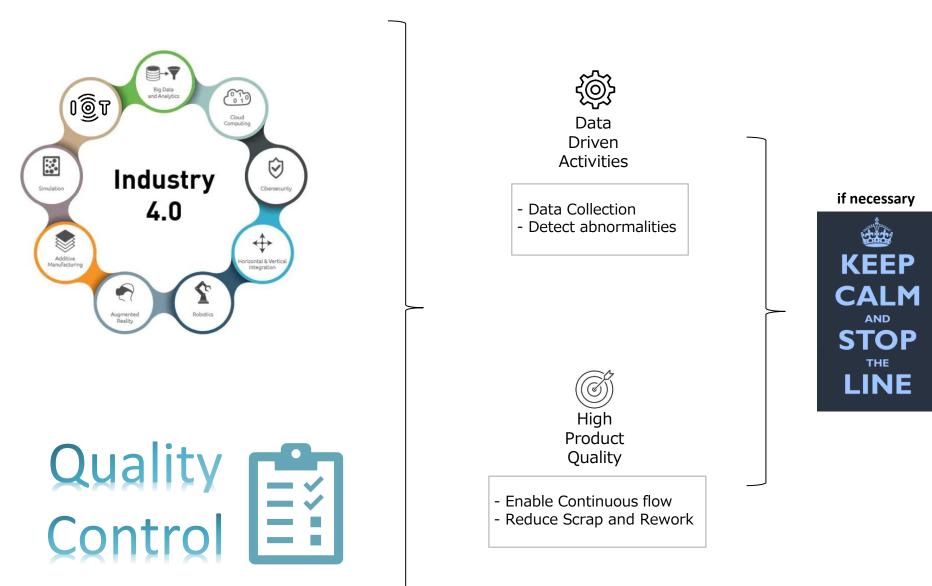
GanoDIP : GAN Anomaly Detection through Intermediate Patches

A PCBA Manufacturing Case

A. Bougaham, A.Bibal, I.Linden, B.Frénay Université de Namur – NADI – Belgium

3rd International Workshop on Learning with Imbalanced Domains: Theory and Applications (co-located with ECML/PKDD 2021) September 17, 2021

Introduction



Industrial Context

Automatic Optical Inspection is the 1st visual tester of the line

Ideal candidate to apply EDER

= Many data available that reflect the intermediate quality



ATECU: Automatic Transmission Electronic Control Unit = finished product PCBA: Printed Circuit Board Assembly = intermediate product AOI: Automatic Optical Inspection = PCBA judgement process

Problem Definition

False Positive Rate implies manual inspection

Waste of time Risk of misjudgment

5 Target = Reduce the FPR while maintaining the FNR at 0%

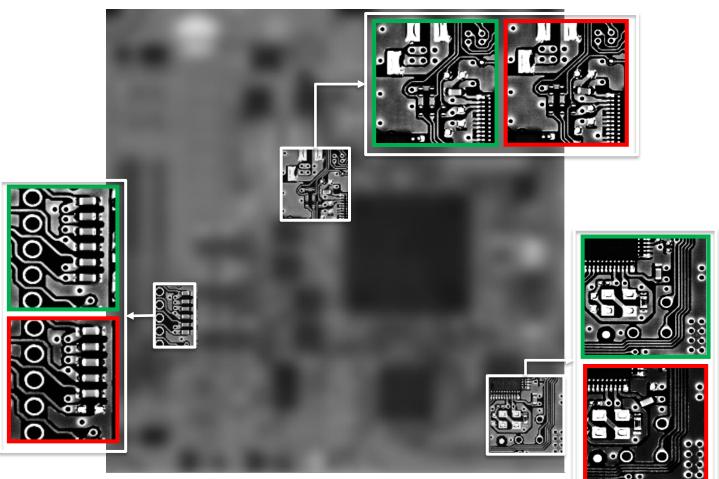
Anomaly Detection State-of-the-art in the machine learning field

High Resolution and Small Details: the PCBA Dataset

Deal with Normal variability and Small Defects

A lot of information in the overall image

Dense-in-components areas yield abrupt changes in pixel intensity



Some parts of the images have been blurred to guarantee the intellectual property of our industrial partner. The arguments described also apply for the hidden parts, where information can be extrapolated.

State-of-the-Art Anomaly Detection Techniques

Unsupervised Methods

Difficult to collect enough abnormal images (imbalanced dataset) Difficult to ensure that all anomalies could be covered in the dataset

OC SVM - Kernel PCA models

Poor discriminative performance with high-dimensional images

Autoencoders models

Good reconstruction for normal, but also for abnormal (complex dataset)

Adversarial learning-based models

 \checkmark Train a generator to capture the normal distribution, and a discriminator to distinguish original and generated images

GanoDIP Training Step

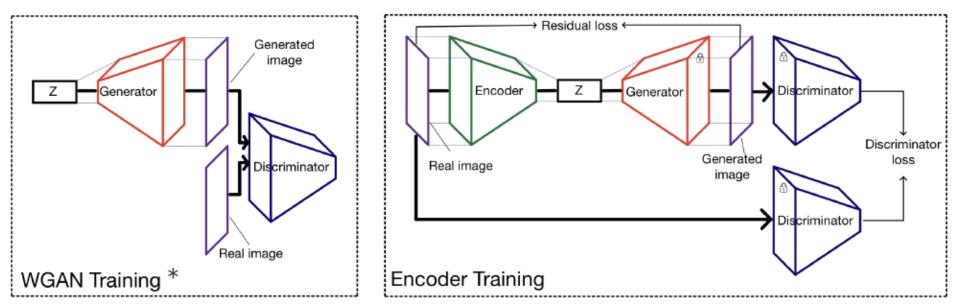


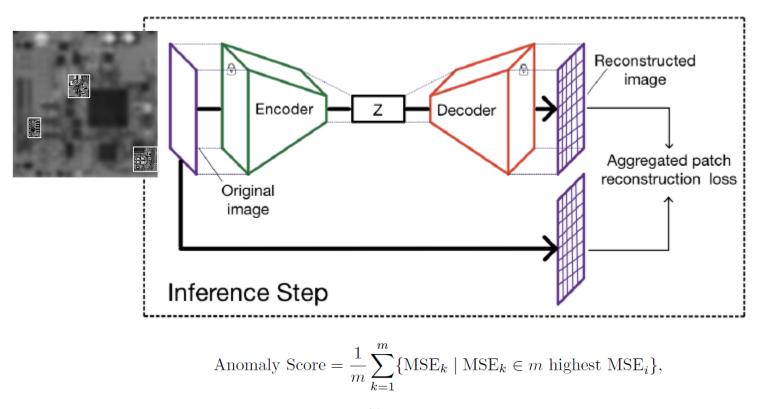
Figure inspired from Schlegl et al. (2019) presenting the training strategy of f-AnoGAN, which is used as the first step of the proposed method GanoDIP.

* WGAN is a GAN that minimizes the Wasserstein distance improving the learning stability

www.unamur.be

GanoDIP Inference Step

Anomaly Score



where m corresponds to the α % of the patches with the highest anomaly score, and i is the patch index.

Dataset Pre-Processing and Experimental Protocol

360 normal images for train set 50 normal + 18 abnormal images for test set

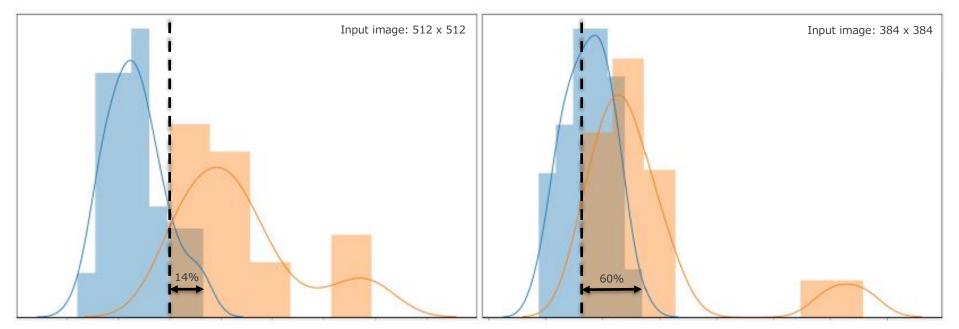
Resizing 4500x4340 => 512x512 Normalization

 $\alpha = 0,15\%$ Patch Size = 4x4

GPU nVidia Geforce RTX 2080 TI Python 3.7, CUDA10.1, Tensorflow 2.3

Training Time ~ 27 hours Inference Time ~ 5 seconds / image

Evaluation: Quantitative Assessment

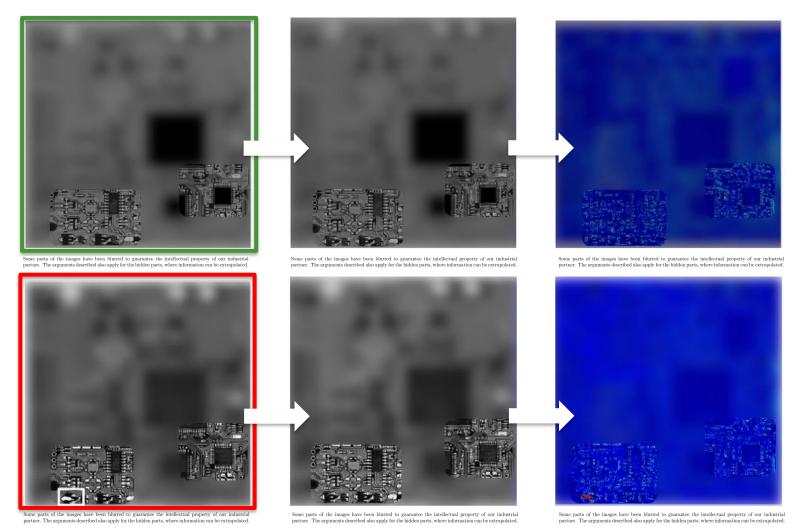


Anomaly scores for normal (blue) and abnormal (orange) images of the test dataset. The x-axis is the anomaly score of the test images and the y-axis corresponds to the score frequency.

If constraint is 0% FNR => threshold placed at the best anomaly score for abnormal distribution.

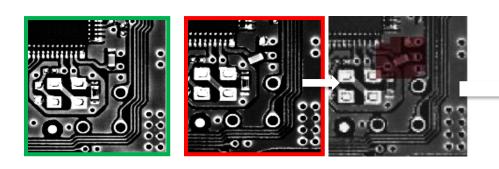
Evaluation: Qualititive Assessment (1/2)

Global image differences

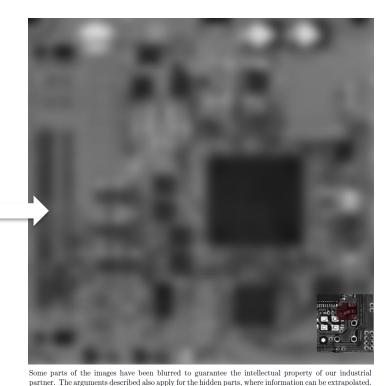


Global image complexity -> limited discriminative performance

Evaluation: Qualititive Assessment (2/2)



Overlay highest anomaly score patches



Visual Turing Test

Assess the reconstructed images quality

Performed with 5 domain experts

- \otimes 58,2% images correctly labeled – close to the 50% expected

Defects identified + Confidence on future yet unseen defects

Conclusion

TO SUM UP

Distinguish normal and abnormal images Find defects of different nature Support actual visual inspection process

RESULTS

0% FNR 14% FPR 72% Inspection time saved

FUTURE WORK

Increase the input image size Optimize the latent space encoding Transpose the method on other use cases Proceedings of Machine Learning Research 154:1-14, 2023

LIDTA 2021

GanoDIP - GAN Anomaly Detection through Intermediate Patches: a PCBA Manufacturing Case

Arnaud Bougaham	ARNAUD.BOUGAHAM@UNAMUR.BE
Adrien Bibal	ADRIEN.BIBAL@UNAMUR.BE
Isabelle Linden	ISABELLE.LINDEN@UNAMUR.BE
Benoît Frénay	BENOIT.FRENAY@UNAMUR.BE
Université de Namur - NADI - Belgium	

Editors: Nuno Moniz Paula Branco Luís Torgo Nathalie Japkowicz Michał Woźniak and Shuo Wang.

Abstract

Industry 4.0 and recent deep learning progress make it possible to solve problems that traditional methods could not. This is the case for anomaly detection that received a particular attention from the machine learning community, and resulted in a use of generative adversarial networks (GANs). In this work, we propose to use intermediate patches for the inference step, after a WGAN training procedure suitable for highly imbalanced datasets, to make the anomaly detection possible on full size Printed Circuit Board Assembly (PCBA) images. We therefore show that our technique can be used to support or replace actual industrial image processing algorithms, as well as to avoid a waste of time for industries Keywords: Industry 4.0, AOI, PCBA, Anomaly Detection, Imbalanced Dataset, WGAN Image Processing, Real-World Dataset, Unsupervised Learning

1. Introduction

In the last few decades, the industrial sector evolved with technologies, entering different successive revolutions. From the steam-powered equipment, to the introduction of electricity and IT equipment, the sector takes nowadays advantage of cyber-physical systems Companies are now facing the 4th industrial revolution, also called Industry 4.0. This new paradigm involves a variety of key enablers, composed of the internet of things (IOT), analytics, data science, machine learning and decision systems. The main objective of these technologies is to optimize the factories productivity. In this context, deep learning, applied to automatic image inspection, offers a high potential to enforce quality control requirements. This can be done because factories own countless images that may be exploited. specifically to detect and localize anomalies in products.

This work proposes to solve a real-world, industrial, anomaly detection problem. Realworld images are considered, taken from the production lines of an Automatic Transmission Electronic Control Unit (ATECU) manufacturer. The product line is composed of successive processes, devoted to manufacture electronic Printed Circuit Board Assembly (PCBA), in order to equip car speed boxes. The first process is the one of interest in our work. It takes images of 100% of the products being manufactured through an Automatic Optical Inspection (AOI), applied on the 2 faces of the PCBA. To detect PCBAs with anomalies in the product line, traditional anomaly detection algorithms (comparison between an image under test and a golden sample image) are currently used in factories, through this process

© 2021 A. Bougaham, A. Bibal, I. Linden & B. Frénay

Thank you for your kind attention