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An interior-point trust-funnel algorithm
for nonlinear optimization using a

squared-violation feasibility measure

Frank E. Curtis,»? Nicholas I. M. Gould,>? and Daniel P. Robinson®® and Philippe L. Toint”

ABSTRACT

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization prob-
lems. The method is based on an approach proposed by Gould and Toint (Math. Prog., 122(1):155-196,
2010) that focused on solving equality constrained problems. Our method, which is designed to solve
problems with both equality and inequality constraints, achieves global convergence guarantees by com-
bining a trust-region methodology with a funnel mechanism. The prominent features of our algorithm
are that (i) the subproblems that define each search direction may be solved approximately, (ii) criti-
cality measures for feasibility and optimality aid in determining which subset of computations will be
performed during each iteration, (iii) no merit function or filter is used, (iv) inexact sequential quadratic
optimization steps may be computed when advantageous, and (v) it may be implemented matrix-free
so that derivative matrices need not be formed or factorized so long as matrix-vector products with
them can be performed. This variant uses the square of the violation as a feasibility measure.
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0 Preamble

In [6], we described a new interior-point trust-funnel algorithm for nonlinear optimization in which
inequality constraints c(z) < 0 were converted to equations c(x) + s = 0 by the addition of slack
variables s > 0. The infeasibility of iterates was measured by the violation |c(x) + s||2 for which s > 0
was ensured by the mechanics of the algorithm.

The algorithm in [6] was derived from the one proposed in [26] that focused on problems involving
equality-constraints. In [26], the infeasibility of iterates was measured by the square of the violation.
The purpose of the present paper is to analyze an algorithm for inequality constraints that follows [26]
by measuring the violation by |c(z) + s||3 rather than ||c(z) + s||2. The algorithm itself is very similar
to that in [6], the main differences being the squaring of the violation and its dominating “funnel”,
and the formula for the reduction in the funnel as the iterations proceed. While there is certainly
substantial overlap in the resulting convergence analysis, the details are considerably different in parts,
and our intention is to describe those differences here. However, since this paper is not intended for
journal publication, and for the convenience of the reader, we have chosen to include the complete
motivation and analysis for the algorithm that uses squared violation, rather than merely highlighting
the differences with [6].

Our intention is to compare both variants in our forthcoming implementation and numerical tests.

1 Introduction
In this paper, we introduce a method for solving optimization problems of the form

minimize f(z) subject to c(x) <0, (NP)
z€RN
where f : RV — R and ¢ : RV — RM are twice continuously differentiable. (Our method can also be
applied when equality constraints are present, but, for simplicity in our discussion, they are suppressed
in our algorithm development and analysis; see §5 for further discussion.) Our algorithm is designed to
solve large-scale instances of (NP). In particular, it is designed to be matrix-free in the sense that it can
be implemented while only requiring matrix-vector products with the constraint Jacobian, its transpose,
symmetric approximations of the Hessian of the Lagrangian, and corresponding preconditioners. Thus,
iterative methods may be used for approximately solving each subproblem arising in the algorithm.
The method we propose utilizes components of both interior-point (IP) and sequential quadratic
optimization (commonly known as SQP) methods. Algorithms of this type are often referred to as
barrier-SQP methods. The interior-point aspects of our algorithm allow us to avoid the combinatorial
explosion that may occur within, say, an active-set approach. The efficiency of interior-point methods for
solving linear and convex quadratic programming problems has been well-established [1,8,13-15,19,20,
27,31,33]. Extending these methods for solving nonlinear problems has been the subject of research for
decades [3,4,7,16,34-38] and numerical evidence illustrates strong performance. We follow an approach
similar to Byrd et. al. [3,4] and solve a sequence of so-called barrier subproblems for decreasing values of
the barrier parameter. This means that we must solve a sequence of equality constrained subproblems,
and these may be solved very efficiently with an SQP method. It is well known that traditional SQP
methods are very efficient for solving small- to medium-sized optimization problems [9,10,17,18], while
more recently proposed SQP methods utilize exact second derivatives and are, in theory, capable of
solving large problems [22-24,32]. Preliminary results when solving small- to medium-sized problems is
promising, but their effectiveness on large problems has not yet been confirmed. There have, however,
been several proposed SQP strategies that have proved capable of solving large equality constrained
problems [2,26,30].
In this paper we use the trust-funnel approach originally described in [26], and then corrected in [25],
as the basis for solving a sequence of equality constrained barrier subproblems that arise in an interior-
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point framework. We note, however, that a naive implementation of the SQP method described in [25,26]
within an interior-point paradigm may result in a method for which the establishment of convergence
guarantees is elusive. This is a consequence of the fact that interior-point methods—as their name
suggests—require the algorithm iterates to remain in the strict interior of the feasible region associated
with the inequality constraints, while the method in [25,26] does not innately possess the mechanisms
necessary to avoid the boundary of the feasible region in this context. In this paper, we describe
modifications of this trust-funnel method that are appropriate for our interior-point setting. These
modifications include imposing explicit constraints in the trust-region subproblems to ensure that the
iterates remain in the strict interior of the feasible region, and the incorporation of scaled trust-region
constraints and optimality measures. Scalings of these types have been used previously in interior-point
methods; e.g., see [3,7].

The paper is organized as follows. In Section 2 we introduce our trust-funnel algorithm for solving
the barrier subproblem in an interior-point approach. In Section 3 we prove that our trust-funnel
algorithm will terminate finitely with arbitrarily small positive tolerances on the criticality measures.
In Section 4 we consider convergence of the barrier subproblem solutions for a decreasing sequence of
the barrier parameter. Finally, conclusions are provided in Section 5.

Notation

The gradient and Hessian of f at x are written as g(z) and Vf(x) respectively. The M x N matrix
J(x) represents the Jacobian of the constraint function ¢ evaluated at x, with its jth row being Ve, (z)7.
The matrix V,c;(x) is the Hessian of ¢; evaluated at . We let e denote the vector of all ones and I
denote the identity matrix, both of whose dimensions are determined by the context in which they are
used. Given a vector s € RM | [s]; is the jth element of s and S := diag([s]1, [s]2, ..., [s]a). A forcing
function w : [0,00) — [0, 00) is defined as any continuous and strictly increasing function that satisfies
w(0) =0.

Preliminaries

We make the following assumption throughout the paper.

Assumption 1.1. The functions f and c are twice continuously differentiable.

Problem (NP) is not solved directly by our algorithm. Rather, we introduce a vector of slack
variables s € RM and solve the equivalent problem

inimi bject t ,8) 1= =0, s>0. NP
ninimize, f(z) subject to c(z,s) :=c(z) +s s> (NPs)

The following definition gives first-order stationarity conditions for (NPs) [28,29].

Definition 1.1 (First-order KKT point for problem (NPs)). The vector triple (z,s,y) is a first-order
KKT point for problem (NPs) if it satisfies

g(@) +J(2)'y =0, c(x,s)=0, Sy=0, and (s,y) > 0.
To solve (NPs), we compute a sequence of (approximate) minimizers of the barrier subproblem

inimi , biect t 5)=0, >0, 1.1
zrgﬂgﬁl}lglelﬂzgl f(z,s) subject to c(x,s) s (1.1)

where for each fixed value of ;1 > 0 we define the barrier function

M
fx,5):= f(z) *uzln([sm- (1.2)
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Given a Lagrange multiplier estimate vector y for the constraint ¢(z,s) = 0, the Lagrangian function
associated with (1.1) and its gradient with respect to (x, s) are given by

£(.T,S,y) = f(l',S) + C(xa S)Ty and v(m,s)‘c(xasay) = Vf(ZE, 8) + J(.T,S)Ty,

where we define J(z,s) := Ve(z,s) = (J(z) 1) to represent the Jacobian of ¢(z,s) with respect to
(x,8). A primal-dual point (z,s,y) is called a first-order KKT point of the barrier problem (1.1) if it
satisfies

Viz,s)L(x,8,9) =0, c(x,s) =0, and (s,y) > 0.

Multiplying the second block of the first equation by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for the barrier subproblem (1.1)). The vector triple (x, s,y) is
a first-order KK T-point for the barrier subproblem (1.1) if it satisfies

g(x) + J(x)Ty =0, Sy=upe, c(x,s)=0, and (s,y)>0.

A comparison of Definitions 1.1 and 1.2 suggests that KKT points of the barrier subproblem become
increasingly accurate solutions to problem (NPs) for decreasing values of the barrier parameter p.

2 A Trust-Funnel Algorithm for Solving the Barrier Subprob-
lem

In this section, we present our trust-funnel algorithm for (approximately) solving the barrier subprob-
lem (1.1) for a fixed value of the barrier parameter p > 0. As p is fixed for a particular instance of (1.1),
the dependence on p of certain quantities in this section is ignored. However, these dependences—in
particular, with respect to criticality tolerances that are employed in the algorithm—will be a central
focus in §4 that addresses the “outer” algorithm for solving problem (NPs).

2.1 Algorithm overview

Our method generates a sequence {(x, sk, yx)} of primal, slack, and dual variables. Moreover, defining
the measure of equality constraint violation

v(z,s) = [|e(z, 5)II3, (2.1)
our method maintains a monotonically decreasing sequence of positive scalars {vj»**} that satisfy
sk >0, c(x,s1) >0, vg = v(xR,56) < 0P, and vpy) < vp™ for all k > 0. (2.2)

We require sp > 0, and the restriction s; > 0 is maintained via explicit constraints imposed on all
search direction calculations. Additionally, we ensure that ¢(xy, si) > 0 is satisfied at the beginning of
iteration k by incorporating a slack reset procedure defined by

Ski if [e(zg, sk)]i > 0,
(sili [sk] [( : )] (2.3)
—[e(zk)];  otherwise.
If we let s} denote the value of s prior to the slack reset in iteration &, then it follows that
v < o(xg, s, s <sg,  and  f(ak, sk) < flag, sp7). (2.4)

Therefore, both the barrier function and constraint violation have decreased as the result of the trivial
slack reset computation (2.3). We explicitly enforce vy, < vp* with the updating strategy discussed in
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Section 2.4. Finally, the sequence {vp™} is positive and monotonically decreasing by construction and
guides the iterates toward feasibility; the set of infeasible points permitted by the gradually narrowing

x

region defined by v(z,s) < vp™ is what we call the funnel. Overall, all claims in (2.2) are formally
established in Section 2.6.
Given the current estimate (z, sx) of a solution, a trial step di := (df, d}) is computed as the sum

of a “normal” step ny := (nf,n;) and a “tangential” step t := (tf,t}), i.e.,

dI xT tm
(- ( ()
k N tr

The normal step is computed to (approximately) minimize a quadratic model of v at (xg, s); thus,
it has the purpose of reducing linearized infeasibility. The tangential step tj is intended to reduce
the barrier function (1.2) and is calculated as an (approximate) minimizer of a quadratic model of
the barrier function within an appropriate subspace that does not undo the improvement in reducing
linearized infeasibility achieved by njg. Once di = ng + t; is computed, an attempt to decrease the
constraint violation and/or barrier function is made, where the decision to do so is based on quantities
that reflect the overall merit of the constituent steps. We discuss these details in turn in the following
subsections.

2.2 The normal step

The normal step is designed to predict a reduction in the constraint violation as measured by v defined
in (2.1). To achieve this goal, we compute the normal step ny := (nf,nj;) as an approximate solution
of
mir(limiz§ my(n) subject to [P, 'nllz < min{dy, k.mh}, sk +n° > KupnSk, (2.5)
n=(n*,n°

where we define

I 0
mi(n) = lle(xn s) + T (e, se)nl3, Py = (0 Sk) , (2.6)

and the v-criticality measure
7y =7 (xg, s1) = || Ped (21, s6) T c(z, s1) |2, (2.7)

where 0} > 0 is updated dynamically by the algorithm, and where , > 1 and kg, € (0, 1) are constants.
It will be shown in Lemma 3.14 that 7} is a criticality measure at (z, sx) for minimizing v subject to
the slacks being nonnegative. The scaling matrix Py is important in the trust region constraint since it
assists in keeping iterates within the nonnegative orthant; it restricts [n}]; to be relatively small when
[sk]; is close to zero. Problem (2.5) involves the local minimization of the norm of a Gauss-Newton
approximation of v at (zg, si) subject to a trust-region constraint and fraction-to-the-boundary rule.

It is not necessarily prudent to compute a normal step every iteration. Indeed, computing a normal
step may be wasteful if the current iterate is nearly feasible and computational efforts may be better
spent on computing a new Lagrange multiplier estimate or tangential step. In our algorithm, we
only require a normal step to be computed when either our v-criticality measure 7} is significant in
comparison to the previous f-criticality measure 7r£71 associated with minimizing the barrier function
(the definition of w]{ is given by (2.23) in the next subsection), or when vy is not sufficiently small
compared to the upper bound vj™ (see (2.2)). Specifically, for some constant x,, € (0,1) and forcing
function w,, (and with wf 1 = 0), we require the computation of a normal step if either

max

T > wn(ﬂ,{_l) Or U > Ky Up. (2.8)

(If (2.8) does not hold, but #} > 0, one may consider computing a normal step since the fact that
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m, > 0 implies that the computation would be well-defined. However, a normal step is not necessary
for our convergence analysis in this case.) When a normal step is not computed, we simply set ng < 0.

By an approximate solution to (2.5), we mean that ny := (nf, ni)—when it is computed—should be
feasible for (2.5) and it should yield a decrease in m}, no less than that achieved along a scaled steepest
descent direction. In particular, the scaled steepest descent direction that we employ is derived in the
following manner. If we perform the change of variables n!” := P 5 so that the trust-region constraint
becomes |[n’’ |2 < min{d}, k 7P}, then the transformed problem has the conventional Euclidean norm
steepest descent direction —PyJ(w, sk)Tc(wk, s;). Returning to the original space gives the scaled
steepest descent direction —P2J (x, sx)Tc(zy, sk). For (2.5), we define the Cauchy step n{ = (n{®, n{®)
as the minimizer of the objective of (2.5) in the scaled steepest descent direction, i.e.,

Cx
ng = nj(ay), where ng(a) = (Z’éséz))) = —aP2J(xy, s1) T c(xk, 5k) (2.9)
k
and ag is the solution to
minimize mj (n§(a)) subject to ||P; 'ng(a)|2 < min{dy, k.mh}, sk +npt(a) > Kawse.  (2.10)

a>0

We show in Lemma 2.8 that the decrease in m} obtained by nf is positive (when 6} > 0 and 7} > 0).
Overall, when (2.8) holds, we require a normal step ny satisfying the constraints of (2.5), i.e.,

HPk_lnkHQ < min{dy, kaTL}y Sk + NG > KonSks (2.11)

along with
Am}" == mj(0) — mj(ng) > mi(0) — mp(nyg). (2.12)

Many steps satisfy (2.11) and (2.12) with the simplest choice being nj = nj,.

2.3 Lagrange multipliers and the tangential step

Having dealt with the normal step, we now consider computing estimates of an optimal Lagrange
multiplier vector and/or a tangential step. If computed, the multiplier estimates are intended to (ap-
proximately) minimize a measure of criticality for the barrier subproblem (1.1) that takes into account
changes in the problem function values that are predicted by the normal step. Likewise, the tangential
step, if computed, is designed to reduce the barrier function without having too adverse an effect on the
reduction in linearized infeasibility predicted by the normal step. Since the conditions imposed on the
multiplier estimates and tangential step are intimately related—e.g., the computed multiplier estimates
are required to lead to a well-defined Cauchy point for the tangential step subproblem—we consider
their computation together in this section. Our motivation in this section is to compute quantities
related to those in a traditional SQP approach applied to subproblem (1.1).

Given the kth estimate y, of an optimal Lagrange multiplier vector, a traditional SQP trial step
associated with the barrier subproblem (1.1) is defined as the solution (when it exists) of

Illil_iI(I;m;Z;B f(zk,sk)Jer(zk,sk)TdJr%dTV(mys)(z’S)ﬁ(zk,sk,yk)d subject to ¢(xg, sk)+J(x, sk)d = 0.

It may be verified that a solution d = (d*, d®) of this subproblem (when it exists) satisfies

Vel (@, yp)  J(xr)™ 0 d® g(wr)
J () 0 I y | =— | clwg,sk) | (2.13)
0 Sk uSk_l ds —pe

where y is an estimate of an optimal Lagrange multiplier vector for the constraint ¢(z, sk)+J (zk, sk)d =



6 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

0. The SQP step generated in this fashion is often called a primal step since the dual vector y; does
not appear in (2.13) other than in the Hessian VL. We can instead compute a primal-dual step by
applying Newton’s Method to the conditions in Definition 1.2, which leads to

VoL(@r,yk) J(xp)” 0\ [d* g(zk)
J(xg) 0 I y | =— | clag,sk) | - (2.14)
0 Sk Yk d? —ue

This system is identical to (2.13), except that the (3, 3)-block now contains dual information. It is also
easily verified that a solution of (2.14) is a KKT point for

Igllil(lcilméz)e f(@k, 1) + Vf (wr, 51)"d + 3d" H(xp, sp,ye)d - subject to  c(w, ) + J(w, sk)d = 0,

where

H(zy, sk, yx) = (Vmﬁ(fﬂk,yk) 0 ) -

0 YkSk_l

The previous paragraph, along with the widely accepted view that the primal-dual approach is gen-
erally superior to the primal approach in practice, motivates us to approximate the barrier function (1.2)
with

mi(d) == f(zx,sx) + VS (xx, 51)7d + 1d7Gd, (2.15)
where we define
(Vo L(zr,yg) 0
Gy := ( 0 Dk , (2.16)

let y2 be a (bounded) Lagrange multiplier vector satisfying
[yg): >0 foralli e {1,2,...,M} and |y;ll2 <&k, for some scalar x, > 0, (2.17)
and choose D, ~ Y, S, ! as a positive-definite diagonal matrix satisfying

IDyll2 < kp  for all £ > 0 and some scalar kp, > 0. (2.18)

Overall, our goal is to compute a tangential step tj that satisfies m£ (nk + t) < m£ (ng) and lies

approximately in the null space of the constraint Jacobian J(xk, sx) so as not to undo the predicted gain
in linearized feasibility provided by the normal step. This latter requirement implies that improvement
in the barrier function should be sought within the trust-region {d : | P; 'd|s < 67}, since it is only
within this region that the linearized constraint model is believed to be trustworthy. In addition, we
assume that the barrier function model m£ may be trusted as a faithful representation within the
trust-region {d : || P, 'd||> < 5,{ } for a given tangential trust-region radius 5,{ > (. Consequently, we use

P ngll2 < kp min{6Y, 67} with ks € (0,1) (2.19)

as a necessary condition for computing a tangential step. If (2.19) is satisfied, we require the com-
putation of a new Lagrange multiplier estimate and, potentially, a tangential step. Otherwise, we set
Yk < yr—1 and tx < 0 since the cost of computing new multipliers and a tangential step may be
wasteful.

When (2.19) is satisfied, we seek an approximate solution of the tangential step subproblem

minimize mi(nk +1)

t=(t7,t%) (2.20)
subject to J(zk, sg)t =0, HP,;l(nk + t)||2 < min{dg, 5,{}, Sk +ng +t° > K (sk +ny)
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for some kg, € (0,1). Observing the change of variables t* = P, 1, this subproblem is equivalent to

. 7 b
minimize my (ng + Pyt

P =(¢Px tPs) k( k k )

subject to J(zy, sk)Pet” =0, || Py 'ng + 172 < min{(;z,(;,{}, 7 > (Kay — 1)(e + S5 'nj).

To define an appropriate Cauchy point, we first compute approximate least-squares multipliers corre-
sponding to the scaled subproblem at t¥ = 0, i.e., we compute y; as an approximate solution of

miréiﬂgjbize mE(y), where mf(y) == %||Pk(Vm£(nk) + J(zk, s1) y) 13- (2.21)
y

Scaling the resulting (approximate) projected gradient back into the original space, we obtain the
(approximate) oblique projected gradient

ri := 1 (yr), where ri(y) := Pk2 (Vm£(nk) + J(xg, sk)Ty), (2.22)

and the related f-criticality measures

7T]]: = ﬂ,f(yk), where Wg(y) = || Pk (Vmi(nk) + J (i, 1) "Y) |12, (2.23)
and f T f T
Vimy, (ng) ' r Vimg, () e (y
= ) = ST e f () = ) T () (224)
s 7. (y)

associated with minimizing the barrier function. In this computation, we require that y; and the
resulting 7, w,{ , and X£ satisfy at least one of the following three sets of conditions:

7T]]: <er and v < €3 (2.25a)
W]{ < w(m}); (2.25b)
X£ > nxﬁ,{. (2.25¢)

Here, {€r,¢,} > 0 and {k,, k..} C (0,1) are constants and w; is a forcing function. For technical reasons
(in the proof of Lemma 2.6(vii)), we require the functions w,, and w; (see (2.8) and (2.25b)) satisfy

wi(wn (1)) < K7 for all 7 > 0 and for some «,, € (0,1). (2.26)

The presence of Py in (2.21) forces components of the approximate projected gradient in (2.22) to
be large when the corresponding components of s; are small. Thus the scaling matrix helps prevent
slack variables from approaching zero, just as it did in the formulation of the normal step subproblem
(2.5). Lemma 2.10 shows that we can always satisfy one of the three sets of conditions in (2.25), and
thus this strategy for computing y (and the related quantities ry, w,{ , and x£ ) is well-posed.

If (2.25a) is satisfied, then (xy,sk,yr) is an approximate first-order KKT point for the barrier
subproblem for the tolerances {er,e,} > 0, so we terminate the algorithm. However, if (2.25a) is
not satisfied, but (2.25b) holds, then the f-criticality measure w,{ is insubstantial compared to the v-
criticality measure 7. In this case, the computation of a tangential step is skipped, i.e., we simply set
ti < 0. Otherwise, when (2.25a) and (2.25b) do not hold (and necessarily (2.25¢) holds), we proceed
to compute a tangential step. In this case, it follows from the definition (2.24), the condition (2.25¢)
and the fact that 7r£ > 0 (since otherwise (2.25b) would have held) that ry is a direction of strict ascent
for mi() at ng. This property allows us to compute a tangential step t; satisfying one of two sets of
conditions as outlined in the following two subsections. Our choice of which set of conditions to satisfy
depends on whether a normal step is computed or not. Specifically, if nx # 0, then we require the
computation of what we call a relaxed SQP tangential step. Otherwise, if ny = 0, we are still free to
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attempt to compute a relaxed SQP tangential step, but we may instead compute what we call a very
relaxed SQP tangential step. In such a case, this latter option may be preferable as it involves a weaker
restriction on linearized infeasibility of the step.

2.3.1 A relaxed SQP tangential step
Given constants kg, € (0,1) and k,,, a relaxed SQP tangential step is defined as follows.

Definition 2.1 (Relaxed SQP tangential step). Define the Cauchy point

157 (@) ry
C ._ 4C(,.C o} - k — k)l — _
ty =15 (ag), where ti(a):= <tis(o¢)> = —a <7’Z) ary (2.27)

and af is the minimizer of

minimize m£ (ni +t5 ()

a0 (2.28)
subject to [|Pr (g 4+ t5(@)) |2 < min{6¥, 67}, sk +nj +t55(@) > K (51 +1f).
Then, ty is a relazed SQP tangential step if
Ami’t = mi(nk) - mi(nk +tg) > mi(nk) - mi(nk +t7), (2.29a)
Sk +ng +t5 > Ka(sk + 1), (2.29Db)
1P (ng, + 1) ||l < min{dy, 87}, and (2.29¢)
my(nk + tk) < Keemp(0) + (1 — Ky)mg (ng). (2.29d)

Condition (2.29a) ensures that the model of the barrier function is decreased at least as much as by
the Cauchy point tf, (2.29b) is a fraction-to-the-boundary constraint, (2.29¢c) is a trust-region constraint,
while (2.29d) is a relaxation of the traditional SQP constraint that c(xzx, sk) + J(xg, sg)(nk + t) = 0
and ensures that the linearized constraint-infeasibility contracts.

If a relaxed SQP tangential step satisfying (2.29) is computed, we must evaluate its usefulness in
the sense that we must ensure that a relatively large tangential step results in a sufficient decrease in
the model m£ of the barrier function. With this in mind, we check whether the conditions

| Py ||z > kvs|| Py ' nklle for some kys > 1 (2.30)
and
Ami’d = Amg’" + Amg’t > ngAmg’t for some ks € (0,1) with Amk’" = mi(O) — mi(nk) (2.31)

are satisfied. The inequality (2.31) indicates that the predicted decrease in the barrier function obtained
from the tangential step is substantial when compared to the possible increase resulting from the normal
step. If the step tj satisfies (2.30) but violates (2.31), it does not serve its role so we reset it to zero.

2.3.2 A very relaxed SQP tangential step

Condition (2.29) may be too restrictive in certain cases. Specifically, if v, = 0, then the algorithm
will set ny = 0, from which it follows that (2.29d) requires t; to be in the null space of J(xg, sk).
This is an unreasonable requirement in matrix-free settings; indeed (2.29d) may be unreasonable in
any situation when ng; = 0. Thus, to avoid such a requirement, we allow for the computation of an
alternative tangential step. Given the constant kg, € (0,1) employed in (2.29b), and constants k, > 1
and Ky € (Kiw, 1) (with k., € (0,1) defined for (2.8)), the salient feature of our alternative is that it
involves a relaxed condition on the linearized infeasibility of the step. We emphasize that we are only
allowed to compute a tangential step of this type when nyx = 0.
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Definition 2.2 (Very relaxed SQP tangential step). Define the Cauchy point

1 = 19(aS), where 1S(a) = (’;’éézg) — —a (T’v) . (2.32)

and af is the minimizer of
L f c
minimize  my (ng + t; (o
a>0 k ( k k ( ))

subject to [Py (nk +tg(a)) (|2 < min{sy, 6£, VEOEEY, s+ ng % (a) > Ka(sk +nj).

(2.33)
Then, ti is a very relazed SQP tangential step if
Ami’t = mi(nk) - mi(nk + ) > mi(nk) - mi(nk +t5), (2.34a)
Sk +ng +t] > Ka(sk +ni), (2.34b)
1P (ng + th)||2 < min{d, 67, \/roop=}, and (2.34c¢)
mp(ng + tk) < K vp. (2.34d)

Conditions (2.34a)—-(2.34c) resemble and play the same role as conditions (2.29a)—(2.29¢c). However,
we emphasize that since the Cauchy point defined by (2.32)—(2.33) involves a potentially smaller trust-
region radius than that defined in (2.28), the bound imposed in (2.34a) may be different from that
imposed in (2.29a), and this difference in the trust-region radii is matched in (2.34c) (c.f., (2.29¢)). The
name “very relaxed SQP tangential step” has been chosen because of condition (2.34d), that merely
requires that the predicted constraint violation be sufficiently less than a fraction of the upper bound
vp™ rather than a fraction of the current violation (c.f., (2.29d)). In fact, the smaller trust-region radii
in (2.33) and (2.34c) (as compared to those in (2.28) and (2.29¢)) have been chosen to compensate for
this relaxation.

2.4 Iteration type, step acceptance, and updating strategy
As in other trust-region methods, once we have computed the trial step di := ng + tx and the trial
point

(SC;:, S;:) = (xka Sk) + dkv
we are left with the task of accepting or rejecting them. Our proposal for making this choice is based
on the distinction between y-iterations, f-iterations and v-iterations in the spirit of [10-12]. This

characterization is made based on model values computed with the trial step, and the type of iteration
influences the updates performed for various algorithmic quantities.

2.4.1 A y-iteration
A y-iteration is any satisfying the following definition.
Definition 2.3 (y-iteration). The kth iteration is a y-iteration if di = 0.

Note that a y-iteration will occur when ny and t; are both set to zero, but might also occur if
each component is nonzero, but they sum to zero. In either case, during a y-iteration, we perform the
updates

(Tk+1, Sk41) < (Tk, SE), 5£+1 — (5,]:, Opp1 < Op, and vy < v (2.35)

Since a y-iteration is defined by a zero trial step, the only computation of interest is that of a new
vector of Lagrange multiplier estimates. Therefore, the updates in (2.35) leaves the trust-region radii
and bound on the maximum allowed infeasibility unchanged for the subsequent iteration.
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2.4.2 An f-iteration

The primary goal of an f-iteration is to reduce the barrier function.
Definition 2.4 (f-iteration). The kth iteration is an f-iteration if ty # 0, (2.31) holds, and
v(zd,sh) < vpe. (2.36)

Condition (2.36) ensures that, at the trial point (x},s;), the constraint violation remains within
the upper bound imposed by vy**. Combining this with the fact that (2.31) holds for relaxed and very
relaxed SQP tangential steps, it follows that the main achievement is a predicted decrease in the value
of the barrier function (1.2).

Our updating strategy for f-iterations is based on the quantity

pf — f(xkask) - f(‘rZa Sz)
F Amg’d

: (2.37)

that measures the ratio of actual-to-predicted decrease in the barrier function. Specifically, if p£ > m,
we set

(Trr1s 841) < (23, 57) (2.38)
i if ; i >0,
(skaals [sk+1] i [C(zk.ﬂ Sk+1)] (2.39)
—[e(xg41)];  otherwise,
;) €ldlioo) it pf >,
Ok 41 fosf . (2.40)
€ [120;.,0;]  otherwise,
Opr1 = max{ ks, T (Tht1, Sk+1),0p } (2.41)
Otherwise (i.e., if p£ <), we set
(karlv SkJrl) — (zka Sk)a (242>
6111 € s, 28], (2.43)
a1 < Op- (2.44)
In both cases, we set
VP 4 op (2.45)

In (2.38)—(2.45), the constants should be chosen to satisfy 0 < 71 <12 < 1,0 <y < 792 < 1, and
Ksyo > 0. In this scenario, we accept the trial point (xZ,sZ) if the achieved decrease in the barrier
function is comparable to the predicted decrease, and reject it otherwise. The radius 6,]: 41 1s set by
(2.40), represents a typical trust-region updating strategy. In addition, the value of the normal step
trust-region radius is possibly increased, and the infeasibility limit is left unchanged since the success
or failure of an f-iteration depends only on whether the barrier function was substantially reduced.

2.4.3 A v-iteration

When the conditions that define a y- and an f-iteration are not satisfied, the iteration type defaults to
that of a v-iteration. As we shall see in the convergence analysis of our algorithm, the focus of such an
iteration is a reduction in constraint violation.
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Definition 2.5 (v-iteration). The kth iteration is a v-iteration if it is not a y- or an f-iteration, i.e.,

if di, # 0 and either t, = 0, (2.31) does not hold, or (2.36) does not hold.

A measure of decrease one might expect in v from the trial step dj, is
AmP® = m¥(0) — my(dy). (2.46)
Consequently, our updating strategy in a v-iteration is based on the conditions
ni #0 and AmZ’d > KeaAmy" (2.47)
for some constant x4 € (0,1 — k] C (0,1) with k,, defined in (2.29d), and the quantity

+ ot
v — (), s))
Pk = T Ard (2.48)
My
that measures the ratio of actual-to-predicted decrease in the constraint violation. Using these condi-
tions and quantities, if (2.47) holds and p} > 11, we set

(Tt 041) = (23, 57) (2.49)
i if ) A Z 0)
[Sk+1li [t ' [c(wk_ﬂ i)l (2.50)
—[e(xg+1)]):  otherwise,
o ) = max{ks,, 7 (Tri1, 5641), 00} if pf > e, (2.51)
M = max{Ks,, ™ (Tht1, Sk+1),05  otherwise, .
ey max{K V", v(Tra1, Sk1) F Keo (vk — 0(Tpt1, sk+1))}. (2.52)
Otherwise (i.e., if (2.47) does not hold or pj < n1), we set
(Tk+1, Sk+1) < (Tk, k), (2.53)
Oiy1 € [1108,7261], (2.54)
OP v (2.55)
In both cases, we set
5.1« o} (2.56)

In (2.49)—(2.56), the constants should be chosen to satisfy {., k,2} C (0,1) and ks, defined in (2.41).
In this manner, the trial point is accepted if the normal step is nonzero and the improvement in linearized
feasibility is comparable to its predicted value, which is itself comparable to the improvement yielded
by the normal step. The radius d;,, is set by a standard trust-region radius updating strategy, but
the radius 6,]: 41 is left unchanged. Finally, we decrease the upper bound vy®* when the trial step is
accepted. It will be shown in our convergence analysis that the amount that this bound is decreased is
nontrivial, but it is modest enough so that the funnel does not contract too quickly.

2.5 The trust-funnel algorithm

We formally state our trust-funnel method as Algorithm 1 on page 14. For convenience in our conver-
gence analysis, we define several sets that classify each iteration, as well as the types of computations
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Algorithm 1 Trust-funnel algorithm for minimizing the barrier problem (1.1).

1:
2:

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:

30:
31:
32:
33:

34:
35:

36:
37:
38:
39:
40:
41:
42:

Input: (20, S0,y—1, 1) and (er, €,) with (sg,y—1, ) > 0 and (e, €,) > 0, respectively.
Choose {55,58,Iica,liy,liD,li5w} C (0,00), {Kers Bys, Ko} C (1,00), 0 < < <1,0< v <7y <
1, Ko = 1, { By By Bogs By ey Bxy KBy Kuey Bons Kives Fe1s Kea } C (0, 1), and keq € (0,1 — K]
Perform a slack reset to sg as given by (2.3).
Set vg™ = max|k.., kuvo] and , 71, = 0.
for k=0,1,... do
Compute 7} from (2.7).
if 7 = 0 and v, > 0 then
Return the infeasible stationary point (z, si).
if (2.8) holds, or at least m}, > 0 then
Compute ny, satisfying (2.11) and (2.12). [k € N
else
Set ng < 0.
Compute Am;"" from (2.12).
Select a vector yp satisfying (2.17) and define G by (2.16).
if (2.19) holds then
Compute yi, 7k, 77,5, and x£ from (2.21)—(2.24) to satisfy (2.25a), (2.25b), or (2.25¢).
if (2.25a) holds then
Return the (approximate) first-order KKT point (x, sk, yx) for the barrier problem (1.1).

else if (2.25b) holds then

Set ¢ + 0.
else
if k € N then
Compute tj so that (2.29) is satisfied. [keT]
else
Compute tj, so that either (2.29) or (2.34) is satisfied. [k e T]
if (2.29) holds then
Add iteration k to the set Tp. [k € Tp]
if (2.30) is satisfied but (2.31) fails then
Set tj, + 0. [k € To]

else
Set yi < yr—1 and t < 0, and then set ry, 7T£, and X£ by (2.22)—(2.24).
if (2.25a) holds then
Return the (approximate) first-order KKT point (z, sk, yx) for the barrier problem (1.1).

if (2.29d) holds then

Add iteration k to the set D. [k € D]
Set the trial step dy < n + t; and trial iterate (J:z, sz) — (zk, sk) + di.
if di, = 0 then

Perform the y-iteration updates given by (2.35). [k € ))
else if ¢ # 0 and both (2.31) and (2.36) hold then

Perform the f-iteration updates given by (2.38)—(2.45). [k € F]
else

Perform the v-iteration updates given by (2.49)—(2.56). [k eV
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performed in them. The first group of sets distinguishes between y-, f-, and v-iterations, respectively:
Y:={keN:d, =0}, F:={keN:t,#0and (2.31) and (2.36) hold}, and V:=N\ (YUF).

It is easy to see that these sets are mutually exclusive and exhaustive.
Our next collection of index sets distinguishes iterations for which the normal and/or tangential
steps satisfy various conditions, and whether the tangential step was reset to zero:

N :={k € N: n;, was computed to satisfy (2.11) and (2.12)};
T :={k € N : t;, was computed to satisfy either (2.29) or (2.34)};
Tp :={k € T : the computed tj, satisfied (2.29)};
To := {k € Tp : the computed t;, satisfied (2.29) and (2.30), but not (2.31), and was reset to zero}.

Furthermore the set of iterations for which d; satisfies the linearized constraint contraction condi-
tion (2.29d) plays an important role in our analysis. Thus, in addition to the sets above, we define

D := {k € N : the step d = ny, + t) satisfies (2.29d)}.

Our last collection of sets distinguishes iterations that produce a change in the primal space. In
particular, if p£ > 11 holds during an f-iteration, or if (2.47) holds and p} > n; during a v-iteration,
then iteration k is called successful. The following sets capture these types of iterations:

Sp={keF:pl>m}; S, :={keV:(247) holds and p} > m}; S:=8;US,.

When a tangential step is computed, the size of the step is restricted by a trust-region radius (see
(2.29¢) and (2.34c)). For convenience, we capture these radii by defining §* ; := 1 and, for k£ > 0,

Ok—1 ifkeT,
55 == { min{oy, 6/} if k€T N7, (2.57)
min{6y, 0], /mup=} ifke T\ Tp.

As a guide to salient properties of the various types of iterations we have defined, we provide
the following lemma regarding basic facts that may be deduced from the design of our algorithm.
Unless stated otherwise, reference to the tangential step ¢y corresponds to the value used in Step 36
of Algorithm 1, i.e., the value after the possible reset in Step 29. For the purposes of this lemma, we
assume that if the algorithm does not terminate during iteration k, then all steps of the algorithm
during the iteration are well-defined. We prove this fact formally in the next subsection.

Lemma 2.6. If Algorithm 1 does not terminate during the kth iteration, then the following hold.
(i) If k e N, then 7y > 0, my(0) — mi(ng) > 0, mp(0) — my(nk) > 0, and ni # 0.
(ii) If ng #0, then k € N.
(iii) If k € T, then X£ > Iixﬁ]{ >0 and mi(nk) - mg(nk +t7) > 0.

(iv) If k € T\ To, then ty, #0 and mi(nk) - mg(nk +tx) > 0, while if k € To, then ti, =0 and (2.19)
holds.

(v) Ifti #0, then k € T\ To.
(vi) k €Y if and only if n, =t = 0.

(vii) Ifk €Y, then k € D and 7r£ < /iw7T£71 with &, € (0,1) defined as in (2.26).
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(viii) Ifk ¢ D, then k € T\ Tp and (2.34) holds.
(ix) If k € D, then the inequality in (2.47) holds.
(x) Tp CD.

(xi) If ke T\ Tp, thenni =0 and k ¢ N.

Proof. To prove part (i), let & € N, in which case we have that the conditions in Step 9 held true.
This could occur only if 7j > 0, or if in (2.8) we had T > wn(ﬂ',ffl) > 0 or v > K, wE>. Thus, to
prove that k € N implies mp > 0, all that remains is to investigate the case when v, > k., v7**. Since
vp® > 0 by construction, this inequality implies that vz, > 0. If 7} = 0, then the algorithm would have
terminated in Step 8 with an infeasible stationary point. Thus, we may again conclude that 7} > 0,
which establishes this strict inequality for all & € N. Since 7} > 0, it follows from the definition of
Py, and (2.7) that n = —P2J(zy, si) T c(zy, si) is a direction of strict decrease for m} (n), from which it
follows by (2.9) that m}(0) — m¥(ng) > 0. In turn, (2.12) implies the remainder of part (i).

Part (ii) follows since if ny # 0, then the conditions in Step 9 must have held (or else the algorithm
would have set ny < 0), in which case k € N.

Next, we prove part (iii). If k& € T, then it follows from Steps 1625 of the algorithm that after
the computation of y; (and all dependent quantities) both (2.25a) and (2.25b) did not hold (implying
that 7r£ > 0), but (2.25¢) did. Combining (2.25¢) and the fact that 7T]]: > 0 shows that Vm£(nk)Trk >
Koy (71',]:)2 > 0, so that ry, is a direction of strict ascent for m£ at ng. Combining this fact with (2.27)/(2.32)
and (2.28)/(2.33) yields m] (ny,) — mi (ny, + 1) > 0, as desired.

Building on the proof of part (iii), we next prove part (iv). If we have k € T\ 7, then we may combine
mi(nk) - mi(nk +1t$) > 0 with (2.29a)/(2.34a) to conclude that ¢ # 0 and mi(nk) - mi(nk +tx) >0,
as desired. (Since k ¢ 7o, this tangential step was not reset to zero, so we have maintained t; # 0 in
Step 36.) Finally, if k € Tp, it follows from Steps 15-29 that (2.19) holds, but that the algorithm reset
tr < 0.

To prove part (v), we first note that if ¢ # 0, then a tangential step was computed and thus k € T.
Moreover, since ti # 0, we know that k ¢ T, that means k € T \ 7, as desired.

We now prove part (vi). If ny = ¢, = 0, then dy, = 0 and we have k € ) by the definition of ). Now,
in order to derive a contradiction, suppose that k& € ) (so that dy = ny + tx = 0), but suppose that
ng, # 0 and/or ¢ # 0. Indeed, since ny, + t, = 0, we must have ny # 0 and tx # 0. It then follows from
parts (ii) and (v) that & € YNN N(T \ To). Consequently, from part (i) we have that m} (0) > m} (ng).
This fact and the equation ng + ¢t = 0 imply that (2.29d) can not be satisfied. However, according to
Steps 22-23 of the algorithm, since k € N we compute ¢ to satisfy (2.29), which is a contradiction.

To prove part (vii), suppose k € Y. It follows from part (vi) that n; = t; = 0 so that (2.29d) holds
(this means k € D), and then from part (i) that k ¢ . Hence, from Step 9 of the algorithm, it follows
that (2.8) must be violated. Moreover, since nj = 0, we also know that (2.19) holds and thus an oblique
projected gradient r, was computed (as stipulated in Step 16) to satisfy at least one of (2.25a), (2.25b)
and (2.25c¢). In fact, under the conditions of this lemma, it follows that (2.25a) must not have held, so
we know that either (2.25b) or (2.25c¢) is satisfied as a result of this calculation. Suppose that (2.25¢)
holds so that the algorithm would have proceeded to compute a tangential step and k € T. If k ¢ T,
then it would follow from part (iv) that t; # 0, which is a contradiction. Thus, we must have k € Ty,
i.e., we reset tj <— 0 because the computed tangential step satisfied (2.30), but not (2.31). This is a
contradiction because (2.31) would have been satisfied trivially since ny = 0. Thus (2.25¢) can not hold,
which implies that (2.25b) must hold. Since we have shown that (2.25b) holds and that (2.8) does not
hold, we conclude that 71',]: < wi(m}) < we (wn(ﬂ,ﬁil)) < Iiwﬂ'gil, where we have used the monotonicity
of w; and (2.26).

To establish part (viii), let k& ¢ D. It follows from part (vii) that & ¢ . Now, suppose that ¢, = 0.
Combining this with k£ ¢ ) implies from (vi) that ny # 0, which may then be combined with (ii) to
deduce that k € N. This fact along with (i) and the fact that ¢, = 0 implies that (2.29d) holds, and
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hence k € D, which is a contradiction. Therefore, we must have ¢, # 0, which from (v) implies that
k € T\ To and that the computed tangential step was not reset to zero. Thus, t; satisfies either (2.29)
or (2.34). Recalling that k ¢ D so that (2.29d) is not satisfied, we conclude that k ¢ Tp and (2.34)
must be satisfied.

To prove part (ix), suppose k € D so that (2.29d) holds. Then,

Ampt = mi(0) — my(dy)
> mp(0) = mg(0) — (1= ki, )my (ni)
= (1= k) (ME0) = mp (nk)) = (1 = Ky,) Ay, (2.58)

which, since k.4 € (0,1 — k], means that the inequality in (2.47) holds, as desired.

To prove (x), let k € Tp. It follows that a relaxed SQP tangential step ¢, was computed to
satisfy (2.29). Thus, if ¢ is not reset to zero, we know that (2.29d) holds. However, if t;, was reset to
zero, then (2.29d) holds trivially when nj = 0 and from parts (i) and (ii) when ny # 0. We have shown
in all cases that (2.29d) holds and therefore k € D.

Finally, to prove (xi), let k € T \ Tp. By lines 22-28 of Algorithm 1, it follows that (2.34) holds and
k ¢ N for all k € T\ Tp. It then follows from part (ii) that nj = 0. O

2.6  Well-posedness

The purpose of this section is to prove that Algorithm 1 is well-posed in the sense that if iteration k is
reached, then in a reasonable implementation of the algorithm, all computations within iteration k will
terminate finitely. Our first result shows important consequences of the slack reset procedure.

Lemma 2.7. The slack reset (2.39) and (2.50) in Steps 40 and 42 yields sy such that (zk, sk) satisfies
sk > 0 and c(xg, sk) > 0.

Proof. The fact that s; > 0 follows from the choice sp > 0, the fact that the slack reset (2.3) only
possibly increases the slack variables (as shown in (2.4)), and the fact that the fraction-to-the-boundary
rules in (2.11) and (2.29b)/(2.34b) hold when normal and tangential steps are computed.

We now prove that ¢(zy,si) > 0 holds. Prior to the slack reset performed in Steps 40 and 42,
if [c(zk,sk)]; > 0, then (2.3) leaves [si]; unchanged so that [c¢(zk, sk)]; > O still holds. Otherwise, if
[e(xk, sk)]i < 0, then after the slack reset (2.3) we have that [c(zy) + sk]; = 0, which completes the
proof. O

Next, we prove that the Cauchy step for the normal step subproblem is well-defined.

Lemma 2.8. If k € N, then the Cauchy step n§ defined by (2.9)~(2.10) is computed and satisfies
mi(0) —myp(ny) > k'rp min {ry, 07,1 — Kpn} > 0, (2.59)

where 5
K= € (0,2].

(14 1 Cox, s6)Pell)

Proof. Since k € N, we may observe from part (i) of Lemma 2.6 that 7} > 0. We now show that n{ («)
(recall (2.9)) is feasible for (2.10) during any iteration k¥ € A/ when

1
0 <o < —min {0}, k.7p, (1 = Kgu)} = . (2.60)
Tk

Indeed, consider any a € [0, o). It then follows from the definitions of nf(a) and 7} that

1P g ()2 = llaPid (2, i) e(wr, si)l2 = amy < min{dy, mumi}.
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It also follows from the definitions of n{*(«) and Lemma 2.7 that

[—n5* ()i = Skl (@, sk)li < alselill PeJ (z, s6)e(ar, i) |2

=amy[skli < (1 — Kpn)[sk]i fori=1,2,...M,
which implies that si + ng*(@) > Kansk. Overall, ng (a) is feasible for problem (2.5) for all a € [0, ag].
Now, observe that the minimizer af defined by (2.10) yields m}(ny) = m}(ng(ag)) < mi(ns(®))
for all a € [0, as]. It then follows from [3, Lemma 1] with the quantities
W= ap, “a” = 2||J(xk, sp)PET (xr, sk)  e(xr, sp)||3, D7 = 2(xF)? >0,
the fact that

“a” < 2| (@, sk) Pell3l| Pe (e, si) "e(@e, sk) I3 = 211 (k. si) Pe||3(w5)?,

and the definition of 7}, that

WL “b”
1 .
i (0) — i) > o win {2 v}

(ﬂ-;c))Q 6% 1 — Kan }
£k
1T (ks s1) Pell3(mp)? mp” ™ wp

N[=

> 7p)? min{
7T’U

= 7, min k ,

g {1 + 17 (@, si) Pell3

Op, knp, 1 — nfbn} > 0.

This leads to the desired result since 1+ ||J (2, sx)P[3 > 1 and &, > 1. O

Next we establish the remaining claims made in (2.2). (We remark that certain bounds established
in the proof of this lemma are specified in more detail in Lemma 3.12.)

Lemma 2.9. The slack reset (2.39) and (2.50) in Steps 40 and 42 yields sy such that the pair (xy, si)
satisfies vy, < V™ and, at the end of iteration k, we have vy < v,

Proof. Our proof is by induction. We have vg < v§** by the initialization of v§**. So now suppose
that v; < v for ¢ = 0,...,k — 1, and in particular that vy_; < vy™y at the start of the £ — 1st
iteration. The slack reset in Steps 40 and 42 cannot increase the constraint violation (recall (2.4)), so
that vg—1 < v holds following slack reset. It is also clear from (2.35), (2.36) and (2.36) that for
k —1 ¢ YUF the inequality v < v’ continues to hold at the start of iteration k. Hence, it remains
to consider k —1 € V. If p}_; < m or (2.47) does not hold (with k replaced by k — 1), then v < v
holds at the start of iteration k as a result of (2.53) and (2.55). Otherwise, it follows from Lemma 2.8,
(2.12) and (2.47) that AmZiil > 0 and thus vy, < vp—1 from py_; >y, (2.48) and (2.49). This implies
that

Vg < Uk + Ko (vk,l —vg) < vp—1 < VP (2.61)

as K, € (0,1), and hence from (2.52) that vp* < vp*y. Combining (2.52) and (2.61), we have that
VPP 2> Uk A+ Ko (vk,l — vg) > vg. Thus in all cases v, < vp™, and the induction is complete.

To establish that vy < v, note that if k ¢ V), then v} < vp**, so all that remains is to consider
k € V. Observing (2.52), we see again that vy < vp® if either (2.47) is violated or py < n1. By
contrast, if (2.47) holds and p}, > 7, then we must have nj # 0 and from part (ii) of Lemma 2.6 that
k € N. Moreover, it follows from (2.49), (2.48), (2.47), (2.12) and Lemma 2.8 as above that vx4+1 < vg,
and then, since both terms in the max in (2.52) are smaller than v, < v, that 0 < vy < V™ as

desired. O

Next, we show that the computation of the least-squares multipliers yy—along with the accompa-
nying quantities ry, 7T]]: , and Xi—is well-defined. We prove this result under the following reasonable
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assumption.

Assumption 2.1. If (2.19) holds and the iterative solver employed to solve (2.21) is allowed to Tun
for an infinite number of iterations, then it produces a bounded sequence {y(i)} with y© = 0 such that

lim vmE (y™¥) = 0. (2.62)
Lemma 2.10. If (2.19) holds and {y"} is produced by an iterative solver employed to solve (2.21)

that satisfies Assumption 2.1, then for some (finite) index i the vector yy, < y@ yields ry, 7T]]:, and x£
satisfying (2.25a), (2.25b), or (2.25¢).

Proof. For the purpose of deriving a contradiction, suppose that the iterative solver applied to solve
(2.21) runs for an infinite number of iterations without satisfying (2.25a), (2.25b), or (2.25c). Under
Assumption 2.1, the sequence {y(¥} is bounded, so with (2.62) we have that it has a limit point y>
satisfying

0= VimE (y™>®) = J(xk, s1)re(y>). (2.63)

Suppose that 7T]]: (y>°) = 0. If v, < €,, then this implies that there exists some smallest index 7 such
that with , < y® condition (2.25a) will be satisfied, which is a contradiction. Otherwise, if v > €,,
then we must have 7 > 0 or else Algorithm 1 would have terminated in Step 8. It then follows from
mp > 0 and W,{(y"o) = 0 that there exists a smallest index 4 such that with 3 + 3 condition (2.25b)
will be satisfied, which is a contradiction. We have shown that 7T]]: (y*°) > 0, which combined with (2.63)
and

Vi (ni) = Py 2ri(y™) — J(wn, 55)y™

shows that
™) = ri(y) " Vmb () )" (B (™) = I (@ s0)y>) (7Tsz(?/("°))2 =l (y™).

i (y) i (y) i (y)
(2.64)
If Vm£(0) = 0, then we have with (2.64) that yx + y(®) = 0 satisfies (2.25c), which is a contradiction.
By contrast, if Vim£(0) # 0, then since ,, € (0,1) we have from (2.64) and (2.62) that there is a smallest
index i for which y;, <y satisfies condition (2.25¢), which is another contradiction.

We have arrived at a contradiction in all cases, so the iterative solver must terminate finitely. [

We now give a bound on the decrease in our barrier model provided by the Cauchy step t¢.

Lemma 2.11. Ifk € T, then the Cauchy step ty, defined by (2.27)—(2.28) or (2.32)—(2.33) is computed
and satisfies

mf (ng) = mf (g +65) > it min (1= 10)8L, (1= )i} > 0,

where

H2

> € (0,1/2).
A G © O/

ct .
Ky =

Proof. We first consider the case when k € Tp, i.e., when the Cauchy step tf is computed from (2.27)-
(2.28) with the trust region radius 6}, = min{d}, 6,]:} (see (2.57)). It follows from part (iii) of Lemma 2.6
that x£ > HXTF]]: > 0 so that Vm£(nk)Trk > HX(TFIJ:)Q > 0. We now show that tf(«) (recall (2.27)) is
feasible for (2.28) during iteration k& € Tp when

1
0<a< — min {(1 — kg)oh, (1 — nfbt)nfbn} =: ap.
T
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Indeed, consider any « € [0, ag]. It follows from the definitions of ¢ («), 7%, and oy that
1P 5 (@)l = 1Py arslla = all Py rille = am] < (1= ki)d}. (2.65)

Using the triangle inequality, (2.19) (which must hold since k € Tp C T), (2.57), and (2.65), we then
have

1P (e + £ (@) ll2 < | P Ml + 1P 5 ()2 < udf + (1= w0)d < 6 = min{6}, 6/}, (2.66)

which shows that ¢f () satisfies the first constraint in problem (2.28). To show that t{*(a) also satisfies
the second constraint in problem (2.28), first observe that if [t°(a)]; = [—ar}]; > 0, then [s; +nj +
to5()]i > [sk + nili > Kalsk +nili > 0 since kg, € (0,1). Thus it suffices to consider 7 such that
[r7]; > 0. It follows from the definitions of ag and 7T£, (2.22), the fact that [rj]; > 0, Lemma 2.7, and
(2.11) that

a < am < (1 — Ko ) Kon (1 — Ktot)Kebn
= B = — —
f 15 rgl2

= lrgle/[SKlal [rili B [rili

Using the definition of ¢5*(«) and the previous inequality leads to

(1= Ka)kan (1 —Ka)Baalskli _ (1 — Ea)[sk + 13

[—ti* ()] = afrp]i < (1 — k) [sk + 13 )i

from which we may conclude overall that [s; + nj + t7°(a)]i > Kau[sk +nj); for i =1,2,..., M. This
proves that ¢7° (o) satisfies the second constraint in problem (2.28), and completes the proof that ¢f ()
is feasible for problem (2.28) for all a € [0, aig].

We now observe that the minimizer a$ of (2.28) yields mi(nk +1) = mi(nk +t5(af)) < m£ (ng +
t(av)) for all a € [0, o). We also have from the Cauchy-Schwarz and standard norm inequalities that

T T
rRGrk| = ‘(Vmi(nk) + (@, s) yn) PRGRPE (Vm (ne) + T (xk, 58) "y ‘ < (7)) PGy Py -
It then follows from [3, Lemma 1] with the quantities
“i=ap, “a” = |rfGyrl, D7 = Vmi(nk)Trk >0,

(the strict inequality was shown in the first line of this proof) that

WL . “b” s
d o) = el s+ ) > - min {2 o)

S Vmi(nk)Trk min{ Vmi(nk)Trk (1= kg)d; (1 — Kaw)Keon }

- 2 (72| PG Pyl s A f

_ Vmi(nk)Trk . Vm£ (ng)Try,
mi 7
. (

,u—@mmewM}

2n] 1+ || PuGi Pell2)
f f
Xk . Xk t
= Z£ min , (11— Kg)oL, (1 — Ky )Keon
; &unm@&m>< =% ( f”“}
w2m|

> min{ﬂ'f,l—H ot 1—I€(I€n},
2 S PGPl ™ U (7 )0k (1 v

where we have used 1+ || PyGPx|l2 > 1 and X£ > HXTF]]: with &, € (0,1) for the last inequality.
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The proof for the case k € T \ Tp is similar, but uses 6/, = min{d}, 5,{, VEE™}, (2.32) instead of
(2.27), (2.33) instead of (2.28), and ng = 0 (see part (xi) of Lemma 2.6) for k € T \ Tp. O

Finally, we turn our attention to the tangential step computation. The following result shows one
way to find a tangential step t; that satisfies the required conditions described in Section 2.3.

Lemma 2.12. If (2.19) holds and {yV} is produced by an iterative solver employed to solve (2.21) that
satisfies Assumption 2.1, then for some (finite) index i the vector yy < y@D yields ry, such that either

(i) the Cauchy point t5 defined by (2.27)—(2.28) satisfies (2.29), or
(i1) the Cauchy point t5, defined by (2.32)—(2.33) satisfies (2.34).

Proof. As in the proof of Lemma 2.10, in order to derive contradictions, suppose that the iterative solver
employed to solve (2.21) runs for an infinite number of iterations without yielding the desired result, in
which case we have under Assumption 2.1 that the sequence {y("} has a limit point 4> satisfying (2.63).
That is, as i — oo, we have 7 (y)) — rx(y>°) € Null(J(zx, s1,)). We introduce the notation ¢ (i) := ¢
when t¢ is the Cauchy point defined by (2.27)-(2.28) with 1y = r4(y()) associated with the relaxed
tangential subproblem, and ¢*(¢) := tf when t{ is the Cauchy point defined by (2.32)-(2.33) with
e = rx(y?) associated with the very-relaxed tangential subproblem. We observe from (2.27) and (2.32),
the constraints of (2.28) and (2.33), and the fact that r;(y>°) € Null(J(z, sr)) that there exist vectors
7 (00) and t£¥(00) such that £ (i) — t5"(00) € Null(J(xg, s)) and 5V (i) — t5¥(00) € Null(J(xk, sk))-

By definition, the Cauchy point t" (i) satisfies (2.29a)—(2.29¢) for all 4. Similarly, the Cauchy point
t5v (i) satisfies (2.34a)—(2.34c) for all i. Thus, to reach contradictions, we need only show that for
sufficiently large ¢ either ¢§"(7) satisfies (2.29d) or t5* satisfies (2.34d).

Suppose that ng # 0, in which case part (ii) of Lemma 2.6 implies that k£ € N. It then follows from
part (i) of Lemma 2.6 that mj,(nx) < vg, and thus the right-hand side of (2.29d) is strictly greater than
my (ny). Therefore, since t§"(c0) € Null(J(xy, sx)), there exists some smallest index 4 such that ¢*(z)
satisfies (2.29d), which is to say that statement (i) holds, which is a contradiction.

Now suppose that ny = 0, in which case part (i) of Lemma 2.6 implies that k ¢ AN. By virtue
of (2.8), this must mean that v, < k,,vp™. It follows from the facts that n, = 0, vy < K, V™,
K € (Kyy, 1), and t5¥ (1) — t$V(c0) € Null(J (g, si)) that ¢5V(i) satisfies (2.34d) for all sufficiently large
i. We have reached the contradiction that statement (ii) holds.

(]

3 Convergence of the Trust-Funnel Algorithm for Solving the
Barrier Subproblem
Our analysis requires the following assumption that is assumed to hold for the remainder of the paper.
Assumption 3.1. The sequence of iterates {xy} is contained in a compact set.
The following is an immediate consequence of Assumptions 1.1 and 3.1.

Lemma 3.1. There exists a constant kg > 1 such that, for all k and i =1,2,..., M, we have

max {1, [|g(zx)ll2, [le(@r)ll2, 1 (z0)ll2, [ Voaf (@n)ll2, [V oati(zr)lla} < fn

We may now prove that important sequences related to our method are uniformly bounded.

Lemma 3.2. There exists a constant k., > Ky > 1 such that, for all k, we have

max {vy, |[skll2, ] (zx, s&)e(zr, 51)ll2, 75, | Ped (ke 58) 7 2, (| PeGr Pell2, | PV (ks 58) |2} < K-



20 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Proof. The result is clearly true if the algorithm terminates finitely. Otherwise, it follows from Lemma 2.9
that vy < vp* < v for all k, which proves that {vx} can be bounded as claimed. Combining this
with the reverse triangle inequality yields

skllz = lle(@r)lle < lle(zr) + sklla = [le(zr, sk)lls < \/vg™ for all k.

We may deduce from this bound and Lemma 3.1 that {||sk||2} can be bounded as claimed. It then

2 * H (C(ﬂﬁkoa Sk))

which may then be combined with the Cauchy Schwarz inequality, Lemma 3.1, and the boundedness of
{vi} to conclude that {||J (zk, sk)Te(zk, sk)||2} can be bounded as claimed. The boundedness of {7} } fol-
lows from that of {||sx||2} and {||J(xk, sr)Tc(xk, sk)|/2}. It then follows from the boundedness of {||sx||2}
and Lemma 3.1 that {||PyJ(xk,sx)T |2} can be bounded as claimed. The boundedness of || PyGy. Py ||2
follows from the definition of Py, the boundedness of {||sk||2}, (2.16), (2.17), Assumptions 1.1 and 3.1,
and (2.18). Finally, it follows from Lemma 3.1 and the fact that P,Vf(zk,sr) = (g(zx), —ue) that
{|| P« Vf (2, sk)||2} can be bounded as claimed. O

follows from the triangle inequality that

| (ks s6)Te(zr, si)|l2 < H (J(‘Tk)TB(-Tk;Sk))

)
2

Using Lemma 3.2, we may now improve the Cauchy decrease bounds provided in Lemmas 2.8 and
2.11 by making the leading constants independent of the iteration number k.

Lemma 3.3. For all k, the following hold:
(i) If k € N, then the Cauchy step n§ defined by (2.9)~(2.10) is computed and satisfies

mp(0) — mp(ng) > Ky min{ny, 00,1 — Kant >0

for some constant k., € (0,2] independent of k.

(ii) If k € T, then the Cauchy step tj, defined by (2.27)-(2.28) or (2.32)-(2.33) is computed and
satisfies
mi(nk) — mi(nk +t7) > fic,ﬂ',]: min {7T£, (1 —Kg)oh, (1 — /ﬁﬂ,t)mﬂ,n} >0
for some constant k., € (0,1/2] independent of k.
Proof. The results follow from Lemmas 2.8 and 2.11 along with Lemma 3.2. (]

We require the next lemma that bounds the size of the trial step in different scenarios.

Lemma 3.4. If Algorithm 1 does not terminate during iteration k, then the following holds:

= || P 'nll2 < min{sp, k) ifké¢T,
P dill2 § = || P k|2 < min{6y, 6f, konl}  if k€ T,
<ot ifkeT\To.

In particular, for all k, we have | P, d|2 < 7.

Proof. Let k ¢ T, from which we have under the conditions of the lemma that ¢; < 0 and di = ng. If
ng = 0, then the result holds trivially. Conversely, if ny # 0, then part (ii) of Lemma 2.6 implies that
k € N and the result follows from (2.11).

Next, let k € T. First, if k € T, then it follows from part (iv) of Lemma 2.6 that ¢, = 0 and (2.19)
holds. Combining this with di = ng + tx = ng, (2.11), and the fact that k5 € (0,1) shows that

1Py dilla = ([P il < min{rs min{o}, 5}, 8¢, w7} < min{o}, o, w7},
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as desired. Second, if k € Tp \ 7o, then the result follows from (2.29¢) and the definition (2.57). Third,
if k € T\ Tp, then the result follows from (2.34c) and the definition (2.57). O

We now bound the discrepancies between the problem functions and their corresponding models.
Lemma 3.5. The following hold:

(i) There exists a constant ke > 0 independent of k such that
@+ i si + di) = m{(di)] < we| P dgll3 for all k. (3.1)
(ii) There exist constants ke > 2ky > 2 and {K,1, K.} > 2 independent of k such that
(g + df, s+ df) —mp(dy)| < kel Py td|3  for all k (3.2)
and
lo(@k + df), sk + d7) — mi(di)| < k| By i3 + Kualle(@r, se)ll2l| Py i3 for all k. (3.3)
Proof. We first prove part (i). By the triangle inequality, we have

\f(xn, + 2, sp + ) — mi (dy)]
< |\f(xk+df) — flaw) — V() df — 2TV L, yg)dy|

(3.4)
M M
D I+ dgle) + D Wn(ls) + e S g — 2z D,
i=1 i=1
Under Assumptions 1.1 and 3.1, and by (2.17), there exists a constant kg, > 0 such that
|f (@ + di) = fax) = Vf(@r)Tdf = 577V oLz, yR)dE] < Realldi]3: (3.5)

Moreover, note that for each ¢ € {1,..., M}, we have by (2.11) and (2.29b)/(2.34b) that [si]; + [d}]; >
Kmikma|Sk)i > 0 for all k regardless of whether a tangential step ¢, was computed. The mean-value
theorem yields In([sx]; + [d}]:) — In[sk]; = [d}]i/&, where &; lies between [sg]; and [sx]; + [d}];. Hence

< sup [dk]l o [dk]l
E€([sw]i,[sk]i+Idi]:] § [Sk]i

S 2 S 2
_ sl <[dk]i> PR <[dk]i>
[seli + [dili \[skli/ = Emelmn \[Skli/
where in the middle equation we have used the fact that the sup occurs at & = [si]; + [d}];. Hence, by
(2.18) and Lemma 3.2, we have that

ol + ) s — 2

M M
0> s+ dils) + u > In([seli) + pe” S dy — Sdi Dy

i=1 i=1

di T (uSy )y, + 31dy " Dydi] < k|| Sy I3

(3.6)
<

Rtbt Kebn

where Kgo = p/KmiKmn + %nfan > 0. The result now follows from (3.4)—(3.6), and Lemma 3.4 with
Kg = Kg1 T+ Kaa-
Part (ii) follows as for [25, Lemma 3.6] and uses Assumptions 1.1 and 3.1 and Lemmas 3.2 and 3.4. [

We now prove an important fact about v-iterations, namely, that if £ € V and the trust region radii
or vp** is sufficiently small, then k € D, that is ¢; is a relaxed SQP tangential step.
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Lemma 3.6. Ifk €V and

v of S (1 — ) _.
mln{ék,ék, Ry U } < m =! Ky, (37)

then k € D.

Proof. For a proof by contradiction, suppose that (3.7) holds while &k € V' \ D. We show that all of
the conditions of an f-iteration are satisfied, implying that & € F, contradicting the supposition that
keV.

Since k ¢ D, we have from part (viii) of Lemma 2.6 that £ € T \ Tp and (2.34) holds. Then, since
To C Tp, it follows that k € T\ T, so by part (iv) of Lemma 2.6 we have ¢ # 0. Moreover, k € T \ T
implies by Lemma 3.4 that || P, 'dg |2 < 6¢, which along with the fact that k € 7\ 7p and (2.57) implies

| Py g2 < min{&%,ég, VEpEY < Jrop™ and ||P |3 < (min{é}é,é};, VEOPEH? < koop
(3.8)
Combining these facts with (3.3), the reverse triangle inequality, (2.34c¢)—(2.34d), Lemma 2.9, and (3.7),
we have

0( -+, s+ ) < Rt + Rl PRI + o /O P 3
< B U™ 4 Ky Ky U min{ 67, (5,]:, VEUR} 4 Kyoy/K 05 min{ oy, 6£, N

50 (2.36) holds. Next, we know from part (xi) of Lemma 2.6 that n; = 0. Combining this fact with part
(iv) of Lemma 2.6 shows that (2.31) holds. Thus, all of the conditions of an f-iteration are satisfied, so
the result follows as described. O

Lemmas 3.4 and 3.6 have the following useful consequence.

Lemma 3.7. There exists a constant k,n, > 0 such that if k € V and
min{dg, 6£} < min{l, Ky, KuaaTh }s (3.9)

where k., is defined in (3.7), then k € N

Proof. We first note that Lemmas 3.1, 3.2, and 2.9 imply that there exists a constant x, > 0 independent
of k such that
(19)? < Koo < K UR (3.10)

Let k € V and (3.9) hold. Then, it follows from Lemma 3.6 that k¥ € D, so k € VN D. Now, in
order to derive a contradiction, suppose that k € (VN D)\ N. Since k ¢ N, we have from part (ii)
of Lemma 2.6 that ny = 0. Then, since k € V, we must have t; # 0 (since otherwise part (vi) of
Lemma 2.6 would imply that k& € ), which is a contradiction). Moreover, t; # 0 and k € D imply that
(2.29d) holds. At the same time, k£ ¢ A implies that (2.8) does not hold, so v < k., vp**. This bound,
(3.3), (2.29d), ny =0, (2.57), and Lemmas 2.9, 3.1, 3.2, and 3.4 then show that for k.5 = /U7 K,, > 0
we have

v(zg +di, sk + df) < By U™ + Ky (min{ 0y, 6£})3 + K,3(min{dy, 6,]:})2,

which, when combined with (3.9), (3.10), and
(1 - k)

s = ——— 5
" a2 K‘ﬂ(’k‘-‘ul + HUS) ,
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yields

v(ag +dE, sk 4+ d7) < Ko™ 4 (Ko + Kos) (min{dy, 6,]:})2 < KU + (Ko + Hvs)ﬁﬁAz(ﬂ'z)Q
(1—Kew)
—(

T

= R Up™ 4 T < K up™ 4 (1 — K, )JopRs = gy

so that (2.36) holds. Combining this with #; # 0 and the observation that (2.31) holds since Am]* =
Ami’t (recall ng, = 0) shows that & € F, which is a contradiction. Thus, we must conclude that
keN. O

We now prove a relationship between the trust-region radii and a guarantee of a successful iteration.
Lemma 3.8. The following hold:

(i) If ke F and

1—kg 1—kg' Ko

f f
1 — K ) Ko w(l— 1- :
52 < min {( Hfb‘)fifb s RsK ( HB)( 772)7Tk } =: mln{KfAfhKfAfzﬂ_]{} (311)

then p£ > 12, k€ Sy, and 6,]:“ > 6,]:.
(ii) Ifk €V and

KeabenTh(1 — 12)

oy Smin{/ﬁv,ﬂ'z,l—ﬁﬂm, "
C

,/ﬁnmﬂ'}c’} =: Min{Kae1, Kac2Th }s (3.12)

then k €e NNDNS,, pi > 2, and 63,1 > Op.

Proof. For part (i), the proof that p£ > 19, which implies that k € Sy, is the same as for [5, Theo-
rem 6.4.2] and uses (2.37), (2.31) (which holds since k € F), (2.29a)/(2.34a), part (ii) of Lemma 3.3,
(3.11), (3.1), the fact that ¢, # 0, and Lemma 3.4. The fact that 5,{“ > 5,{ then follows from (2.40)
and (2.43).

To prove part (ii), we first observe from (3.12) that w7 > 0 since dp > 0 by construction in the
algorithm. Furthermore, (3.12) and Lemma 3.7 imply that k& € A/, while (3.12) and Lemma 3.6 ensure
that k € D. We now conclude from part (ix) of Lemma 2.6 that the inequality in (2.47) holds. The fact
that k € S, and p}, > 1 is now proved as in [5, Theorem 6.4.2] and uses (3.12), the inequality in (2.47),
(2.48), (2.12), part (i) of Lemma 3.3, (3.2), and Lemma 3.4. Finally, using this fact, (2.47), and (2.51),
we have 6y, > d}. O

Lemma 3.8 allows us to provide uniform lower bounds on the trust-region radii for iterations that
have not resulted in (approximate) KKT points.

Lemma 3.9. If there exists a constant ey > 0 that satisfies
7T]]: >e€f forall k e F, (3.13)

then
5£ > ex for some ex > 0 for all k. (3.14)

Proof. The statement follows from part (i) of Lemma 3.8, (2.57), the fact that F C T \ To, and the fact
that &7, « o] for k ¢ F. O

Lemma 3.10. There exist constants {kacs, Kacs} C (0,1) such that

0p > min{Kaes, Kaaamh}  for all k. (3.15)
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Therefore, if there exists some €g > 0 such that
> € for allk €V, (3.16)

then
0p > min {Kaes, Kaca€s} =: €¢c for all k. (3.17)

Proof. With v, € (0,1) defined for (2.43), we prove by induction that
0p > 1 min{d§, Kact, Fswo Ty KaeaTh} for all k. (3.18)

This inequality holds trivially for k = 0, so supposing that it holds for iteration k, we must prove that
it again holds for iteration k + 1.

First, suppose that k € YU(F\Sy). Since 07, < 6 and (Tr41,5k+1) < (2, sx) for such iterations,
we conclude that (3.18) holds at iteration k + 1. Second, if k € Sy, then (2.41) and v, € (0,1) ensure
that (3.18) holds at iteration k + 1. Third, if & € S,, then (2.51) ensures that (3.18) holds at iteration
k + 1. Finally, suppose that k € V\ S,. In this case, the second part of Lemma 3.8 implies that 6} >
min{Kaci, Kacey }. This may then be combined with (2.54) and the fact that (g1, Sk+1) < (Tk, Sk)
to deduce that 07, ; > v min{faci, ka7, } so that (3.18) again holds at iteration k + 1. We therefore
obtain that (3.15) holds for all k£ with Kaes := y1 min{0y, Kac1} and Kaes = y1 min{Ks,y, Kaca}. The
bound (3.17) then directly follows from (3.15), (3.16), and the observation that 6} is never decreased
for ke YUF. O

We now give our first main result, namely that if there are finitely many successful iterations, then
Algorithm 1 terminates finitely.

Theorem 3.11. If |S| < oo, then Algorithm 1 terminates finitely.

Proof. To derive a contradiction, suppose that Algorithm 1 does not terminate finitely. It then follows
from the fact that |S| < oo, (2.35), (2.42), (2.45), (2.53), and (2.55) that for some z, € RV s, € RM,
and {v,,v2™, ¥} C R there exists an integer ks such that

(Tk, Sk) = (T, 84), Vi = Ve, VEX =00, 7 =7y, and k ¢ S for all k > k. (3.19)

Also, the fact that |S| < co and Lemma 2.7 ensure that s, > 0.

Suppose that |V| = oco. Then, by (3.19) (in particular, the fact that k ¢ S for k > k;), it follows
that (2.54) would set 0y, < 720y for all k € V with k > k,. Combining this with the fact that (2.35)
and (2.44) would set 6}, < ¢} for all k € Y UF with k > kj, it follows that {67} — 0. We also have
from part (ii) of Lemma 3.8 and the facts that |V| = co and |S| < oo that we must have limyey 7p = 0,
so in (3.19) we must have 77 = 0. If v, > 0, then this implies that for k¥ = ks the algorithm would
terminate finitely in Step 8, which contradicts the supposition of the proof. Thus, we must have that
vx = 0. Since v, = 7Y = 0, it follows from the conditions of Step 9 that ny = 0 for all £ > k,. This
implies that (2.19) will be satisfied for all k& > kg, which in turn implies by Step 15 of the algorithm
that yg, r, 7T]]:, and x£ will be computed to satisfy (2.25a), (2.25b), or (2.25¢). If (2.25a) were to hold,
then the algorithm would terminate finitely, a contradiction. Thus, we know that (2.25a) does not hold
for all £ > ks, which combined with the fact that v, = 0 implies that w,{ > €, > 0 for all £ > k.
It follows from this fact, part (i) of Lemma 3.8, the fact that {0;} — 0, and the fact that |S| < oo
that we must have |F| < oo. Next, it follows from the facts that v, = 0 and {dp} — 0, Lemma 3.4,
and (3.19) that (2.36) will be satisfied for all sufficiently large k. We may also deduce from the fact
that ng = 0 for all £ > ks that (2.31) holds for all k¥ > ks. Since we have shown that |F| < co and
that both (2.31) and (2.36) hold for sufficiently large k, we may conclude that ¢ = 0 for all sufficiently
large k. Therefore, since we have shown that ny = tx = 0 for all sufficiently large k, we have from part
(vi) of Lemma 2.6 that k € Y for all sufficiently large k, which combined with part (vii) of Lemma 2.6
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implies that {w,{ } — 0. However, this contradicts our earlier conclusion that 7T£ > e > 0forall k > k.
Overall, we have shown that we cannot have |V| = oo, so we must have |V| < .

Next, suppose that |F| < oco. Combining this with the fact that |V| < oo ensures that k € Y
for all sufficiently large k. It follows from this fact and part (vii) of Lemma 2.6 that {7r£ } — 0, and
that yg, 75, 7T£, and X£ will be computed to satisfy (2.25a), (2.25b), or (2.25¢) for all sufficiently large
k. During the computation of these quantities, (2.25a) can never be satisfied, since in that case the
algorithm would terminate finitely, which is a contradiction. Hence, since (2.25a) is never satisfied and
{W]{} — 0, we may deduce that v, > €, > 0. It then follows that ¥ > 0, or else for k = ks the algorithm
would terminate in Step 8, which again is a contradiction. Combining 7? > 0 with (3.19), the fact that
{ﬂ']]:} — 0, and (2.8) implies that k& € A for all k sufficiently large. Thus it follows from part (i) of
Lemma 2.6 that ny # 0, which contradicts our earlier conclusion that k& € ). Overall, we cannot have
|F| < 00, so we must have |F| = occ.

Since |F| = o0, |V| < 00, and |S| < 0o, we know from (2.35) and (2.43) that {5,{} — 0, which when
combined with (2.57) and part (i) of Lemma 3.8 implies that {Wg}ke}‘ — 0. Since (2.25a), (2.25Db),
or (2.25¢) holds for k € F C T \ 7o, and since the algorithm does not terminate finitely, we know
that (2.25a) must not hold for all k¥ € F. Combining this with the fact that {7r£ }eer — 0 implies that
v > €, for all sufficiently large k € F. Hence, since |F| = oo, it follows from (3.19) that v, > ¢, > 0.
We then must conclude that 7y > 0, or else for k = k; the algorithm would terminate finitely in Step 8,
which is a contradiction. Since {ﬂ']]: teer — 0, it follows that (2.25b) will be satisfied for all sufficiently
large k € F, which implies that ¢, = 0 and thus k ¢ F, which once more is a contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algorithm 1 does not
terminate finitely, so the result is proved. O

We next prove a technical result about the violation decrease following a successful v-iteration.

Lemma 3.12. There exist constants Kyq, Koo > 0 such that if k € S,, then

Vg1 < vp — Ty min(k, ., K, ,75), and (3.20a)
opy < max{k P, vp — (1 — Ke)mp min(k, K, ,7) (3.20b)

while (2.30) does not hold.

Proof. Let k € S,, which by the definition of S, means that (2.47) holds. In particular, we have ny # 0.
Combining this fact with part (ii) of Lemma 2.6 means that k£ € S, NN It follows from this fact, (2.49),
(2.48), (2.47), (2.12), part (i) of Lemma 3.3, Lemmas 3.10 (specifically (3.15)) and 3.2 that there exist
constants K,,1, Kyre > 0 such that (3.20a) holds, which in turn implies with (2.52) that (3.20b) holds.
Note that (3.20a) and Lemma 2.9 imply that (2.36) holds.

We now prove that (2.30) does not hold. To reach a contradiction, suppose that (2.30) holds, which
immediately implies that t; # 0. Part (iv) of Lemma 2.6 then implies that k € T \ 7o, which combined
with the fact that (2.30) is assumed to hold shows that (2.31) holds. Thus all the conditions of an
f-iteration are satisfied so that k € F, which, since VNJF = (), contradicts the fact that k € S, C V. O

We now show that if there are infinitely many iterations, then the v-criticality measure 7} converges
to zero along a subsequence.

Lemma 3.13. If Algorithm 1 does not terminate finitely, then

lim 7} if |Sy| = o0,
0= Fese (3.21)
liminf 7y if |Sy| < oc.
keSy

Proof. Lemma 2.9 shows that {v}**} is monotonically decreasing and bounded below by zero. Therefore,
if |S,| = oo and the update (2.52) sets vy < K, vy infinitely often, then {vj**} — 0. This would
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imply with Lemma 2.9 that {vx} — 0, which in turn would imply with Assumptions 1.1 and 3.1
and Lemma 3.2 that {7} — 0 so that (3.21) holds in this case. Whereas, if |S,| = oo and the
update (2.52) sets vpy > KR for all sufficiently large k, then by Lemma 3.12 we have vpy <

vp — (1 — Kp)mp min(k,,, k,,,7) for k € S, which implies {7} }res, — 0, and again we have (3.21).

vrl? o2

It remains to consider when |S,| < oo, in which case, for some constant v > 0, we have v = v
for all sufficiently large k, since v;»** is only decreased for k € S,. By Theorem 3.11, the conditions
of this lemma, and the fact that |S,| < oo, it follows that |Sy| = co. Now, to derive a contradiction,
suppose that there is a constant w7, > 0 such that

mp > 7o, >0 for all sufficiently large k. (3.22)
Since |S,| < oo, we know from (2.35) for k € ), from (2.38) and (2.42) for k € F, from (2.53) for
k € V\S,, and the fact that the slack reset only possibly decreases the barrier function that { f(xy, sk)}
is monotonically decreasing. Moreover, it follows from Assumptions 1.1 and 3.1 and Lemma 3.2 that
{f(zk, sk)} is bounded below, so overall we have that {f(zk,sk)} — fiw for some f, > —oco. It follows
from this fact, the fact that |Sy| = oo, (2.37), (2.38), (2.31) (which holds for k € F), (2.29a)/(2.34a), and
part (ii) of Lemma 3.3 that limpes, min{ﬂ,{, 8%} = 0. Suppose that for some infinite index set ; C Sy
and scalar ﬂ',f:in > 0 we have 7r£ > Wr{,in for all k € KCq. It follows that {5};}1@6&1 — 0. However, from part
(ii) of Lemma 3.8, the fact that |S,| < oo, and (3.22), it follows that {0} }rey is bounded away from
zero. In fact, since 6, < 0y for k ¢ V, we conclude that {d;} is bounded away from zero (for all k).
Combining this with the facts that {0} }rex, — 0 and vp> = vz > 0 for all sufficiently large k& implies
that {6,{ trex, — 0. It then follows from Lemma 3.9 that there exists an infinite index set Ky C F such
that {Wg}keK;Q — 0. Since Ko € F C T\ To, we know that (2.25a), (2.25b), or (2.25¢) is satisfied for all
k € K2. However, we also know that (2.25a) can not be satisfied since Algorithm 1 is assumed not to
terminate finitely. It does, however, follow from {w,{}ke& — 0 and (3.22) that (2.25b) will be satisfied
for all sufficiently large k € Ky so that ¢, = 0 for all sufficiently large k € Ko C F C T \ 7o, which
is a contradiction. Thus, we conclude that the set i cannot exist, so {ﬂ']]: } — 0. Tt follows from this
fact, (3.22), the fact that (2.25a), (2.25b), or (2.25¢) is satisfied for all k € F C T \ 7o, and since the
algorithm does not terminate finitely that (2.25b) will be satisfied (and hence t;, = 0) for all sufficiently
large k € F C T \ 7o, which again is a contradiction. Thus, our supposition that (3.22) held must be
incorrect and therefore there is a subsequence K such that limgex 7 = 0. Moreover, since |S,| < o0
and |Sy| = oo, we may conclude that (3.21) must hold. O

To proceed further, we define the active and inactive slack variable sets
A(s)={ie{1,2,...,M}:[s]; =0} and Z(s)={1,2,...M}\ A(s), (3.23)
at s € R™ and denote these sets by
A, = A(sy) and Z, :=I(sy)

at a point s.. Armed with these definitions, we make the following assumption throughout the rest of
our analysis.

Assumption 3.2. If Algorithm 1 does not terminate finitely and (x4, s.) is a limit point of {(xk, sk)},
then either A, = 0 or Ja, (x.) has full row rank, i.e., J(x., s.)Px with P, := diag(I,S.) has full row
rank.

Lemma 3.14. If Algorithm 1 does not terminate finitely and K is an infinite index set such that
{mi}kec = O, then for an arbitrary limit point (., s+) of {(zk,sk)}kex it follows that v(zs,s.) =0
with . feasible for (NP).
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Proof. Let us define the feasibility problem
minmirglize v(x,s) subject to s> 0
for which we have the first-order KKT conditions
min{s,c(z,s)} =0 and J(z)%c(z,s) = 0. (3.24)
For an arbitrary limit point (z, s«) of {(zk, sk) }xex, it follows from Lemma 2.7 and {7} }rexc — O that
52 >0, ¢(Ty,8:) >0, Sic(xs,8.) =0, and J(z,)Te(x,,s.) = 0. (3.25)

In particular, using (3.23) and (3.25), we have

)
)

Hence, from (3.25) and (3.26), we have that (z.,s.) satisfies (3.24). Now, if A, = 0, then by (3.26a)
we have that v(z., s.) = 0 and c(z,) < 0, as desired. Otherwise, by (3.25) and (3.26a), we have

[s«]z. >0 and ¢z, (zs) < cz, (4, 0; (3.26a)
0.

(3.26b)

Sx
Sx

Y

[si]a, =0 and ca, (z) = ca, (T,

0= J(x) (e, 85) = Ja(x) Teals, s0) = Ja(we) Tea(z.).

Under Assumption 3.2, we have that J4(z.) has full row rank, so the above implies that 0 = c4(z.) =
cA(x«, 84). Combining this with (3.26a) again yields v(z, sx) = 0 and c¢(x.) < 0, as desired. O

We now prove that if there are an infinite number of successful v-iterations, then feasibility is
achieved at all limit points of the sequence of iterates computed by the algorithm.

Lemma 3.15. If |S,| = oo, then {vp*™} — 0, {vg} = 0, {7}} = 0, and {nx} — 0.

Proof. Lemma 2.9 shows that {vj?**} is monotonically decreasing and bounded below by zero. Then,
as in the proof of Lemma 3.13, we have that if the update (2.52) sets vj¥y < K, vp™* infinitely often,
then {vp>} — 0, {vx} — 0, and {7} — 0. It then follows from this fact, (2.11), and Lemma 3.2 that

Thus, all that remains is to consider the case when the update (2.52) sets vy} >k vp™ for all
large k. As in the proof of Lemma 3.13, this implies that {7} }res, — 0. This, along with Lemma 3.14,
Assumption 3.1, and the boundedness of {s;} stated in Lemma 3.2 implies that there exists an infinite
index set K C S, such that {v}rex — 0. We then have from Lemma 3.12 (in particular, (3.20b)) that
{vp*}rex — 0, which means that {v}*} — 0 and hence {v;} — 0 because of Lemma 2.9. Combining
this with Assumptions 1.1 and 3.1 and Lemma 3.2, we thus have {n}} — 0. It follows from this fact,
(2.11), and Lemma 3.2 that {n;} — 0. O

We next prove a result illustrating the importance of the sequence {ﬂ']]: }. In particular, the result
establishes that under Assumption 3.2, 7T]]: is a valid criticality measure for (1.1).

Lemma 3.16. If K is any subsequence and («, s«) is any point such that limgex (Tk, k) = (T, Sx)
with v(xx, $x) = 0 and limgex W]{ = 0, then limgeicyp = Yy« where (T4, S«,ys) is a KKT point for
problem (1.1).

Proof. Since v(x*,s*) = 0, it follows that limgex c(zk, sk) = ¢(z«, $») = 0, which, when combined with
Lemma 3.2, proves that limgex 7j = 0. Thus, it follows from (2.11) and Lemma 3.2 that

li =0. 2
kler%nk 0 (3.27)
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Recall the notation Z, = Z(s.) and observe that

= Jim ol = Jig | P (Vo] )|
0 klglcﬂk kleII’é e | Vimy, (ng) + J (ks 5k) " Yk ,

(g(xk) + VoL (@r, yp)ng + J(wk)Tyk)
—pe+ SpDyny + Sk
9(zk) + Vo L(xr, yp)ng + J(wr) Tyr
= lim [—pe + SkDynj + Skyk) A, . (3.29)
kek
[—pe + SiDyng + Skykz.

(3.28)

= lim
ke

2

2

Using (3.29) (specifically the third row of equations inside the norm) with limgex(zr, sg) = (T, S«),
[s«]z, > 0, (2.18), Lemma 3.2 and (3.27) shows that

. _ -1 _.
]llenlﬂc[yk]z = [uS ez, = [yilz..

It then follows from (3.29) (specifically the first row of equations inside the norm), limgex (2, Sk) =
(X, 84), (2.18), (2.17), Lemma 3.1, (3.27), and the full row rank of J4, (x.) (see Assumption 3.2) that

lmfyla, = = [Ja (@), (@] T () (9() + Tz (@) [o:z, ) = [vida.

We have shown that the dual sequence converges along K, i.e., that limgex yr = y« for some y, € RM.
Combining this with (3.28), limgei (2, sk) = (T«, $«), (2.18), (2.17), Lemma 3.1, and (3.27) proves that

g(x) + J(2) Ty =0 and  S.y. = pe. (3.30)

Note that it follows from (3.30), Lemma 2.7, and p > 0 that (s.,y.) > 0. Combining this with (3.30)
and v(xy, sx) = 0 proves that (z.,y«, s«) is a KKT point for problem (1.1). O

Lemmas 3.14 and 3.16 prove that under Assumption 3.2, we may obtain a first-order KKT point for
the barrier subproblem (1.1) with any subsequence over which 7 — 0 and w,{ — 0. Now, to prove that
such a sequence will exist, we make the following assumption (stronger than Assumption 3.2) for the
remainder of our analysis. The assumption states that at any nearly feasible point, the singular values
of a scaled constraint Jacobian are bounded away from zero.

Assumption 3.3. There exists a constant k., > 0 independent of k such that if vi, < k., then the

smallest singular value of J(x, si)Py is greater than k; for some constant k; > 0 independent of k.

We also define the following projection operator. Note that this operator is used for theoretical
purposes only, i.e., computing such projections is unnecessary in an implementation of our algorithm.

Definition 3.17. Let Proj,(d) denote the orthogonal projection of d onto the range space of Py J (2, si)™ .

Lemma 3.18. If k € NND and vy < ke, then there exist constants kg,, Kre > 0 such that

e 1, v .o : e
IProj (P tdi)ll2 < 5 and - Amp™ > |[Projy(Py dy)||; min(s, iy [Proji(Py d)15). - (3.31)

J

Proof. Let k € N'N'D and define m%(d) := ||c(wk, s) + J(zk, sk)Prd|3 and df := P, 'dy. Then, it
follows from the fact that J(w, sg)PpProj,(df) = J(z, si)Pidl, part (i) of Lemma 2.6, and (2.29d)
that

my(Proju(dy ) = llc(@, sk) + J (xk, s6) PuProji(di))|15 = llc(zk, s1) + J (zk, s6) Prdy, ||3
my(di) < mj(0) = mg(0). (3.32)
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We may also note that since vy < k., we have under Assumption 3.3 that the smallest eigenvalue of
Vi (0) = 2PLJ (zy, si) T (0, sx) Py is bounded below by 22 > 0. We may now use this fact, (3.32),
and [5, Lemma 6.5.1] to conclude that

. _ . 1 v
|Proji(Py tdy)l2 = |[Proju(dy)]2 < PERLE

J

which proves the first inequality in (3.31). It also follows from Lemma 3.4 and the fact that the
orthogonal projection operator is nonexpansive that

6; = 1P il = |[Proj (P di) |-

Combining this with & € D, part (ix) of Lemma 2.6, the inequality in (2.47), (2.12), part (i) of
Lemma 3.3, and the first inequality in (3.31), we have that the second inequality in (3.31) holds. O

We now bound the size of the normal step along a certain subsequence of unsuccessful v-iterations.

Lemma 3.19. If ke N NVND)\S, and

. Rac1 2 1 — K 2
v < min < K., , , (3.33)
Rac2KRy Rac2Ry

then, for some constants {Kaq, fsrn} C (0,1), we have

mp(d) < Kaavx  and HPrOjk(Pgldk)Hg > nsRnHP,;lnng. (3.34)

Proof. Consider k € (N NV ND)\S, such that (3.33) holds. It follows from the fact that k € N ND,
part (ix) of Lemma 2.6, the inequality in (2.47), (2.12), part (i) of Lemma 3.3, and Assumption 3.3 that

(0) = Kealenmpmin {my, 07,1 — Kaon }

(0) = Kealien ks |lc(@r, sk)||2 min {&, || c(xk, sk)ll2, 0y 1 — Keon } - (3.35)
It also follows from part (ii) of Lemma 3.8, the fact that k € V\ S, (3.33), and Assumption 3.3 that
0p > min {Kacr, KaceTh } = Min {Kact, Kacaksl|c(Tk, Sk) |2} = Kackslle(zk, sk)||2-
Substituting this into (3.35) ensures by (3.33) the existence of k.4 € (0,1) independent of k such that

my(di) < m

(0) = Keakienhislle(r, si) |2 min {k, [lc(zk, sk)||2; Kacekis|lc(r, sK)[l2:1 = Krn}

v
k
= mp(0) = Keakenkis||c(@k, sk) |2 min {K; | c(@k, sk) |2, Kacekis||c(@k, Sk)]2}
v
k

(0) — Kealen oy min { Ky, Kacky } |lc(z, sk)||§ < KoraVk-

3

This is the first desired result. Next, defining dkP = P 'dy,, we may use the inequality above, the
reverse triangle inequality, and the fact that J(zy, sg)PrdE = J(zk, si) PiProj,(df) to have

lle(@k, sk)ll2 = [T (k, sk) PeProji(di )2 < lle(an, sk) + J (@k, sk) PeProji(dy)|l2
= |le(xk, s) + J(xk, s1) Prdy ||2
= |le(@r, sk) + J(2k, sk)dill2 = /m}.(dr)

VEaaUk = /Eaallc(Tk, sk)||2-

IN
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Combining the above with the fact that & € A/, (2.5), and the Cauchy-Schwarz inequality then implies

1P nlle < mumf) < Kl Prd (@, 51) " l2lle(@r, si) 2
., s1) PeProji(df) |2
1- V Fela
HJ(‘T/C’Sk)PkH2||PrOjk(dkP)H2.
1-—- V Reld

It then follows from the definition of df, Lemma 3.2, and the fact that r.4 € (0,1) that for some
Kern € (0,1) independent of k, we have

J
Sfinllka(SEk,Sk)T||2H (

< Kol Ped (zis s5) T [|2

. _ 1- V Fela 1 1
Proj.(P 1dk > P, nglle 2 Kora|| P nkl|2,
|| Jk( k )||2 Hn”J(zk,Sk)Pk”%” k ||2 R || k ||2

which is the second desired result. O

For our next set of results, given the parameter ¢ > 0, we define the functions

2Hub
Sin(€) := Kysmax 1, and 3.36a
( ) e { (1 - Ha)(fivs - 1)’%:(1 - K/B)e} ( )

. € 1 — Kot )R
Gs(€) := min {1, e ( . _fbﬁl ot } , (3.36D)

where we have defined k,s > 1 in (2.30), £,, > 1 in Lemma 3.2, x; € (0,1) in (2.31), s, € (0, %] in
part (ii) of Lemma 3.3, k5 € (0,1) in (2.19), k. € (0,1) in Assumption 3.3, ke, € (0,1) in (2.20), and

Kemn € (0,1) in (2.5).

Lemma 3.20. If there exists € > 0 independent of k such that k € Y,

ml > e>0, (3.37a)
min{é}é,é,]:} <€), and (3.37b)
1Pl > (@) Py k|2, (3.37¢)

then t, # 0 and (2.31) holds.

Proof. Let k ¢ Y be such that (3.37) holds. If k € F, then the results follow by the definition of the
index set F. Thus, for the remainder of the proof, we may assume that k € V.

If n;, = 0, then t;, # 0 (since otherwise we have k € Y by part (vi) of Lemma 2.6) and Am£’d =
Ami’t > 0, meaning that (2.31) holds, which are the desired results. Otherwise, if nx # 0, then since
sp > 0 and P, > 0 for all k¥ and (3.37c) holds, we have that t; # 0, which implies that & € T \ To
and (2.19) holds. It then follows from the reverse triangle inequality, (3.37¢), and (3.36a) that

_ _ _ P_1n]€ _ Kys — 1 _
1P il > P e — B0 e = <1u> 1P 1tk||zz< vs )|Pk Hle (3.39)
”Pk tkHQ Rys

We also have that
n T, _ _ _
—Amg = Vf (2k, s6) ' + 3niGrnie = (PuVf (zr, s1)) Py ' + 3(P k) "TPeG R Po(Py ') (3.39)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 3.2, and the fact that (2.19) and (3.37b)
imply || P, "'ng |2 < min{é%,é,{} <1, we then have

| Am "] < w (1P Ml + 51P k13) < 2m0 1P 2 (3.40)



A squared-violation interior-point trust-funnel algorithm for nonlinear optimization 31

Moreover, it follows from the fact that k € T \ 7o, part (ii) of Lemma 3.3, (3.37a), (2.57), and (3.37b)
that
Amg’t > Ko €min {e, (1 —kp)ok, (1 — fifbt)nfbn} = Fe€(1 — Kp)oL.

Combining this with (3.40), the fact that k € T \ 7o, Lemma 3.4, (3.38), and (3.37c) yields

|Amk7n| < 2Hub||Pk_1nk||2 2Hub||Pk_1nk||2 2KuwRvs Hpk_lnkH2 <
Al = Ree(T= )0, el — ) [Py dilla e — ) (s — 1) [Py ellz

S

Hence, (2.31) holds, which completes the proof. O

We next prove that at nearly feasible points, certain v-iterates are guaranteed to be successful.

Lemma 3.21. If there exists € > 0 independent of k such that k € VND,

1P k|2 < conle) | Py |2, (3.41)
and
2 2 2
vp < min{ K, ( faa > : <(1 — Hfb“)) : ( Al ) ,
Rac2Rg Rac2Rg RRroRsrnFuRub
2
( KSQRIIKRZ(l - 771) ) (3 42)
(1 4+ 6n(€))2[Fur (1 + Gn(€)) KuFoup + Koo ’

then k € S, and 6, > &y.

Proof. Consider k € VN D such that (3.41) and (3.42) hold. If nj = 0, then (3.41) implies that ¢; = 0,
which in turn implies by part (vi) of Lemma 2.6 that k£ € ). However, this contradicts the supposition
that k € V, so we must in fact have nj # 0. In this case, part (ii) of Lemma 2.6 ensures that k € N,
so that overall we have k € NNV ND.

To obtain a contradiction, suppose that k € S,, so that overall we have k € (N NV N D)\ S,. This
and the bound (3.42) implies that the results of Lemmas 3.18 and 3.19 hold, i.e., that (3.31) and (3.34)
hold. Moreover, the fact that k € D and part (ix) of Lemma 2.6 imply that the inequality in (2.47)
holds. Using this fact, our conclusion that nj; # 0, and the fact that k € V' \ S,, it follows from (2.53)
that p;, < n1. However, since (3.31) and (3.34) hold,

Amie® > || Projy(Py )|l min (s

w1 Fra [PTOJ(P i) ll2) > Fora | Py 12 min (s s g | P 1 |2)-

But it follows from (2.11), Lemma 3.2 and (3.42) that
Bobernl| Py 1]|2 < KpoRanabinT) < KpoKennbinfiu |0k ) |l2 < o Konnfnkun vV/OE < Ky

and therefore
Am};’d > K2 ﬁR2|\Pk_1nk|\§. (3.43)

sRn

Furthermore by (2.48), (3.3), (3.43), the triangle inequality, (3.41), (2.11), the Cauchy-Schwarz inequal-
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ity, Lemma 3.2, and (3.42), we have that

v(zy +di, s+ di) — my(dy)
Am};’d
1P, d]l3
T Kakra|| Py k3

< Wl (0 1y e (I il + Fus e, s2)]l2)

Kornfr2

< OF sl (0 14 (@Rl Ped (@ s) Nl + #ua) e, 1)l

Kornfr2

14 6.(e 2
< BF O] (0 1 e (©)maman + R0a) leens s)llz < 1= 11,

Kornfr2

ok =11 =

(B | P d |2 + ozl (s sk)l2)

which implies that p} > n1, which is a contradiction. Thus, we must conclude that k£ € S,. The fact
that 0;,, > 0y now follows from the fact that k& € S, and (2.51). O

We now prove that our algorithm terminates finitely if there are finitely many successful v-iterations.
Lemma 3.22. If |S,| < oo, then Algorithm 1 terminates finitely.

Proof. We prove the result by contradiction, and so suppose that |S,| < co, but that Algorithm 1 does
not terminate finitely. It then follows from Theorem 3.11 that |S| = oo, which when combined with the
fact that |S,| < co implies that |S¢| = oo; i.e., it follows that there are an infinite number of successful
iterations, and all belong to Sy for all sufficiently large k. We may also deduce from these facts—and
since the barrier function is decreased for £ € Sy and the slack reset only possibly decreases the barrier
function—that the sequence { f(zk, si)} is monotonically decreasing for sufficiently large k. Moreover,

max

since vpy < vp* for all k ¢ S, and |S,| < oo, we have that there exists a constant v > 0 such that

vp™ = vie* > 0 for all sufficiently large k. (3.44)

oo

We complete the proof by considering two cases depending on whether, for some e; > 0, (3.13) holds.
Case 1: Suppose that (3.13) holds for some e; > 0. It then follows from Lemma 3.9 that (3.14) also
holds, in which case we have from (2.29a)/(2.34a), the fact that Sy C F C T\ 7o, part (ii) of Lemma 3.3,
(3.13), (3.14), (2.57), and (3.44) that

Ami’t > Ko € min {ef, (1 —Kg)d, (1 — mbt)mbn}

> Keefmin{eyr, (1 — k) min{dy, er, /R UL}, (1 — Koy )R b for sufficiently large k € Sy.
(3.45)

We now consider two subcases, deriving contradictions in each, which will prove that the condition of
this case (namely, that there exists e > 0 such that (3.13) holds) cannot occur.
Subcase 1.1: Suppose there exists an infinite subsequence Ky C Sy such that {0} }rex, — 0. Since
Opp1 < o0y onlyif k € V\S, and 6}, < &} otherwise, it follows that there exists an infinite subsequence
Ky CV\'S, such that {6} }rex, — 0. Our goal in the remainder of this subcase is to prove that for all
sufficiently large k € IC,, C V, we have that all of the conditions of an f-iteration are satisfied, which is
a contradiction since YV N F = . This will prove that such a sequence Ky C Sy cannot exist.

Using the fact that {0} }rex, — 0 and Lemma 3.6, we may conclude that for all sufficiently large
k € Ky we have k € (WND)\S,. In addition, since |S,| < oo and {0} }xex, — 0, we may conclude from
part (ii) of Lemma 3.8 that limgecx, 7} = 0, which in turn implies with Assumption 3.1 and Lemmas 3.2
and 3.14 that limgex, vi = 0. Now, suppose that there exists an infinite subsequence K] C K, such
that K, "' = 0. The following then hold for all sufficiently large k € K}, C K, CV\ S,:
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(a) ng =0 by part (ii) of Lemma 2.6 (and thus (2.31) holds);
(b) tx # 0 by (a), part (vi) of Lemma 2.6, and the fact that k£ € V; and
(€) vk < Ky U™ = K, 3 by Step 9, (2.8), and (3.44).

It then follows from assumption 1.1, Lemmas 3.4, the fact that {0} }xex; — 0, the above (c), and the
bound k., < 1 that v(zi + df, s + dj) < vp™ for all sufficiently large k € K, which gives (2.36), and
thus we have that all of the conditions of an f-iteration hold, so k € F. However, this is a contradiction
since k € K, C V and VN F = . Thus, such an infinite subsequence K, C K, cannot exist, so
we may conclude that for all sufficiently large &k € K, we have k£ € N. To summarize, at this point
in this subcase, we may assume without loss of generality that there exists an infinite subsequence
Ky CWNNVYND)\S, over which {6} }rex, — 0, {7 rex, — 0, and {vi}rex, — 0.

It follows from Lemma 3.19 and the facts that I, € (NNVND)\S, and {vk }rexc, — 0 that mj (di) <
KaaVk for all sufficiently large k& € K,. Using this fact, the triangle inequality, (3.3), Lemma 3.4,
Lemma 2.9, and (3.44), we have

V() 8)) < KaaVe™ + K1 (00)% + Kuon/ome=(67)? for all sufficiently large k € KC,.

This relationship then implies that

+ o max max . vY2 . (1 — Kaa)vse™
v(z],sp) v =w for all sufficiently large k € IC,, such that (6))* < min< 1, ———=— %,
( k k)— k Yy g (k) { Ku1+ﬂv2\/@}
Thus, since {0} }rex, — 0, we may conclude that (2.36) holds for all sufficiently large k € IC,.

Next, suppose that for €, > 0 defined in (2.25a), we have

127 trll2 < Gulex)|| Py 'ngl|2 for all sufficiently large k € KC,. (3.46)

We may then use the facts that K, € (M NV ND) and {vg}rex, — 0, (3.46), and Lemma 3.21 to
conclude that |S, N KC,| = oo, which contradicts the fact that |S,| < co. Therefore, there exists an
infinite subsequence K. C K, such that if k € K/ then (3.46) fails.

We now show that with e = ¢, and k € K] C K, C V\ S, the conditions of Lemma 3.20 hold.
Consider k£ € K. First, since k € K/ C V, we know that k ¢ ). Second, since k € K./, we know
from the previous paragraph that (3.46) does not hold, and therefore that t;, # 0 and 7, was computed
to satisfy (2.25a), (2.25b), or (2.25¢). Since we have supposed that the algorithm does not terminate
finitely, we may use the facts that {vi}rex, — 0 and K C K, along with (2.25a) to conclude that
(3.37a) holds for all sufficiently large & € K. Third, since K] C K, and {0} }rex, — 0, we have
that (3.37b) holds. Fourth, we know from the definition of the set K/ that (3.46) fails, which is to
say that (3.37c) holds. We may now apply Lemma 3.20 to deduce that tx # 0 and (2.31) holds for all
sufficiently large k € K!/. Thus, along with our previous conclusion that (2.36) holds for all sufficiently
large k € K\, we may conclude that for all sufficiently large k € K! we have that all of the conditions
of an f-iteration are satisfied. However, as previously mentioned, this is impossible since K] C K, CV
and F NV = (. Hence our stated supposition for Subcase 1.1, that there is an infinite subsequence
Ky € Sy such that {} }rex, — 0, must be wrong.

Subcase 1.2: Suppose instead that there exists e, > 0 such that J; > e, for all k € Sy, and recall that
|S¢| = 0o. We may combine (3.45) and the bound d} > e, for all k& € Sy to conclude that there exists
k' such that

Amg’t > keepmin{eg, (1 — k) min{e,, ex, /RO, (1 — K )Bnn} >0 for all &' <k e Sy, (3.47)

Combining the facts that |S,| < co and |Sy| = oo, (2.37), and (2.31) (which is required to hold for
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k € F), we have that

k—1 k—1
f(xk/, Sk’) — f(ack, Sk) = Z [f(acj, Sj) - f(.%'j+1, Sj+1)] Z mkKs Z Am;’t, (348)
j=k',jES j=ko,jJES

which in view of (3.47) proves that {f(xg,sx)} — —oo. However, this is a contradiction since the
barrier function is bounded below as a consequence of Lemma 3.2 and Assumptions 1.1 and 3.1.
Thus since neither Subcases 1.1 or 1.2 can happen, the premise of Case 1 cannot be true.
Case 2: Suppose that the condition of Case 1 does not hold, which is to say that there exists L C F
with
lim 7/ = 0. 3.49
Jim 7y (3.49)
For all k € K C F C T\ Ty, we have that ¢ # 0 was computed (and not reset to zero) and thus (2.25b)
is false. Combining this fact with (3.49) yields
0= %161% > %161% wi(my) >0, which implies that %161% 7y = 0.
It follows from this fact, Assumptions 3.1 and 3.2, and Lemmas 3.2 and 3.14 that {vg}rex — 0, which
when combined with (3.49) shows that (2.25a) will be satisfied for all sufficiently large k € K. However,
this contradicts our supposition that the algorithm does not terminate finitely. o

The previous result proves that if the algorithm does not terminate finitely, then there are an
infinite number of successful v-iterations. We now establish an important consequence of having an
infinite number of successful v-iterations.

Lemma 3.23. If |S,| = oo and there exists ¢ > 0 independent of k such that (3.41) holds for all
sufficiently large k € YV N'D, then

0p > €, for some e, >0 for all k. (3.50)

Proof. First, by Lemma 3.15, the fact that |S,| = oo implies that {vx} — 0. Hence, for sufficiently large
k € VN D, we have that (3.41) and (3.42) hold, which in turn implies by Lemma 3.21 that 0, , > d;.
Second, if k € V' \ D, then it follows from Lemma 3.6 that 6; > min{d}, 5,{, VEOET} > Ky, Third, if
k € Y UF, then by (2.35), (2.41) and (2.44) we have that 0;,, > 6;. The result follows by combining
the results of these three cases. o

We next prove a result about certain v-iterations that are unsuccessful.

Lemma 3.24. If k € V\ S,, (3.33) holds,
4 4
. 1 — Kaa 1— ke 12
vp* < min< 1, , ,(Ky)3 2, 3.51
o= { (Hvl‘i”iuz) (’%14”11;2) ( V) } ( )

p< (0T, (3.52)

and

then k € D and (2.36) holds.

Proof. Let k € V\ S, and observe that (3.51) and (3.52) imply that §; < k,. Hence, by Lemma 3.6,
we have that k € D. That is, k € (VN D)\ S,. We now consider two cases depending on whether or
not k € N.

Suppose that k € N so that k € (NNVND)\S,. It then follows from (3.3), the triangle inequality,
the requirement that (3.33) holds, and Lemmas 3.4 and 3.19 that

v(xg + di, sk + di) < KaaUk + Ko (00) + Koav/or (65)2.
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Then, from this inequality, Lemma 2.9, (3.52), and (3.51), we have that

10
12

V(@p + dE, sk A+ d)) < KaqUP™ 4 Koy (UP™) T2 4 Ky (0757 (0

ax mdx A
=" (mm + Koo (V5 )12 + Koo (V] 12)

which means that (2.36) holds, as desired.

Now suppose that k &€ N. It then follows from (3.3), the triangle inequality, Lemmas 3.4 and 2.9,
(2.29d) (which holds since k € D), and the fact that vy < k,,vp* holds (which holds by (2.8) since
k ¢ N) that

e

< o (R (0E) s (o)

v(xp + di, sk + dy) < mp(di) + 5,0 (0F)° 4 Koo /Up=(67)?
< U+ K1 (0F) + Ko JOR(07)?
< RO o (V™) 12 4 Koy O™ (o) 32
< (o OB+ e (1) )

< o™ (va + Kul(v;:ax)u + Koz (’U;cnax)%) < o,

which again means that (2.36) holds, as desired. O

Theorem 3.25. The set S, is finite.

Proof. We prove the result by contradiction, and so suppose that |S,| = oo. It then follows from
Lemma 3.15 that limy_,oc v = limg_ o0 VP = limg 00 7 = limg 00 N = 0. Moreover, from the facts
that limg_,o vp = 0 and |S,| = oo, we have that (2.25a) must not hold for all sufficiently large k, or
else the algorithm would terminate finitely in Step 18 or 33, which is a contradiction. Therefore, there
exists €, > 0 such that

7r£ > e, > 0 for all sufficiently large k. (3.53)

It follows from this fact and Lemma 3.9 that (3.14) holds. Also, with € = €., it follows from the facts
that limy_o0 vk = limp_o0 vp* = 0 and |S,| = oo that there exists a sufficiently large ko such that
(3.33), (3.42), and (3.51) hold for all k > k.

We now prove a lower bound for ¢} that holds for all sufficiently large k, written as equation (3.57)
below. We prove the bound by considering two cases, the latter of which is composed of two subcases.
Case 1: Suppose that with € = €, (3.41) holds for all sufficiently large k > k¢ such that k € VN D.
Then, since |S,| = 0o, we may apply Lemma 3.23 to deduce that (3.50) holds for all sufficiently large
keVnD.

Case 2: Suppose that Case 1 does not hold in that there exists an infinite index set

Ki={k>ko:keVND and ||P; tg|l2 > culex)|| Py ngll2 }-

Since 0} (vp®) is not decreased (increased) for k € S, UY U F, our goal is to provide a lower bound for
dp over k € K1\ S,. We do this by considering two subcases depending on whether or not k € N.

Subcase 1: Consider k such that kg < k € K1\ (S, UN). Since k ¢ N, it follows from part (ii) of
Lemma 2.6 that ni, = 0. By part (vi) of Lemma 2.6, this means that t; # 0 (since otherwise we would
have k € V), which in turn means by part (v) of Lemma 2.6 that k € T\ 7o and that (2.31) holds (since
n, = 0). We may then conclude from the fact that k € V\ S,, the choice of ky being large enough such
that (3.33) and (3.51) hold for k > ko, and Lemma 3.24 that if (3.52) holds, then (2.36) also holds.
However, this would imply that k € F, which contradicts the definition of Ky since VN F = ). Thus,
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(3.52) must not hold and
50 > (up*)T for all k such that ko < k € K1\ (S, UN). (3.54)

Subcase 2: Consider k such that kg < k € (K1 N N)\ S,. By (3.53), we have that (3.37a) holds with
€ = €. Similarly, by the definition of I, we have that (3.37c) holds with ¢ = ¢,. Now suppose that
(3.37b) with € = e, and (3.52) both hold. Then, since k ¢ Y and (3.37a), (3.37b), and (3.37¢) all hold,
we may apply Lemma 3.20 to conclude that t; # 0 and (2.31) holds. Also, since k € V \ S,, we have
shown that (3.33) and (3.51) hold, and we have supposed that (3.52) holds, we may apply Lemma 3.24
to conclude that (2.36) holds. Overall, we have shown that all of the conditions of an f-iteration are
satisfied so that k € F. However, this contradicts the fact that k € Ky CV and ¥V N F = (. Therefore,
we may deduce that at least one of (3.37b) with € = e, or (3.52) must not hold, yielding

5

5 > min {gg(ew), (v,‘;‘“)ﬁ} for all k such that ko <k € (K1 NN)\S,. (3.55)

Combining (3.54) and (3.55) from Subcases 1 and 2 shows that, for Case 2, we have

5

8 > min {g;(ew), (v}:"‘")ﬁ} for all k such that ko <k € K1\ S,. (3.56)

Moreover, the fact that limg_ oo vy = 0 and Lemma 3.21 with € = €, implies that for any k£ with
ko <k e (VND)\ Ky, we have k € S,,. Thus, for all k > ko with k € (WND)\S,, we have k € K1\ S,.
As a result, the inequality in (3.56) holds for all k with kg < k € (VN D)\ S,. This conclusion, along
with the deduction that &} > &, for all k € V\ D from Lemma 3.6 yields

5 > min{ga(eﬂ), (v,;“a")%,ﬁv} for all k with ko < k € V\ S,

which, when combined with the fact that 67 (vp™) is not decreased (increased) for k € S, UY U F,
yields
dp > min {gé(e,,), (vg"‘“‘)%,nv} for all k > k.

Combining the results of Cases 1 and 2, we have that
d7 > min {e*, S5 (€x), (v};‘a")l%,mv} for all sufficiently large k. (3.57)
Using this fact, (3.14), and the fact that {vp>} — 0 yields
min{dy, 6,]:} > min {e*,gé(e,r), (V™) 72 Ky, 6_7:} = (vp™) 72 for all sufficiently large k. (3.58)

Under our supposition that the set S, is infinite, at least one of the following two scenarios must
occur. In both, we reach a contradiction to this supposition that S, is infinite, which proves the theorem.
Scenario 1: Suppose that S; := S, \ 7 is infinite. For k& € &1, we have that either (2.19) does not hold
or (2.25b) holds. In fact, since limy_,oo 7 = 0 and (3.53) holds, condition (2.25b) cannot hold infinitely
often for k € Sy, implying that for all sufficiently large k € S; we have that (2.19) does not hold. Then,
since ¢ = 0 for k € S1, we have by part (vi) of Lemma 2.6 that ny # 0. We may now use the fact that
vp™ > 0 for all k, (3.58), Lemmas 2.9 and 3.2, and the fact that limj_,o vx = 0 to conclude that

< ki [[e(@r, 1) |2 = ki [[(@r, 1) |2 < kg for sufficiently large k € S;.

Rk ( B

|c(@, sk)lI3) T2
However, this means that (2.19) holds for all sufficiently large k € S, contradicting our earlier conclusion

1Py nell> ko
min{dy, 6]} ~ (vp™) T

that it does not. This contradiction implies that this scenario cannot occur.
Scenario 2: Suppose that So = S, N'T is infinite. Our goal is to show that for all sufficiently large
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k € Sy, we have that all of the conditions of an f-iteration are satisfied, which is impossible since So C V
and VNF = (. We begin by showing that (2.31) holds for all sufficiently large k € Sy. Using (3.39), the
triangle and Cauchy-Schwarz inequalities, Lemma 3.2, (2.11), and the fact that limg_,o 7} = 0 (and
hence that x,m; < 1 for all k sufficiently large), it follows as in the proof of Lemma 3.20 (see (3.40))
that

|AMP™ | < ko (1P 'rnll2 + 1P 'nkll3) < 26ukam) < 262, Kal|e(zr, si)||2 for all sufficiently large k € So.
(3.59)

It also follows from the fact that {vp*} — 0 and Lemma 3.6 that k& € D for all sufficiently large k € Ss.

Moreover, since Sy C T, it follows that for all k£ € Sy a tangential step ¢ # 0 was computed to satisfy

either (2.29) or (2.34). However, for all k € S; = S, N T, it follows from (2.47) that ni # 0 and

then from part (xi) of Lemma 2.6 that k € Tp, i.e., that (2.29) holds. This implies by (2.57) that

8% = min{dy, 6,]:} for sufficiently large k € S;. It follows from this fact, the fact that k € Tp, (2.29a),

part (ii) of Lemma 3.3, (3.53), (3.58), the fact that limy_, vp> = 0, and Lemma 2.9 that

Amivt > Kebr min {ex, (1 — £5)0}, (1 — Kene) Koo }
= K. €; Min {ew, (1 — k) min{dy, 6£}, (1- ﬁfbt)ﬁfbn} > Kobr(l — fsB)(U;:a")% > Koer(l — HB)(’U]C)%

10 10
= Ke€r(1 — Kp)||c(zr, sk)|l3° > %ncteﬂ(l — kg)|le(xk, sk)||3? for all sufficiently large k € Ss.

Combining this with (3.59) and the fact that limg_,o vx, = 0 shows that

2
4’€§b"€n|‘c(1‘ka Sk)”212

Amd| i,
Ke€r(l — Kg)

c(zk, sk)||2
CRENTE

fit —
Ami” Reen(l = r)lle(@r, )13

< 1—ks for all sufficiently large k € Ss.

Hence, (2.31) holds for sufficiently large k € Sa, as desired. From here, it follows from Step 28 that the
computed tangential step is not reset to zero, i.e., k € Tp\ 7o for all sufficiently large k € Sa, from which
it follows that ¢y # 0 for all sufficiently large k € Ss. Moreover, since k € S, implies by Lemma 2.9
that (2.36) holds, we have from the fact that So C S, that (2.36) holds for all k¥ € S;. To summarize,
we have shown that for all sufficiently large £ € S5, we have that all conditions of an f-iteration are
satisfied, which is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |S,| = oo, neither Scenario 1 nor 2 may oc-
cur. However, since one of the two must occur in order to have |S,| = co, we have reached contradictions
to our supposition, meaning that the result is proved. O

We conclude by summarizing our convergence results.
Theorem 3.26. The following hold for Algorithm 1:

i ssumptions 1.1, 2.1, and 3.1 hold, then either Algorithm 1 terminates finitely or there exists

i) If A ti 1.1, 2.1 d 3.1 hold, th ither Algorithm 1 t mat itel th 51
an infinite subsequence IC such that limpex mf = 0. In the latter case, any limit point (x.,s.) of
{(zk, Sk) trek satisfies w¥ (x4, s.) = 0 and is therefore a critical point of v(x,s) subject to s > 0.

(ii) If Assumptions 1.1, 2.1, 3.1, and 3.2 hold, then either Algorithm 1 terminates finitely or there
exists an infinite subsequence K such that limpex 7 = 0. In the latter case, any limit point
(4, 8%) of {(xk, k) ek satisfies v(xy, s5) = 0 with x. feasible for (NP).

(iii) If Assumptions 1.1, 2.1, 3.1, 3.2, and 3.3 hold, then Algorithm 1 terminates finitely in Step 18 or
33 with an approximate first-order KK T point (zk, Sk, yr) for the barrier problem (1.1).

Proof. Part (i) follows from Lemma 3.13, Assumption 1.1, and the criticality conditions (3.24) for
minimizing v(z, s) subject to s > 0. Part (ii) follows from part (i) and Lemma 3.14. It remains to prove
part (iii).
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It follows from Theorems 3.25 and 3.22 that Algorithm 1 terminates finitely. The only way part (iii)
would not hold is if Algorithm 1 terminated in Step 8 with an infeasible stationary point. However, this
is not possible since if 7 = 0, then P.J7 (zx,s1)c(xy, sx) = 0 and thus c(zx, s;) = 0 as a consequence
of Assumption 3.3, which contradicts vy > 0. This proves the result. O

4 A Trust-Funnel Algorithm for Solving the Nonlinear Opti-
mization Problem

The previous section considers the global convergence properties of our new trust-funnel algorithm when
applied to the barrier subproblem (1.1). This section describes how a sequence of barrier subproblems
with decreasing values for the barrier parameter may be solved to find an approximate first-order KKT
point for problem (NP) (equivalently, problem (NPs)).

To achieve our stated goal, we require the constants ¢, and €, in Algorithm 1 to depend on p.
Moreover, for practical reasons, it is advisable to make other constants in Algorithm 1 depend on p as
well. In the previous section, we did not explicitly state these dependencies, for ease of exposition, since
1 was fixed. This does not pose a problem in this section since we use Algorithm 1 to solve a sequence
of barrier problems where for each particular instance the penalty parameter is fixed and therefore our
previous analysis still holds. A summary of the constants that depend on p and precisely where they
are used is given in Table 4.1. In addition to requiring them to be positive, it is practical to have them

satisfy
lim e, () = lim €,(p) = im Kan(p) = lim Kee(n) =0  and (4.1)
pn—0 pn—0 pu—0 pn—0
lim r, (u) = lim kin{p) = oo. (4.2)

Moreover, the convergence result that we present in this section additionally assumes that

ex(py) < Gy eolpy) < Copd,  and ki (pg) < Capy @ (4.3)

for some chosen constants {¢1,a} C (0,1) and {(2, {3} C (0,00), and that a particular choice for the
positive-definite matrix Dy, defined in (2.18) is used. Specifically, for each 1 < i < m, we define

Kin (#5) if pylskly? > ko (),

4.4
wilsk];?  otherwise. (.4

[dk]i := [Dglii == {
Other choices for Dy, such as the primal-dual update Y35, ! are also possible, and would only require

a slight modification in the proof.

With these requirements, we may now state our algorithm for solving problem (NPs).

Table 4.1: Parameters from Algorithm 1 that depend on the barrier parameter.

Parameter Used Parameter Used Parameter Used

Ky = iy () (2.17) g (2.18) r = ex(n) (2:259)
Kfbt = Kfbt (M) (229b)/(234b) Kfbn = Hfbn(l,l/) (25)/(211) €y = ev(u) (225a)
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Algorithm 2 Trust-funnel algorithm for solving (NPs).

1: Input: (zo, so, Yo, o) satisfying (so, yo, o) > 0.

2: Choose a parameter v, € (0,1) and any two forcing functions e, (-) and €,(-).

3: Set (zF™, s, yi**) < (o, S0,yo) and j < 0.

4: loop

5: Call Algorithm 1 with input (25", s5™", y5*", ;) and (ex(ps), €u(p;)) to compute
(@j+1, 8541, Yjt1)-

6 if Algorithm 1 terminated in Step 8 then

7: Return the infeasible stationary point (z;41, $;+41)-

8 Set pjy1 € (0,7upy]-

9 Use pj, pj+1, and (j+1,Sj+1,Y;+1) to compute the next starting point (m;‘f{‘, sﬁif,yﬁif)

10: Set j « j+ 1.

Theorem 4.1. If Assumptions 1.1, 2.1, 3.1, and 3.3 hold, and both (4.3) and (4.4) hold, then either
(i) Algorithm 2 returns an infeasible stationary point in Step 7, or

(ii) there exists a limit point (T, S«,ys) of the iterates {(z;+1,8+1,Yj+1)} computed by Algorithm 2
such that (., Sx,yx) is a first-order KKT point for problem (NPs).

Proof. If statement (i) occurs, then there is nothing left to prove. Therefore, suppose that statement
(i) does not occur, in which case we have that Algorithm 1 never terminates in Step 8, which by (2.25a)
and (4.3) means that for all j > 0 we have

o (Wie1) < en(py) < Gy and  vjn < ep(py) < Gopl. (4.5)

In particular, we have that the sequence {(xj41,5j41,¥j4+1)} is infinite, and from the second part
of (4.5), the reverse triangle inequality, Assumption 3.1, and (4.1), we have that {s;41} is bounded.
Combining this fact with Assumption 3.1 implies the existence of an infinite index set J and a point
(24, $+) with s, > 0 such that
lim (251, 5741) = (@, 5.). (46)
Jj€T

It follows from this fact, (4.5), and Assumption 1.1 that

lim v;11 = v(x4, s+) = 0. 4.7
lim vj41 = v(z.,5.) (0.7
We comment that for the remainder of the proof, the quantities Pj;1, nj41, etc. are used to represent
the final values of the relevant quantities computed in Algorithm 1 when it is called in line 5 during
iteration j of Algorithm 2; they are the complementary quantities to (z;+1, 841, Yj+1)-

It follows from the definition of Pj11, (2.11), (4.6), Assumption 1.1, and (4.5) that

[”S'+1]i _ ; _ _
h < HSj-|-11n;+1HOO < ||Sj+11”j'+1||2 < HPj+11”j+1||2
i %

< kamiy = O(lle(zjs1, sit1)lly) = O(VvjH1) = O(py).

Since we maintain positive slack vectors throughout Algorithm 1, we may then conclude that
|[nj+1]1| = O(uj[sjt1]i) foralll<i<mandj>1. (4.8)

We now develop a crucial bound by considering two cases motivated by the definition of Dy. First,
suppose that for a given i we have p1;[s;j41];% < kp (1), so that from (4.4) we have [dj41]; = p;[sj+1]; >

It then follows from this fact and (4.8) that

s 1)ildja)ilns il = O(u3).
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Second, suppose that for a given i we have p;[s;y1];° > kn(y;), so that from (4.4) we have [dj1]; =

kip () < pilsi4+1]; %, and thus [sj41)2[dj+1]i < pj. Combining this fact with (4.8) shows that

\Isjalildja)ilng )il = Ouslsjli[djali) = O(u). (4.9)

Therefore, we have shown that (4.9) holds in both cases, i.e., (4.9) holds for all 1 <4 <m and j > 1.
We may now use the same proof as for Lemma 3.16, combined with (4.7), (4.9), and the first part
of (4.5) to deduce that limje s yj+1 = y. for some y. satisfying g(z.) + J(z.)Ty. = 0 and S.y. = 0.
To prove that (z., S«, y«) is a first-order KKT point for problem (NPs), it only remains to prove that
y* > 0, which we now proceed to do.

From the first part of (4.5), we know that

> H <g($j+1) + Vo L@, yf )n e + J($j+1)Tyj+1)
o —pje+ Sjr1Djpang g + i1y

2
> ||=pje + Sjs1Djrini iy + Sjsryill, = || —mje + Sjr1Djrangy + Sivaysa
> | = pj + [s+1ildj1lilng )i + [si+1]ilyj1]i| for all 1 <i <m. (4.10)
We now consider two cases. First, suppose that 4 is such that [s.]; > 0. In this case it follows from
(4.10), (4.9), the fact that p; — 0, and (4.6) that lim;c 7[y;+1]; = [y*]; = 0, as desired. Second, suppose
that ¢ is such that [s.]; = 0. It may be observed from (4.10) that
=G < —pj + [sj1lildjali[nfq]i + [s51lilyjli,

and hence that s
—Cipy + pj — [sj1lildjalilngqle

[8j+1]i

[yj-i-l]i =

It follows from the previous inequality, the facts that ¢; € (0,1) and p; — 0, (4.9), and the fact that
the slack vectors are maintained to be positive in Algorithm 1, that [y;+1]; > 0 for all sufficiently large
j. Combining this with lim;e 7 y;4+1 = y« shows that [y.]; > 0. This completes the proof. O

5 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlinear optimization prob-
lems. The algorithm is of the inexact barrier-SQP variety, i.e., it approximately solves a sequence of
barrier subproblems using an inexact SQP method. In Sections 2 and 3, we proved that each barrier
subproblem could be solved approximately using a new inexact-SQP method based on a trust-funnel
mechanism (not requiring a filter or penalty function). The algorithm is extremely flexible in that,
during each iteration, it automatically determines the types of steps and updates that are expected
to be most productive, where potential productivity is determined by available criticality measures.
In each iteration, each subproblem may be solved approximately using matrix-free iterative methods,
which means that the algorithm is viable for solving large-scale barrier subproblems. We then proved
in Section 4 that an approximate solution of the original nonlinear optimization problem may be ob-
tained by approximately solving a sequence of barrier subproblems for a decreasing sequence of barrier
parameters.

Although we have not considered them explicitly in this paper, we remark that equality constraints,
call them cg(z) = 0, may easily be included in our algorithm and analysis. To do this, one may simply
redefine

and adjust the barrier problem (1.1), violation measure (2.1) and v-criticality measure (2.7) in obvious
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ways. Clearly, two-sided bounds on inequality constraints may also be incorporated in a similar fashion.

We are currently implementing our new algorithm. Once complete, it will be part of the GALA-

HAD [21] thread-safe library of Fortran 90 packages for the numerical solution of optimization problems.
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