3]

are in the same homology class
a~b
in fact

b=a+0,[1,2,3] =[2,4] — [3,4] — [2,3] + [1,2] + [2,3] — [1,3]



Betti numbers

BETTI NUMBERS

The Betti number S, indicates the number of m-dimensional cavities of a
simplicial complex and is given by the rank of the homology group H,,,
i.e.

B = rank(H,,) = rank(ker(9,,)) — rank(im(d,,+1)). (3.15)



Betti number

The two 1-chains

a=1[24]-[3,4] -1[2,3]

b=1[12]+[2,4]-[3,4] —[1,3]

are in the same homology class
a~b
in fact

b=a+0,[1,2,3] =[2,4] — [3,4] — [2,3] + [1,2] + [2,3] — [1,3]




Euler characteristic

THE EULER CHARACTERISTIC AND THE EULER-POINCARE FORMULA

The Euler characterisic y is defined as the alternating sum of the number
of m-dimensional simplices, i.e.

X= Sm (3.16)

m=>0
where s, is the number of m-dimensional simplices in the simplicial
complex. According to the Euler-Poincaré formula, the Euler characteristic
x of a simplicial complex can be expressed in terms of the Betti numbers
as

X = (=1)"Bn. (3.17)

m>0



Boundary Operators

Boundary operators

[1,2,3]
(1,2] [L3] [2,3] [3.4] [1,2] 1

@ 1 -1 -1 0 0 By =013 -1 .
By,=[21 1 0 -1 0, 23] 1
B3] 0 1 1 -1 34] 0

4] O 0 0 1

The boundary of the boundary is null

— T T —
( By, 1By =0, By, B, = )




Persistent homology

Filtration: distance/weights

Ghrist 2008

Persistent homology Barcode




Topological clustering

The node neighbourhood is the clique simplicial complex formed by
the set of all the neighbours of a node and their connections

Properties of the node Properties of the node neighbourhood
The degree kr Number of nodes 7
The local clustering coefficient C,, Density of the links p

AP Kartun-Giles et al. (2019)



0 0.02 = 0.05 0.05 = 0.05 0.1 = 0.05 0.15 £+ 0.05 0.2+ 0.05

=108, 00,003 n=108, p=0.11
A=, §1=0 Bo=T, J1=6

Notre Dame

o Node neighbourhoods
with the same number
o of nodes and the
. same density of links
can have very
different topology
Texan Roads ﬁ

Californian Roads
,C% AP Kartun-Giles et al. (2019)



Topological signals,
coboundary operators



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Boundary Operators

Boundary operators

[1,2,3]
[1,2] [1,3] [2.3] [34] 1,21 1
@ [y -1 -1t 0 0 By =013 -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—l]B[m] =0, B[m]B[m—I] - )

QE_Z] Discrete Curl J




Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

m-cochain f € C"

Given the m-chain c, = 2 cra’, with ¢/ € Z

m m=r 2

cn € G, reQ,(¥)

flc,) = Z " f([a™), with ¢/ € Z

reQ, (F)




Oriented simplicial complex
and m-chains

Example of 1-chain ()

a € 6,

a=[13]—-1[2,3] +[2,4]

Example

Given f e(C 1
then

fla) = f([1,3]) = f([2,3]) + A([2,4])




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

Upon a change of orientation of a simplex the value of the cochain associated to a simplex changes sign

™) = = (=) V" € Q,(F)




Cochains:properties

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.

L= V" € Q,(F)




L? norm between cochains

We define a scalar product between m-cochains as

Ly =11

Which has an element by element expression

FhH= D f

reQ, (%)

This scalar product can be generalised by introducing metric matrices (see lecture lll)



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"™*!is givenby g =5 f.

Then g = B;;Hf =B, f



Coboundary operator

Coboundary operator §,,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

Omf) Vo, vis. s Vima1] = Z(—l)pf([vo,vl, s Vp=1sVpsl - Vins1])
p=0

if follows that

0,11 °0, =0 Vm 2> 1hence B[Tm+1]B[Tm] =0




Discrete Gradient

if f € CY, then g = §,f € C! indicates its discrete gradient

Indeed we have

_nT
g = B[l]f

which implies

8[r.s] :fS _fr



Discrete Curl

If f € C!, then g = 6,f € C? indicates its discrete curl

Indeed we have

_nT
g = B[z]f

which implies

8ir.5.q1 =irs1 Thsg) —Jiral



Adjoint of the coboundary operator

Adjoint operator &},

The adjont of the coboundary operator 6%, : C™*! — C™ satisfies

(8:0mf) = (Om&> f)
for any f € C™ and g € C"™*.

It follows that if /' = 6/ ¢ thent' = B, |,



Adjoint of the coboundary operator

Adjoint operator §;,

The adjont of the coboundary operator 6%, : C"™*! — C™ satisfies

(& 0mf) = <5;kng»f>
where f € C"™ and g € C"*!.

If follows that if f € C" is given by f" = 0% g .

r DT _
Thenf’ = B[m+1]g = B[m+1]g



Discrete Divergence

fg € C!, thenf = 0,8 € C" indicates its discrete divergence
Indeed we have

which implies

fr = Z 8lsr] — Z 8[rs]
s s



Coboundary action

In summary, the coboundary operator and its adjoint act on the cochains
according to the following diagram

Cm+1 55’”” Cm 55’"_1 Cm—l
o o

Cm+1 mi Cm m—la Cm—l



Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] - D

QE_Z] Discrete Curl J




Hodge Laplacians



Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, is defined as
Ly, = LyP + Ldown

where up and down m-dimensional Hodge Laplacians are given by

L,y = 6,,0m,
Ldown = 5, 15 .



Graph Laplacian in terms of
the boundary matrix

The graph Laplacian of elements
(Lioy) = sk — a
Can be expressed in terms of the 1-incidence matrix

as

_ T
Loy =By By




Hodge Laplacians

The Hodge Laplacians describe diffusion
from n-simplices to m-simplices through (m-1) and (m+1)

simplices

—_pT T
( Ly =B, By, + B[m+1]B[m+l]>

The higher order Hodge Laplacian can be decomposed as

_ J down up
( Lppg = Liy" + Lo \

with

down _ pT
Lin" = BB,

[m]
up __ T
K L = BineiBrasy J




Simplicial complexes and
Hodge Laplacians

Hodge Laplacians

The Hodge Laplacians describe diffusion
®

from m-simplices to m-simplices through (m-1) and (m+1) simplices

For a 2-dimensional simplicial complex we have

_ T _ DT T _ DT
( Lo = BB Ly = By By + BBy, Ly = B[le[ZD




Properties of the Hodge
Laplacians

e The Hodge Laplacians L, , L'P, L%"" are semidefinite
positive.

 They obey Hodge decomposition

e The dimension of the kernel of the Hodge Laplacian L, is
the m-Betti number [,



The Hodge-Laplacians are
semi-definitive positive

The Hodge Laplacians L, L', [4o""
are semidefinite positive.

Indeed we have:

(LPF) = {£.556,f) = (8,f-8,f) 2 0
FLE"f) = (f. 8,185 f) = (5% f.6% ) >0
(foLpf) = (FL2F) + (L2 f) 2 0



Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

C" =im(B/,) @ ker(L;,)) ® im®B, ;)

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Hodge-decomposition

GiventhatB, B ., =0 B[Tm_l]B[Tm] =0
and that L = B 1B Lo =B, B,
We have:
LiL? =0 imL? C kerL{™

up Y down __ - down up
L[m]L[m] = |mL[m] lerL[m]



Hodge decomposition

Every m-cochain (topological signal) can be decomposed in a
unique way thanks to the Hodge decomposition as

@Dm = im(B[Tm]) D ker(L,,)) D im(B[mH]))

therefore every m-cochain can be decomposed in a unique
way as

x! = L# Pty
[m] " [m]

[2] — 71 downy down,+
xl = L[m] L[m] X

x = xtH 4 x[?1 4 xharm — With




Hodge decomposition

The Hodge decomposition can be summarised as

This means that Lim» L, Lin"are commuting and can be diagonalised
simultaneously. In this basis these matrices have the block structure

D 0 0 00
0 0

0
0

up
D[m]

* Therefore an eigenvector in the ker of L, is also in the ker of both L~ Liown

. An eigenvector corresponding to an non-zero eigenvalue of L
is either a non-zero eigenvector of L’E‘Z]or a non-zero eigenvector of Lﬂ[%m




Betti numbers

The dimension of the kernel of the Hodge Laplacian L, is the
m-Betti number S

Indeed, thanks to Hodge decomposition

dim ker Ly,; = dim(ker LE‘Z] N ker LE%V”)

T UP \ _ Airnl down
= dim(ker L[m]) dim(im Ly, 7™)
= dim(ker L{")—dim(im L’
= dim(ker B,,,))—dim(im By, )
=rankZ,, =,



Expression of the matrix elements
of the Hodge Laplacians

m —

kmet,m(@g), 1 =s. m+1, r=s.

m m m m
up -1, rES,Q D g, ~ag. down 1, ris,afvagn,a/,mfvag”.
Lm(r,s):< Lm (r,s): » »

m m m m

1, r#&Es,af ~af,al fay. -1, rES, @ —ay,a +al

0 otherwise. 0, otherwise.

b

The m-dimensional up- Hodge Laplacian has nonzero elements
only among upper incident m-simplices
(simplices which are faces of a common m+1 simplex)
The eigenvectors have support on the m-connected components

The m-dimensional down-Hodge Laplacian has nonzero elements
only among lower incident m-simplices
(simplifies sharing a m-1 face)
The eigenvectors have support on the (m-1)—connected components

Here ~ indicates similar orientation with respect to the lower-simplices



m-connected components

A Simplicial complex B 0-connec ted component

A
A

C 1-connected components

vALA W

D 2-connec ted component

¢




Expression of the matrix elements
of the Hodge Laplacians

ksl m(@)+m+1, r=s.

m m m m m m
Lon(rs) =] " r# s.al £ ool < ol ~ ol
neane —1, r#s,at A~alt, o — o', ot » ol
0 otherwise. forO<m<d

The matrix elements of the Hodge Laplacian is only non zero
among lower adjacent simplices that are not upper-adjacent



Clique communities

Palla et al. Nature 2005

The m-clique
communities are the

m-connected
components of the
clique complex of the
network



The skeleton of a simplicial complex
and its cligue complex

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex




Higher-order communities

Inference of higher-order
o interactions

(a) 2 communities (b) 2 communities (€) 2 communities

®

(b)

color coded by Lg communities

non-zero eigenvectors of L”

up-communities of
A=4 A=3 1-simplices

e
N

e
B

Adjusted Mutual Information

o
o

M: Mr.Hi Club
O: Officer Club

non-zero eigenvectors of L
down-communities of
2-simplices

A=2 A=4 A=3 b o
@‘s @ A c E
< Triangles removed
@ @ v We can infer which higher-order interactions
AN using higher-order communities
A A A and ground-truth community assignments

S. Khrisnagopal and GB (2021)

23-29-32, 28-31
0-2-13, 0-3-13, 1-3-7
0-8-2, 0-3-7, 0-1-7

20-32-33, 23-27-33, 23-32



Lesson .
Introduction to Algebraic Topology

< Introduction to algebraic topology
- Higher-order operators and their properties

Topological signals

Chains and Co-chains

The boundary and the co-boundary operator
The Hodge Laplacian and Hodge decomposition

hoOopA



Boundary Operators

Boundary operators

[1,2,3]
(1,21 [1,3] [2,3] [3:4] 121 1
@ [ -t -1 0 0 By =[13] -1 .
By=(2 1 0 -1 0, 23] 1
4] O 0 0 1
® ®
The boundary of the boundary is null
G[l] Discrete divergence\
_ T pT _
BE_I] Discrete gradient C B[m—llB[m] =0, B[m]B[m—I] - D

QE_Z] Discrete Curl J




