
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization using a Squared-
Violation Feasibility Measure
Curtis, Frank; Gould, N. I. M.; Robinson, Daniel; Toint, Ph

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication
Citation for pulished version (HARVARD):
Curtis, F, Gould, NIM, Robinson, D & Toint, P 2014 'An Interior-Point Trust-Funnel Algorithm for Nonlinear
Optimization using a Squared-Violation Feasibility Measure' Rutherford Appleton Laboratory.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://researchportal.unamur.be/en/publications/8b8d3455-a1d2-41c7-b708-e14117912dfc

Technical Report
RAL-TR-2014-001

An interior-point trust-funnel
algorithm for nonlinear optimization
using a squared-violation feasibility
measure

F E Curtis N I M Gould D P Robinson Ph L Toint

January 2nd, 2014

c©2014 Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: libraryral@stfc.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.stfc.ac.uk

ISSN (unknown)

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

An interior-point trust-funnel algorithm

for nonlinear optimization using a

squared-violation feasibility measure

Frank E. Curtis,1,2 Nicholas I. M. Gould,3,3 and Daniel P. Robinson5,6 and Philippe L. Toint7

ABSTRACT

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization prob-

lems. The method is based on an approach proposed by Gould and Toint (Math. Prog., 122(1):155-196,

2010) that focused on solving equality constrained problems. Our method, which is designed to solve

problems with both equality and inequality constraints, achieves global convergence guarantees by com-

bining a trust-region methodology with a funnel mechanism. The prominent features of our algorithm

are that (i) the subproblems that define each search direction may be solved approximately, (ii) criti-

cality measures for feasibility and optimality aid in determining which subset of computations will be

performed during each iteration, (iii) no merit function or filter is used, (iv) inexact sequential quadratic

optimization steps may be computed when advantageous, and (v) it may be implemented matrix-free

so that derivative matrices need not be formed or factorized so long as matrix-vector products with

them can be performed. This variant uses the square of the violation as a feasibility measure.

1 Department of Industrial and Systems Engineering, Lehigh University,

Harold S. Mohler Laboratory, 200 West Packer Avenue Bethlehem, PA 18015-1582, USA.

Email : frank.e.curtis@gmail.com .

2 This work was supported by U.S. Department of Energy grant DE–SC0010615 and U.S. National Science

Foundation grant DMS–1016291.

3 Scientific Computing Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU. Email: nick.gould@stfc.ac.uk .

Current reports available from “http://www.numerical.rl.ac.uk/people/nimg/pubs.html”.

4 This work was supported by the EPSRC grant EP/I013067/1.

5 Department of Applied Mathematics and Statistics, Johns Hopkins University,

100 Whitehead Hall, 3400 N. Charles Street, Baltimore, MD 21218-2682, USA.

Email : daniel.p.robinson@gmail.com .

6 This work was supported by the U.S. National Science Foundation grant DMS–1217153.

7 Namur Center for Complex Systems (naXys) and Department of Mathematics,

University of Namur, 61, rue de Bruxelles, B-5000 Namur, Belgium, EU.

Email : philippe.toint@unamur.be .

Current reports available from “http://www.fundp.ac.be/∼phtoint/pht/publications.html”.

Scientific Computing Department

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

January 2nd, 2014

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 1

0 Preamble

In [6], we described a new interior-point trust-funnel algorithm for nonlinear optimization in which

inequality constraints c(x) ≤ 0 were converted to equations c(x) + s = 0 by the addition of slack

variables s ≥ 0. The infeasibility of iterates was measured by the violation ‖c(x) + s‖2 for which s > 0

was ensured by the mechanics of the algorithm.

The algorithm in [6] was derived from the one proposed in [26] that focused on problems involving

equality-constraints. In [26], the infeasibility of iterates was measured by the square of the violation.

The purpose of the present paper is to analyze an algorithm for inequality constraints that follows [26]

by measuring the violation by ‖c(x) + s‖22 rather than ‖c(x) + s‖2. The algorithm itself is very similar

to that in [6], the main differences being the squaring of the violation and its dominating “funnel”,

and the formula for the reduction in the funnel as the iterations proceed. While there is certainly

substantial overlap in the resulting convergence analysis, the details are considerably different in parts,

and our intention is to describe those differences here. However, since this paper is not intended for

journal publication, and for the convenience of the reader, we have chosen to include the complete

motivation and analysis for the algorithm that uses squared violation, rather than merely highlighting

the differences with [6].

Our intention is to compare both variants in our forthcoming implementation and numerical tests.

1 Introduction

In this paper, we introduce a method for solving optimization problems of the form

minimize
x∈RN

f(x) subject to c(x) ≤ 0, (NP)

where f : RN → R and c : RN → R
M are twice continuously differentiable. (Our method can also be

applied when equality constraints are present, but, for simplicity in our discussion, they are suppressed

in our algorithm development and analysis; see §5 for further discussion.) Our algorithm is designed to

solve large-scale instances of (NP). In particular, it is designed to be matrix-free in the sense that it can

be implemented while only requiring matrix-vector products with the constraint Jacobian, its transpose,

symmetric approximations of the Hessian of the Lagrangian, and corresponding preconditioners. Thus,

iterative methods may be used for approximately solving each subproblem arising in the algorithm.

The method we propose utilizes components of both interior-point (IP) and sequential quadratic

optimization (commonly known as SQP) methods. Algorithms of this type are often referred to as

barrier-SQP methods. The interior-point aspects of our algorithm allow us to avoid the combinatorial

explosion that may occur within, say, an active-set approach. The efficiency of interior-point methods for

solving linear and convex quadratic programming problems has been well-established [1,8,13–15,19,20,

27,31,33]. Extending these methods for solving nonlinear problems has been the subject of research for

decades [3,4,7,16,34–38] and numerical evidence illustrates strong performance. We follow an approach

similar to Byrd et. al. [3,4] and solve a sequence of so-called barrier subproblems for decreasing values of

the barrier parameter. This means that we must solve a sequence of equality constrained subproblems,

and these may be solved very efficiently with an SQP method. It is well known that traditional SQP

methods are very efficient for solving small- to medium-sized optimization problems [9,10,17,18], while

more recently proposed SQP methods utilize exact second derivatives and are, in theory, capable of

solving large problems [22–24,32]. Preliminary results when solving small- to medium-sized problems is

promising, but their effectiveness on large problems has not yet been confirmed. There have, however,

been several proposed SQP strategies that have proved capable of solving large equality constrained

problems [2, 26, 30].

In this paper we use the trust-funnel approach originally described in [26], and then corrected in [25],

as the basis for solving a sequence of equality constrained barrier subproblems that arise in an interior-

2 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

point framework. We note, however, that a näıve implementation of the SQPmethod described in [25,26]

within an interior-point paradigm may result in a method for which the establishment of convergence

guarantees is elusive. This is a consequence of the fact that interior-point methods—as their name

suggests—require the algorithm iterates to remain in the strict interior of the feasible region associated

with the inequality constraints, while the method in [25, 26] does not innately possess the mechanisms

necessary to avoid the boundary of the feasible region in this context. In this paper, we describe

modifications of this trust-funnel method that are appropriate for our interior-point setting. These

modifications include imposing explicit constraints in the trust-region subproblems to ensure that the

iterates remain in the strict interior of the feasible region, and the incorporation of scaled trust-region

constraints and optimality measures. Scalings of these types have been used previously in interior-point

methods; e.g., see [3, 7].

The paper is organized as follows. In Section 2 we introduce our trust-funnel algorithm for solving

the barrier subproblem in an interior-point approach. In Section 3 we prove that our trust-funnel

algorithm will terminate finitely with arbitrarily small positive tolerances on the criticality measures.

In Section 4 we consider convergence of the barrier subproblem solutions for a decreasing sequence of

the barrier parameter. Finally, conclusions are provided in Section 5.

Notation

The gradient and Hessian of f at x are written as g(x) and ∇xxf(x) respectively. The M ×N matrix

J(x) represents the Jacobian of the constraint function c evaluated at x, with its jth row being ∇cj(x)T .
The matrix ∇xxcj(x) is the Hessian of cj evaluated at x. We let e denote the vector of all ones and I

denote the identity matrix, both of whose dimensions are determined by the context in which they are

used. Given a vector s ∈ R
M , [s]j is the jth element of s and S := diag([s]1, [s]2, . . . , [s]M). A forcing

function ω : [0,∞)→ [0,∞) is defined as any continuous and strictly increasing function that satisfies

ω(0) = 0.

Preliminaries

We make the following assumption throughout the paper.

Assumption 1.1. The functions f and c are twice continuously differentiable.

Problem (NP) is not solved directly by our algorithm. Rather, we introduce a vector of slack

variables s ∈ R
M and solve the equivalent problem

minimize
x∈RN ,s∈RM

f(x) subject to c(x, s) := c(x) + s = 0, s ≥ 0. (NPs)

The following definition gives first-order stationarity conditions for (NPs) [28, 29].

Definition 1.1 (First-order KKT point for problem (NPs)). The vector triple (x, s, y) is a first-order

KKT point for problem (NPs) if it satisfies

g(x) + J(x)Ty = 0, c(x, s) = 0, Sy = 0, and (s, y) ≥ 0.

To solve (NPs), we compute a sequence of (approximate) minimizers of the barrier subproblem

minimize
x∈RN ,s∈RM

f(x, s) subject to c(x, s) = 0, s > 0, (1.1)

where for each fixed value of µ > 0 we define the barrier function

f(x, s) := f(x)− µ

M
∑

i=1

ln([s]i). (1.2)

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 3

Given a Lagrange multiplier estimate vector y for the constraint c(x, s) = 0, the Lagrangian function

associated with (1.1) and its gradient with respect to (x, s) are given by

L(x, s, y) := f(x, s) + c(x, s)Ty and ∇(x,s)L(x, s, y) := ∇f(x, s) + J(x, s)Ty,

where we define J(x, s) := ∇c(x, s) =
(

J(x) I
)

to represent the Jacobian of c(x, s) with respect to

(x, s). A primal-dual point (x, s, y) is called a first-order KKT point of the barrier problem (1.1) if it

satisfies

∇(x,s)L(x, s, y) = 0, c(x, s) = 0, and (s, y) > 0.

Multiplying the second block of the first equation by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for the barrier subproblem (1.1)). The vector triple (x, s, y) is

a first-order KKT-point for the barrier subproblem (1.1) if it satisfies

g(x) + J(x)Ty = 0, Sy = µe, c(x, s) = 0, and (s, y) > 0.

A comparison of Definitions 1.1 and 1.2 suggests that KKT points of the barrier subproblem become

increasingly accurate solutions to problem (NPs) for decreasing values of the barrier parameter µ.

2 A Trust-Funnel Algorithm for Solving the Barrier Subprob-

lem

In this section, we present our trust-funnel algorithm for (approximately) solving the barrier subprob-

lem (1.1) for a fixed value of the barrier parameter µ > 0. As µ is fixed for a particular instance of (1.1),

the dependence on µ of certain quantities in this section is ignored. However, these dependences—in

particular, with respect to criticality tolerances that are employed in the algorithm—will be a central

focus in §4 that addresses the “outer” algorithm for solving problem (NPs).

2.1 Algorithm overview

Our method generates a sequence {(xk, sk, yk)} of primal, slack, and dual variables. Moreover, defining

the measure of equality constraint violation

v(x, s) := ‖c(x, s)‖22, (2.1)

our method maintains a monotonically decreasing sequence of positive scalars {vmax

k } that satisfy

sk > 0, c(xk, sk) ≥ 0, vk := v(xk, sk) ≤ vmax

k , and vmax

k+1 ≤ vmax

k for all k ≥ 0. (2.2)

We require s0 > 0, and the restriction sk > 0 is maintained via explicit constraints imposed on all

search direction calculations. Additionally, we ensure that c(xk, sk) ≥ 0 is satisfied at the beginning of

iteration k by incorporating a slack reset procedure defined by

[sk]i ←
{

[sk]i if [c(xk, sk)]i ≥ 0,

−[c(xk)]i otherwise.
(2.3)

If we let sprior

k denote the value of sk prior to the slack reset in iteration k, then it follows that

vk ≤ v(xk, s
prior

k), sprior

k ≤ sk, and f(xk, sk) ≤ f(xk, s
prior

k). (2.4)

Therefore, both the barrier function and constraint violation have decreased as the result of the trivial

slack reset computation (2.3). We explicitly enforce vk ≤ vmax

k with the updating strategy discussed in

4 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Section 2.4. Finally, the sequence {vmax

k } is positive and monotonically decreasing by construction and

guides the iterates toward feasibility; the set of infeasible points permitted by the gradually narrowing

region defined by v(x, s) ≤ vmax

k is what we call the funnel. Overall, all claims in (2.2) are formally

established in Section 2.6.

Given the current estimate (xk, sk) of a solution, a trial step dk := (dxk, d
s
k) is computed as the sum

of a “normal” step nk := (nx
k, n

s
k) and a “tangential” step tk := (txk, t

s
k), i.e.,

dk =

(

dxk
dsk

)

=

(

nx
k

ns
k

)

+

(

txk
tsk

)

= nk + tk.

The normal step is computed to (approximately) minimize a quadratic model of v at (xk, sk); thus,

it has the purpose of reducing linearized infeasibility. The tangential step tk is intended to reduce

the barrier function (1.2) and is calculated as an (approximate) minimizer of a quadratic model of

the barrier function within an appropriate subspace that does not undo the improvement in reducing

linearized infeasibility achieved by nk. Once dk = nk + tk is computed, an attempt to decrease the

constraint violation and/or barrier function is made, where the decision to do so is based on quantities

that reflect the overall merit of the constituent steps. We discuss these details in turn in the following

subsections.

2.2 The normal step

The normal step is designed to predict a reduction in the constraint violation as measured by v defined

in (2.1). To achieve this goal, we compute the normal step nk := (nx
k, n

s
k) as an approximate solution

of

minimize
n=(nx,ns)

mv
k(n) subject to ‖P−1

k n‖2 ≤ min{δvk, κnπ
v
k}, sk + ns ≥ κfbnsk, (2.5)

where we define

mv
k(n) := ‖c(xk, sk) + J(xk, sk)n‖22, Pk :=

(

I 0

0 Sk

)

, (2.6)

and the v-criticality measure

πv
k := πv(xk, sk) := ‖PkJ(xk, sk)

T c(xk, sk)‖2, (2.7)

where δvk > 0 is updated dynamically by the algorithm, and where κn ≥ 1 and κfbn ∈ (0, 1) are constants.

It will be shown in Lemma 3.14 that πv
k is a criticality measure at (xk, sk) for minimizing v subject to

the slacks being nonnegative. The scaling matrix Pk is important in the trust region constraint since it

assists in keeping iterates within the nonnegative orthant; it restricts [ns
k]j to be relatively small when

[sk]j is close to zero. Problem (2.5) involves the local minimization of the norm of a Gauss-Newton

approximation of v at (xk, sk) subject to a trust-region constraint and fraction-to-the-boundary rule.

It is not necessarily prudent to compute a normal step every iteration. Indeed, computing a normal

step may be wasteful if the current iterate is nearly feasible and computational efforts may be better

spent on computing a new Lagrange multiplier estimate or tangential step. In our algorithm, we

only require a normal step to be computed when either our v-criticality measure πv
k is significant in

comparison to the previous f -criticality measure πf
k−1 associated with minimizing the barrier function

(the definition of πf
k is given by (2.23) in the next subsection), or when vk is not sufficiently small

compared to the upper bound vmax

k (see (2.2)). Specifically, for some constant κvv ∈ (0, 1) and forcing

function ωn (and with πf
−1 := 0), we require the computation of a normal step if either

πv
k > ωn(π

f
k−1) or vk ≥ κvvv

max

k . (2.8)

(If (2.8) does not hold, but πv
k > 0, one may consider computing a normal step since the fact that

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 5

πv
k > 0 implies that the computation would be well-defined. However, a normal step is not necessary

for our convergence analysis in this case.) When a normal step is not computed, we simply set nk ← 0.

By an approximate solution to (2.5), we mean that nk := (nx
k, n

s
k)—when it is computed—should be

feasible for (2.5) and it should yield a decrease in mv
k no less than that achieved along a scaled steepest

descent direction. In particular, the scaled steepest descent direction that we employ is derived in the

following manner. If we perform the change of variables nP := P−1
k n so that the trust-region constraint

becomes ‖nP ‖2 ≤ min{δvk, κnπ
v
k}, then the transformed problem has the conventional Euclidean norm

steepest descent direction −PkJ(xk, sk)
Tc(xk, sk). Returning to the original space gives the scaled

steepest descent direction −P 2
kJ(xk, sk)

Tc(xk, sk). For (2.5), we define the Cauchy step nC

k = (nC

k
x, nC

k
s)

as the minimizer of the objective of (2.5) in the scaled steepest descent direction, i.e.,

nC

k := nC

k(α
C

N
), where nC

k(α) :=

(

nC

k
x(α)

nC

k
s(α)

)

:= −αP 2
kJ(xk, sk)

T c(xk, sk) (2.9)

and αC

N
is the solution to

minimize
α≥0

mv
k

(

nC

k(α)
)

subject to ‖P−1
k nC

k(α)‖2 ≤ min{δvk, κnπ
v
k}, sk + nC

k
s(α) ≥ κfbnsk. (2.10)

We show in Lemma 2.8 that the decrease in mv
k obtained by nC

k is positive (when δvk > 0 and πv
k > 0).

Overall, when (2.8) holds, we require a normal step nk satisfying the constraints of (2.5), i.e.,

‖P−1
k nk‖2 ≤ min{δvk, κnπ

v
k}, sk + ns

k ≥ κfbnsk, (2.11)

along with

∆mv,n
k := mv

k(0)−mv
k(nk) ≥ mv

k(0)−mv
k(n

C

k). (2.12)

Many steps satisfy (2.11) and (2.12) with the simplest choice being nk = nC

k .

2.3 Lagrange multipliers and the tangential step

Having dealt with the normal step, we now consider computing estimates of an optimal Lagrange

multiplier vector and/or a tangential step. If computed, the multiplier estimates are intended to (ap-

proximately) minimize a measure of criticality for the barrier subproblem (1.1) that takes into account

changes in the problem function values that are predicted by the normal step. Likewise, the tangential

step, if computed, is designed to reduce the barrier function without having too adverse an effect on the

reduction in linearized infeasibility predicted by the normal step. Since the conditions imposed on the

multiplier estimates and tangential step are intimately related—e.g., the computed multiplier estimates

are required to lead to a well-defined Cauchy point for the tangential step subproblem—we consider

their computation together in this section. Our motivation in this section is to compute quantities

related to those in a traditional SQP approach applied to subproblem (1.1).

Given the kth estimate yk of an optimal Lagrange multiplier vector, a traditional SQP trial step

associated with the barrier subproblem (1.1) is defined as the solution (when it exists) of

minimize
d=(dx,ds)

f(xk, sk)+∇f(xk , sk)
T d+ 1

2d
T∇(x,s)(x,s)L(xk, sk, yk)d subject to c(xk, sk)+J(xk , sk)d = 0.

It may be verified that a solution d = (dx, ds) of this subproblem (when it exists) satisfies

∇xxL(xk, yk) J(xk)
T 0

J(xk) 0 I

0 Sk µS−1
k

dx

y

ds

 = −

g(xk)

c(xk, sk)

−µe

 , (2.13)

where y is an estimate of an optimal Lagrange multiplier vector for the constraint c(xk, sk)+J(xk, sk)d =

6 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

0. The SQP step generated in this fashion is often called a primal step since the dual vector yk does

not appear in (2.13) other than in the Hessian ∇xxL. We can instead compute a primal-dual step by

applying Newton’s Method to the conditions in Definition 1.2, which leads to

∇xxL(xk, yk) J(xk)
T 0

J(xk) 0 I

0 Sk Yk

dx

y

ds

 = −

g(xk)

c(xk, sk)

−µe

 . (2.14)

This system is identical to (2.13), except that the (3, 3)-block now contains dual information. It is also

easily verified that a solution of (2.14) is a KKT point for

minimize
d=(dx,ds)

f(xk, sk) +∇f(xk, sk)
Td+ 1

2d
TH(xk, sk, yk)d subject to c(xk, sk) + J(xk, sk)d = 0,

where

H(xk, sk, yk) :=

(∇xxL(xk, yk) 0

0 YkS
−1
k

)

.

The previous paragraph, along with the widely accepted view that the primal-dual approach is gen-

erally superior to the primal approach in practice, motivates us to approximate the barrier function (1.2)

with

mf
k(d) := f(xk, sk) +∇f(xk, sk)

Td+ 1
2d

TGkd, (2.15)

where we define

Gk :=

(∇xxL(xk, y
B

k) 0

0 Dk

)

, (2.16)

let yB

k be a (bounded) Lagrange multiplier vector satisfying

[yB

k]i > 0 for all i ∈ {1, 2, . . . ,M} and ‖yB

k‖2 ≤ κy for some scalar κy > 0, (2.17)

and choose Dk ≈ YkS
−1
k as a positive-definite diagonal matrix satisfying

‖Dk‖2 ≤ κD for all k ≥ 0 and some scalar κD > 0. (2.18)

Overall, our goal is to compute a tangential step tk that satisfies mf
k(nk + tk) ≤ mf

k(nk) and lies

approximately in the null space of the constraint Jacobian J(xk, sk) so as not to undo the predicted gain

in linearized feasibility provided by the normal step. This latter requirement implies that improvement

in the barrier function should be sought within the trust-region {d : ‖P−1
k d‖2 ≤ δvk}, since it is only

within this region that the linearized constraint model is believed to be trustworthy. In addition, we

assume that the barrier function model mf
k may be trusted as a faithful representation within the

trust-region {d : ‖P−1
k d‖2 ≤ δfk} for a given tangential trust-region radius δfk > 0. Consequently, we use

‖P−1
k nk‖2 ≤ κB min{δvk, δfk} with κB ∈ (0, 1) (2.19)

as a necessary condition for computing a tangential step. If (2.19) is satisfied, we require the com-

putation of a new Lagrange multiplier estimate and, potentially, a tangential step. Otherwise, we set

yk ← yk−1 and tk ← 0 since the cost of computing new multipliers and a tangential step may be

wasteful.

When (2.19) is satisfied, we seek an approximate solution of the tangential step subproblem

minimize
t=(tx,ts)

mf
k(nk + t)

subject to J(xk, sk)t = 0, ‖P−1
k (nk + t)‖2 ≤ min{δvk, δfk}, sk + ns

k + ts ≥ κfbt(sk + ns
k)

(2.20)

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 7

for some κfbt ∈ (0, 1). Observing the change of variables tP = P−1
k t, this subproblem is equivalent to

minimize
tP=(tPx,tPs)

mf
k(nk + Pkt

P)

subject to J(xk, sk)Pkt
P = 0, ‖P−1

k nk + tP‖2 ≤ min{δvk, δfk}, tPs ≥ (κfbt − 1)(e+ S−1
k ns

k).

To define an appropriate Cauchy point, we first compute approximate least-squares multipliers corre-

sponding to the scaled subproblem at tP = 0, i.e., we compute yk as an approximate solution of

minimize
y∈RM

mL
k (y), where mL

k (y) :=
1
2‖Pk(∇mf

k(nk) + J(xk, sk)
T y)‖22. (2.21)

Scaling the resulting (approximate) projected gradient back into the original space, we obtain the

(approximate) oblique projected gradient

rk := rk(yk), where rk(y) := P 2
k

(

∇mf
k(nk) + J(xk, sk)

T y
)

, (2.22)

and the related f -criticality measures

πf
k := πf

k (yk), where πf
k (y) := ‖Pk

(

∇mf
k(nk) + J(xk, sk)

Ty
)

‖2, (2.23)

and

χf
k := χf

k(yk) ≡
∇mf

k(nk)
Trk

πf
k

, where χf
k(y) :=

∇mf
k(nk)

Trk(y)

πf
k (y)

, (2.24)

associated with minimizing the barrier function. In this computation, we require that yk and the

resulting rk, π
f
k , and χf

k satisfy at least one of the following three sets of conditions:

πf
k ≤ ǫπ and vk ≤ ǫv; (2.25a)

πf
k ≤ ωt

(

πv
k

)

; (2.25b)

χf
k ≥ κχπ

f
k . (2.25c)

Here, {ǫπ, ǫv} > 0 and {κχ, κnr} ⊂ (0, 1) are constants and ωt is a forcing function. For technical reasons

(in the proof of Lemma 2.6(vii)), we require the functions ωn and ωt (see (2.8) and (2.25b)) satisfy

ωt(ωn(τ)) ≤ κωτ for all τ ≥ 0 and for some κω ∈ (0, 1). (2.26)

The presence of Pk in (2.21) forces components of the approximate projected gradient in (2.22) to

be large when the corresponding components of sk are small. Thus the scaling matrix helps prevent

slack variables from approaching zero, just as it did in the formulation of the normal step subproblem

(2.5). Lemma 2.10 shows that we can always satisfy one of the three sets of conditions in (2.25), and

thus this strategy for computing yk (and the related quantities rk, π
f
k , and χf

k) is well-posed.

If (2.25a) is satisfied, then (xk, sk, yk) is an approximate first-order KKT point for the barrier

subproblem for the tolerances {ǫπ, ǫv} > 0, so we terminate the algorithm. However, if (2.25a) is

not satisfied, but (2.25b) holds, then the f -criticality measure πf
k is insubstantial compared to the v-

criticality measure πv
k. In this case, the computation of a tangential step is skipped, i.e., we simply set

tk ← 0. Otherwise, when (2.25a) and (2.25b) do not hold (and necessarily (2.25c) holds), we proceed

to compute a tangential step. In this case, it follows from the definition (2.24), the condition (2.25c)

and the fact that πf
k > 0 (since otherwise (2.25b) would have held) that rk is a direction of strict ascent

for mf
k(·) at nk. This property allows us to compute a tangential step tk satisfying one of two sets of

conditions as outlined in the following two subsections. Our choice of which set of conditions to satisfy

depends on whether a normal step is computed or not. Specifically, if nk 6= 0, then we require the

computation of what we call a relaxed SQP tangential step. Otherwise, if nk = 0, we are still free to

8 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

attempt to compute a relaxed SQP tangential step, but we may instead compute what we call a very

relaxed SQP tangential step. In such a case, this latter option may be preferable as it involves a weaker

restriction on linearized infeasibility of the step.

2.3.1 A relaxed SQP tangential step

Given constants κfbt ∈ (0, 1) and κtg, a relaxed SQP tangential step is defined as follows.

Definition 2.1 (Relaxed SQP tangential step). Define the Cauchy point

tCk := tCk(α
C

T
), where tCk(α) :=

(

tCk
x(α)

tCk
s(α)

)

:= −α
(

rxk
rsk

)

= −αrk (2.27)

and αC

T
is the minimizer of

minimize
α≥0

mf
k

(

nk + tCk(α)
)

subject to ‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ min{δvk, δfk}, sk + ns
k + tCk

s(α) ≥ κfbt(sk + ns
k).

(2.28)

Then, tk is a relaxed SQP tangential step if

∆mf,t
k := mf

k(nk)−mf
k(nk + tk) ≥ mf

k(nk)−mf
k(nk + tCk), (2.29a)

sk + ns
k + tsk ≥ κfbt(sk + ns

k), (2.29b)

‖P−1
k (nk + tk)‖2 ≤ min{δvk, δfk}, and (2.29c)

mv
k(nk + tk) ≤ κtgm

v
k(0) + (1 − κtg)m

v
k(nk). (2.29d)

Condition (2.29a) ensures that the model of the barrier function is decreased at least as much as by

the Cauchy point tCk , (2.29b) is a fraction-to-the-boundary constraint, (2.29c) is a trust-region constraint,

while (2.29d) is a relaxation of the traditional SQP constraint that c(xk, sk) + J(xk, sk)(nk + tk) = 0

and ensures that the linearized constraint-infeasibility contracts.

If a relaxed SQP tangential step satisfying (2.29) is computed, we must evaluate its usefulness in

the sense that we must ensure that a relatively large tangential step results in a sufficient decrease in

the model mf
k of the barrier function. With this in mind, we check whether the conditions

‖P−1
k tk‖2 > κVS‖P−1

k nk‖2 for some κVS > 1 (2.30)

and

∆mf,d
k := ∆mf,n

k +∆mf,t
k ≥ κδ∆mf,t

k for some κδ ∈ (0, 1) with ∆mf,n
k := mf

k(0)−mf
k(nk) (2.31)

are satisfied. The inequality (2.31) indicates that the predicted decrease in the barrier function obtained

from the tangential step is substantial when compared to the possible increase resulting from the normal

step. If the step tk satisfies (2.30) but violates (2.31), it does not serve its role so we reset it to zero.

2.3.2 A very relaxed SQP tangential step

Condition (2.29) may be too restrictive in certain cases. Specifically, if vk = 0, then the algorithm

will set nk = 0, from which it follows that (2.29d) requires tk to be in the null space of J(xk, sk).

This is an unreasonable requirement in matrix-free settings; indeed (2.29d) may be unreasonable in

any situation when nk = 0. Thus, to avoid such a requirement, we allow for the computation of an

alternative tangential step. Given the constant κfbt ∈ (0, 1) employed in (2.29b), and constants κv > 1

and κtt ∈ (κvv, 1) (with κvv ∈ (0, 1) defined for (2.8)), the salient feature of our alternative is that it

involves a relaxed condition on the linearized infeasibility of the step. We emphasize that we are only

allowed to compute a tangential step of this type when nk = 0.

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 9

Definition 2.2 (Very relaxed SQP tangential step). Define the Cauchy point

tCk = tCk(α
C

T
), where tCk(α) :=

(

tCk
x(α)

tCk
s(α)

)

:= −α
(

rxk
rsk

)

= −αrk (2.32)

and αC

T
is the minimizer of

minimize
α≥0

mf
k

(

nk + tCk(α)
)

subject to ‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ min{δvk, δfk ,
√
κvvmax

k }, sk + ns
k + tCk

s(α) ≥ κfbt(sk + ns
k).

(2.33)

Then, tk is a very relaxed SQP tangential step if

∆mf,t
k := mf

k(nk)−mf
k(nk + tk) ≥ mf

k(nk)−mf
k(nk + tCk), (2.34a)

sk + ns
k + tsk ≥ κfbt(sk + ns

k), (2.34b)

‖P−1
k (nk + tk)‖2 ≤ min{δvk, δfk ,

√

κvvmax

k }, and (2.34c)

mv
k(nk + tk) ≤ κttv

max

k . (2.34d)

Conditions (2.34a)–(2.34c) resemble and play the same role as conditions (2.29a)–(2.29c). However,

we emphasize that since the Cauchy point defined by (2.32)–(2.33) involves a potentially smaller trust-

region radius than that defined in (2.28), the bound imposed in (2.34a) may be different from that

imposed in (2.29a), and this difference in the trust-region radii is matched in (2.34c) (c.f., (2.29c)). The

name “very relaxed SQP tangential step” has been chosen because of condition (2.34d), that merely

requires that the predicted constraint violation be sufficiently less than a fraction of the upper bound

vmax

k rather than a fraction of the current violation (c.f., (2.29d)). In fact, the smaller trust-region radii

in (2.33) and (2.34c) (as compared to those in (2.28) and (2.29c)) have been chosen to compensate for

this relaxation.

2.4 Iteration type, step acceptance, and updating strategy

As in other trust-region methods, once we have computed the trial step dk := nk + tk and the trial

point

(x+
k , s

+
k) := (xk, sk) + dk,

we are left with the task of accepting or rejecting them. Our proposal for making this choice is based

on the distinction between y-iterations, f -iterations and v-iterations in the spirit of [10–12]. This

characterization is made based on model values computed with the trial step, and the type of iteration

influences the updates performed for various algorithmic quantities.

2.4.1 A y-iteration

A y-iteration is any satisfying the following definition.

Definition 2.3 (y-iteration). The kth iteration is a y-iteration if dk = 0.

Note that a y-iteration will occur when nk and tk are both set to zero, but might also occur if

each component is nonzero, but they sum to zero. In either case, during a y-iteration, we perform the

updates

(xk+1, sk+1)← (xk, sk), δfk+1 ← δfk , δvk+1 ← δvk , and vmax
k+1 ← vmax

k . (2.35)

Since a y-iteration is defined by a zero trial step, the only computation of interest is that of a new

vector of Lagrange multiplier estimates. Therefore, the updates in (2.35) leaves the trust-region radii

and bound on the maximum allowed infeasibility unchanged for the subsequent iteration.

10 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

2.4.2 An f-iteration

The primary goal of an f -iteration is to reduce the barrier function.

Definition 2.4 (f -iteration). The kth iteration is an f -iteration if tk 6= 0, (2.31) holds, and

v(x+
k , s

+
k) ≤ vmax

k . (2.36)

Condition (2.36) ensures that, at the trial point (x+
k , s

+
k), the constraint violation remains within

the upper bound imposed by vmax

k . Combining this with the fact that (2.31) holds for relaxed and very

relaxed SQP tangential steps, it follows that the main achievement is a predicted decrease in the value

of the barrier function (1.2).

Our updating strategy for f -iterations is based on the quantity

ρfk :=
f(xk, sk)− f(x+

k , s
+
k)

∆mf,d
k

, (2.37)

that measures the ratio of actual-to-predicted decrease in the barrier function. Specifically, if ρfk ≥ η1,

we set

(xk+1, sk+1)← (x+
k , s

+
k) (2.38)

[sk+1]i ←
{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(2.39)

δfk+1

{

∈ [δfk ,∞) if ρfk ≥ η2,

∈ [γ2δ
f
k , δ

f
k] otherwise,

(2.40)

δvk+1 ≥ max{κδvvπ
v(xk+1, sk+1), δ

v
k} (2.41)

Otherwise (i.e., if ρfk < η1), we set

(xk+1, sk+1)← (xk, sk), (2.42)

δfk+1 ∈ [γ1δ
f
k , γ2δ

f
k], (2.43)

δvk+1 ← δvk. (2.44)

In both cases, we set

vmax

k+1 ← vmax

k . (2.45)

In (2.38)–(2.45), the constants should be chosen to satisfy 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1, and

κδvv > 0. In this scenario, we accept the trial point (x+
k , s

+
k) if the achieved decrease in the barrier

function is comparable to the predicted decrease, and reject it otherwise. The radius δfk+1 is set by

(2.40), represents a typical trust-region updating strategy. In addition, the value of the normal step

trust-region radius is possibly increased, and the infeasibility limit is left unchanged since the success

or failure of an f -iteration depends only on whether the barrier function was substantially reduced.

2.4.3 A v-iteration

When the conditions that define a y- and an f -iteration are not satisfied, the iteration type defaults to

that of a v-iteration. As we shall see in the convergence analysis of our algorithm, the focus of such an

iteration is a reduction in constraint violation.

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 11

Definition 2.5 (v-iteration). The kth iteration is a v-iteration if it is not a y- or an f -iteration, i.e.,

if dk 6= 0 and either tk = 0, (2.31) does not hold, or (2.36) does not hold.

A measure of decrease one might expect in v from the trial step dk is

∆mv,d
k := mv

k(0)−mv
k(dk). (2.46)

Consequently, our updating strategy in a v-iteration is based on the conditions

nk 6= 0 and ∆mv,d
k ≥ κcd∆mv,n

k (2.47)

for some constant κcd ∈ (0, 1− κtg] ⊂ (0, 1) with κtg defined in (2.29d), and the quantity

ρvk :=
vk − v(x+

k , s
+
k)

∆mv,d
k

, (2.48)

that measures the ratio of actual-to-predicted decrease in the constraint violation. Using these condi-

tions and quantities, if (2.47) holds and ρvk ≥ η1, we set

(xk+1, sk+1)← (x+
k , s

+
k) (2.49)

[sk+1]i ←
{

[sk+1]i if [c(xk+1, sk+1)]i ≥ 0,

−[c(xk+1)]i otherwise,
(2.50)

δvk+1

{

≥ max{κδvvπ
v(xk+1, sk+1), δ

v
k} if ρvk ≥ η2,

= max{κδvvπ
v(xk+1, sk+1), δ

v
k} otherwise,

(2.51)

vmax

k+1 ← max{κt1v
max

k , v(xk+1, sk+1) + κt2

(

vk − v(xk+1, sk+1)
)

}. (2.52)

Otherwise (i.e., if (2.47) does not hold or ρvk < η1), we set

(xk+1, sk+1)← (xk, sk), (2.53)

δvk+1 ∈ [γ1δ
v
k , γ2δ

v
k], (2.54)

vmax

k+1 ← vmax

k . (2.55)

In both cases, we set

δfk+1 ← δfk . (2.56)

In (2.49)–(2.56), the constants should be chosen to satisfy {κt1, κt2} ⊂ (0, 1) and κδvv defined in (2.41).

In this manner, the trial point is accepted if the normal step is nonzero and the improvement in linearized

feasibility is comparable to its predicted value, which is itself comparable to the improvement yielded

by the normal step. The radius δvk+1 is set by a standard trust-region radius updating strategy, but

the radius δfk+1 is left unchanged. Finally, we decrease the upper bound vmax

k when the trial step is

accepted. It will be shown in our convergence analysis that the amount that this bound is decreased is

nontrivial, but it is modest enough so that the funnel does not contract too quickly.

2.5 The trust-funnel algorithm

We formally state our trust-funnel method as Algorithm 1 on page 14. For convenience in our conver-

gence analysis, we define several sets that classify each iteration, as well as the types of computations

12 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Algorithm 1 Trust-funnel algorithm for minimizing the barrier problem (1.1).

1: Input: (x0, s0, y−1, µ) and (ǫπ, ǫv) with (s0, y−1, µ) > 0 and (ǫπ, ǫv) ≥ 0, respectively.

2: Choose {δf0 , δv0 , κca, κy, κD, κδvv} ⊂ (0,∞), {κcr, κVS , κv} ⊂ (1,∞), 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 <
1, κn ≥ 1, {κtt, κδ, κtg, κω, κnr, κχ, κB, κvv, κfbn, κfbt, κt1, κt2} ⊂ (0, 1), and κcd ∈ (0, 1− κtg].

3: Perform a slack reset to s0 as given by (2.3).

4: Set vmax

0 = max[κca, κcrv0] and , πf
−1 = 0.

5: for k = 0, 1, . . . do
6: Compute πv

k from (2.7).
7: if πv

k = 0 and vk > 0 then
8: Return the infeasible stationary point (xk, sk).

9: if (2.8) holds, or at least πv
k > 0 then

10: Compute nk satisfying (2.11) and (2.12). [k ∈ N]
11: else
12: Set nk ← 0.

13: Compute ∆mv,n
k from (2.12).

14: Select a vector yB

k satisfying (2.17) and define Gk by (2.16).
15: if (2.19) holds then

16: Compute yk, rk, π
f
k , and χf

k from (2.21)–(2.24) to satisfy (2.25a), (2.25b), or (2.25c).
17: if (2.25a) holds then
18: Return the (approximate) first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

19: else if (2.25b) holds then
20: Set tk ← 0.
21: else
22: if k ∈ N then
23: Compute tk so that (2.29) is satisfied. [k ∈ T]
24: else
25: Compute tk so that either (2.29) or (2.34) is satisfied. [k ∈ T]
26: if (2.29) holds then
27: Add iteration k to the set TD. [k ∈ TD]
28: if (2.30) is satisfied but (2.31) fails then
29: Set tk ← 0. [k ∈ T0]
30: else
31: Set yk ← yk−1 and tk ← 0, and then set rk, π

f
k , and χf

k by (2.22)–(2.24).
32: if (2.25a) holds then
33: Return the (approximate) first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

34: if (2.29d) holds then
35: Add iteration k to the set D. [k ∈ D]
36: Set the trial step dk ← nk + tk and trial iterate (x+

k , s
+
k)← (xk, sk) + dk.

37: if dk = 0 then
38: Perform the y-iteration updates given by (2.35). [k ∈ Y]
39: else if tk 6= 0 and both (2.31) and (2.36) hold then
40: Perform the f -iteration updates given by (2.38)–(2.45). [k ∈ F]
41: else
42: Perform the v-iteration updates given by (2.49)–(2.56). [k ∈ V]

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 13

performed in them. The first group of sets distinguishes between y-, f -, and v-iterations, respectively:

Y := {k ∈ N : dk = 0}, F := {k ∈ N : tk 6= 0 and (2.31) and (2.36) hold}, and V := N \ (Y ∪ F).

It is easy to see that these sets are mutually exclusive and exhaustive.

Our next collection of index sets distinguishes iterations for which the normal and/or tangential

steps satisfy various conditions, and whether the tangential step was reset to zero:

N := {k ∈ N : nk was computed to satisfy (2.11) and (2.12)};
T := {k ∈ N : tk was computed to satisfy either (2.29) or (2.34)};
TD := {k ∈ T : the computed tk satisfied (2.29)};
T0 := {k ∈ TD : the computed tk satisfied (2.29) and (2.30), but not (2.31), and was reset to zero}.

Furthermore the set of iterations for which dk satisfies the linearized constraint contraction condi-

tion (2.29d) plays an important role in our analysis. Thus, in addition to the sets above, we define

D := {k ∈ N : the step dk = nk + tk satisfies (2.29d)}.

Our last collection of sets distinguishes iterations that produce a change in the primal space. In

particular, if ρfk ≥ η1 holds during an f -iteration, or if (2.47) holds and ρvk ≥ η1 during a v-iteration,

then iteration k is called successful. The following sets capture these types of iterations:

Sf := {k ∈ F : ρfk ≥ η1}; Sv := {k ∈ V : (2.47) holds and ρvk ≥ η1}; S := Sf ∪ Sv.

When a tangential step is computed, the size of the step is restricted by a trust-region radius (see

(2.29c) and (2.34c)). For convenience, we capture these radii by defining δt−1 := 1 and, for k ≥ 0,

δtk :=

δtk−1 if k /∈ T ,
min{δvk, δfk} if k ∈ T ∩ TD,
min{δvk, δfk ,

√
κvvmax

k } if k ∈ T \ TD.
(2.57)

As a guide to salient properties of the various types of iterations we have defined, we provide

the following lemma regarding basic facts that may be deduced from the design of our algorithm.

Unless stated otherwise, reference to the tangential step tk corresponds to the value used in Step 36

of Algorithm 1, i.e., the value after the possible reset in Step 29. For the purposes of this lemma, we

assume that if the algorithm does not terminate during iteration k, then all steps of the algorithm

during the iteration are well-defined. We prove this fact formally in the next subsection.

Lemma 2.6. If Algorithm 1 does not terminate during the kth iteration, then the following hold.

(i) If k ∈ N , then πv
k > 0, mv

k(0)−mv
k(n

C

k) > 0, mv
k(0)−mv

k(nk) > 0, and nk 6= 0.

(ii) If nk 6= 0, then k ∈ N .

(iii) If k ∈ T , then χf
k ≥ κχπ

f
k > 0 and mf

k(nk)−mf
k(nk + tCk) > 0.

(iv) If k ∈ T \ T0, then tk 6= 0 and mf
k(nk)−mf

k(nk + tk) > 0, while if k ∈ T0, then tk = 0 and (2.19)

holds.

(v) If tk 6= 0, then k ∈ T \ T0.

(vi) k ∈ Y if and only if nk = tk = 0.

(vii) If k ∈ Y, then k ∈ D and πf
k ≤ κωπ

f
k−1 with κω ∈ (0, 1) defined as in (2.26).

14 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

(viii) If k /∈ D, then k ∈ T \ TD and (2.34) holds.

(ix) If k ∈ D, then the inequality in (2.47) holds.

(x) TD ⊆ D.

(xi) If k ∈ T \ TD, then nk = 0 and k /∈ N .

Proof. To prove part (i), let k ∈ N , in which case we have that the conditions in Step 9 held true.

This could occur only if πv
k > 0, or if in (2.8) we had πv

k > ωn(π
f
k−1) ≥ 0 or vk ≥ κvvv

max

k . Thus, to

prove that k ∈ N implies πv
k > 0, all that remains is to investigate the case when vk ≥ κvvv

max

k . Since

vmax

k > 0 by construction, this inequality implies that vk > 0. If πv
k = 0, then the algorithm would have

terminated in Step 8 with an infeasible stationary point. Thus, we may again conclude that πv
k > 0,

which establishes this strict inequality for all k ∈ N . Since πv
k > 0, it follows from the definition of

Pk and (2.7) that n = −P 2
kJ(xk, sk)

T c(xk, sk) is a direction of strict decrease for mv
k(n), from which it

follows by (2.9) that mv
k(0)−mv

k(n
C

k) > 0. In turn, (2.12) implies the remainder of part (i).

Part (ii) follows since if nk 6= 0, then the conditions in Step 9 must have held (or else the algorithm

would have set nk ← 0), in which case k ∈ N .

Next, we prove part (iii). If k ∈ T , then it follows from Steps 16–25 of the algorithm that after

the computation of yk (and all dependent quantities) both (2.25a) and (2.25b) did not hold (implying

that πf
k > 0), but (2.25c) did. Combining (2.25c) and the fact that πf

k > 0 shows that ∇mf
k(nk)

Trk ≥
κχ(π

f
k)

2 > 0, so that rk is a direction of strict ascent formf
k at nk. Combining this fact with (2.27)/(2.32)

and (2.28)/(2.33) yields mf
k(nk)−mf

k(nk + tCk) > 0, as desired.

Building on the proof of part (iii), we next prove part (iv). If we have k ∈ T \T0, then we may combine

mf
k(nk)−mf

k(nk + tCk) > 0 with (2.29a)/(2.34a) to conclude that tk 6= 0 and mf
k(nk)−mf

k(nk + tk) > 0,

as desired. (Since k /∈ T0, this tangential step was not reset to zero, so we have maintained tk 6= 0 in

Step 36.) Finally, if k ∈ T0, it follows from Steps 15–29 that (2.19) holds, but that the algorithm reset

tk ← 0.

To prove part (v), we first note that if tk 6= 0, then a tangential step was computed and thus k ∈ T .
Moreover, since tk 6= 0, we know that k /∈ T0, that means k ∈ T \ T0, as desired.

We now prove part (vi). If nk = tk = 0, then dk = 0 and we have k ∈ Y by the definition of Y. Now,
in order to derive a contradiction, suppose that k ∈ Y (so that dk = nk + tk = 0), but suppose that

nk 6= 0 and/or tk 6= 0. Indeed, since nk + tk = 0, we must have nk 6= 0 and tk 6= 0. It then follows from

parts (ii) and (v) that k ∈ Y ∩N ∩ (T \T0). Consequently, from part (i) we have that mv
k(0) > mv

k(nk).

This fact and the equation nk + tk = 0 imply that (2.29d) can not be satisfied. However, according to

Steps 22–23 of the algorithm, since k ∈ N we compute tk to satisfy (2.29), which is a contradiction.

To prove part (vii), suppose k ∈ Y. It follows from part (vi) that nk = tk = 0 so that (2.29d) holds

(this means k ∈ D), and then from part (i) that k /∈ N . Hence, from Step 9 of the algorithm, it follows

that (2.8) must be violated. Moreover, since nk = 0, we also know that (2.19) holds and thus an oblique

projected gradient rk was computed (as stipulated in Step 16) to satisfy at least one of (2.25a), (2.25b)

and (2.25c). In fact, under the conditions of this lemma, it follows that (2.25a) must not have held, so

we know that either (2.25b) or (2.25c) is satisfied as a result of this calculation. Suppose that (2.25c)

holds so that the algorithm would have proceeded to compute a tangential step and k ∈ T . If k /∈ T0,
then it would follow from part (iv) that tk 6= 0, which is a contradiction. Thus, we must have k ∈ T0,
i.e., we reset tk ← 0 because the computed tangential step satisfied (2.30), but not (2.31). This is a

contradiction because (2.31) would have been satisfied trivially since nk = 0. Thus (2.25c) can not hold,

which implies that (2.25b) must hold. Since we have shown that (2.25b) holds and that (2.8) does not

hold, we conclude that πf
k ≤ ωt(π

v
k) ≤ ωt(ωn(π

f
k−1)) ≤ κωπ

f
k−1, where we have used the monotonicity

of ωt and (2.26).

To establish part (viii), let k /∈ D. It follows from part (vii) that k /∈ Y. Now, suppose that tk = 0.

Combining this with k /∈ Y implies from (vi) that nk 6= 0, which may then be combined with (ii) to

deduce that k ∈ N . This fact along with (i) and the fact that tk = 0 implies that (2.29d) holds, and

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 15

hence k ∈ D, which is a contradiction. Therefore, we must have tk 6= 0, which from (v) implies that

k ∈ T \ T0 and that the computed tangential step was not reset to zero. Thus, tk satisfies either (2.29)

or (2.34). Recalling that k /∈ D so that (2.29d) is not satisfied, we conclude that k /∈ TD and (2.34)

must be satisfied.

To prove part (ix), suppose k ∈ D so that (2.29d) holds. Then,

∆mv,d
k = mv

k(0)−mv
k(dk)

≥ mv
k(0)− κtgm

v
k(0)− (1− κtg)m

v
k(nk)

= (1− κtg) (m
v
k(0)−mv

k(nk)) = (1 − κtg)∆mv,n
k , (2.58)

which, since κcd ∈ (0, 1− κtg], means that the inequality in (2.47) holds, as desired.

To prove (x), let k ∈ TD. It follows that a relaxed SQP tangential step tk was computed to

satisfy (2.29). Thus, if tk is not reset to zero, we know that (2.29d) holds. However, if tk was reset to

zero, then (2.29d) holds trivially when nk = 0 and from parts (i) and (ii) when nk 6= 0. We have shown

in all cases that (2.29d) holds and therefore k ∈ D.
Finally, to prove (xi), let k ∈ T \TD. By lines 22–28 of Algorithm 1, it follows that (2.34) holds and

k /∈ N for all k ∈ T \ TD. It then follows from part (ii) that nk = 0.

2.6 Well-posedness

The purpose of this section is to prove that Algorithm 1 is well-posed in the sense that if iteration k is

reached, then in a reasonable implementation of the algorithm, all computations within iteration k will

terminate finitely. Our first result shows important consequences of the slack reset procedure.

Lemma 2.7. The slack reset (2.39) and (2.50) in Steps 40 and 42 yields sk such that (xk, sk) satisfies

sk > 0 and c(xk, sk) ≥ 0.

Proof. The fact that sk > 0 follows from the choice s0 > 0, the fact that the slack reset (2.3) only

possibly increases the slack variables (as shown in (2.4)), and the fact that the fraction-to-the-boundary

rules in (2.11) and (2.29b)/(2.34b) hold when normal and tangential steps are computed.

We now prove that c(xk, sk) ≥ 0 holds. Prior to the slack reset performed in Steps 40 and 42,

if [c(xk, sk)]i ≥ 0, then (2.3) leaves [sk]i unchanged so that [c(xk, sk)]i ≥ 0 still holds. Otherwise, if

[c(xk, sk)]i < 0, then after the slack reset (2.3) we have that [c(xk) + sk]i = 0, which completes the

proof.

Next, we prove that the Cauchy step for the normal step subproblem is well-defined.

Lemma 2.8. If k ∈ N , then the Cauchy step nC

k defined by (2.9)–(2.10) is computed and satisfies

mv
k(0)−mv

k(n
C

k) ≥ κcn

k πv
k min {πv

k , δ
v
k, 1− κfbn} > 0, (2.59)

where

κcn

k :=
2

(

1 + ‖J(xk, sk)Pk‖22
) ∈ (0, 2].

Proof. Since k ∈ N , we may observe from part (i) of Lemma 2.6 that πv
k > 0. We now show that nC

k(α)

(recall (2.9)) is feasible for (2.10) during any iteration k ∈ N when

0 ≤ α ≤ 1

πv
k

min {δvk, κnπ
v
k , (1− κfbn)} =: αB. (2.60)

Indeed, consider any α ∈ [0, αB]. It then follows from the definitions of nC

k(α) and πv
k that

‖P−1
k nC

k(α)‖2 = ‖αPkJ(xk, sk)
Tc(xk, sk)‖2 = απv

k ≤ min{δvk, κnπ
v
k}.

16 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

It also follows from the definitions of nC

k
s(α) and Lemma 2.7 that

[−nC

k
s(α)]i = α[Sk]

2
ii[c(xk, sk)]i ≤ α[sk]i‖PkJ(xk, sk)

Tc(xk, sk)‖2
= απv

k [sk]i ≤ (1− κfbn)[sk]i for i = 1, 2, . . .M ,

which implies that sk + nC

k
s(α) ≥ κfbnsk. Overall, nC

k(α) is feasible for problem (2.5) for all α ∈ [0, αB].

Now, observe that the minimizer αC

N
defined by (2.10) yields mv

k(n
C

k) = mv
k(n

C

k(α
C

N
)) ≤ mv

k(n
C

k(α))

for all α ∈ [0, αB]. It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := 2‖J(xk, sk)P
2
k J(xk, sk)

Tc(xk, sk)‖22, “b” := 2(πv
k)

2 > 0,

the fact that

“a” ≤ 2‖J(xk, sk)Pk‖22‖PkJ(xk, sk)
Tc(xk, sk)‖22 = 2‖J(xk, sk)Pk‖22(πv

k)
2,

and the definition of πv
k that

1
2m

v
k(0)− 1

2m
v
k(n

C

k) ≥
“b”

2
min

{

“b”

“a”
, “t”

}

≥ πv
k)

2 min

{

(πv
k)

2

‖J(xk, sk)Pk‖22(πv
k)

2
,
δvk
πv
k

, κn,
1− κfbn

πv
k

}

= πv
k min

{

πv
k

1 + ‖J(xk, sk)Pk‖22
, δvk, κnπ

v
k , 1− κfbn

}

> 0.

This leads to the desired result since 1 + ‖J(xk, sk)Pk‖22 ≥ 1 and κn ≥ 1.

Next we establish the remaining claims made in (2.2). (We remark that certain bounds established

in the proof of this lemma are specified in more detail in Lemma 3.12.)

Lemma 2.9. The slack reset (2.39) and (2.50) in Steps 40 and 42 yields sk such that the pair (xk, sk)

satisfies vk ≤ vmax

k and, at the end of iteration k, we have vmax

k+1 ≤ vmax

k .

Proof. Our proof is by induction. We have v0 ≤ vmax

0 by the initialization of vmax

0 . So now suppose

that vi ≤ vmax

i for i = 0, . . . , k − 1, and in particular that vk−1 ≤ vmax

k−1 at the start of the k − 1st

iteration. The slack reset in Steps 40 and 42 cannot increase the constraint violation (recall (2.4)), so

that vk−1 ≤ vmax

k−1 holds following slack reset. It is also clear from (2.35), (2.36) and (2.36) that for

k − 1 ∈ Y ∪ F the inequality vk ≤ vmax

k continues to hold at the start of iteration k. Hence, it remains

to consider k − 1 ∈ V . If ρvk−1 < η1 or (2.47) does not hold (with k replaced by k − 1), then vk ≤ vmax

k

holds at the start of iteration k as a result of (2.53) and (2.55). Otherwise, it follows from Lemma 2.8,

(2.12) and (2.47) that ∆mv,d
k−1 > 0 and thus vk < vk−1 from ρvk−1 ≥ η1, (2.48) and (2.49). This implies

that

vk < vk + κt2

(

vk−1 − vk) < vk−1 ≤ vmax

k−1 (2.61)

as κt2 ∈ (0, 1), and hence from (2.52) that vmax

k ≤ vmax

k−1. Combining (2.52) and (2.61), we have that

vmax

k ≥ vk + κt2

(

vk−1 − vk) > vk. Thus in all cases vk ≤ vmax

k , and the induction is complete.

To establish that vmax

k+1 ≤ vmax

k , note that if k /∈ V , then vmax

k+1 ← vmax

k , so all that remains is to consider

k ∈ V . Observing (2.52), we see again that vmax

k+1 ← vmax

k if either (2.47) is violated or ρvk < η1. By

contrast, if (2.47) holds and ρvk ≥ η1, then we must have nk 6= 0 and from part (ii) of Lemma 2.6 that

k ∈ N . Moreover, it follows from (2.49), (2.48), (2.47), (2.12) and Lemma 2.8 as above that vk+1 < vk,

and then, since both terms in the max in (2.52) are smaller than vk ≤ vmax

k , that 0 < vmax

k+1 < vmax

k as

desired.

Next, we show that the computation of the least-squares multipliers yk—along with the accompa-

nying quantities rk, π
f
k , and χf

k—is well-defined. We prove this result under the following reasonable

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 17

assumption.

Assumption 2.1. If (2.19) holds and the iterative solver employed to solve (2.21) is allowed to run

for an infinite number of iterations, then it produces a bounded sequence {y(i)} with y(0) = 0 such that

lim
i→∞

∇mL
k (y

(i)) = 0. (2.62)

Lemma 2.10. If (2.19) holds and {y(i)} is produced by an iterative solver employed to solve (2.21)

that satisfies Assumption 2.1, then for some (finite) index i the vector yk ← y(i) yields rk, π
f
k , and χf

k

satisfying (2.25a), (2.25b), or (2.25c).

Proof. For the purpose of deriving a contradiction, suppose that the iterative solver applied to solve

(2.21) runs for an infinite number of iterations without satisfying (2.25a), (2.25b), or (2.25c). Under

Assumption 2.1, the sequence {y(i)} is bounded, so with (2.62) we have that it has a limit point y∞

satisfying

0 = ∇mL
k (y

∞) = J(xk, sk)rk(y
∞). (2.63)

Suppose that πf
k (y

∞) = 0. If vk ≤ ǫv, then this implies that there exists some smallest index i such

that with yk ← y(i) condition (2.25a) will be satisfied, which is a contradiction. Otherwise, if vk > ǫv,

then we must have πv
k > 0 or else Algorithm 1 would have terminated in Step 8. It then follows from

πv
k > 0 and πf

k (y
∞) = 0 that there exists a smallest index i such that with yk ← y(i) condition (2.25b)

will be satisfied, which is a contradiction. We have shown that πf
k (y

∞) > 0, which combined with (2.63)

and

∇mf
k(nk) = P−2

k rk(y
∞)− J(xk, sk)

Ty∞

shows that

χf
k(y

∞) =
rk(y

∞)T∇mf
k(nk)

πf
k (y

∞)
=

rk(y
∞)T (P−2

k rk(y
∞)− J(xk, sk)

Ty∞)

πf
k (y

∞)
=

(πf
k (y

∞))2

πf
k (y

∞)
= πf

k (y
∞).

(2.64)

If ∇mL
k (0) = 0, then we have with (2.64) that yk ← y(0) = 0 satisfies (2.25c), which is a contradiction.

By contrast, if ∇mL
k (0) 6= 0, then since κχ ∈ (0, 1) we have from (2.64) and (2.62) that there is a smallest

index i for which yk ← y(i) satisfies condition (2.25c), which is another contradiction.

We have arrived at a contradiction in all cases, so the iterative solver must terminate finitely.

We now give a bound on the decrease in our barrier model provided by the Cauchy step tCk .

Lemma 2.11. If k ∈ T , then the Cauchy step tCk defined by (2.27)–(2.28) or (2.32)–(2.33) is computed

and satisfies

mf
k(nk)−mf

k(nk + tCk) ≥ κct

k π
f
k min

{

πf
k , (1− κB)δ

t
k, (1− κfbt)κfbn

}

> 0,

where

κct

k :=
κ2

χ

2(1 + ‖PkGkPk‖2)
∈ (0, 1/2).

Proof. We first consider the case when k ∈ TD, i.e., when the Cauchy step tCk is computed from (2.27)–

(2.28) with the trust region radius δtk = min{δvk, δfk} (see (2.57)). It follows from part (iii) of Lemma 2.6

that χf
k ≥ κχπ

f
k > 0 so that ∇mf

k(nk)
Trk ≥ κχ(π

f
k)

2 > 0. We now show that tCk(α) (recall (2.27)) is

feasible for (2.28) during iteration k ∈ TD when

0 ≤ α ≤ 1

πf
k

min
{

(1− κB)δ
t
k, (1− κfbt)κfbn

}

=: αB.

18 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Indeed, consider any α ∈ [0, αB]. It follows from the definitions of tCk(α), rk, and αB that

‖P−1
k tCk(α)‖2 = ‖P−1

k αrk‖2 = α‖P−1
k rk‖2 = απf

k ≤ (1 − κB)δ
t
k. (2.65)

Using the triangle inequality, (2.19) (which must hold since k ∈ TD ⊆ T), (2.57), and (2.65), we then

have

‖P−1
k

(

nk + tCk(α)
)

‖2 ≤ ‖P−1
k nk‖2 + ‖P−1

k tCk(α)‖2 ≤ κBδ
t
k + (1− κB)δ

t
k ≤ δtk = min{δvk, δfk}, (2.66)

which shows that tCk(α) satisfies the first constraint in problem (2.28). To show that tCk
s(α) also satisfies

the second constraint in problem (2.28), first observe that if [tCk
s(α)]i = [−αrsk]i ≥ 0, then [sk + ns

k +

tCk
s(α)]i ≥ [sk + ns

k]i ≥ κfbt[sk + ns
k]i ≥ 0 since κfbt ∈ (0, 1). Thus it suffices to consider i such that

[rsk]i > 0. It follows from the definitions of αB and πf
k , (2.22), the fact that [rsk]i > 0, Lemma 2.7, and

(2.11) that

α ≤ αB ≤
(1− κfbt)κfbn

πf
k

≤ (1− κfbt)κfbn

‖S−1
k rsk‖2

≤ (1− κfbt)κfbn

|[rsk]i/[Sk]ii|
=

(1 − κfbt)κfbn[sk]i
[rsk]i

≤ (1− κfbt)[sk + ns
k]i

[rsk]i
.

Using the definition of tCk
s(α) and the previous inequality leads to

[−tCks(α)]i = α[rsk]i ≤ (1− κfbt)[sk + ns
k]i

from which we may conclude overall that [sk + ns
k + tCk

s(α)]i ≥ κfbt[sk + ns
k]i for i = 1, 2, . . . ,M . This

proves that tCk
s(α) satisfies the second constraint in problem (2.28), and completes the proof that tCk(α)

is feasible for problem (2.28) for all α ∈ [0, αB].

We now observe that the minimizer αC

T
of (2.28) yields mf

k(nk + tCk) ≡ mf
k(nk + tCk(α

C

T
)) ≤ mf

k(nk +

tCk(α)) for all α ∈ [0, αB]. We also have from the Cauchy-Schwarz and standard norm inequalities that

|rTkGkrk| =
∣

∣

∣

(

∇mf
k(nk) + J(xk, sk)

Tyk
)T
P 2
kGkP

2
k

(

∇mf
k(nk) + J(xk, sk)

Tyk
)T
∣

∣

∣ ≤ (πf
k)

2‖PkGkPk‖2.

It then follows from [3, Lemma 1] with the quantities

“t” := αB, “a” := |rTk Gkrk|, “b” := ∇mf
k(nk)

T rk > 0,

(the strict inequality was shown in the first line of this proof) that

mf
k(nk)−mf

k(nk + tCk) ≥
“b”

2
min

{

“b”

“a”
, “t”

}

≥ ∇m
f
k(nk)

Trk
2

min

{

∇mf
k(nk)

Trk

(πf
k)

2‖PkGkPk‖2
,
(1− κB)δ

t
k

πf
k

,
(1 − κfbt)κfbn

πf
k

}

=
∇mf

k(nk)
Trk

2πf
k

min

{

∇mf
k(nk)

Trk

πf
k (1 + ‖PkGkPk‖2)

, (1 − κB)δ
t
k, (1 − κfbt)κfbn

}

=
χf
k

2
min

{

χf
k

(1 + ‖PkGkPk‖2)
, (1− κB)δ

t
k, (1− κfbt)κfbn

}

≥ κ2
χ
πf
k

2(1 + ‖PkGkPk‖2)
min

{

πf
k , (1− κB)δ

t
k, (1− κfbt)κfbn

}

,

where we have used 1 + ‖PkGkPk‖2 ≥ 1 and χf
k ≥ κχπ

f
k with κχ ∈ (0, 1) for the last inequality.

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 19

The proof for the case k ∈ T \ TD is similar, but uses δtk = min{δvk, δfk ,
√
κvvmax

k }, (2.32) instead of

(2.27), (2.33) instead of (2.28), and nk = 0 (see part (xi) of Lemma 2.6) for k ∈ T \ TD.

Finally, we turn our attention to the tangential step computation. The following result shows one

way to find a tangential step tk that satisfies the required conditions described in Section 2.3.

Lemma 2.12. If (2.19) holds and {y(i)} is produced by an iterative solver employed to solve (2.21) that

satisfies Assumption 2.1, then for some (finite) index i the vector yk ← y(i) yields rk such that either

(i) the Cauchy point tCk defined by (2.27)–(2.28) satisfies (2.29), or

(ii) the Cauchy point tCk defined by (2.32)–(2.33) satisfies (2.34).

Proof. As in the proof of Lemma 2.10, in order to derive contradictions, suppose that the iterative solver

employed to solve (2.21) runs for an infinite number of iterations without yielding the desired result, in

which case we have under Assumption 2.1 that the sequence {y(i)} has a limit point y∞ satisfying (2.63).

That is, as i→∞, we have rk(y
(i))→ rk(y

∞) ∈ Null(J(xk, sk)). We introduce the notation tCr

k (i) := tCk
when tCk is the Cauchy point defined by (2.27)–(2.28) with rk = rk(y

(i)) associated with the relaxed

tangential subproblem, and tCv

k (i) := tCk when tCk is the Cauchy point defined by (2.32)–(2.33) with

rk = rk(y
(i)) associated with the very-relaxed tangential subproblem. We observe from (2.27) and (2.32),

the constraints of (2.28) and (2.33), and the fact that rk(y
∞) ∈ Null(J(xk, sk)) that there exist vectors

tCr

k (∞) and tCv

k (∞) such that tCr

k (i)→ tCr

k (∞) ∈ Null(J(xk, sk)) and tCv

k (i)→ tCv

k (∞) ∈ Null(J(xk, sk)).

By definition, the Cauchy point tCr

k (i) satisfies (2.29a)–(2.29c) for all i. Similarly, the Cauchy point

tCv

k (i) satisfies (2.34a)–(2.34c) for all i. Thus, to reach contradictions, we need only show that for

sufficiently large i either tCr

k (i) satisfies (2.29d) or tCv

k satisfies (2.34d).

Suppose that nk 6= 0, in which case part (ii) of Lemma 2.6 implies that k ∈ N . It then follows from

part (i) of Lemma 2.6 that mv
k(nk) < vk, and thus the right-hand side of (2.29d) is strictly greater than

mv
k(nk). Therefore, since tCr

k (∞) ∈ Null(J(xk, sk)), there exists some smallest index i such that tCr

k (i)

satisfies (2.29d), which is to say that statement (i) holds, which is a contradiction.

Now suppose that nk = 0, in which case part (i) of Lemma 2.6 implies that k /∈ N . By virtue

of (2.8), this must mean that vk < κvvv
max

k . It follows from the facts that nk = 0, vk < κvvv
max

k ,

κtt ∈ (κvv, 1), and tCv

k (i)→ tCv

k (∞) ∈ Null(J(xk, sk)) that t
Cv

k (i) satisfies (2.34d) for all sufficiently large

i. We have reached the contradiction that statement (ii) holds.

3 Convergence of the Trust-Funnel Algorithm for Solving the

Barrier Subproblem

Our analysis requires the following assumption that is assumed to hold for the remainder of the paper.

Assumption 3.1. The sequence of iterates {xk} is contained in a compact set.

The following is an immediate consequence of Assumptions 1.1 and 3.1.

Lemma 3.1. There exists a constant κH ≥ 1 such that, for all k and i = 1, 2, . . . ,M , we have

max {1, ‖g(xk)‖2, ‖c(xk)‖2, ‖J(xk)‖2, ‖∇xxf(xk)‖2, ‖∇xxci(xk)‖2} ≤ κH.

We may now prove that important sequences related to our method are uniformly bounded.

Lemma 3.2. There exists a constant κub ≥ κH ≥ 1 such that, for all k, we have

max
{

vk, ‖sk‖2, ‖J(xk, sk)
Tc(xk, sk)‖2, πv

k , ‖PkJ(xk, sk)
T ‖2, ‖PkGkPk‖2, ‖Pk∇f(xk, sk)‖2

}

≤ κub.

20 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Proof. The result is clearly true if the algorithm terminates finitely. Otherwise, it follows from Lemma 2.9

that vk ≤ vmax

k ≤ vmax

0 for all k, which proves that {vk} can be bounded as claimed. Combining this

with the reverse triangle inequality yields

‖sk‖2 − ‖c(xk)‖2 ≤ ‖c(xk) + sk‖2 = ‖c(xk, sk)‖2 ≤
√

vmax

0 for all k.

We may deduce from this bound and Lemma 3.1 that {‖sk‖2} can be bounded as claimed. It then

follows from the triangle inequality that

‖J(xk, sk)
Tc(xk, sk)‖2 ≤

∥

∥

∥

∥

(

J(xk)
Tc(xk, sk)

0

)∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

0

c(xk, sk)

)∥

∥

∥

∥

2

,

which may then be combined with the Cauchy Schwarz inequality, Lemma 3.1, and the boundedness of

{vk} to conclude that {‖J(xk, sk)
Tc(xk, sk)‖2} can be bounded as claimed. The boundedness of {πv

k} fol-
lows from that of {‖sk‖2} and {‖J(xk, sk)

Tc(xk, sk)‖2}. It then follows from the boundedness of {‖sk‖2}
and Lemma 3.1 that {‖PkJ(xk, sk)

T ‖2} can be bounded as claimed. The boundedness of ‖PkGkPk‖2
follows from the definition of Pk, the boundedness of {‖sk‖2}, (2.16), (2.17), Assumptions 1.1 and 3.1,

and (2.18). Finally, it follows from Lemma 3.1 and the fact that Pk∇f(xk, sk) = (g(xk),−µe) that

{‖Pk∇f(xk, sk)‖2} can be bounded as claimed.

Using Lemma 3.2, we may now improve the Cauchy decrease bounds provided in Lemmas 2.8 and

2.11 by making the leading constants independent of the iteration number k.

Lemma 3.3. For all k, the following hold:

(i) If k ∈ N , then the Cauchy step nC

k defined by (2.9)–(2.10) is computed and satisfies

mv
k(0)−mv

k(n
C

k) ≥ κcnπ
v
k min{πv

k, δ
v
k , 1− κfbn} > 0

for some constant κcn ∈ (0, 2] independent of k.

(ii) If k ∈ T , then the Cauchy step tCk defined by (2.27)–(2.28) or (2.32)–(2.33) is computed and

satisfies

mf
k(nk)−mf

k(nk + tCk) ≥ κctπ
f
k min

{

πf
k , (1− κB)δ

t
k, (1− κfbt)κfbn

}

> 0

for some constant κct ∈ (0, 1/2] independent of k.

Proof. The results follow from Lemmas 2.8 and 2.11 along with Lemma 3.2.

We require the next lemma that bounds the size of the trial step in different scenarios.

Lemma 3.4. If Algorithm 1 does not terminate during iteration k, then the following holds:

‖P−1
k dk‖2

= ‖P−1
k nk‖2 ≤ min{δvk, κnπ

v
k} if k /∈ T ,

= ‖P−1
k nk‖2 ≤ min{δvk, δfk , κnπ

v
k} if k ∈ T0,

≤ δtk if k ∈ T \ T0.

In particular, for all k, we have ‖P−1
k dk‖2 ≤ δvk .

Proof. Let k /∈ T , from which we have under the conditions of the lemma that tk ← 0 and dk = nk. If

nk = 0, then the result holds trivially. Conversely, if nk 6= 0, then part (ii) of Lemma 2.6 implies that

k ∈ N and the result follows from (2.11).

Next, let k ∈ T . First, if k ∈ T0, then it follows from part (iv) of Lemma 2.6 that tk = 0 and (2.19)

holds. Combining this with dk = nk + tk = nk, (2.11), and the fact that κB ∈ (0, 1) shows that

‖P−1
k dk‖2 = ‖P−1

k nk‖2 ≤ min{κB min{δvk, δfk}, δvk, κnπ
v
k} ≤ min{δvk, δfk , κnπ

v
k},

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 21

as desired. Second, if k ∈ TD \ T0, then the result follows from (2.29c) and the definition (2.57). Third,

if k ∈ T \ TD, then the result follows from (2.34c) and the definition (2.57).

We now bound the discrepancies between the problem functions and their corresponding models.

Lemma 3.5. The following hold:

(i) There exists a constant κG > 0 independent of k such that

|f(xk + dxk, sk + dsk)−mf
k(dk)| ≤ κG‖P−1

k dk‖22 for all k. (3.1)

(ii) There exist constants κC ≥ 2κH ≥ 2 and {κv1, κv2} ≥ 2 independent of k such that

|v(xk + dxk, sk + dsk)−mv
k(dk)| ≤ κC‖P−1

k dk‖22 for all k (3.2)

and

|v(xk + dxk, sk + dsk)−mv
k(dk)| ≤ κv1‖P−1

k dk‖32 + κv2‖c(xk, sk)‖2‖P−1
k dk‖22 for all k. (3.3)

Proof. We first prove part (i). By the triangle inequality, we have

|f(xk + dxk, sk + dsk)−mf
k(dk)|

≤ |f(xk + dxk)− f(xk)−∇f(xk)
T dxk − 1

2d
x
k
T∇xxL(xk, y

B

k)d
x
k|

+

∣

∣

∣

∣

∣

−µ
M
∑

i=1

ln([sk + dsk]i) + µ
M
∑

i=1

ln([sk]i) + µeTS−1
k dsk − 1

2d
s
k
TDkd

s
k

∣

∣

∣

∣

∣

.

(3.4)

Under Assumptions 1.1 and 3.1, and by (2.17), there exists a constant κG1 > 0 such that

|f(xk + dxk)− f(xk)−∇f(xk)
T dxk − 1

2d
x
k
T∇xxL(xk, y

B

k)d
x
k| ≤ κG1‖dxk‖22. (3.5)

Moreover, note that for each i ∈ {1, . . . ,M}, we have by (2.11) and (2.29b)/(2.34b) that [sk]i + [dsk]i ≥
κfbtκfbn[sk]i > 0 for all k regardless of whether a tangential step tk was computed. The mean-value

theorem yields ln([sk]i + [dsk]i)− ln[sk]i = [dsk]i/ξi, where ξi lies between [sk]i and [sk]i + [dsk]i. Hence

∣

∣

∣

∣

ln([sk]i + [dsk]i)− ln[sk]i −
[dsk]i
[sk]i

∣

∣

∣

∣

≤ sup
ξ∈[[sk]i,[sk]i+[ds

k
]i]

∣

∣

∣

∣

[dsk]i
ξ
− [dsk]i

[sk]i

∣

∣

∣

∣

=
[sk]i

[sk]i + [dsk]i

(

[dsk]i
[sk]i

)2

≤ 1

κfbtκfbn

(

[dsk]i
[sk]i

)2

,

where in the middle equation we have used the fact that the sup occurs at ξ = [sk]i + [dsk]i. Hence, by

(2.18) and Lemma 3.2, we have that

∣

∣

∣

∣

∣

−µ
M
∑

i=1

ln([sk + dsk]i) + µ

M
∑

i=1

ln([sk]i) + µeTS−1
k dsk − 1

2d
s
k
TDkd

s
k

∣

∣

∣

∣

∣

≤ 1

κfbtκfbn

dsk
T (µS−2

k)dsk + 1
2 |dsk

TDkd
s
k| ≤ κG2‖S−1

k dsk‖22.
(3.6)

where κG2 = µ/κfbtκfbn +
1
2κ

2
ub
κD > 0. The result now follows from (3.4)–(3.6), and Lemma 3.4 with

κG := κG1 + κG2.

Part (ii) follows as for [25, Lemma 3.6] and uses Assumptions 1.1 and 3.1 and Lemmas 3.2 and 3.4.

We now prove an important fact about v-iterations, namely, that if k ∈ V and the trust region radii

or vmax

k is sufficiently small, then k ∈ D, that is tk is a relaxed SQP tangential step.

22 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Lemma 3.6. If k ∈ V and

min{δvk, δfk ,
√

κvvmax

k } ≤
(1− κtt)

κvκv1 + κv2

√
κv

=: κV , (3.7)

then k ∈ D.

Proof. For a proof by contradiction, suppose that (3.7) holds while k ∈ V \ D. We show that all of

the conditions of an f -iteration are satisfied, implying that k ∈ F , contradicting the supposition that

k ∈ V .
Since k /∈ D, we have from part (viii) of Lemma 2.6 that k ∈ T \ TD and (2.34) holds. Then, since

T0 ⊆ TD, it follows that k ∈ T \ T0, so by part (iv) of Lemma 2.6 we have tk 6= 0. Moreover, k ∈ T \ T0
implies by Lemma 3.4 that ‖P−1

k dk‖2 ≤ δtk, which along with the fact that k ∈ T \TD and (2.57) implies

‖P−1
k dk‖2 ≤ min{δvk, δfk ,

√

κvvmax

k } ≤
√

κvvmax

k and ‖P−1
k dk‖22 ≤ (min{δvk, δfk ,

√

κvvmax

k })2 ≤ κvv
max

k .

(3.8)

Combining these facts with (3.3), the reverse triangle inequality, (2.34c)–(2.34d), Lemma 2.9, and (3.7),

we have

v(xk + dxk, sk + dsk) ≤ κttv
max

k + κv1‖P−1
k dk‖32 + κv2

√

vmax

k ‖P−1
k dk‖22

≤ κttv
max

k + κv1κvv
max

k min{δvk, δfk ,
√

κvvmax

k }+ κv2

√
κvv

max

k min{δvk, δfk ,
√

κvvmax

k } ≤ vmax

k

so (2.36) holds. Next, we know from part (xi) of Lemma 2.6 that nk = 0. Combining this fact with part

(iv) of Lemma 2.6 shows that (2.31) holds. Thus, all of the conditions of an f -iteration are satisfied, so

the result follows as described.

Lemmas 3.4 and 3.6 have the following useful consequence.

Lemma 3.7. There exists a constant κn∆2 > 0 such that if k ∈ V and

min{δvk, δfk} ≤ min{1, κV, κn∆2π
v
k}, (3.9)

where κV is defined in (3.7), then k ∈ N .

Proof. We first note that Lemmas 3.1, 3.2, and 2.9 imply that there exists a constant κπ > 0 independent

of k such that

(πv
k)

2 ≤ κπvk ≤ κπv
max

k . (3.10)

Let k ∈ V and (3.9) hold. Then, it follows from Lemma 3.6 that k ∈ D, so k ∈ V ∩ D. Now, in

order to derive a contradiction, suppose that k ∈ (V ∩ D) \ N . Since k /∈ N , we have from part (ii)

of Lemma 2.6 that nk = 0. Then, since k ∈ V , we must have tk 6= 0 (since otherwise part (vi) of

Lemma 2.6 would imply that k ∈ Y, which is a contradiction). Moreover, tk 6= 0 and k ∈ D imply that

(2.29d) holds. At the same time, k /∈ N implies that (2.8) does not hold, so vk < κvvv
max

k . This bound,

(3.3), (2.29d), nk = 0, (2.57), and Lemmas 2.9, 3.1, 3.2, and 3.4 then show that for κv3 :=
√
vmax

0 κv2 > 0

we have

v(xk + dxk, sk + dsk) < κvvv
max

k + κv1(min{δvk, δfk})3 + κv3(min{δvk, δfk})2,

which, when combined with (3.9), (3.10), and

κn∆2 :=

√

(1 − κvv)

κπ(κv1 + κv3)
> 0,

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 23

yields

v(xk + dxk, sk + dsk) < κvvv
max

k + (κv1 + κv3)(min{δvk, δfk})2 ≤ κvvv
max

k + (κv1 + κv3)κ
2
n∆2

(πv
k)

2

= κvvv
max

k +
(1 − κvv)

κπ

(πv
k)

2 ≤ κvvv
max

k + (1− κvv)v
max

k = vmax

k

so that (2.36) holds. Combining this with tk 6= 0 and the observation that (2.31) holds since ∆mf,d
k =

∆mf,t
k (recall nk = 0) shows that k ∈ F , which is a contradiction. Thus, we must conclude that

k ∈ N .

We now prove a relationship between the trust-region radii and a guarantee of a successful iteration.

Lemma 3.8. The following hold:

(i) If k ∈ F and

δtk ≤ min

{

(1− κfbt)κfbn

1− κB

,
πf
k

1− κB

,
κδκct(1 − κB)(1 − η2)π

f
k

κG

}

=: min{κ∆f1, κ∆f2π
f
k} (3.11)

then ρfk ≥ η2, k ∈ Sf , and δfk+1 ≥ δfk .

(ii) If k ∈ V and

δvk ≤ min

{

κV , π
v
k, 1− κfbn,

κcdκcnπ
v
k(1 − η2)

κC

, κn∆2π
v
k

}

=: min{κ∆c1, κ∆c2π
v
k}, (3.12)

then k ∈ N ∩ D ∩ Sv, ρvk ≥ η2, and δvk+1 ≥ δvk .

Proof. For part (i), the proof that ρfk ≥ η2, which implies that k ∈ Sf , is the same as for [5, Theo-

rem 6.4.2] and uses (2.37), (2.31) (which holds since k ∈ F), (2.29a)/(2.34a), part (ii) of Lemma 3.3,

(3.11), (3.1), the fact that tk 6= 0, and Lemma 3.4. The fact that δfk+1 ≥ δfk then follows from (2.40)

and (2.43).

To prove part (ii), we first observe from (3.12) that πv
k > 0 since δvk > 0 by construction in the

algorithm. Furthermore, (3.12) and Lemma 3.7 imply that k ∈ N , while (3.12) and Lemma 3.6 ensure

that k ∈ D. We now conclude from part (ix) of Lemma 2.6 that the inequality in (2.47) holds. The fact

that k ∈ Sv and ρvk ≥ η2 is now proved as in [5, Theorem 6.4.2] and uses (3.12), the inequality in (2.47),

(2.48), (2.12), part (i) of Lemma 3.3, (3.2), and Lemma 3.4. Finally, using this fact, (2.47), and (2.51),

we have δvk+1 ≥ δvk .

Lemma 3.8 allows us to provide uniform lower bounds on the trust-region radii for iterations that

have not resulted in (approximate) KKT points.

Lemma 3.9. If there exists a constant ǫf > 0 that satisfies

πf
k ≥ ǫf for all k ∈ F , (3.13)

then

δfk ≥ ǫF for some ǫF > 0 for all k. (3.14)

Proof. The statement follows from part (i) of Lemma 3.8, (2.57), the fact that F ⊆ T \T0, and the fact

that δfk+1 ← δfk for k /∈ F .

Lemma 3.10. There exist constants {κ∆c3, κ∆c4} ⊂ (0, 1) such that

δvk ≥ min {κ∆c3, κ∆c4π
v
k} for all k. (3.15)

24 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Therefore, if there exists some ǫθ > 0 such that

πv
k ≥ ǫθ for all k ∈ V , (3.16)

then

δvk ≥ min {κ∆c3, κ∆c4ǫθ} =: ǫC for all k. (3.17)

Proof. With γ1 ∈ (0, 1) defined for (2.43), we prove by induction that

δvk ≥ γ1 min{δv0 , κ∆c1, κδvvπ
v
k , κ∆c2π

v
k} for all k. (3.18)

This inequality holds trivially for k = 0, so supposing that it holds for iteration k, we must prove that

it again holds for iteration k + 1.

First, suppose that k ∈ Y∪(F\Sf). Since δvk+1 ← δvk and (xk+1, sk+1)← (xk, sk) for such iterations,

we conclude that (3.18) holds at iteration k + 1. Second, if k ∈ Sf , then (2.41) and γ1 ∈ (0, 1) ensure

that (3.18) holds at iteration k + 1. Third, if k ∈ Sv, then (2.51) ensures that (3.18) holds at iteration

k + 1. Finally, suppose that k ∈ V \ Sv. In this case, the second part of Lemma 3.8 implies that δvk >

min{κ∆c1, κ∆c2π
v
k}. This may then be combined with (2.54) and the fact that (xk+1, sk+1) ← (xk, sk)

to deduce that δvk+1 ≥ γ1 min{κ∆c1, κ∆c2π
v
k} so that (3.18) again holds at iteration k + 1. We therefore

obtain that (3.15) holds for all k with κ∆c3 := γ1 min{δv0 , κ∆c1} and κ∆c4 := γ1 min{κδvv, κ∆c2}. The

bound (3.17) then directly follows from (3.15), (3.16), and the observation that δvk is never decreased

for k ∈ Y ∪ F .

We now give our first main result, namely that if there are finitely many successful iterations, then

Algorithm 1 terminates finitely.

Theorem 3.11. If |S| <∞, then Algorithm 1 terminates finitely.

Proof. To derive a contradiction, suppose that Algorithm 1 does not terminate finitely. It then follows

from the fact that |S| <∞, (2.35), (2.42), (2.45), (2.53), and (2.55) that for some x∗ ∈ R
N , s∗ ∈ R

M ,

and {v∗, vmax

∗ , πv
∗} ⊂ R there exists an integer ks such that

(xk, sk) = (x∗, s∗), vk = v∗, vmax

k = vmax

∗ , πv
k = πv

∗ , and k /∈ S for all k ≥ ks. (3.19)

Also, the fact that |S| <∞ and Lemma 2.7 ensure that s∗ > 0.

Suppose that |V| = ∞. Then, by (3.19) (in particular, the fact that k /∈ S for k ≥ ks), it follows

that (2.54) would set δvk+1 ≤ γ2δ
v
k for all k ∈ V with k ≥ ks. Combining this with the fact that (2.35)

and (2.44) would set δvk+1 ← δvk for all k ∈ Y ∪ F with k ≥ ks, it follows that {δvk} → 0. We also have

from part (ii) of Lemma 3.8 and the facts that |V| =∞ and |S| <∞ that we must have limk∈V πv
k = 0,

so in (3.19) we must have πv
∗ = 0. If v∗ > 0, then this implies that for k = ks the algorithm would

terminate finitely in Step 8, which contradicts the supposition of the proof. Thus, we must have that

v∗ = 0. Since v∗ = πv
∗ = 0, it follows from the conditions of Step 9 that nk = 0 for all k ≥ ks. This

implies that (2.19) will be satisfied for all k ≥ ks, which in turn implies by Step 15 of the algorithm

that yk, rk, π
f
k , and χf

k will be computed to satisfy (2.25a), (2.25b), or (2.25c). If (2.25a) were to hold,

then the algorithm would terminate finitely, a contradiction. Thus, we know that (2.25a) does not hold

for all k ≥ ks, which combined with the fact that v∗ = 0 implies that πf
k > ǫπ > 0 for all k ≥ ks.

It follows from this fact, part (i) of Lemma 3.8, the fact that {δvk} → 0, and the fact that |S| < ∞
that we must have |F| < ∞. Next, it follows from the facts that v∗ = 0 and {δvk} → 0, Lemma 3.4,

and (3.19) that (2.36) will be satisfied for all sufficiently large k. We may also deduce from the fact

that nk = 0 for all k ≥ ks that (2.31) holds for all k ≥ ks. Since we have shown that |F| < ∞ and

that both (2.31) and (2.36) hold for sufficiently large k, we may conclude that tk = 0 for all sufficiently

large k. Therefore, since we have shown that nk = tk = 0 for all sufficiently large k, we have from part

(vi) of Lemma 2.6 that k ∈ Y for all sufficiently large k, which combined with part (vii) of Lemma 2.6

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 25

implies that {πf
k} → 0. However, this contradicts our earlier conclusion that πf

k ≥ ǫπ > 0 for all k ≥ ks.

Overall, we have shown that we cannot have |V| =∞, so we must have |V| <∞.

Next, suppose that |F| < ∞. Combining this with the fact that |V| < ∞ ensures that k ∈ Y
for all sufficiently large k. It follows from this fact and part (vii) of Lemma 2.6 that {πf

k} → 0, and

that yk, rk, π
f
k , and χf

k will be computed to satisfy (2.25a), (2.25b), or (2.25c) for all sufficiently large

k. During the computation of these quantities, (2.25a) can never be satisfied, since in that case the

algorithm would terminate finitely, which is a contradiction. Hence, since (2.25a) is never satisfied and

{πf
k} → 0, we may deduce that v∗ > ǫv > 0. It then follows that πv

∗ > 0, or else for k = ks the algorithm

would terminate in Step 8, which again is a contradiction. Combining πv
∗ > 0 with (3.19), the fact that

{πf
k} → 0, and (2.8) implies that k ∈ N for all k sufficiently large. Thus it follows from part (i) of

Lemma 2.6 that nk 6= 0, which contradicts our earlier conclusion that k ∈ Y. Overall, we cannot have

|F| <∞, so we must have |F| =∞.

Since |F| =∞, |V| <∞, and |S| <∞, we know from (2.35) and (2.43) that {δfk} → 0, which when

combined with (2.57) and part (i) of Lemma 3.8 implies that {πf
k}k∈F → 0. Since (2.25a), (2.25b),

or (2.25c) holds for k ∈ F ⊆ T \ T0, and since the algorithm does not terminate finitely, we know

that (2.25a) must not hold for all k ∈ F . Combining this with the fact that {πf
k}k∈F → 0 implies that

vk > ǫv for all sufficiently large k ∈ F . Hence, since |F| = ∞, it follows from (3.19) that v∗ > ǫv > 0.

We then must conclude that πv
∗ > 0, or else for k = ks the algorithm would terminate finitely in Step 8,

which is a contradiction. Since {πf
k}k∈F → 0, it follows that (2.25b) will be satisfied for all sufficiently

large k ∈ F , which implies that tk = 0 and thus k /∈ F , which once more is a contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algorithm 1 does not

terminate finitely, so the result is proved.

We next prove a technical result about the violation decrease following a successful v-iteration.

Lemma 3.12. There exist constants κvπ1, κvπ2 > 0 such that if k ∈ Sv, then

vk+1 ≤ vk − πv
k min(κ

vπ1
, κ

vπ2
πv
k), and (3.20a)

vmax

k+1 ≤ max{κ
t1
vmax

k , vk − (1− κt2)π
v
k min(κ

vπ1
, κ

vπ2
πv
k)}, (3.20b)

while (2.30) does not hold.

Proof. Let k ∈ Sv, which by the definition of Sv means that (2.47) holds. In particular, we have nk 6= 0.

Combining this fact with part (ii) of Lemma 2.6 means that k ∈ Sv∩N . It follows from this fact, (2.49),

(2.48), (2.47), (2.12), part (i) of Lemma 3.3, Lemmas 3.10 (specifically (3.15)) and 3.2 that there exist

constants κvπ1, κvπ2 > 0 such that (3.20a) holds, which in turn implies with (2.52) that (3.20b) holds.

Note that (3.20a) and Lemma 2.9 imply that (2.36) holds.

We now prove that (2.30) does not hold. To reach a contradiction, suppose that (2.30) holds, which

immediately implies that tk 6= 0. Part (iv) of Lemma 2.6 then implies that k ∈ T \ T0, which combined

with the fact that (2.30) is assumed to hold shows that (2.31) holds. Thus all the conditions of an

f -iteration are satisfied so that k ∈ F , which, since V ∩F = ∅, contradicts the fact that k ∈ Sv ⊆ V .

We now show that if there are infinitely many iterations, then the v-criticality measure πv
k converges

to zero along a subsequence.

Lemma 3.13. If Algorithm 1 does not terminate finitely, then

0 =

lim
k∈Sv

πv
k if |Sv| =∞,

lim inf
k∈Sf

πv
k if |Sv| <∞.

(3.21)

Proof. Lemma 2.9 shows that {vmax

k } is monotonically decreasing and bounded below by zero. Therefore,

if |Sv| = ∞ and the update (2.52) sets vmax

k+1 ≤ κt1v
max

k infinitely often, then {vmax

k } → 0. This would

26 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

imply with Lemma 2.9 that {vk} → 0, which in turn would imply with Assumptions 1.1 and 3.1

and Lemma 3.2 that {πv
k} → 0 so that (3.21) holds in this case. Whereas, if |Sv| = ∞ and the

update (2.52) sets vmax

k+1 > κt1v
max

k for all sufficiently large k, then by Lemma 3.12 we have vmax

k+1 ≤
vk − (1− κt2)π

v
k min(κ

vπ1
, κ

vπ2
πv
k) for k ∈ Sv, which implies {πv

k}k∈Sv
→ 0, and again we have (3.21).

It remains to consider when |Sv| <∞, in which case, for some constant vmax

∞ > 0, we have vmax

k = vmax

∞

for all sufficiently large k, since vmax

k is only decreased for k ∈ Sv. By Theorem 3.11, the conditions

of this lemma, and the fact that |Sv| < ∞, it follows that |Sf | = ∞. Now, to derive a contradiction,

suppose that there is a constant πv
min

> 0 such that

πv
k ≥ πv

min
> 0 for all sufficiently large k. (3.22)

Since |Sv| < ∞, we know from (2.35) for k ∈ Y, from (2.38) and (2.42) for k ∈ F , from (2.53) for

k ∈ V \Sv, and the fact that the slack reset only possibly decreases the barrier function that {f(xk, sk)}
is monotonically decreasing. Moreover, it follows from Assumptions 1.1 and 3.1 and Lemma 3.2 that

{f(xk, sk)} is bounded below, so overall we have that {f(xk, sk)} → flow for some flow > −∞. It follows

from this fact, the fact that |Sf | =∞, (2.37), (2.38), (2.31) (which holds for k ∈ F), (2.29a)/(2.34a), and
part (ii) of Lemma 3.3 that limk∈Sf

min{πf
k , δ

t
k} = 0. Suppose that for some infinite index set K1 ⊆ Sf

and scalar πf
min > 0 we have πf

k ≥ πf
min for all k ∈ K1. It follows that {δtk}k∈K1

→ 0. However, from part

(ii) of Lemma 3.8, the fact that |Sv| < ∞, and (3.22), it follows that {δvk}k∈V is bounded away from

zero. In fact, since δvk+1 ← δvk for k /∈ V , we conclude that {δvk} is bounded away from zero (for all k).

Combining this with the facts that {δtk}k∈K1
→ 0 and vmax

k = vmax

∞ > 0 for all sufficiently large k implies

that {δfk}k∈K1
→ 0. It then follows from Lemma 3.9 that there exists an infinite index set K2 ⊆ F such

that {πf
k}k∈K2

→ 0. Since K2 ⊆ F ⊆ T \T0, we know that (2.25a), (2.25b), or (2.25c) is satisfied for all

k ∈ K2. However, we also know that (2.25a) can not be satisfied since Algorithm 1 is assumed not to

terminate finitely. It does, however, follow from {πf
k}k∈K2

→ 0 and (3.22) that (2.25b) will be satisfied

for all sufficiently large k ∈ K2 so that tk = 0 for all sufficiently large k ∈ K2 ⊆ F ⊆ T \ T0, which
is a contradiction. Thus, we conclude that the set K1 cannot exist, so {πf

k} → 0. It follows from this

fact, (3.22), the fact that (2.25a), (2.25b), or (2.25c) is satisfied for all k ∈ F ⊆ T \ T0, and since the

algorithm does not terminate finitely that (2.25b) will be satisfied (and hence tk = 0) for all sufficiently

large k ∈ F ⊆ T \ T0, which again is a contradiction. Thus, our supposition that (3.22) held must be

incorrect and therefore there is a subsequence K such that limk∈K πv
k = 0. Moreover, since |Sv| < ∞

and |Sf | =∞, we may conclude that (3.21) must hold.

To proceed further, we define the active and inactive slack variable sets

A(s) = {i ∈ {1, 2, . . . ,M} : [s]i = 0} and I(s) = {1, 2, . . .M} \ A(s), (3.23)

at s ∈ R
M , and denote these sets by

A∗ := A(s∗) and I∗ := I(s∗)

at a point s∗. Armed with these definitions, we make the following assumption throughout the rest of

our analysis.

Assumption 3.2. If Algorithm 1 does not terminate finitely and (x∗, s∗) is a limit point of {(xk, sk)},
then either A∗ = ∅ or JA∗

(x∗) has full row rank, i.e., J(x∗, s∗)P∗ with P∗ := diag(I, S∗) has full row

rank.

Lemma 3.14. If Algorithm 1 does not terminate finitely and K is an infinite index set such that

{πv
k}k∈K → 0, then for an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K it follows that v(x∗, s∗) = 0

with x∗ feasible for (NP).

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 27

Proof. Let us define the feasibility problem

minimize
x,s

v(x, s) subject to s ≥ 0

for which we have the first-order KKT conditions

min{s, c(x, s)} = 0 and J(x)Tc(x, s) = 0. (3.24)

For an arbitrary limit point (x∗, s∗) of {(xk, sk)}k∈K, it follows from Lemma 2.7 and {πv
k}k∈K → 0 that

s∗ ≥ 0, c(x∗, s∗) ≥ 0, S∗c(x∗, s∗) = 0, and J(x∗)
Tc(x∗, s∗) = 0. (3.25)

In particular, using (3.23) and (3.25), we have

[s∗]I∗
> 0 and cI∗

(x∗) < cI∗
(x∗, s∗) = 0; (3.26a)

[s∗]A∗
= 0 and cA∗

(x∗) = cA∗
(x∗, s∗) ≥ 0. (3.26b)

Hence, from (3.25) and (3.26), we have that (x∗, s∗) satisfies (3.24). Now, if A∗ = 0, then by (3.26a)

we have that v(x∗, s∗) = 0 and c(x∗) ≤ 0, as desired. Otherwise, by (3.25) and (3.26a), we have

0 = J(x∗)
Tc(x∗, s∗) = JA(x∗)

TcA(x∗, s∗) = JA(x∗)
TcA(x∗).

Under Assumption 3.2, we have that JA(x∗) has full row rank, so the above implies that 0 = cA(x∗) =

cA(x∗, s∗). Combining this with (3.26a) again yields v(x∗, s∗) = 0 and c(x∗) ≤ 0, as desired.

We now prove that if there are an infinite number of successful v-iterations, then feasibility is

achieved at all limit points of the sequence of iterates computed by the algorithm.

Lemma 3.15. If |Sv| =∞, then {vmax

k } → 0, {vk} → 0, {πv
k} → 0, and {nk} → 0.

Proof. Lemma 2.9 shows that {vmax

k } is monotonically decreasing and bounded below by zero. Then,

as in the proof of Lemma 3.13, we have that if the update (2.52) sets vmax

k+1 ≤ κt1v
max

k infinitely often,

then {vmax

k } → 0, {vk} → 0, and {πv
k} → 0. It then follows from this fact, (2.11), and Lemma 3.2 that

{nk} → 0.

Thus, all that remains is to consider the case when the update (2.52) sets vmax

k+1 > κt1v
max

k for all

large k. As in the proof of Lemma 3.13, this implies that {πv
k}k∈Sv

→ 0. This, along with Lemma 3.14,

Assumption 3.1, and the boundedness of {sk} stated in Lemma 3.2 implies that there exists an infinite

index set K ⊆ Sv such that {vk}k∈K → 0. We then have from Lemma 3.12 (in particular, (3.20b)) that

{vmax

k }k∈K → 0, which means that {vmax

k } → 0 and hence {vk} → 0 because of Lemma 2.9. Combining

this with Assumptions 1.1 and 3.1 and Lemma 3.2, we thus have {πv
k} → 0. It follows from this fact,

(2.11), and Lemma 3.2 that {nk} → 0.

We next prove a result illustrating the importance of the sequence {πf
k}. In particular, the result

establishes that under Assumption 3.2, πf
k is a valid criticality measure for (1.1).

Lemma 3.16. If K is any subsequence and (x∗, s∗) is any point such that limk∈K(xk, sk) = (x∗, s∗)

with v(x∗, s∗) = 0 and limk∈K πf
k = 0, then limk∈K yk = y∗ where (x∗, s∗, y∗) is a KKT point for

problem (1.1).

Proof. Since v(x∗, s∗) = 0, it follows that limk∈K c(xk, sk) = c(x∗, s∗) = 0, which, when combined with

Lemma 3.2, proves that limk∈K πv
k = 0. Thus, it follows from (2.11) and Lemma 3.2 that

lim
k∈K

nk = 0. (3.27)

28 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Recall the notation I∗ = I(s∗) and observe that

0 = lim
k∈K

πf
k = lim

k∈K

∥

∥

∥Pk

(

∇mf
k(nk) + J(xk, sk)

Tyk

)∥

∥

∥

2

= lim
k∈K

∥

∥

∥

∥

(

g(xk) +∇xxL(xk, y
B

k)n
x
k + J(xk)

Tyk
−µe+ SkDkn

s
k + Skyk

)∥

∥

∥

∥

2

(3.28)

= lim
k∈K

∥

∥

∥

∥

∥

∥

g(xk) +∇xxL(xk, y
B

k)n
x
k + J(xk)

Tyk
[−µe+ SkDkn

s
k + Skyk]A∗

[−µe+ SkDkn
s
k + Skyk]I∗

∥

∥

∥

∥

∥

∥

2

. (3.29)

Using (3.29) (specifically the third row of equations inside the norm) with limk∈K(xk, sk) = (x∗, s∗),

[s∗]I∗
> 0, (2.18), Lemma 3.2 and (3.27) shows that

lim
k∈K

[yk]I∗
= [µS−1

∗ e]I∗
=: [y∗]I∗

.

It then follows from (3.29) (specifically the first row of equations inside the norm), limk∈K(xk, sk) =

(x∗, s∗), (2.18), (2.17), Lemma 3.1, (3.27), and the full row rank of JA∗
(x∗) (see Assumption 3.2) that

lim
k∈K

[yk]A∗
= −

[

JA∗
(x∗)JA∗

(x∗)
T
]−1

JA∗
(x∗)

(

g(x∗) + JI∗
(x∗)

T [y∗]I∗

)

=: [y∗]A∗
.

We have shown that the dual sequence converges along K, i.e., that limk∈K yk = y∗ for some y∗ ∈ R
M .

Combining this with (3.28), limk∈K(xk, sk) = (x∗, s∗), (2.18), (2.17), Lemma 3.1, and (3.27) proves that

g(x∗) + J(x∗)
Ty∗ = 0 and S∗y∗ = µe. (3.30)

Note that it follows from (3.30), Lemma 2.7, and µ > 0 that (s∗, y∗) > 0. Combining this with (3.30)

and v(x∗, s∗) = 0 proves that (x∗, y∗, s∗) is a KKT point for problem (1.1).

Lemmas 3.14 and 3.16 prove that under Assumption 3.2, we may obtain a first-order KKT point for

the barrier subproblem (1.1) with any subsequence over which πv
k → 0 and πf

k → 0. Now, to prove that

such a sequence will exist, we make the following assumption (stronger than Assumption 3.2) for the

remainder of our analysis. The assumption states that at any nearly feasible point, the singular values

of a scaled constraint Jacobian are bounded away from zero.

Assumption 3.3. There exists a constant κc > 0 independent of k such that if vk ≤ κc, then the

smallest singular value of J(xk, sk)Pk is greater than κJ for some constant κJ > 0 independent of k.

We also define the following projection operator. Note that this operator is used for theoretical

purposes only, i.e., computing such projections is unnecessary in an implementation of our algorithm.

Definition 3.17. Let Projk(d) denote the orthogonal projection of d onto the range space of PkJ(xk, sk)
T .

Lemma 3.18. If k ∈ N ∩D and vk ≤ κc, then there exist constants κR1, κR2 > 0 such that

‖Projk(P−1
k dk)‖2 ≤

1

κ2
J

πv
k and ∆mv,d

k ≥ ‖Projk(P−1
k dk)‖2 min(κ

R1
, κ

R2
‖Projk(P−1

k dk)‖2). (3.31)

Proof. Let k ∈ N ∩ D and define mP

k(d) := ‖c(xk, sk) + J(xk, sk)Pkd‖22 and dPk := P−1
k dk. Then, it

follows from the fact that J(xk, sk)PkProjk(d
P
k) = J(xk, sk)Pkd

P
k , part (i) of Lemma 2.6, and (2.29d)

that

mP

k(Projk(d
P
k)) = ‖c(xk, sk) + J(xk, sk)PkProjk(d

P
k)‖22 = ‖c(xk, sk) + J(xk, sk)Pkd

P
k ‖22

= mv
k(dk) < mv

k(0) = mP

k(0). (3.32)

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 29

We may also note that since vk ≤ κc, we have under Assumption 3.3 that the smallest eigenvalue of

∇xxm
P

k(0) = 2PT
k J(xk, sk)

TJ(xk, sk)Pk is bounded below by 2κ2
J
> 0. We may now use this fact, (3.32),

and [5, Lemma 6.5.1] to conclude that

‖Projk(P−1
k dk)‖2 = ‖Projk(dPk)‖2 ≤

1

κ2
J

πv
k,

which proves the first inequality in (3.31). It also follows from Lemma 3.4 and the fact that the

orthogonal projection operator is nonexpansive that

δvk ≥ ‖P−1
k dk‖2 ≥ ‖Projk(P−1

k dk)‖2.

Combining this with k ∈ D, part (ix) of Lemma 2.6, the inequality in (2.47), (2.12), part (i) of

Lemma 3.3, and the first inequality in (3.31), we have that the second inequality in (3.31) holds.

We now bound the size of the normal step along a certain subsequence of unsuccessful v-iterations.

Lemma 3.19. If k ∈ (N ∩ V ∩ D) \ Sv and

vk ≤ min

{

κc,

(

κ∆c1

κ∆c2κJ

)2

,

(

1− κfbn

κ∆c2κJ

)2
}

, (3.33)

then, for some constants {κcld, κsRn} ⊂ (0, 1), we have

mv
k(dk) ≤ κcldvk and ‖Projk(P−1

k dk)‖2 ≥ κsRn‖P−1
k nk‖2. (3.34)

Proof. Consider k ∈ (N ∩ V ∩ D) \ Sv such that (3.33) holds. It follows from the fact that k ∈ N ∩ D,
part (ix) of Lemma 2.6, the inequality in (2.47), (2.12), part (i) of Lemma 3.3, and Assumption 3.3 that

mv
k(dk) ≤ mv

k(0)− κcdκcnπ
v
k min {πv

k , δ
v
k, 1− κfbn}

≤ mv
k(0)− κcdκcnκJ‖c(xk, sk)‖2 min {κJ‖c(xk, sk)‖2, δvk , 1− κfbn} . (3.35)

It also follows from part (ii) of Lemma 3.8, the fact that k ∈ V \ Sv, (3.33), and Assumption 3.3 that

δvk > min {κ∆c1, κ∆c2π
v
k} ≥ min {κ∆c1, κ∆c2κJ‖c(xk, sk)‖2} = κ∆c2κJ‖c(xk, sk)‖2.

Substituting this into (3.35) ensures by (3.33) the existence of κcld ∈ (0, 1) independent of k such that

mv
k(dk) ≤ mv

k(0)− κcdκcnκJ‖c(xk, sk)‖2 min {κJ‖c(xk, sk)‖2, κ∆c2κJ‖c(xk, sk)‖2, 1− κfbn}
= mv

k(0)− κcdκcnκJ‖c(xk, sk)‖2 min {κJ‖c(xk, sk)‖2, κ∆c2κJ‖c(xk, sk)‖2}
= mv

k(0)− κcdκcnκJ min {κJ, κ∆c2κJ} ‖c(xk, sk)‖22 ≤ κcldvk.

This is the first desired result. Next, defining dPk := P−1
k dk, we may use the inequality above, the

reverse triangle inequality, and the fact that J(xk, sk)Pkd
P
k = J(xk, sk)PkProjk(d

P
k) to have

‖c(xk, sk)‖2 − ‖J(xk, sk)PkProjk(d
P
k)‖2 ≤ ‖c(xk, sk) + J(xk, sk)PkProjk(d

P
k)‖2

= ‖c(xk, sk) + J(xk, sk)Pkd
P
k ‖2

= ‖c(xk, sk) + J(xk, sk)dk‖2 =
√

mv
k(dk)

≤ √κcldvk =
√
κcld‖c(xk, sk)‖2.

30 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Combining the above with the fact that k ∈ N , (2.5), and the Cauchy-Schwarz inequality then implies

‖P−1
k nk‖2 ≤ κnπ

v
k ≤ κn‖PkJ(xk, sk)

T ‖2‖c(xk, sk)‖2

≤ κn‖PkJ(xk, sk)
T ‖2
‖J(xk, sk)PkProjk(d

P
k)‖2

1−√κcld

≤ κn‖PkJ(xk, sk)
T ‖2
‖J(xk, sk)Pk‖2‖Projk(dPk)‖2

1−√κcld

.

It then follows from the definition of dPk , Lemma 3.2, and the fact that κcld ∈ (0, 1) that for some

κsRn ∈ (0, 1) independent of k, we have

‖Projk(P−1
k dk)‖2 ≥

1−√κcld

κn‖J(xk, sk)Pk‖22
‖P−1

k nk‖2 ≥ κsRn‖P−1
k nk‖2,

which is the second desired result.

For our next set of results, given the parameter ǫ > 0, we define the functions

ςtn(ǫ) := κVS max

{

1,
2κub

(1− κδ)(κVS − 1)κct(1− κB)ǫ

}

and (3.36a)

ςδ(ǫ) := min

{

1,
ǫ

1− κB

,
(1− κfbt)κbfn

1− κB

}

, (3.36b)

where we have defined κVS > 1 in (2.30), κub ≥ 1 in Lemma 3.2, κδ ∈ (0, 1) in (2.31), κct ∈ (0, 1
2] in

part (ii) of Lemma 3.3, κB ∈ (0, 1) in (2.19), κc ∈ (0, 1) in Assumption 3.3, κfbt ∈ (0, 1) in (2.20), and

κfbn ∈ (0, 1) in (2.5).

Lemma 3.20. If there exists ǫ > 0 independent of k such that k 6∈ Y,

πf
k ≥ ǫ > 0, (3.37a)

min{δvk, δfk} ≤ ςδ(ǫ), and (3.37b)

‖P−1
k tk‖2 ≥ ςtn(ǫ)‖P−1

k nk‖2, (3.37c)

then tk 6= 0 and (2.31) holds.

Proof. Let k /∈ Y be such that (3.37) holds. If k ∈ F , then the results follow by the definition of the

index set F . Thus, for the remainder of the proof, we may assume that k ∈ V .
If nk = 0, then tk 6= 0 (since otherwise we have k ∈ Y by part (vi) of Lemma 2.6) and ∆mf,d

k =

∆mf,t
k ≥ 0, meaning that (2.31) holds, which are the desired results. Otherwise, if nk 6= 0, then since

sk > 0 and Pk ≻ 0 for all k and (3.37c) holds, we have that tk 6= 0, which implies that k ∈ T \ T0
and (2.19) holds. It then follows from the reverse triangle inequality, (3.37c), and (3.36a) that

‖P−1
k dk‖2 ≥ ‖P−1

k tk‖2 − ‖P−1
k nk‖2 =

(

1− ‖P
−1
k nk‖2

‖P−1
k tk‖2

)

‖P−1
k tk‖2 ≥

(

κVS − 1

κVS

)

‖P−1
k tk‖2. (3.38)

We also have that

−∆mf,n
k = ∇f(xk, sk)

Tnk +
1
2n

T
kGknk =

(

Pk∇f(xk, sk)
)T
P−1
k nk +

1
2 (P

−1
k nk)

TPkGkPk(P
−1
k nk). (3.39)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 3.2, and the fact that (2.19) and (3.37b)

imply ‖P−1
k nk‖2 ≤ min{δvk, δfk} ≤ 1, we then have

|∆mf,n
k | ≤ κub

(

‖P−1
k nk‖2 + 1

2‖P
−1
k nk‖22

)

≤ 2κub‖P−1
k nk‖2. (3.40)

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 31

Moreover, it follows from the fact that k ∈ T \ T0, part (ii) of Lemma 3.3, (3.37a), (2.57), and (3.37b)

that

∆mf,t
k ≥ κctǫmin

{

ǫ, (1− κB)δ
t
k, (1− κfbt)κfbn

}

= κctǫ(1− κB)δ
t
k.

Combining this with (3.40), the fact that k ∈ T \ T0, Lemma 3.4, (3.38), and (3.37c) yields

|∆mf,n
k |

∆mf,t
k

≤ 2κub‖P−1
k nk‖2

κctǫ(1− κB)δtk
≤ 2κub‖P−1

k nk‖2
κctǫ(1− κB)‖P−1

k dk‖2
≤ 2κubκVS

κctǫ(1− κB)(κVS − 1)

‖P−1
k nk‖2

‖P−1
k tk‖2

≤ 1− κδ.

Hence, (2.31) holds, which completes the proof.

We next prove that at nearly feasible points, certain v-iterates are guaranteed to be successful.

Lemma 3.21. If there exists ǫ > 0 independent of k such that k ∈ V ∩ D,

‖P−1
k tk‖2 ≤ ςtn(ǫ)‖P−1

k nk‖2, (3.41)

and

vk ≤ min

{

κc,

(

κ∆c1

κ∆c2κJ

)2

,

(

(1− κfbn)

κ∆c2κJ

)2

,

(

κ
R1

κ
R2
κsRnκnκub

)2

,

(

κ2
sRn

κR2(1− η1)

(1 + ςtn(ǫ))2[κv1(1 + ςtn(ǫ))κnκub + κv2]

)2
}

, (3.42)

then k ∈ Sv and δvk+1 ≥ δvk .

Proof. Consider k ∈ V ∩D such that (3.41) and (3.42) hold. If nk = 0, then (3.41) implies that tk = 0,

which in turn implies by part (vi) of Lemma 2.6 that k ∈ Y. However, this contradicts the supposition

that k ∈ V , so we must in fact have nk 6= 0. In this case, part (ii) of Lemma 2.6 ensures that k ∈ N ,

so that overall we have k ∈ N ∩ V ∩ D.

To obtain a contradiction, suppose that k 6∈ Sv, so that overall we have k ∈ (N ∩V ∩D) \ Sv. This
and the bound (3.42) implies that the results of Lemmas 3.18 and 3.19 hold, i.e., that (3.31) and (3.34)

hold. Moreover, the fact that k ∈ D and part (ix) of Lemma 2.6 imply that the inequality in (2.47)

holds. Using this fact, our conclusion that nk 6= 0, and the fact that k ∈ V \ Sv, it follows from (2.53)

that ρvk < η1. However, since (3.31) and (3.34) hold,

∆mv,d
k ≥ ‖Projk(P−1

k dk)‖2 min(κ
R1
, κ

R2
‖Projk(P−1

k dk)‖2) ≥ κsRn‖P−1
k nk‖2 min(κ

R1
, κ

R2
κsRn‖P−1

k nk‖2).

But it follows from (2.11), Lemma 3.2 and (3.42) that

κ
R2
κsRn‖P−1

k nk‖2 ≤ κ
R2
κsRnκnπ

v
k ≤ κ

R2
κsRnκnκub‖c(xk, sk)‖2 ≤ κ

R2
κsRnκnκub

√
vk ≤ κ

R1

and therefore

∆mv,d
k ≥ κ2

sRn
κ

R2
‖P−1

k nk‖22. (3.43)

Furthermore by (2.48), (3.3), (3.43), the triangle inequality, (3.41), (2.11), the Cauchy-Schwarz inequal-

32 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

ity, Lemma 3.2, and (3.42), we have that

|ρvk − 1| =
∣

∣

∣

∣

∣

v(xk + dxk, sk + dsk)−mv
k(dk)

∆mv,d
k

∣

∣

∣

∣

∣

≤ ‖P−1
k dk‖22

κ2
sRn

κR2‖P−1
k nk‖22

(

κv1‖P−1
k dk‖2 + κv2‖c(xk, sk)‖2

)

≤ (1 + ςtn(ǫ))
2

κ2
sRn

κR2

(

κv1(1 + ςtn(ǫ))‖P−1
k nk‖2 + κv2‖c(xk, sk)‖2

)

≤ (1 + ςtn(ǫ))
2

κ2
sRn

κR2

(

κv1(1 + ςtn(ǫ))κn‖PkJ(xk, sk)
T ‖2 + κv2

)

‖c(xk, sk)‖2

≤ (1 + ςtn(ǫ))
2

κ2
sRn

κR2

(κv1(1 + ςtn(ǫ))κnκub + κv2) ‖c(xk, sk)‖2 ≤ 1− η1,

which implies that ρvk ≥ η1, which is a contradiction. Thus, we must conclude that k ∈ Sv. The fact

that δvk+1 ≥ δvk now follows from the fact that k ∈ Sv and (2.51).

We now prove that our algorithm terminates finitely if there are finitely many successful v-iterations.

Lemma 3.22. If |Sv| <∞, then Algorithm 1 terminates finitely.

Proof. We prove the result by contradiction, and so suppose that |Sv| <∞, but that Algorithm 1 does

not terminate finitely. It then follows from Theorem 3.11 that |S| =∞, which when combined with the

fact that |Sv| <∞ implies that |Sf | =∞; i.e., it follows that there are an infinite number of successful

iterations, and all belong to Sf for all sufficiently large k. We may also deduce from these facts—and

since the barrier function is decreased for k ∈ Sf and the slack reset only possibly decreases the barrier

function—that the sequence {f(xk, sk)} is monotonically decreasing for sufficiently large k. Moreover,

since vmax

k+1 ← vmax

k for all k /∈ Sv and |Sv| <∞, we have that there exists a constant vmax

∞ > 0 such that

vmax

k = vmax

∞ > 0 for all sufficiently large k. (3.44)

We complete the proof by considering two cases depending on whether, for some ǫf > 0, (3.13) holds.

Case 1: Suppose that (3.13) holds for some ǫf > 0. It then follows from Lemma 3.9 that (3.14) also

holds, in which case we have from (2.29a)/(2.34a), the fact that Sf ⊆ F ⊆ T \T0, part (ii) of Lemma 3.3,

(3.13), (3.14), (2.57), and (3.44) that

∆mf,t
k ≥ κctǫf min

{

ǫf , (1− κB)δ
t
k, (1− κfbt)κfbn

}

≥ κctǫf min {ǫf , (1 − κB)min{δvk, ǫF ,
√
κvvmax

∞ }, (1− κfbt)κfbn} for sufficiently large k ∈ Sf .
(3.45)

We now consider two subcases, deriving contradictions in each, which will prove that the condition of

this case (namely, that there exists ǫf > 0 such that (3.13) holds) cannot occur.

Subcase 1.1: Suppose there exists an infinite subsequence Kf ⊆ Sf such that {δvk}k∈Kf
→ 0. Since

δvk+1 < δvk only if k ∈ V \Sv and δvk+1 ← δvk otherwise, it follows that there exists an infinite subsequence

Kv ⊆ V \ Sv such that {δvk}k∈Kv
→ 0. Our goal in the remainder of this subcase is to prove that for all

sufficiently large k ∈ Kv ⊆ V , we have that all of the conditions of an f -iteration are satisfied, which is

a contradiction since V ∩ F = ∅. This will prove that such a sequence Kf ⊆ Sf cannot exist.

Using the fact that {δvk}k∈Kv
→ 0 and Lemma 3.6, we may conclude that for all sufficiently large

k ∈ Kv we have k ∈ (V ∩D)\Sv . In addition, since |Sv| <∞ and {δvk}k∈Kv
→ 0, we may conclude from

part (ii) of Lemma 3.8 that limk∈Kv
πv
k = 0, which in turn implies with Assumption 3.1 and Lemmas 3.2

and 3.14 that limk∈Kv
vk = 0. Now, suppose that there exists an infinite subsequence K′

v ⊆ Kv such

that K′
v ∩ N = ∅. The following then hold for all sufficiently large k ∈ K′

v ⊆ Kv ⊆ V \ Sv:

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 33

(a) nk = 0 by part (ii) of Lemma 2.6 (and thus (2.31) holds);

(b) tk 6= 0 by (a), part (vi) of Lemma 2.6, and the fact that k ∈ V ; and

(c) vk < κvvv
max

k = κvvv
max

∞ by Step 9, (2.8), and (3.44).

It then follows from assumption 1.1, Lemmas 3.4, the fact that {δvk}k∈K′
v
→ 0, the above (c), and the

bound κvv < 1 that v(xk + dxk, sk + dsk) ≤ vmax

k for all sufficiently large k ∈ K′
v which gives (2.36), and

thus we have that all of the conditions of an f -iteration hold, so k ∈ F . However, this is a contradiction

since k ∈ K′
v ⊆ V and V ∩ F = ∅. Thus, such an infinite subsequence K′

v ⊆ Kv cannot exist, so

we may conclude that for all sufficiently large k ∈ Kv we have k ∈ N . To summarize, at this point

in this subcase, we may assume without loss of generality that there exists an infinite subsequence

Kv ⊆ (N ∩ V ∩ D) \ Sv over which {δvk}k∈Kv
→ 0, {πv

k}k∈Kv
→ 0, and {vk}k∈Kv

→ 0.

It follows from Lemma 3.19 and the facts thatKv ⊆ (N∩V∩D)\Sv and {vk}k∈Kv
→ 0 thatmv

k(dk) ≤
κcldvk for all sufficiently large k ∈ Kv. Using this fact, the triangle inequality, (3.3), Lemma 3.4,

Lemma 2.9, and (3.44), we have

v(x+
k , s

+
k) ≤ κcldv

max

∞ + κv1(δ
v
k)

3 + κv2

√
vmax
∞ (δvk)

2 for all sufficiently large k ∈ Kv.

This relationship then implies that

v(x+
k , s

+
k) ≤ vmax

∞ = vmax

k for all sufficiently large k ∈ Kv such that (δvk)
2 ≤ min

{

1,
(1− κcld)v

max

∞

κv1 + κv2

√
vmax
∞

}

.

Thus, since {δvk}k∈Kv
→ 0, we may conclude that (2.36) holds for all sufficiently large k ∈ Kv.

Next, suppose that for ǫπ > 0 defined in (2.25a), we have

‖P−1
k tk‖2 ≤ ςtn(ǫπ)‖P−1

k nk‖2 for all sufficiently large k ∈ Kv. (3.46)

We may then use the facts that Kv ⊆ (N ∩ V ∩ D) and {vk}k∈Kv
→ 0, (3.46), and Lemma 3.21 to

conclude that |Sv ∩ Kv| = ∞, which contradicts the fact that |Sv| < ∞. Therefore, there exists an

infinite subsequence K′′
v ⊆ Kv such that if k ∈ K′′

v then (3.46) fails.

We now show that with ǫ = ǫπ and k ∈ K′′
v ⊆ Kv ⊆ V \ S, the conditions of Lemma 3.20 hold.

Consider k ∈ K′′
v . First, since k ∈ K′′

v ⊆ V , we know that k /∈ Y. Second, since k ∈ K′′
v , we know

from the previous paragraph that (3.46) does not hold, and therefore that tk 6= 0 and rk was computed

to satisfy (2.25a), (2.25b), or (2.25c). Since we have supposed that the algorithm does not terminate

finitely, we may use the facts that {vk}k∈Kv
→ 0 and K′′

v ⊆ Kv along with (2.25a) to conclude that

(3.37a) holds for all sufficiently large k ∈ K′′
v . Third, since K′′

v ⊆ Kv and {δvk}k∈Kv
→ 0, we have

that (3.37b) holds. Fourth, we know from the definition of the set K′′
v that (3.46) fails, which is to

say that (3.37c) holds. We may now apply Lemma 3.20 to deduce that tk 6= 0 and (2.31) holds for all

sufficiently large k ∈ K′′
v . Thus, along with our previous conclusion that (2.36) holds for all sufficiently

large k ∈ Kv, we may conclude that for all sufficiently large k ∈ K′′
v we have that all of the conditions

of an f -iteration are satisfied. However, as previously mentioned, this is impossible since K′′
v ⊆ Kv ⊆ V

and F ∩ V = ∅. Hence our stated supposition for Subcase 1.1, that there is an infinite subsequence

Kf ⊆ Sf such that {δvk}k∈Kf
→ 0, must be wrong.

Subcase 1.2: Suppose instead that there exists ǫ∗ > 0 such that δvk ≥ ǫ∗ for all k ∈ Sf , and recall that

|Sf | = ∞. We may combine (3.45) and the bound δvk ≥ ǫ∗ for all k ∈ Sf to conclude that there exists

k′ such that

∆mf,t
k ≥ κctǫf min {ǫf , (1− κB)min{ǫ∗, ǫF ,

√
κvvmax

∞ }, (1− κfbt)κfbn} > 0 for all k′ ≤ k ∈ Sf . (3.47)

Combining the facts that |Sv| < ∞ and |Sf | = ∞, (2.37), and (2.31) (which is required to hold for

34 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

k ∈ F), we have that

f(xk′ , sk′)− f(xk, sk) =

k−1
∑

j=k′,j∈S

[f(xj , sj)− f(xj+1, sj+1)] ≥ η1κδ

k−1
∑

j=k0,j∈S

∆mf,t
j , (3.48)

which in view of (3.47) proves that {f(xk, sk)} → −∞. However, this is a contradiction since the

barrier function is bounded below as a consequence of Lemma 3.2 and Assumptions 1.1 and 3.1.

Thus since neither Subcases 1.1 or 1.2 can happen, the premise of Case 1 cannot be true.

Case 2: Suppose that the condition of Case 1 does not hold, which is to say that there exists K ⊆ F
with

lim
k∈K

πf
k = 0. (3.49)

For all k ∈ K ⊆ F ⊆ T \T0, we have that tk 6= 0 was computed (and not reset to zero) and thus (2.25b)

is false. Combining this fact with (3.49) yields

0 = lim
k∈K

πf
k ≥ lim

k∈K
ωt(π

v
k) ≥ 0, which implies that lim

k∈K
πv
k = 0.

It follows from this fact, Assumptions 3.1 and 3.2, and Lemmas 3.2 and 3.14 that {vk}k∈K → 0, which

when combined with (3.49) shows that (2.25a) will be satisfied for all sufficiently large k ∈ K. However,
this contradicts our supposition that the algorithm does not terminate finitely.

The previous result proves that if the algorithm does not terminate finitely, then there are an

infinite number of successful v-iterations. We now establish an important consequence of having an

infinite number of successful v-iterations.

Lemma 3.23. If |Sv| = ∞ and there exists ǫ > 0 independent of k such that (3.41) holds for all

sufficiently large k ∈ V ∩ D, then

δvk ≥ ǫ∗ for some ǫ∗ > 0 for all k. (3.50)

Proof. First, by Lemma 3.15, the fact that |Sv| =∞ implies that {vk} → 0. Hence, for sufficiently large

k ∈ V ∩ D, we have that (3.41) and (3.42) hold, which in turn implies by Lemma 3.21 that δvk+1 ≥ δvk.

Second, if k ∈ V \ D, then it follows from Lemma 3.6 that δvk ≥ min{δvk, δfk ,
√
κvvmax

k } > κV . Third, if

k ∈ Y ∪ F , then by (2.35), (2.41) and (2.44) we have that δvk+1 ≥ δvk . The result follows by combining

the results of these three cases.

We next prove a result about certain v-iterations that are unsuccessful.

Lemma 3.24. If k ∈ V \ Sv, (3.33) holds,

vmax

k ≤ min

{

1,

(

1− κcld

κv1 + κv2

)4

,

(

1− κvv

κv1 + κv2

)4

, (κV)
12
5

}

, (3.51)

and

δvk ≤ (vmax

k)
5
12 , (3.52)

then k ∈ D and (2.36) holds.

Proof. Let k ∈ V \ Sv and observe that (3.51) and (3.52) imply that δvk ≤ κV . Hence, by Lemma 3.6,

we have that k ∈ D. That is, k ∈ (V ∩ D) \ Sv. We now consider two cases depending on whether or

not k ∈ N .

Suppose that k ∈ N so that k ∈ (N ∩V ∩D) \Sv. It then follows from (3.3), the triangle inequality,

the requirement that (3.33) holds, and Lemmas 3.4 and 3.19 that

v(xk + dxk, sk + dsk) ≤ κcldvk + κv1(δ
v
k)

3 + κv2

√
vk(δ

v
k)

2.

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 35

Then, from this inequality, Lemma 2.9, (3.52), and (3.51), we have that

v(xk + dxk, sk + dsk) ≤ κcldv
max

k + κv1(v
max

k)
15
12 + κv2 (v

max

k)
1
2 (vmax

k)
10
12

= vmax

k

(

κcld + κv1(v
max

k)
3
12 + κv2 (v

max

k)
4
12

)

≤ vmax

k

(

κcld + κv1(v
max

k)
3
12 + κv2 (v

max

k)
3
12

)

≤ vmax

k ,

which means that (2.36) holds, as desired.

Now suppose that k 6∈ N . It then follows from (3.3), the triangle inequality, Lemmas 3.4 and 2.9,

(2.29d) (which holds since k ∈ D), and the fact that vk < κvvv
max

k holds (which holds by (2.8) since

k /∈ N) that

v(xk + dxk, sk + dsk) ≤ mv
k(dk) + κv1(δ

v
k)

3 + κv2

√

vmax

k (δvk)
2

≤ vk + κv1(δ
v
k)

3 + κv2

√

vmax

k (δvk)
2

≤ κvvv
max

k + κv1(v
max

k)
15
12 + κv2

√

vmax

k (vmax

k)
10
12

≤ vmax

k

(

κvv + κv1(v
max

k)
3
12 + κv2 (v

max

k)
4
12

)

≤ vmax

k

(

κvv + κv1(v
max

k)
3
12 + κv2 (v

max

k)
3
12

)

≤ vmax

k ,

which again means that (2.36) holds, as desired.

Theorem 3.25. The set Sv is finite.

Proof. We prove the result by contradiction, and so suppose that |Sv| = ∞. It then follows from

Lemma 3.15 that limk→∞ vk = limk→∞ vmax

k = limk→∞ πv
k = limk→∞ nk = 0. Moreover, from the facts

that limk→∞ vk = 0 and |Sv| = ∞, we have that (2.25a) must not hold for all sufficiently large k, or

else the algorithm would terminate finitely in Step 18 or 33, which is a contradiction. Therefore, there

exists ǫπ > 0 such that

πf
k ≥ ǫπ > 0 for all sufficiently large k. (3.53)

It follows from this fact and Lemma 3.9 that (3.14) holds. Also, with ǫ = ǫπ, it follows from the facts

that limk→∞ vk = limk→∞ vmax

k = 0 and |Sv| = ∞ that there exists a sufficiently large k0 such that

(3.33), (3.42), and (3.51) hold for all k ≥ k0.

We now prove a lower bound for δvk that holds for all sufficiently large k, written as equation (3.57)

below. We prove the bound by considering two cases, the latter of which is composed of two subcases.

Case 1: Suppose that with ǫ = ǫπ, (3.41) holds for all sufficiently large k ≥ k0 such that k ∈ V ∩ D.
Then, since |Sv| = ∞, we may apply Lemma 3.23 to deduce that (3.50) holds for all sufficiently large

k ∈ V ∩D.
Case 2: Suppose that Case 1 does not hold in that there exists an infinite index set

K1 := {k ≥ k0 : k ∈ V ∩D and ‖P−1
k tk‖2 > ςtn(ǫπ)‖P−1

k nk‖2 }.

Since δvk (vmax

k) is not decreased (increased) for k ∈ Sv ∪Y ∪F , our goal is to provide a lower bound for

δvk over k ∈ K1 \ Sv. We do this by considering two subcases depending on whether or not k ∈ N .

Subcase 1: Consider k such that k0 ≤ k ∈ K1 \ (Sv ∪ N). Since k /∈ N , it follows from part (ii) of

Lemma 2.6 that nk = 0. By part (vi) of Lemma 2.6, this means that tk 6= 0 (since otherwise we would

have k ∈ Y), which in turn means by part (v) of Lemma 2.6 that k ∈ T \T0 and that (2.31) holds (since

nk = 0). We may then conclude from the fact that k ∈ V \Sv, the choice of k0 being large enough such

that (3.33) and (3.51) hold for k ≥ k0, and Lemma 3.24 that if (3.52) holds, then (2.36) also holds.

However, this would imply that k ∈ F , which contradicts the definition of K1 since V ∩ F = ∅. Thus,

36 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

(3.52) must not hold and

δvk > (vmax

k)
5
12 for all k such that k0 ≤ k ∈ K1 \ (Sv ∪N). (3.54)

Subcase 2: Consider k such that k0 ≤ k ∈ (K1 ∩ N) \ Sv. By (3.53), we have that (3.37a) holds with

ǫ = ǫπ. Similarly, by the definition of K1, we have that (3.37c) holds with ǫ = ǫπ. Now suppose that

(3.37b) with ǫ = ǫπ and (3.52) both hold. Then, since k /∈ Y and (3.37a), (3.37b), and (3.37c) all hold,

we may apply Lemma 3.20 to conclude that tk 6= 0 and (2.31) holds. Also, since k ∈ V \ Sv, we have

shown that (3.33) and (3.51) hold, and we have supposed that (3.52) holds, we may apply Lemma 3.24

to conclude that (2.36) holds. Overall, we have shown that all of the conditions of an f -iteration are

satisfied so that k ∈ F . However, this contradicts the fact that k ∈ K1 ⊆ V and V ∩ F = ∅. Therefore,
we may deduce that at least one of (3.37b) with ǫ = ǫπ or (3.52) must not hold, yielding

δvk > min
{

ςδ(ǫπ), (v
max

k)
5
12

}

for all k such that k0 ≤ k ∈ (K1 ∩ N) \ Sv. (3.55)

Combining (3.54) and (3.55) from Subcases 1 and 2 shows that, for Case 2, we have

δvk ≥ min
{

ςδ(ǫπ), (v
max

k)
5
12

}

for all k such that k0 ≤ k ∈ K1 \ Sv. (3.56)

Moreover, the fact that limk→∞ vk = 0 and Lemma 3.21 with ǫ = ǫπ implies that for any k with

k0 ≤ k ∈ (V ∩D) \K1, we have k ∈ Sv. Thus, for all k ≥ k0 with k ∈ (V ∩D) \Sv, we have k ∈ K1 \Sv.
As a result, the inequality in (3.56) holds for all k with k0 ≤ k ∈ (V ∩ D) \ Sv. This conclusion, along

with the deduction that δvk > κV for all k ∈ V \ D from Lemma 3.6 yields

δvk ≥ min
{

ςδ(ǫπ), (v
max

k)
5
12 , κV

}

for all k with k0 ≤ k ∈ V \ Sv,

which, when combined with the fact that δvk (vmax

k) is not decreased (increased) for k ∈ Sv ∪ Y ∪ F ,
yields

δvk ≥ min
{

ςδ(ǫπ), (v
max

k)
5
12 , κV

}

for all k ≥ k0.

Combining the results of Cases 1 and 2, we have that

δvk ≥ min
{

ǫ∗, ςδ(ǫπ), (v
max

k)
5
12 , κV

}

for all sufficiently large k. (3.57)

Using this fact, (3.14), and the fact that {vmax

k } → 0 yields

min{δvk, δfk} ≥ min
{

ǫ∗, ςδ(ǫπ), (v
max

k)
5
12 , κV , ǫF

}

= (vmax

k)
5
12 for all sufficiently large k. (3.58)

Under our supposition that the set Sv is infinite, at least one of the following two scenarios must

occur. In both, we reach a contradiction to this supposition that Sv is infinite, which proves the theorem.

Scenario 1: Suppose that S1 := Sv \T is infinite. For k ∈ S1, we have that either (2.19) does not hold
or (2.25b) holds. In fact, since limk→∞ πv

k = 0 and (3.53) holds, condition (2.25b) cannot hold infinitely

often for k ∈ S1, implying that for all sufficiently large k ∈ S1 we have that (2.19) does not hold. Then,

since tk = 0 for k ∈ S1, we have by part (vi) of Lemma 2.6 that nk 6= 0. We may now use the fact that

vmax

k > 0 for all k, (3.58), Lemmas 2.9 and 3.2, and the fact that limk→∞ vk = 0 to conclude that

‖P−1
k nk‖2

min{δvk, δ
f
k}
≤ κnπ

v
k

(vmax

k)
5
12

≤ κnκub‖c(xk, sk)‖2
(vk)

5
12

=
κnκub‖c(xk, sk)‖2
(‖c(xk, sk)‖22)

5
12

≤ κB for sufficiently large k ∈ S1.

However, this means that (2.19) holds for all sufficiently large k ∈ S1, contradicting our earlier conclusion
that it does not. This contradiction implies that this scenario cannot occur.

Scenario 2: Suppose that S2 = Sv ∩ T is infinite. Our goal is to show that for all sufficiently large

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 37

k ∈ S2, we have that all of the conditions of an f -iteration are satisfied, which is impossible since S2 ⊆ V
and V ∩F = ∅. We begin by showing that (2.31) holds for all sufficiently large k ∈ S2. Using (3.39), the

triangle and Cauchy-Schwarz inequalities, Lemma 3.2, (2.11), and the fact that limk→∞ πv
k = 0 (and

hence that κnπk ≤ 1 for all k sufficiently large), it follows as in the proof of Lemma 3.20 (see (3.40))

that

|∆mf,n
k | ≤ κub

(

‖P−1
k nk‖2 + 1

2‖P−1
k nk‖22

)

≤ 2κubκnπ
v
k ≤ 2κ2

ub
κn‖c(xk, sk)‖2 for all sufficiently large k ∈ S2.

(3.59)

It also follows from the fact that {vmax

k } → 0 and Lemma 3.6 that k ∈ D for all sufficiently large k ∈ S2.
Moreover, since S2 ⊆ T , it follows that for all k ∈ S2 a tangential step tk 6= 0 was computed to satisfy

either (2.29) or (2.34). However, for all k ∈ S2 = Sv ∩ T , it follows from (2.47) that nk 6= 0 and

then from part (xi) of Lemma 2.6 that k ∈ TD, i.e., that (2.29) holds. This implies by (2.57) that

δtk = min{δvk, δfk} for sufficiently large k ∈ S2. It follows from this fact, the fact that k ∈ TD, (2.29a),
part (ii) of Lemma 3.3, (3.53), (3.58), the fact that limk→∞ vmax

k = 0, and Lemma 2.9 that

∆mf,t
k ≥ κctǫπ min

{

ǫπ, (1− κB)δ
t
k, (1− κfbt)κfbn

}

= κctǫπ min
{

ǫπ, (1− κB)min{δvk, δfk}, (1− κfbt)κfbn

}

≥ κctǫπ(1− κB)(v
max

k)
5
12 ≥ κctǫπ(1− κB)(vk)

5
12

= κctǫπ(1− κB)‖c(xk, sk)‖
10
12

2 ≥ 1
2κctǫπ(1 − κB)‖c(xk, sk)‖

10
12

2 for all sufficiently large k ∈ S2.

Combining this with (3.59) and the fact that limk→∞ vk = 0 shows that

|∆mf,n
k |

∆mf,t
k

≤ 4κ2
ub
κn‖c(xk, sk)‖2

κctǫπ(1− κB)‖c(xk, sk)‖
10
12

2

≤ 4κ2
ub
κn‖c(xk, sk)‖

2
12

2

κctǫπ(1− κB)
≤ 1−κδ for all sufficiently large k ∈ S2.

Hence, (2.31) holds for sufficiently large k ∈ S2, as desired. From here, it follows from Step 28 that the

computed tangential step is not reset to zero, i.e., k ∈ TD \T0 for all sufficiently large k ∈ S2, from which

it follows that tk 6= 0 for all sufficiently large k ∈ S2. Moreover, since k ∈ Sv implies by Lemma 2.9

that (2.36) holds, we have from the fact that S2 ⊆ Sv that (2.36) holds for all k ∈ S2. To summarize,

we have shown that for all sufficiently large k ∈ S2, we have that all conditions of an f -iteration are

satisfied, which is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |Sv| =∞, neither Scenario 1 nor 2 may oc-

cur. However, since one of the two must occur in order to have |Sv| =∞, we have reached contradictions

to our supposition, meaning that the result is proved.

We conclude by summarizing our convergence results.

Theorem 3.26. The following hold for Algorithm 1:

(i) If Assumptions 1.1, 2.1, and 3.1 hold, then either Algorithm 1 terminates finitely or there exists

an infinite subsequence K such that limk∈K πv
k = 0. In the latter case, any limit point (x∗, s∗) of

{(xk, sk)}k∈K satisfies πv(x∗, s∗) = 0 and is therefore a critical point of v(x, s) subject to s ≥ 0.

(ii) If Assumptions 1.1, 2.1, 3.1, and 3.2 hold, then either Algorithm 1 terminates finitely or there

exists an infinite subsequence K such that limk∈K πv
k = 0. In the latter case, any limit point

(x∗, s∗) of {(xk, sk)}k∈K satisfies v(x∗, s∗) = 0 with x∗ feasible for (NP).

(iii) If Assumptions 1.1, 2.1, 3.1, 3.2, and 3.3 hold, then Algorithm 1 terminates finitely in Step 18 or

33 with an approximate first-order KKT point (xk, sk, yk) for the barrier problem (1.1).

Proof. Part (i) follows from Lemma 3.13, Assumption 1.1, and the criticality conditions (3.24) for

minimizing v(x, s) subject to s ≥ 0. Part (ii) follows from part (i) and Lemma 3.14. It remains to prove

part (iii).

38 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

It follows from Theorems 3.25 and 3.22 that Algorithm 1 terminates finitely. The only way part (iii)

would not hold is if Algorithm 1 terminated in Step 8 with an infeasible stationary point. However, this

is not possible since if πk = 0, then PkJ
T (xk, sk)c(xk, sk) = 0 and thus c(xk, sk) = 0 as a consequence

of Assumption 3.3, which contradicts vk > 0. This proves the result.

4 A Trust-Funnel Algorithm for Solving the Nonlinear Opti-

mization Problem

The previous section considers the global convergence properties of our new trust-funnel algorithm when

applied to the barrier subproblem (1.1). This section describes how a sequence of barrier subproblems

with decreasing values for the barrier parameter may be solved to find an approximate first-order KKT

point for problem (NP) (equivalently, problem (NPs)).

To achieve our stated goal, we require the constants ǫπ and ǫv in Algorithm 1 to depend on µ.

Moreover, for practical reasons, it is advisable to make other constants in Algorithm 1 depend on µ as

well. In the previous section, we did not explicitly state these dependencies, for ease of exposition, since

µ was fixed. This does not pose a problem in this section since we use Algorithm 1 to solve a sequence

of barrier problems where for each particular instance the penalty parameter is fixed and therefore our

previous analysis still holds. A summary of the constants that depend on µ and precisely where they

are used is given in Table 4.1. In addition to requiring them to be positive, it is practical to have them

satisfy

lim
µ→0

ǫπ(µ) = lim
µ→0

ǫv(µ) = lim
µ→0

κfbn(µ) = lim
µ→0

κfbt(µ) = 0 and (4.1)

lim
µ→0

κy(µ) = lim
µ→0

κD(µ) =∞. (4.2)

Moreover, the convergence result that we present in this section additionally assumes that

ǫπ(µj) ≤ ζ1µj , ǫv(µj) ≤ ζ2µ
2
j , and κD(µj) ≤ ζ3µ

−α
j (4.3)

for some chosen constants {ζ1, α} ⊂ (0, 1) and {ζ2, ζ3} ⊂ (0,∞), and that a particular choice for the

positive-definite matrix Dk defined in (2.18) is used. Specifically, for each 1 ≤ i ≤ m, we define

[dk]i := [Dk]ii :=

{

κD(µj) if µj [sk]
−2
i > κD(µj),

µj [sk]
−2
i otherwise.

(4.4)

Other choices for Dk, such as the primal-dual update YkS
−1
k , are also possible, and would only require

a slight modification in the proof.

With these requirements, we may now state our algorithm for solving problem (NPs).

Table 4.1: Parameters from Algorithm 1 that depend on the barrier parameter.

Parameter Used Parameter Used Parameter Used

κy = κy(µ) (2.17) κD = κD(µ) (2.18) ǫπ = ǫπ(µ) (2.25a)

κfbt = κfbt(µ) (2.29b)/(2.34b) κfbn = κfbn(µ) (2.5)/(2.11) ǫv = ǫv(µ) (2.25a)

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 39

Algorithm 2 Trust-funnel algorithm for solving (NPs).

1: Input: (x0, s0, y0, µ0) satisfying (s0, y0, µ0) > 0.
2: Choose a parameter γµ ∈ (0, 1) and any two forcing functions ǫπ(·) and ǫv(·).
3: Set (xstart

0 , sstart

0 , ystart

0)← (x0, s0, y0) and j ← 0.
4: loop
5: Call Algorithm 1 with input (xstart

j , sstart

j , ystart

j , µj) and
(

ǫπ(µj), ǫv(µj)
)

to compute
(xj+1, sj+1, yj+1).

6: if Algorithm 1 terminated in Step 8 then
7: Return the infeasible stationary point (xj+1, sj+1).

8: Set µj+1 ∈ (0, γµµj].
9: Use µj , µj+1, and (xj+1, sj+1, yj+1) to compute the next starting point (xstart

j+1 , s
start

j+1 , y
start

j+1).
10: Set j ← j + 1.

Theorem 4.1. If Assumptions 1.1, 2.1, 3.1, and 3.3 hold, and both (4.3) and (4.4) hold, then either

(i) Algorithm 2 returns an infeasible stationary point in Step 7, or

(ii) there exists a limit point (x∗, s∗, y∗) of the iterates {(xj+1, sj+1, yj+1)} computed by Algorithm 2

such that (x∗, s∗, y∗) is a first-order KKT point for problem (NPs).

Proof. If statement (i) occurs, then there is nothing left to prove. Therefore, suppose that statement

(i) does not occur, in which case we have that Algorithm 1 never terminates in Step 8, which by (2.25a)

and (4.3) means that for all j ≥ 0 we have

πf
j+1(yj+1) ≤ ǫπ(µj) ≤ ζ1µj and vj+1 ≤ ǫv(µj) ≤ ζ2µ

2
j . (4.5)

In particular, we have that the sequence {(xj+1, sj+1, yj+1)} is infinite, and from the second part

of (4.5), the reverse triangle inequality, Assumption 3.1, and (4.1), we have that {sj+1} is bounded.

Combining this fact with Assumption 3.1 implies the existence of an infinite index set J and a point

(x∗, s∗) with s∗ ≥ 0 such that

lim
j∈J

(xj+1, sj+1) = (x∗, s∗). (4.6)

It follows from this fact, (4.5), and Assumption 1.1 that

lim
j∈J

vj+1 = v(x∗, s∗) = 0. (4.7)

We comment that for the remainder of the proof, the quantities Pj+1, nj+1, etc. are used to represent

the final values of the relevant quantities computed in Algorithm 1 when it is called in line 5 during

iteration j of Algorithm 2; they are the complementary quantities to (xj+1, sj+1, yj+1).

It follows from the definition of Pj+1, (2.11), (4.6), Assumption 1.1, and (4.5) that

∣

∣

∣

∣

[ns
j+1]i

[sj+1]i

∣

∣

∣

∣

≤ ‖S−1
j+1n

s
j+1‖∞ ≤ ‖S−1

j+1n
s
j+1‖2 ≤ ‖P−1

j+1nj+1‖2

≤ κnπ
v
j+1 = O(‖c(xj+1, sj+1)‖2) = O(

√
vj+1) = O(µj).

Since we maintain positive slack vectors throughout Algorithm 1, we may then conclude that

|[ns
j+1]i| = O(µj [sj+1]i) for all 1 ≤ i ≤ m and j ≥ 1. (4.8)

We now develop a crucial bound by considering two cases motivated by the definition of Dk. First,

suppose that for a given i we have µj [sj+1]
−2
i ≤ κD(µj), so that from (4.4) we have [dj+1]i = µj [sj+1]

−2
i .

It then follows from this fact and (4.8) that

|[sj+1]i[dj+1]i[n
s
j+1]i| = O(µ2

j).

40 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Second, suppose that for a given i we have µj [sj+1]
−2
i > κD(µj), so that from (4.4) we have [dj+1]i =

κD(µj) < µj [sj+1]
−2
i , and thus [sj+1]

2
i [dj+1]i < µj . Combining this fact with (4.8) shows that

|[sj+1]i[dj+1]i[n
s
j+1]i| = O(µj [sj+1]

2
i [dj+1]i) = O(µ2

j). (4.9)

Therefore, we have shown that (4.9) holds in both cases, i.e., (4.9) holds for all 1 ≤ i ≤ m and j ≥ 1.

We may now use the same proof as for Lemma 3.16, combined with (4.7), (4.9), and the first part

of (4.5) to deduce that limj∈J yj+1 = y∗ for some y∗ satisfying g(x∗) + J(x∗)
Ty∗ = 0 and S∗y∗ = 0.

To prove that (x∗, s∗, y∗) is a first-order KKT point for problem (NPs), it only remains to prove that

y∗ ≥ 0, which we now proceed to do.

From the first part of (4.5), we know that

ζ1µj ≥
∥

∥

∥

∥

(

g(xj+1) +∇xxL(xj+1, y
B

j+1)n
x
j+1 + J(xj+1)

Tyj+1

−µje+ Sj+1Dj+1n
s
j+1 + Sj+1yj+1

)∥

∥

∥

∥

2

≥
∥

∥−µje+ Sj+1Dj+1n
s
j+1 + Sj+1yj+1

∥

∥

2
≥

∥

∥−µje+ Sj+1Dj+1n
s
j+1 + Sj+1yj+1

∥

∥

∞

≥ | − µj + [sj+1]i[dj+1]i[n
s
j+1]i + [sj+1]i[yj+1]i| for all 1 ≤ i ≤ m. (4.10)

We now consider two cases. First, suppose that i is such that [s∗]i > 0. In this case it follows from

(4.10), (4.9), the fact that µj → 0, and (4.6) that limj∈J [yj+1]i = [y∗]i = 0, as desired. Second, suppose

that i is such that [s∗]i = 0. It may be observed from (4.10) that

−ζ1µj ≤ −µj + [sj+1]i[dj+1]i[n
s
j+1]i + [sj+1]i[yj+1]i,

and hence that

[yj+1]i ≥
−ζ1µj + µj − [sj+1]i[dj+1]i[n

s
j+1]i

[sj+1]i
.

It follows from the previous inequality, the facts that ζ1 ∈ (0, 1) and µj → 0, (4.9), and the fact that

the slack vectors are maintained to be positive in Algorithm 1, that [yj+1]i > 0 for all sufficiently large

j. Combining this with limj∈J yj+1 = y∗ shows that [y∗]i ≥ 0. This completes the proof.

5 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlinear optimization prob-

lems. The algorithm is of the inexact barrier-SQP variety, i.e., it approximately solves a sequence of

barrier subproblems using an inexact SQP method. In Sections 2 and 3, we proved that each barrier

subproblem could be solved approximately using a new inexact-SQP method based on a trust-funnel

mechanism (not requiring a filter or penalty function). The algorithm is extremely flexible in that,

during each iteration, it automatically determines the types of steps and updates that are expected

to be most productive, where potential productivity is determined by available criticality measures.

In each iteration, each subproblem may be solved approximately using matrix-free iterative methods,

which means that the algorithm is viable for solving large-scale barrier subproblems. We then proved

in Section 4 that an approximate solution of the original nonlinear optimization problem may be ob-

tained by approximately solving a sequence of barrier subproblems for a decreasing sequence of barrier

parameters.

Although we have not considered them explicitly in this paper, we remark that equality constraints,

call them cE(x) = 0, may easily be included in our algorithm and analysis. To do this, one may simply

redefine

c(x, s) :=

(

c(x) + s

cE(x)

)

and adjust the barrier problem (1.1), violation measure (2.1) and v-criticality measure (2.7) in obvious

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 41

ways. Clearly, two-sided bounds on inequality constraints may also be incorporated in a similar fashion.

We are currently implementing our new algorithm. Once complete, it will be part of the Gala-

had [21] thread-safe library of Fortran 90 packages for the numerical solution of optimization problems.

References

[1] M. Argáez and R. Tapia, On the global convergence of a modified augmented Lagrangian line-

search interior-point Newton method for nonlinear programming, Journal of Optimization Theory

and Applications, 114 (2002), pp. 1–25.

[2] R. H. Byrd, F. E. Curtis, and J. Nocedal, An inexact SQP method for equality constrained

optimization, SIAM Journal on Optimization, 19 (2008), pp. 351–369.

[3] R. H. Byrd, J. C. Gilbert, and J. Nocedal, A trust region method based on interior point

techniques for nonlinear programming, Math. Program., 89 (2000), pp. 149–185.

[4] R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large-scale

nonlinear programming, SIAM J. Optim., 9 (1999), pp. 877–900.

[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[6] F. E. Curtis, N. I. M. Gould, D. P. Robinson, and Ph. L. Toint, An interior-point

trust-funnel algorithm for nonlinear optimization, Preprint RAL-P-2014-001, Rutherford Appleton

Laboratory, Chilton, England, 2014.

[7] F. E. Curtis, O. Schenk, and A. Wächter, An interior-point algorithm for large-scale nonlin-

ear optimization with inexact step computations, SIAM Journal on Scientific Computing, 32 (2010),

pp. 3447–3475.

[8] J. Czyzyk, R. Fourer, and S. Mehrotra, Using a massively parallel processor to solve large

sparse linear programs by an interior-point method, SIAM J. Sci. Comput., 19 (1998), pp. 553–565.

[9] R. Fletcher, Practical Methods of Optimization, Wiley-Interscience [John Wiley & Sons], New

York, 2001.

[10] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter, Global conver-

gence of a trust-region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim.,

13 (2002), pp. 635–659 (electronic) (2003).

[11] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Pro-

gram., 91 (2002), pp. 239–269.

[12] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter-SQP algo-

rithm, SIAM J. Optim., 13 (2002), pp. 44–59 (electronic).

[13] R. Fourer and S. Mehrotra, Performance of an augmented system approach for solving least-

squares problems in an interior-point method for linear programming, Math. Program., 19 (1991),

pp. 26–31.

[14] R. Fourer and S. Mehrotra, Solving symmetric indefinite systems in an interior-point method

for linear programming, Math. Program., 62 (1993), pp. 15–39.

[15] R. Fourer and S. Mehrotra, Solving symmetric indefinite systems in an interior-point method

for linear programming, Math. Programming, 62 (1993), pp. 15–39.

42 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

[16] E. M. Gertz and P. E. Gill, A primal-dual trust region algorithm for nonlinear optimization,

Mathematical Programming, Series B, 100 (2004), pp. 49–94.

[17] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale

constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[18] P. E. Gill, W. Murray, and M. H. Wright, Practical optimization, Academic Press Inc.

[Harcourt Brace Jovanovich Publishers], London, 1981.

[19] J. Gondzio, Interior point methods 25 years later, European Journal of Operational Research,

218 (2012), pp. 587–601.

[20] N. I. M. Gould, D. Orban, and D. P. Robinson, Trajectory-following methods for large-scale

degenerate convex quadratic programming, Mathematical Programming Computation, 5 (2013),

pp. 113–142.

[21] N. I. M. Gould, D. Orban, and Ph. L. Toint, GALAHAD, a library of thread-safe Fortran 90

packages for large-scale nonlinear optimization, ACM Trans. Math. Software, 29 (2003), pp. 353–

372.

[22] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Global convergence,

SIAM J. Optim., 20 (2010), pp. 2023–2048.

[23] , A second derivative SQP method: Local convergence and practical issues, SIAM J. Optim.,

20 (2010), pp. 2049–2079.

[24] , A second derivative SQP method with a ”trust-region-free” predictor step, IMA J. Numer.

Anal., 32 (2012), pp. 580–601.

[25] N. I. M. Gould, D. P. Robinson, and Ph. L. Toint, Corrigendum: nonlinear programming

without a penalty function or a filter, Tech. Rep. RAL-TR-2011-006, Rutherford Appleton Labo-

ratory, Chilton, England, 2011.

[26] N. I. M. Gould and Ph. L. Toint, Nonlinear programming without a penalty function or a

filter, Math. Program., (2009).

[27] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4

(1984), pp. 373–395.

[28] W. Karush, Minima of functions of several variables with inequalities as side conditions, Master’s

thesis, Department of Mathematics, University of Chicago, Illinois, USA, 1939.

[29] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in Proceedings of the second Berkeley

symposium on mathematical statistics and probability, J. Neyman, ed., California, USA, 1951,

University of Berkeley Press.

[30] M. Lalee, J. Nocedal, and T. Plantenga, On the implementation of an algorithm for large-

scale equality constrained optimization, SIAM J. Optim., 8 (1998), pp. 682–706.

[31] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM J. Optim.,

2 (1992), pp. 575–601.

[32] J. L. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm with

an additional equality constrained phase, IMA J. Numer. Anal., 32 (2012), pp. 553–579.

[33] R. J. Vanderbei, LOQO: an interior point code for quadratic programming, Optimization Meth-

ods and Software, 11 (1999), pp. 451–484.

A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 43

[34] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming, Mathematical Programming, Series A, 106 (2006),

pp. 25–57.

[35] H. Yabe and H. Yamashita, Q-superlinear convergence of primal-dual interior point quasi-

Newton methods for constrained optimization, J. Oper. Res. Soc. Japan, 40 (1997), pp. 415–436.

[36] H. Yamashita and H. Yabe, Superlinear and quadratic convergence of some primal-dual interior

point methods for constrained optimization, Math. Program., 75 (1996), pp. 377–397.

[37] , An interior point method with a primal-dual quadratic barrier penalty function for nonlinear

optimization, SIAM Journal on Optimization, 14 (2003), pp. 479–499.

[38] H. Yamashita, H. Yabe, and T. Tanabe, A globally and superlinearly convergent primal-dual

interior point trust region method for large scale constrained optimization, Mathematical Program-

ming, Series A, 102 (2005), pp. 111–151.

