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Yet another fast variant of Newton’s method

for nonconvex optimization

S. Gratton∗, S. Jerad† and Ph. L. Toint‡

20 II 2023

Abstract

A second-order algorithm is proposed for minimizing smooth nonconvex functions
that alternates between regularized Newton and negative curvature steps. In most cases,
the Hessian matrix is regularized with the square root of the current gradient and an
additional term taking moderate negative curvature into account, a negative curvature
step being taken only exceptionnally. As a consequence, the proposed method only re-
quires the solution of a single linear system at nearly all iterations. We establish that
at most O

(
| log ε| ε−3/2

)
evaluations of the problem’s objective function and derivatives

are needed for this algorithm to obtain an ε-approximate first-order minimizer, and at
most O

(
| log ε| ε−3

)
to obtain a second-order one. Initial numerical experiments with two

variants of the new method are finally presented.

Keywords: Newton’s method, nonconvex optimization, negative curvature, adaptive regulariza-

tion methods, evaluation complexity.

1 Introduction

It is not an understatement to say that Newton’s method is a central algorithm to solve
nonlinear minimization problems, mostly because the method exhibits a quadratic rate of
convergence when close to the solution and is affine-invariant. In the worst case, it can
however be as slow as a vanilla first-order method [7], [12, Section 3.2] even when globalized
with a linesearch [35] or a trust region [14]. This drawback has however been circumvented
by the cubic regularization algorithm [36] and its subsequent adaptive variants [8, 9], [12,
Section 3.3]. For nonconvex optimization, these latter variants exhibit a worst-case O

(
ε−3/2

)
complexity order to find an ε- first-order minimizer compared with the O

(
ε−2
)

order of
second-order trust-region methods [26], [12, Section 3.2]. Adaptive cubic regularization was
later extended to handle inexact derivatives [40, 41, 2, 1], probabilistic models [1, 13], and
even schemes in which the value of the objective function is never computed [24].
However, as noted in [33], the improvement in complexity has been obtained by trading the
simple Newton step requiring only the solution of a single linear system for more complex or
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slower procedures, such as secular iterations, possibly using Lanczos preprocessing [6, 8] (see
also [12, Chapters 8 to 10]) or (conjugate-)gradient descent [29, 4]. In the simpler context
of convex problems, two recent papers [33, 17] independently proposed another globalization
technique. At an iterate x, the step s is computed as

s = −(∇2
xf(x) + λkIn)−1∇1

xf(x) (1.1)

where λk ∼
√
‖∇1

xf(x)‖. This new approach exhibits the best complexity rate of second-order
methods for convex optimization and retains the local superlinear convergence of standard
Newton method, while showing remarkable numerical promise [33]. Devising an algorithm
for nonconvex functions that can use similar ideas whenever possible appears as a natural
extension.

In the nonconvex case, the Hessian may be indefinite and it is well-known that negative
curvature can be exploited to ensure progress towards second-order points. Mixing gradient-
related (possibly Newton) and negative curvature directions has long been considered and can
be traced back to [32], which initiated a line of work using curvilinear search to find a step
combining both types of directions. The length of the step is typically tuned using an Armijo-
like condition [32, 20, 34]. Improvements were subsequently proposed by incorporating the
curvilinear step in a nonmonotone algorithm [19], allowing the resolution of large-scale prob-
lems [31] or by choosing between the two steps based on model decrease [22]. Alternatively,
negative curvature has also been used to regularize the Hessian matrix, yielding the famous
Goldfeld-Quandt-Trotter (GQT) method [21]. Unfortunately, this method also involves more
complex computation to find the step and has the same global convergence rate as first-order
algorithms [39].

One may then wonder if it is possible to devise an adaptive second-order method using a
single explictly regularized Newton step when possible and a negative curvature direction only
when necessary, with a near-optimal complexity rate. The objective of this paper is to show
that it is indeed possible (and efficient). To this aim, we propose a fast Newton’s method that
exploits negative curvature for nonconvex optimization problems and generalizes the method
proposed in [33, 17] to the nonconvex case. The new algorithm automatically adjusts the
regularization parameter (without knowledge of the Hessian’s Lipschitz constant). It first
attempts a step along a direction regularized only by the square root of the gradient only, as
in the convex setting [17, 33]. In that sense, it is inspired by the “convex until proved guilty”
strategy advocated by [5]. If this attempt fails, the method either uses an appropriately
regularized Newton step taking the smallest negative eigenvalue of the Hessian also into
account or simply follows the negative curvature otherwise. We prove that this method
requires at most O

(
| log ε| ε−3/2

)
iterations and evaluations of the problem data to obtain an

ε-approximate first-order critical point, which is very close to the optimal convergence rate of
second-order methods for Lipschitz Hessian functions [10]. We also introduce an algorithmic
variant of the new method which is guaranteed to find a second-order critical point in at most
O
(
| log ε| ε−3

)
iterations.

The paper is organized as follows. Section 2 describes the algorithm and one of its variants
and compares it with recent work on second-order methods. Section 3 states our assumptions
and derives a bound on its worst-case complexity for finding first-order critical points, while
Section 4 presents the second-order algorithmic variant and analyzes its complexity. Section 5
then illustrates the numerical behaviour of the propsed methods. Some conclusions are finally
drawn in Section 6.
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Notation The following notations will be used throughout the paper. The symbol ‖.‖ denotes
the Euclidean norm for vectors in IRn and its associated subordinate norm for matrices.
λmin(M) denotes the minimum eigenvalue of a symmetric matrix M , while In is the identity
matrix in IRn. For a real x ∈ IR, we define [x]+ = max(x, 0). For two vectors x, y ∈ IRn, we
denote xᵀy their scalar product.

2 Adaptive Newton with Negative Curvature

We consider the problem of finding approximate first-order critical points of the smooth
unconstrained nonconvex optimization problem

min
x∈IRn

f(x) (2.1)

and discuss our algorithm called AN2C (for Adaptive Newton with Negative Curvature) on the
following page. The algorithm, whose purpose is to compute first-order critical points, is
presented in the framework of adaptive regularization methods [3, 8] [12, Section 3.3] and
proceeds as follows. At each iteration, a regularized Newton step is first attempted using a
regularization based on first-order information only. If the associated matrix is indefinite, a
more elaborate second-order step is computed using the EigenNewtonStep subroutine. In this
case, a (more strongly) regularized Newton step is computed when the negative curvature is
less than a fraction of the square root of the product of the gradient norm with the regular-
ization parameter. If this latter condition fails, the algorithm uses a step along the negative
curvature direction to compute the trial step. The details are given in Algorithms 2.1 and
2.2, on the next page and on page 5, respectively.

The sconvk notation in (2.2) stresses the connection with the regularization technique pro-
posed in the convex framework [33, 17]. Indeed, the system (2.2) is well posed in a region where
the Hessian is positive definite and condition (2.4) is then always satisfied. We emphasize
that checking conditions (2.3) to (2.5) is possible and cheap compared to the computation of
the smallest eigenvalue in the EigenNewtonStep procedure. This is in particular the case for (2.4)
since a Cholesky factorization delivers the necessary information. The test (2.5) is required
as to avoid steps whose magnitude is too large compared to the gradient (the motivation for
its particular form of the test will become clear in Section 3).

When computing a vector sconvk satisfying (2.3) to (2.5) is not possible, a call to the

EigenNewtonStep procedure is made. In this procedure, the notation sneigk (2.9) refers to the
combined use of a regularized Newton and negative curvature information. Having computed
[−λmin(Hk)]+, the Hessian can then be sufficiently regularized to ensure the existence and the
descent nature of the step resulting from (2.9). Note that we do not impose an exact solution
of the linear system but allow termination of the linear algebra solver provided condition
(2.10) holds. As it turns out, [−λmin(Hk)]+ could have been replaced by κC

√
σk‖gk‖ in (2.9)

and the remainder of the complexity analysis would remain valid. An interesting connection
can be established between the regularization in (2.9) and the GQT method [21], as the
regularization parameter (

√
σk‖gk‖ + [−λmin(Hk)]+) is very similar in spirit to that used

in this method. Also observe that, in most cases, the “approximate minimum curvature
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Algorithm 2.1: Adaptive Newton with Negative Curvature (AN2C)

Step 0: Initialization: An initial point x0 ∈ IRn, a regularization parameter σ0 > 0
and a gradient accuracy threshold ε ∈ (0, 1] are given, as well as the parameters

σmin > 0, κC , κθ > 0, κa ≥ 1, ς1 ∈ (0, 1), ς2 ∈ [0, 1
2
), ς3 ∈ [0, 1),

0 < γ1 < 1 < γ2 ≤ γ3 and 0 < η1 ≤ η2 < 1,

Set k = 0.

Step 1: Compute current derivatives Evaluate gk
def
= ∇1

xf(xk) and Hk
def
=

∇2
xf(xk). Terminate if

‖gk‖ ≤ ε.

Step 2: Step calculation Attempt to solve the linear system

(Hk +
√
κaσk‖gk‖In)sconvk = −gk (2.2)

such that the system residual rk = (Hk +
√
κaσk‖gk‖In)sconvk + gk satisfies

‖rconvk ‖ ≤ min
(
ς2
√
κaσk‖gk‖‖sconvk ‖, κθ‖gk‖

)
. (2.3)

and
Hk +

√
κaσk‖gk‖In � 0. (2.4)

If such an sconvk can be computed and

‖sconvk ‖ ≤ (1 + κθ)

ς1

√
‖gk‖
κaσk

; (2.5)

set sk = sconvk . Else define sk by

sk = EigenNewtonStep(gk, Hk, σk, κC , κθ, ς3). (2.6)

Step 3: Acceptance ratio computation Evaluate f(xk + sk) and compute the ac-
ceptance ratio

ρk =
f(xk)− f(xk + sk)

−(gᵀksk + 1
2s

ᵀ
kHksk)

. (2.7)

If ρk ≥ η1, set xk+1 = xk + sk else xk+1 = xk.

Step 4: Regularization parameter update Set

σk+1 ∈


[max (σmin, γ1σk) , σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(2.8)

Increment k by one and go to Step 1.
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Algorithm 2.2: EigenNewtonStep(gk, Hk, σk, κC , κθ, ς3)

Compute λmin(Hk).
If −λmin(Hk) ≤ κC

√
σk‖gk‖,

approximately solve the following linear system(
Hk + (

√
σk‖gk‖+ [−λmin(Hk)]+)In

)
sneigk = −gk. (2.9)

to ensure the residual condition

‖rneigk ‖ def
=

∥∥∥(Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)In

)
sneigk + gk

∥∥∥
≤ min

(
ς3
√
σk‖gk‖‖sneigk ‖, κθ‖gk‖

) (2.10)

and set sk = sneigk .

If −λmin(Hk) > κC
√
σk‖gk‖,

compute vk such that

gᵀkvk ≤ 0, ‖vk‖ = 1 and vᵀkHvk ≤ −κC
√
σk‖gk‖, (2.11)

and set

sk = scurvk =
κC
√
σk‖gk‖
σk

vk. (2.12)

Return sk.
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direction” vk is already available when computing λmin(Hk). It can be also retrieved via a
Lanczos procedure as proposed in [38, Lemma 9].

Once the step has been computed, the mechanisms of the algorithm for accepting/rejecting
the new iterate (Step 3) and updating the regularization parameter (Step 4) are typical of
adaptive regularization algorithms (see [12, Section 3.3.1], for instance).

An important feature of the AN2C algorithm is that, if a direct solver is used for (2.2) and
(2.9), the process to compute the step sk does not involve any inner iterative method beyond
the (typically rare) computation of [−λmin(Hk)]+, and only requires at most (and hopefully
just one) linear-system solve.

We finally note that the computation involved in (2.2) to (2.5) are introduced solely in
order to limit the need of possibly costly second-order information. Exploiting this feature, we
also define a (potentially more costly) variant of AN2C, which we call AN2E, where no attempt
is made in Step 2 to solve the system (2.2) and to verify (2.4), but where (2.6) is used at
every iteration.

Before analyzing the complexity analysis of the AN2C method, we further explore its basic
properties and discuss its relations with closely related nonconvex optimization algorithms.
The method proposed in [15] differs from AN2C as it first takes a gradient step followed by a
negative curvature one. [30] checks a condition before choosing between a gradient descent
and a negative curvature direction. Note that this condition requires the knowledge of the
smoothness parameters whereas AN2C is fully adaptive. Another related method is that of
[38]. At variance with AN2C, this latter algorithm checks various conditions before choosing
a specific direction (gradient, Newton, negative curvature) and performs a linesearch. [16]
proposes a trust-region algorithm (at variance with adaptive regularization) that solves the
trust-region subproblem by a combination of conjugate gradients and negative curvature.
Note that their condition on the residuals of this subproblem [16, Inequality (27)] can be
related to both (2.3) and (2.10).

Following well-established practice, we now define

S def
= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def
= S ∩ {0, . . . , k},

the set of indexes of successful iterations up to iteration k. We further partition Sk in three
subsets depending on the nature of the step taken, so that

Sneigk
def
= Sk ∩ {sk = sneigk }, Scurvk

def
= Sk ∩ {sk = scurvk }, Sconvk

def
= Sk ∩ {sk = sconvk }.

We also recall a well-known result bounding the total number of iterations of adaptive regu-
larization methods in terms of the number of successful ones.

Lemma 2.1 [3, Theorem 2.4],[12, Lemma 2.4.1] Suppose that the AN2C algorithm is
used and that σk ≤ σmax for some σmax > 0. Then

k ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (2.13)



Gratton, Jerad, Toint: Adaptive Regularization Newton with Negative Curvature 7

This result implies that the overal complexity of the algorithm can be estimated once
bounds on σk and |Sk| are known, as we will show in the next section.

We now state a simple relation between ‖sneigk ‖, σk and ‖gk‖ inspired by [33].

Lemma 2.2 For all iterations k where sneigk is computed, we have that

gk = −
(
Hk + (

√
σk‖gk‖+ [−λmin(Hk)]+)In

)
sneigk + rneigk (2.14)

and

‖sneigk ‖ ≤ (1 + κθ)

√
‖gk‖
σk

. (2.15)

Similarly, when sconvk is computed,

gk = −
(
Hk +

√
κaσk‖gk‖In

)
sconvk + rconvk . (2.16)

Proof. Equation (2.14) results from (2.9) and the definition of the residual. The (2.15)
bound is deduced from (2.14), the fact that Hk+(

√
σk‖gk‖+[−λmin(Hk)]+)In is a positive

definite matrix with

λmin(Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)In) ≥

√
σk‖gk‖

and that ‖rneigk ‖ ≤ κθ‖gk‖ because of (2.10). If k ∈ Sconvk , (2.16) is obtained from (2.2)
and the definition of the residual rconvk . 2

The next lemma gives a lower bound on the decrease of the local quadratic approximation.
In standard adaptive regularization algorithms, this decrease automatically results from the
minimization of the model (See [3] for instance). In our case, we need to use the properties
of sconvk , scurvk and sneigk to obtain the desired result.

Lemma 2.3 Let k be a successful an iteration of AN2C. If k ∈ Sconvk , we have that

−
(
gᵀksk +

1

2
sᵀkHksk

)
≥ 1− 2ς2

2

√
κaσk‖gk‖‖sk‖2. (2.17)

If k ∈ Sneigk , then

−
(
gᵀksk +

1

2
sᵀkHksk

)
≥ (1− ς3)

√
σk‖gk‖‖sk‖2. (2.18)

Else, if k ∈ Scurvk ,

−
(
gᵀksk +

1

2
sᵀkHksk

)
≥ 1

2
σk‖sk‖3. (2.19)
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Proof. Suppose first that k ∈ Sconvk . We then obtain from (2.16) that

gᵀks
conv
k +

1

2
(sconvk )ᵀHks

conv
k ≤ (rconvk )ᵀsconvk − (sconvk )ᵀ(Hk +

√
κaσk‖gk‖In)sconvk

+
1

2
(sconvk )ᵀHks

conv
k

≤ −
√
κaσk‖gk‖‖sconvk ‖2 + (rconvk )ᵀsconvk − 1

2
(sconvk )ᵀHks

conv
k

≤ −
√
κaσk‖gk‖‖sconvk ‖2 + ς2

√
κaσk‖gk‖‖sconvk ‖2

+
1

2

√
κaσk‖gk‖‖sconvk ‖2.

Hence (2.17) follows by using (2.4), (2.3) and that ς2 ∈ [0, 12) in the last line.

Suppose now that k ∈ Sneigk . By using (2.14) and the fact that Hk + [−λmin(Hk)]+In � 0,
we obtain that

gᵀks
neig
k +

1

2
(sneigk )ᵀHks

neig
k ≤ (rneigk )ᵀsneigk − (sneigk )ᵀ(Hk + [−λmin(Hk)]+In)sneigk

+
1

2
(sneigk )ᵀ(Hk + [−λmin(Hk)]+In)sneigk

− 1

2
[−λmin(Hk)]+‖sneigk ‖2 −

√
σk‖gk‖‖sneigk ‖2

≤ (rneigk )ᵀsneigk − 1

2
(sneigk )ᵀ(Hk + [−λmin(Hk)]+In)sneigk

− 1

2
[−λmin(Hk)]+‖sneigk ‖2 −

√
σk‖gk‖‖sneigk ‖2

≤ ς3
√
σk‖gk‖‖sneigk ‖2 − 1

2
[−λmin(Hk)]+‖sneigk ‖2 −

√
σk‖gk‖‖sneigk ‖2,

where we have used (2.10) to obtain the last inequality. Rearranging and ignoring the
1
2 [−λmin(Hk)]+‖sneigk ‖2 term yields (2.18).

Suppose finally that k ∈ Scurvk . As (2.11) and (2.12) hold, we deduce that

gᵀks
curv
k +

1

2
(scurvk )ᵀHks

curv
k ≤ 1

2
‖scurvk ‖2vᵀkHkvk ≤ −

1

2
‖scurvk ‖2κC

√
σk‖gk‖ ≤ −

1

2
σk‖scurvk ‖3,

yielding (2.19). 2

3 Complexity analysis for the AN2C and AN2E algorithms

We now turn to analyzing the worst-case complexity of the AN2C algorithm, from which that
of AN2E will follow. Our analysis is conducted under the following assumptions.
AS.1 The function f is two times continuously differentiable in IRn.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
AS.3 The Hessian of f is globally Lipschitz continuous, that is, there exists a non-negative
constant LH such that

‖∇2
xf(x)−∇2

xf(y)‖ ≤ LH‖x− y‖ for all x, y ∈ IRn. (3.1)
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AS.4 There exists a constant κB > 0 such that

‖∇2
xf(x)‖ ≤ κB for all x ∈ {y ∈ IRn | f(y) ≤ f(x0)}.

AS.1-AS.3 are standard assumptions when analyzing algorithms that utilize second-order
information [9, 3]. AS.4 is also standard when theoretically analyzing second-order methods
that combines negative curvature and gradient based directions [38, 15, 30], although we
recognize that requiring AS.3 and AS.4 together is slightly unusual. As it turns out, AS.4
is only needed for x being any iterate xk produced by the algorithm and these iterates all
belong to the level associated with the starting point x0 because the acceptance condition in
Step 3 ensures that the sequence {f(xk)} is non-increasing. If this level set is bounded or if
the sequence {xk} remains bounded for any other reason, we immediately obtain that

‖Hk‖ ≤ κB for all k ≥ 0 (3.2)

for some κB ≥ 0, and both AS.3 and AS.4 automatically hold.
Having established a lower bound on the decrease ratio in Lemma 2.3, we next proceed to

derive an upper bound on the regularization parameter. This is a crucial step when analysing
adaptive regularization methods.

Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then, for all k ≥ 0,

σk ≤ γ3 max

(
σ0, ςmax

LH
6(1− η2)

)
, (3.3)

where

ςmax
def
= max

(
(1 + κθ)

(1− ς3)
,

2(1 + κθ)

κaς1(1− 2ς2)
, 2

)
. (3.4)

Proof. Let us compute the ratio ρk for k ∈ Sneigk . By using AS.3 and the standard
error bound for Lispschitz approximation of the function (see [11, Lemma 2.1]), (2.18)
and (2.15), we obtain that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−(gᵀksk + 1
2s

ᵀ
kHksk)

≥ −
LH‖sneigk ‖3

6(1− ς3)
√
σk‖gk‖‖sneigk ‖2

≥ −
LH‖sneigk ‖

6(1− ς3)
√
σk‖gk‖

≥ −LH(1 + κθ)

6(1− ς3)σk
. (3.5)

Hence, if σk ≥ LH(1+κθ)
6(1−ς3)(1−η2)

, then ρk ≥ η2, which implies that iteration k is successful and

σk+1 ≤ σk because of (2.8). The mechanism of (2.8) in the algorithm then ensures that

σk ≤ γ3 max

(
σ0,

LH(1 + κθ)

6(1− ς3)(1− η2)

)
. (3.6)
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Similarly, if k ∈ Sconvk , we use AS.3, the Lipschitz approximation error bound, (2.17) and
(2.5) to deduce that

1− ρk ≥ −
LH‖sconvk ‖

3(1− 2ς2)
√
κaσk‖gk‖

≥ − LH(1 + κθ)

3κaς1(1− 2ς2)σk
.

Using the same argument as above, we now obtain that

σk ≤ γ3 max

(
σ0,

LH(1 + κθ)

3κaς1(1− 2ς2)(1− η2)

)
. (3.7)

Consider finally the case where k ∈ Scurvk . Again using AS.3, the Lipschitz approximation
error bound and (2.19) lower-bound, we derive that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−gᵀksk −
1
2s

ᵀ
kHksk

≥
−LH‖scurvk ‖3

61
2σk‖s

curv
k ‖3

=
−LH
3σk

,

so that

σk ≤ γ3 max

(
σ0,

LH
3(1− η2)

)
. (3.8)

Combining (3.6), (3.7) and (3.8) gives (3.3) with ςmax defined by (3.4). 2

We now prove a lower bound on the decrease at a successful iteration k using negative curva-
ture. We will also bound the change in the norm ‖gk+1‖ in term of ‖gk‖, which will be useful
later to bound the cardinal of a subset of Sneigk ∪ Scurvk .

Lemma 3.2 Suppose that AS.1, AS.3 and AS.4 hold and that k ∈ Scurvk before termi-
nation. Then

f(xk)− f(xk+1) ≥
η1κ

3
C

2
√
σmax

ε
3
2 , (3.9)

and

‖gk+1‖ ≤
(
LH
2σk

κ2C +
κBκC√
εσk

+ 1

)
‖gk‖. (3.10)

Proof. Let k ∈ Scurvk . From (2.7) and (2.19), we obtain that

f(xk)− f(xk+1) ≥ η1
(
−gᵀksk −

1

2
sᵀkHksk

)
≥ η1

2
σk‖scurvk ‖3.

Using now that ‖scurvk ‖3 =
κ3
C(σk‖gk‖)

3
2

σ3
k

(see (2.12)) in the previous inequality gives that

f(xk)− f(xk+1) ≥
η1κ

3
C

2
√
σk
‖gk‖

3
2 .

Since ‖gk‖ ≥ ε before termination and that σk ≤ σmax by Lemma 3.1, we obtain (3.9).
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Let us now prove (3.10). By using the Lipschitz error bound for the gradient ([11,
Lemma 2.1]), the triangular inequality, the fact that k ∈ Scurvk , (2.11), (2.12), (3.2) (re-
sulting from AS.4) and that before termination ‖gk‖ ≥ ε, we obtain that

‖gk+1‖ ≤ ‖gk+1 − gk −Hksk‖+ ‖Hksk + gk‖

≤ LH
2
‖sk‖2 + ‖gk‖+ ‖Hksk‖

≤ LH
2
‖scurvk ‖2 + ‖gk‖+ ‖Hks

curv
k ‖

≤ LH
2
‖scurvk ‖2 + ‖gk‖+ κB‖scurvk ‖

≤ LH
2σk

κ2C‖gk‖+ ‖gk‖+ κBκC

√
‖gk‖√
σk

≤

(
LH
2σk

κ2C +
κBκC√
σk‖gk‖

+ 1

)
‖gk‖

≤
(
LH
2σk

κ2C +
κCκB√
σkε

+ 1

)
‖gk‖,

giving (3.10). 2

This lemma is the only result requiring AS.4 or its weaker formulation (3.2). Moreover, this
assumption is only needed to bound ‖Hks

curv
k ‖ and is therefore required only along directions

of negative curvature (which we expect to occur rarely in practice).
After proving a lower bound on the quadratic’s decrease when k ∈ Scurvk , we now exhibit

a relationship between the decrease on the objective function decrease and gradient both at
iteration k and k + 1 for k ∈ Sneigk ∪ Sconvk . Moreover, we also prove an inequality between
the norms of the gradient at two successive iterations, similar to (3.10).

Lemma 3.3 Suppose that AS.1 and AS.3 hold and that k ∈ Sneigk ∪Sconvk before termi-
nation. Then

‖gk+1‖ ≤
(
LH(1 + κθ)

2ς21σk
+

2

ς1
+ κC

)
(1 + κθ)‖gk‖ (3.11)

and

f(xk)− f(xk+1) ≥ η1 ςmin

√
σk‖gk‖(

−(2 + κC)
√
κaσk‖gk‖+

√
(2 + κC)2κaσk‖gk‖+ 2LH‖gk+1‖
LH

)2

(3.12)

where

ςmin
def
= min

(
1− 2ς2

2
, 1− ς3

)
. (3.13)
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Proof. Consider first the case where k ∈ Sneigk . By using the Lipschitz error bound for
the gradient, the shape of (2.14), the condition on the residuals (2.10) and the fact that
[−λmin(Hk)]+ ≤ κC

√
σk‖gk‖ for k ∈ Sneigk , we deduce that

‖gk+1‖ ≤ ‖gk+1 −Hks
neig
k − gk‖+ ‖Hks

neig
k + gk‖

≤ LH
2
‖sneigk ‖2 + (

√
σk‖gk‖+ [−λmin(Hk)]+)‖sneigk ‖+ ‖rneigk ‖

≤ LH
2
‖sneigk ‖2 + (1 + κC)

√
σk‖gk‖‖sneigk ‖+ ς3

√
σk‖gk‖‖sneigk ‖. (3.14)

Using now (2.15) yields that

‖gk+1‖ ≤
(
LH
2σk

(1 + κθ) + 1 + ς3 + κC

)
(1 + κθ)‖gk‖. (3.15)

Consider now k ∈ Sconvk . By arguments similar to those used for (3.14), this time with
(2.16) and (2.3), we obtain that

‖gk+1‖ ≤ ‖gk+1 −Hks
conv
k − gk‖+ ‖Hks

conv
k + gk‖

≤ LH
2
‖sconvk ‖2 +

√
κaσk‖gk‖‖sconvk ‖+ ‖rconvk ‖

≤ LH
2
‖sconvk ‖2 +

√
κaσk‖gk‖‖sconvk ‖+ ς2

√
κaσk‖gk‖‖sconvk ‖. (3.16)

Injecting (2.5) in the last inequality yields that

‖gk+1‖ ≤
(
LH(1 + κθ)

2ς21κaσk
+

1 + ς2
ς1

)
(1 + κθ) ‖gk‖, (3.17)

so that taking the larger bound for both (3.15) and (3.17) and using the bounds ς2 <
1
2

and ς3 < 1 gives (3.11).

Finally, from (3.16), (3.14), the bounds max(ς3, ς2) < 1 and κa ≥ 1, we obtain that, for
k ∈ Sconvk ∪ Snk ,

LH
2
‖sk‖2 + (2 + κC)

√
κaσk‖gk‖‖sk‖ − ‖gk+1‖ ≥ 0.

Hence ‖sk‖ is larger than the positive root of this quadratic and therefore

‖sk‖ ≥
−(2 + κC)

√
κaσk‖gk‖+

√
(2 + κC)2κaσk‖gk‖+ 2LH‖gk+1‖
LH

> 0.

We then deduce (3.12) from this inequality, (2.7), the lower bounds on the quadratic
decrease for k ∈ Sneigk or k ∈ Sconvk ((2.18) and (2.17) respectively) and the definition of
ςmin in (3.13). 2

The bound (3.12) is not sufficient for deriving the required O
(
ε−3/2

)
optimal complexity rate

because the decrease depends on both ‖gk+1‖ and ‖gk‖. Indeed, when ‖gk+1‖ � ‖gk‖, the
left-hand side of (3.12) tends to zero. To circumvent this difficulty, the next lemma borrows
some elements of [33, Theorem 1] and partitions Sneigk ∪ Sconvk in two further subsets. The
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minimum decrease on the objective function is of the required magnitude in the first one while
no meaningful information can be derived on the decrease on the function value in the second,
albeit the magnitude of the gradient at the next iteration is halved. The bounds (3.11) and
(3.10) are then used to bound the cardinal of the latter set.

Lemma 3.4 Suppose that AS.1, AS.3 and AS.4 hold and that Sneigk ∪Sconvk is partitioned
as

Sneigk ∪ Sconvk = Sdecrk ∪ Sdivgradk (3.18)

where
Sdecrk

def
= {k ∈ Sneigk ∪ Sconvk , σk‖gk‖ ≤ κm2LH‖gk+1‖}, (3.19)

Sdivgradk
def
= {k ∈ Sneigk ∪ Sconvk , σk‖gk‖ > κm2LH‖gk+1‖} (3.20)

with

κm
def
= γ3 max

(
σ0
LH

,
ςmax

6(1− η2)

)
. (3.21)

Then, for all k ∈ Sdecrk ,

f(xk)− f(xk+1) ≥
η1 ςmin(σk‖gk‖)

3
2(

κmLH

(
(2 + κC)

√
κa +

√
(2 + κC)2κa + 1

κm

))2 . (3.22)

Moreover,

|Sdivgradk | ≤ κn|Sdecrk |+
(

1

2 log(2)
| log(ε)|+ κcurv

)
|Scurvk |+ | log(ε)|+ log(‖g0‖)

log(2)
+ 1,

(3.23)
where

κn
def
=

log
(
LH(1+κθ)
2ς21σmin

+ 2
ς1

+ κC

)
+ log (1 + κθ)

log(2)
, κcurv

def
=

log
(

LH
2σmin

κ2C + κBκC√
σmin

+ 1
)

log(2)
.

(3.24)

Proof. Let k ∈ Sdecrk . Injecting the definition of Sdecrk (3.19) in (3.12), we obtain that

f(xk)− f(xk+1) ≥ η1ςmin(σk‖gk‖)
3
2

−(2 + κC)
√
κa +

√
κa(2 + κC)2 +

1

κm
LH


2

.

Taking the conjugate both at the denominator and numerator yields (3.22).

Let k ∈ Sdivgradk . Using the definition of κm in (3.21) and that of Sdivgradk in (3.20) gives
that

‖gk+1‖ <
σk

κmLH

‖gk‖
2
≤ σk

γ3 max
(
σ0
LH
, ςmax
6(1−η2)

)
LH

‖gk‖
2
≤ ‖gk‖

2
, (3.25)
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where the last inequality results from the upper bound on σk in (3.3).

Successively using the fact that Sk = Sdecrk ∪ Sdivgradk ∪ Scurvk , the relationship between
‖gk+1‖ and ‖gk‖ in the three cases ((3.25), (3.11) and (3.10)), the fact that σk ≥ σmin in
(3.11) and (3.10), we then deduce that

ε

‖g0‖
≤ ‖gk‖
‖g0‖

=
∏

i∈Sk\{k}

‖gi+1‖
‖gi‖

=
∏

i∈Sdecrk \{k}

‖gi+1‖
‖gi‖

∏
i∈Sdivgradk \{k}

‖gi+1‖
‖gi‖

∏
i∈Scurvk \{k}

‖gi+1‖
‖gi‖

≤
[(

LH(1 + κθ)

2ς21σmin
+

2

ς1
+ κC

)
(1 + κθ)

]|Sdecrk \{k}|
× 1

2|S
divgrad
k \{k}|

×[
LH

2σmin
κ2C +

κBκC√
εσmin

+ 1

]|Scurvk \{k}|
.

Now ς1 ≤ 1 and thus both terms in brackets are larger than one. Moreover, obviously,
|Sdecrk \ {k}| ≤ |Sdecrk | and |Scurvk \ {k}| ≤ |Scurvk |, so that

2|S
divgrad
k \{k}|ε

‖g0‖
≤
[(

LH(1 + κθ)

2ς21σmin
+

2

ς1
+ κC

)
(1 + κθ)

]|Sdecrk | [ LH
2σmin

κ2C +
κBκC√
εσmin

+ 1

]|Scurvk |
.

Taking logarithms gives that

|Sdivgradk \ {k}| log(2) ≤ log

[(
LH(1 + κθ)

2ς21σmin
+

2

ς1
+ κC

)
(1 + κθ)

]
|Sdecrk |+ log(‖g0‖)

+ | log(ε)|+ log

[
LH

2σmin
κ2C +

κBκC√
εσmin

+ 1

]
|Scurvk |.

We then obtain (3.23) with the values of κn and κcurv stated in (3.24) by dividing this last

inequality by log(2) and using the facts that |Sdivgradk \ {k}| ≥ |Sdivgradk | − 1 and 1√
ε
≥ 1.

2

Combining the previous lemmas, we are now able to state the complexity of the AN2C al-
gorithm. Our theorem statement relies on the observation that the objective function is
evaluated once per iteration, and its derivatives once per successful iteration.

Theorem 3.5 Suppose that AS.1- AS.4 hold. Then the AN2C algorithm requires at
most

|Sk| ≤ κ?| log(ε)|ε−
3
2

successful iterations and evaluations of the gradient and the Hessian and at most

κ?

(
1 +
| log γ1|
log γ2

)
| log(ε)|ε−

3
2 +

1

log γ3
log

(
σmax

σ0

)
evaluations of f to produce a vector xε such that ‖g(xε)‖ ≤ ε where κ? is a constant only
depending on the problem.
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Proof. First note that we only need to prove an upper bound on |Sdecrk | and |Scurvk | to
derive a bound on |Sk| since

|Sk| = |Sdecrk |+ |Scurvk |+ |Sdivgradk | (3.26)

and a bound on |Sdivgradk | is given by (3.23). We start by proving an upper bound on
|Scurvk |. Using AS.2 and the lower bound on the decrease of the function values (3.9), we
derive that, for k ∈ Scurvk ,

f(x0)− flow =
∑
i∈Sk

f(xi)− f(xi+1) ≥
∑

i∈Scurvk

f(xi)− f(xi+1) ≥ |Scurvk |
η1κ

3
C

2
√
σmax

ε
3
2

and hence that

|Scurvk | ≤
2(f(x0)− flow)

√
σmax

η1κ3C
ε−

3
2 . (3.27)

Similarly for k ∈ Sdecrk , using AS.2, (3.22), the fact that σk ≥ σmin and ‖gk‖ ≥ ε before
termination yields that

f(x0)− flow ≥
∑

i∈Sdecrk

f(xi)− f(xi+1) ≥
|Sdecrk |η1 ςmin(σminε)

3
2(

LHκm(
√
κa(2 + κC) +

√
κa(2 + κC)2 + 1

κm
)
)2

where κm is defined in (3.21). Rearranging the last inequality yields that

|Sdecrk | ≤

(
LHκm(

√
κa(2 + κC) +

√
κa(2 + κC)2 + 1

κm
)
)2

η1ςminσ
3
2
min

ε−
3
2 . (3.28)

Combining now (3.27) and (3.28) with the upper-bound (3.23) on |Sdivgradk |, we deduce
that

|Sdivgradk | ≤ κdivgrad| log(ε)|ε−
3
2 (3.29)

where κdivgrad only depends on problem constants. Summing (3.27), (3.28), (3.29) to
bound |Sk| in (3.27) then gives that

|Sk| ≤ κ?| log(ε)|ε−
3
2 , (3.30)

proving the first part of the theorem. The second part is then deduced from (3.30)
combined with Lemma 2.1. 2

The O
(
| log(ε)|ε−3/2

)
complexity order in ε only differs by the factor | log(ε)| from the optimal

order for nonconvex second-order methods [10], a factor which is typically small for practical
values of ε. The AN2C algorithm thus enjoys a better complexity order than that of past
hybrid algorithms [15, 30, 21] for which the order is O

(
ε−2
)
. However, it is marginally worse

than that of the more complex second-order linesearch of [38] which attains the optimal order.
Moreover, we see in the proof of Theorem 3.5 that the | log ε| term appears because of (3.23)
and (3.27) and we may hope that the number of scurvk iterations is typically much less than its
worst-case O

(
ε−3/2

)
in practice. The trust-region algorithm of [16] has the same complexity

as AN2C.
We conclude this analysis by noting that Theorem 3.5 also applies to the AN2E algo-

rithm introduced on page 6. Indeed trial steps are then computed solely via (2.6) in this
method and the fact that Sconv is therefore empty does not affect our arguments. Hence the
O
(
| log(ε)|ε−3/2

)
complexity order in ε also holds for the AN2E algorithm.
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4 Finding second-order critical points

Can the AN2C algorithm be strengthened to ensure it will compute second-order critical points?
We show in this section under the same assumptions as that used for its first-order analy-
sis. The resulting modified algorithm, which we call SOAN2C (for Second-Order AN2C) makes
extensive use of the Step of AN2C, and is detailed on the current page.

Algorithm 4.1: Second Order Adaptive Newton with Negative Curvature
(SOAN2C)

Step 0: Initialization: Identical to AN2C[Step 0] with ε ∈ (0, 1] now replaced by
ε1 ∈ (0, 1] and ε2 ∈ (0, 1].

Step 1: Compute current derivatives Evaluate gk and Hk. Terminate if

‖gk‖ ≤ ε1 and λmin(Hk) ≥ −ε2. (4.1)

Step 2: Step calculation If ‖gk‖ > ε1,

sk = sfok
def
= AN2C[Step2] (gk, Hk, σk, κa, κC , κθ, ς1, ς2, ς3) . (4.2)

Else compute vk such that

gᵀkvk ≤ 0, ‖vk‖ = 1 and Hvk = λmin(Hk)vk, (4.3)

and set

sk = ssok
def
=
−λmin(Hk)

σk
vk. (4.4)

Step 4: Acceptance ratio computation Identical to AN2C[Step 4].

Step 5: Regularization parameter update Identical to AN2C[Step 5].

Because the step may be computed using (4.2), the notations defining the partitions of
|Sk| are still relevant, but we complete them by introducing

Sso def
= S ∩ {sk = ssok }, Ssok

def
= Sk ∩ {sk = ssok }, Sfo def

= S \ Sso and Sfok
def
= Sk \ Ssok .

In addition, for m ≥ n ≥ 0, we define

Sn,m
def
= S ∩ {n, . . . ,m}

and we naturally extend this notation using superscripts identifying the subsets of Sn,m cor-
responding to the different iteration types identified above. We also introduce two index
sequences whose purpose is to keep track of when sk = sfok (4.2) or sk = ssok (4.4), in the
sense that

sk = sfok for k ∈
⋃

i≥0,pi≥0
{pi, . . . , qi − 1} and sk = ssok for k ∈

⋃
i≥0
{qi, . . . , pi+1 − 1}.
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Formally,

p0 =

{
0 if ‖g0‖ > ε1
−1 if ‖g0‖ ≤ ε1,

and q0 =

{
inf{k > 0 | ‖gk‖ ≤ ε1} if ‖g0‖ > ε1
0 if ‖g0‖ ≤ ε1.

(4.5)

Then

pi
def
= inf{k > qi−1 | ‖gk‖ > ε1} and qi

def
= inf{k > pi | ‖gk‖ ≤ ε1} for i ≥ 1. (4.6)

The following lemma states an important decrease property holding when (4.4) is used. We
also verify that the bound on the regularization parameter derived in the last section still
applies.

Lemma 4.1 Suppose that AS.1 and AS.3 hold. Let k ∈ Sso. Then

−gᵀksk −
1

2
sᵀkHksk ≥

1

2
σk‖sk‖3. (4.7)

Moreover, the upper bound (3.3) still holds for all k ≥ 0.

Proof. We obtain from (4.3) and (4.4) that

gᵀks
so
k +

1

2
(ssok )ᵀHks

so
k ≤

1

2
‖ssok ‖2v

ᵀ
kHkvk =

1

2
‖ssok ‖2λmin(Hk) ≤ −

1

2
σk‖ssok ‖3,

which gives (4.7). As in Lemma 3.1, we now use AS.3, the standard Lipschitz error bound
for the function (see [11, Lemma 2.1]) and (4.7) to deduce that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−gᵀksk −
1
2s

ᵀ
kHksk

≥
−LH‖ssok ‖3

6(12σk‖s
so
k ‖3)

=
−LH
3σk

,

Thus, if σk ≥ LH
3(1−η2)

, we have that ρk ≥ η2 and k is a successful iteration. We may then

use the argument of Lemma 3.1 and the fact that ςmax introduced in (3.4) is larger than
two to deduce that (3.3) also holds for the SOAN2C algorithm. 2

We now prove a lemma analogue to (3.2) but this time using a negative-curvature step as
described in (4.3)-(4.4). We will also bound the sequence of ‖gpi‖.

Lemma 4.2 Suppose that AS.1, AS.3 and AS.4 hold. Then, for k ∈ Sso,

f(xk)− f(xk+1) ≥
η1

2σ2max

ε32. (4.8)

We also have that

‖gpi‖ ≤ κgpi
def
= max

[
‖g0‖,

(
LHκ

2
B

2σ2pi−1
+

κ2B
σpi−1

+ 1

)]
. (4.9)

for all pi ≥ 0 as defined in (4.5)-(4.6).
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Proof. Let k ∈ Sso. From (2.7) and (4.7), we obtain that

f(xk)− f(xk+1) ≥ η1
(
−gᵀksk −

1

2
sᵀkHksk

)
≥ η1

2
σk‖ssok ‖3.

Using now that ‖ssok ‖3 = |λmin(Hk)|3
σ3
k

(see (4.4)) in the previous inequality gives that

f(xk)− f(xk+1) ≥
η1

2σk2
|λmin(Hk)|3.

Now |λmin(Hk)| ≥ ε2 when ssok is computed and σk ≤ σmax by Lemma 4.1, from which
(4.8) follows. Observe now that (4.9) trivially holds if pi = p0 = 0. Consider now pi > 0.
From the definition of pi and qi in (4.6), we see that pi − 1 ∈ Sso. Using the Lipschitz
error bound for the gradient ([11, Lemma 2.1]), the triangular inequality (4.3), (4.4), (3.2)
(resulting from AS.4), we obtain that

‖gpi‖ ≤ ‖gpi − gpi−1 −Hpi−1spi−1‖+ ‖Hpi−1s
so
pi−1 + gpi−1‖

≤ LH
2
‖ssopi−1‖

2 + ‖gpi−1‖+ ‖Hpi−1s
so
pi−1‖

≤ LH |λmin(Hpi−1)|2

2σ2pi−1
+ ‖gpi−1‖+

κB|λmin(Hpi−1)|
σpi−1

≤
LHκ

2
B

2σ2pi−1
+ ‖gpi−1‖+

κ2B
σpi−1

.

But ‖gpi−1‖ ≤ ε1 ≤ 1 since pi − 1 ∈ Sso, which gives (4.9). 2

In addition to this lemma, all properties of the different steps derived in Section 3 remain
valid because these steps are only computed for ‖gk‖ > ε1. In particular, (3.10) still applies
with ε = ε1. However, (3.23) in Lemma 3.4 may no longer hold because its proof relies on the
fact that ‖gk‖ ≥ ε1, which is no longer true. The purpose of the next lemma is to provide an
analogue of (3.23) for the case where SOAN2C is used by revisiting and completing its proof.

Lemma 4.3 Suppose that AS.1, AS.3 and AS.4 hold and the SOAN2C algorithm is used.
Consider the partition of Sneigk ∪ Sconvk into Sdecrk ∪ Sdivgradk defined in Lemma 3.4 with
the same κm (defined in (3.21)). Then (3.22) holds for all k ∈ Sdecrk . Moreover,

|Sdivgradk | ≤ κn|Sdecrk |+
(

1

2 log(2)
| log(ε1)|+ κcurv

)
|Scurvk |

+

(
| log(ε1)|+ log(κgpi)

log(2)
+ 1

)
(|Ssok |+ 1) (4.10)

where κn and κcurv are defined in (3.24) and κgpi is given by (4.9).

Proof. The proof of (3.22) is identical to that used in Lemma 3.4. Moreover, we still

obtain (3.25) for k ∈ Sdivgradk , because the definition of κm in (3.21) is unchanged and
Lemma 4.1 ensures that (3.3) continues to hold for the SOAN2C algorithm.
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We now prove (4.10). If Sfok is empty, then so is its subset Sdivgradk and (4.10) trivially

holds. If Sfok is not empty, we see from the definitions (4.5)-(4.6) that, for some m ≥ 0
depending on k,

Sfok = {0, . . . , k} ∩ {‖gk‖ > ε1} =

 m−1⋃
i=0,pi≥0

{pi, . . . , qi − 1}

 ∪ {pm, . . . , k}. (4.11)

Note that the last set in this union is empty unless k ∈ Sfo, in which case pm ≥ 0. Suppose
first that the set of indices corresponding to the union in brackets is non-empty and let
i be an index in this set. Moreover, suppose also that pi < qi − 1. Using (4.9) and the
facts that ‖gqi−1‖ > ε1, that the gradient only changes at successful iterations and that

Spi,qi−2 = Scurvpi,qi−2 ∪ S
divgrad
pi,qi−2 ∪ S

decr
pi,qi−2, we now derive that

ε1
κgpi

≤ ‖gqi−1‖
‖gpi‖

=

qi−2∏
j=pi

‖gj+1‖
‖gj‖

=
∏

j∈Spi,qi−2

‖gj+1‖
‖gj‖

=
∏

j∈Sdecrpi,qi−2

‖gj+1‖
‖gj‖

∏
j∈Scurvpi,qi−2

‖gj+1‖
‖gj‖

∏
j∈Sdivgradpi,qi−2

‖gj+1‖
‖gj‖

≤
((

LH(1 + κθ)

2ς21σmin
+

2

ς1
+ κC

)
(1 + κθ)

)|Sdecrpi,qi−2|
× 1

2
|Sdivgradpi,qi−2 |

×(
LH

2σmin
κ2C +

κBκC√
ε1σmin

+ 1

)|Scurvpi,qi−2|

where we used (3.11), (3.10) and (3.25) and the fact that σk ≥ σmin in the last inequality.

Rearranging the last inequality, taking the log, using the inequality |Sdivgradpi,qi−2 | ≥ |S
divgrad
pi,qi−1 |−

1 and dividing by log(2) then gives that

(|Sdivgradpi,qi−1 | − 1) +
log(ε1)− log(κgpi)

log(2)
≤ κn|Sdecrpi,qi−2|+

(
| log(ε1)|
2 log(2)

+ κcurv

)
|Scurvpi,qi−2|

with κn and κcurv given by (3.24). Further rearranging this inequality and using the fact
that |Spi,qi−2| ≤ |Spi,qi−1| for the different types of step, we obtain that

|Sdivgradpi,qi−1 | ≤ κn|S
decr
pi,qi−1|+

(
| log(ε1)|
2 log(2)

+ κcurv

)
|Scurvpi,qi−1|+

| log(ε1)|+ log(κgpi)

log(2)
+1. (4.12)

If now pi = qi − 1, then clearly |Sdivgradpi,qi−1 | ≤ 1 and (4.12) also holds. Using the same
reasoning, we derive that, when {pm, . . . , k} is non-empty,

|Sdivgradpm,k
| ≤ κn|Sdecrpm,k|+

(
| log(ε1)|
2 log(2)

+ κcurv

)
|Scurvpm,k|+

| log(ε1)|+ log(κgpi)

log(2)
+ 1, (4.13)

and this inequality also holds if {pm, . . . , k} = ∅ since Sdivgradpm,k
⊆ {pm, . . . , k}. Now adding

(4.12) for i ∈ {0, . . . ,m} and (4.13) to take (4.11) into account gives that

|Sdivgradk | ≤ κn|Sdecrk |+
(
| log(ε1)|
2 log(2)

+ κcurv

)
|Scurvk |+

(
| log(ε1)|+ log(κgpi)

log(2)
+ 1

)
(m+ 1).
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Observe now each time a qi is generated, the next successful step must be a second-order
step, so that m ≤ |Ssok | and (4.10) follows. 2

Equipped with this last lemma and the results of Sections 3 and 4, we may finally establish
the worst-case iteration/evaluation complexity of the SOAN2C algorithm.

Theorem 4.4 Suppose that AS.1–AS.4 hold. Then the SOAN2C algorithm requires at
most

|Sk| ≤ κ?| log(ε1)|max(ε
− 3

2
1 , ε−32 )

successful iterations and evaluations of the gradient and the Hessian and at most

κ?

(
1 +
| log γ1|
log γ2

)
| log(ε1)|max(ε

− 3
2

1 , ε−32 ) +
1

log γ3
log

(
σmax

σ0

)
evaluations of f to produce a vector xε such that ‖g(xε)‖ ≤ ε1 and λmin(Hxε) ≥ −ε2,
where κ? is a constant only depending on the problem and σmax is given by (3.3).

Proof. Note that the bounds (3.27) and (3.28) derived in the proof of Theorem 3.5 are
still valid because they only cover steps computed using AN2C, so that we now need to
focus on bounding Ssok . Using AS.2 and the lower bound on the decrease of the function
values (3.9), we derive that, for k ∈ Sso,

f(x0)− flow =
∑
i∈Sk

f(xi)− f(xi+1) ≥
∑
i∈Ssok

f(xi)− f(xi+1) ≥ |Ssok |
η1

2σ2max

ε32,

and therefore that

|Ssok | ≤
2σ2max(f(x0)− flow)

η1
ε−32 . (4.14)

Injecting now (4.14), (3.28) and (3.27) in the bound (4.10) on Sdivgradk yields that

|Sdivgradk | ≤ κ1| log(ε1)|max(ε
− 3

2
1 , ε−32 )

where κ1 is a problem dependent constant. Combining the last inequality with (4.14),

(3.28) and (3.27) in |Sk| = |Sdivgradk |+ |Scurvk |+ |Ssok |+ |Sdecrk | gives that

|Sk| ≤ κ?| log(ε1)|max(ε
− 3

2
1 , ε−32 )

proving the first part of the theorem. The second part follows from (3.30) and Lemma 2.1.
2

As for Theorem 3.5, the bound, in which the ε−32 term is likely to dominate, differs from

standard one for second-order algorithms seeking second-order points (in O(max(ε
−3/2
1 , ε−32 ))

[12, Theorems 3.3.9, 3.4.6] by a (modest) factor | log(ε1)|. This factor occurs as a consequence
of (4.10), (4.14) and (3.27) and one expects that, in practice, (4.14) is smaller than O

(
ε−32

)
so that Newton steps are taken most often.
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As for the first-order case, we note that an SOAN2E algorithm may easily be defined by
always using (2.5) for first-order steps in SOAN2C, and that its complexity is covered by
Theorem 4.4.

5 Numerical illustration

We now illustrate the behaviour of our proposed algorithms on three sets of test problems
from the freely available OPM collection [27]. The first set contains 119 small-dimensional
problems, the second contains 75 medium-size ones, while the third contains 59 “largish”
ones. The list of problems and their dimensions are listed in Tables 2, 3 and 4 in appendix.

We use Matlab implementations of AN2C and AN2E where the involved linear systems are
solved by using the Matlab sparse Cholesky factorization, and where we have set

κC = 108, κa = 100, κθ = 1, ς1 = 1
2
, ς2 = ς3 = 10−10,

γ1 = 1
2
, γ2 = γ3 = 10, η1 = 10−4 and η2 = 0.95.

We compare AN2C and AN2E with implementations of the standard adaptive regularization
AR2 and trust-region TR2M, two well-regarded methods. All these algorithms use quadratic
approximations of the objective function (i.e. gradients and Hessians). The first three also
use the same acceptance thresholds η1 and η2 and values of γ1, γ2 and γ3. The TR2M meth-
ods shrinks the trust-region radius by a factor

√
10 and expands it by a factor 2 (see [12,

Section 11.2] for a discussion of the coherence of these factors between trust-region and adap-
tive regularization methods). The authors are aware that further method-dependent tuning
would possibly result in improved performance, but the values chosen here appear to work
reasonably well for each method. The step computation is performed in AR2 using an (unpre-
conditioned) Lanczos approach while a standard Moré-Sorensen method(1) is used in TR2M

(see [12, Chapter 9] for details). For AR2, the step computation is terminated as soon as

‖gk +Hksk‖ ≤ 1
2
θsubσk‖sk‖2 (5.1)

(see [28] for a justification), while the Moré-Sorensen iterations in TR2M are terminated as
soon as ‖sk‖ ∈ [(1− θsub)∆k, (1 + θsub)∆k], where, in both cases, θsub = 10−3 for n ≤ 100 and
10−2 for n > 100. All experiments were run on a Dell Precison computer with Matlab 2022b.

We discuss our experiments from the efficiency and reliability points of view. Efficiency is
measured, in accordance with the complexity theory, in number of iterations (or, equivalently,
function and possibly derivatives’ evaluations): the fewer the more efficient the algorithm. In
addition to presenting the now standard performance profiles [18] for our four algorithms in
Figure 1, we follow [37, 25] and consider the derived “global” measure πalgo to be 1

10
of the

area below the curve corresponding to algo in the performance profile, for abscissas in the
interval [1, 10]. The larger this area and the closer πalgo to one, the closer the curve to the
right and top borders of the plot and the better the global performance.

When reporting reliability, we say that the run of an algorithmic variant on a specific
test problem is successful if the gradient norm tolerance ε = 10−6 has been achieved in the
allotted cpu-time (1h) and before the maximum number of iterations (5000) is reached. The
ρalgo statistic denotes the percentage of successful runs taken on all problems.

(1)Given that our version of AN2C uses matrix factorizations, it seems more natural to compare it with a
Moré-Sorensen-based trust-region than to one using truncated conjugate gradients.
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Figure 1: Iteration performance profiles for OPM problems (left: small, center: medium, right:
largish). We report on the vertical axis the proportion of problems for which the number of
iterations of each algorithm is at most a fraction (given by the horizontal axis) of the smallest
across all algorithms (see [18]).

small pbs. medium pbs. largish pbs.

algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2C 0.90 97.48 0.85 94.67 0.81 94.92
AN2E 0.93 97.48 0.93 97.33 0.89 86.44
AR2 0.93 94.96 0.93 93.33 0.90 86.44
TR2M 0.91 94.12 0.90 93.33 0.83 91.53

Table 1: Efficiency and reliability statistics for OPM problems

Figure 1 and Table 1 suggest that the reliability of both AN2C and AN2E is a little better
than that of AR2 and TR2M for all problem sizes. They also indicate that AN2C is somewhat
slower iteration-wise than AR2 and TR2M , but AN2E is very comparable. The fact that the
computationally more expensive AN2E is often faster than AN2C in terms of iteration numbers
is not surprising. Indeed, the regularization term in (2.9) becomes

√
σkgk in convex regions,

recovering the analysis of [33, 17], whereas AN2C regularizes the problem more strongly in (2.2)
(by a factor 10 in our numerical settings) and therefore may further restricts the steplength.
AN2E may however be computationally more intensive(2) than AN2C. Which of the two algo-
rithms is preferable in practice is likely to depend on the CPU cost of calculating the Hessian’s
smallest eigenvalue.

As expected, the call (2.6) in AN2C is typically performed on very few iterations (for
less 1.3% of them for the small-problems testset) and, when used, results in a negative-
curvature step (2.12) even more exceptionally (as it turns out, never in our tests). This
means in particular that a single linear-system solve was necessary for approximately 99% of
all iterations. The AN2E variant of course called (2.6) at every iteration, but, again, (2.12) was
never actually used. Our results also confirm the general effectiveness of a relatively simple
implementation of the adaptive regularization algorithm AR2 using the test (5.1).

We also ran the SOAN2C and SOAN2E variants with ε1 = 10−6 and ε2 = 10−4, but their re-
sults are undistinguishable (for our test sets) from those obtained with AN2C and AN2E, except
for a final eigenvalue analysis at the found approximate first-order point, which confirmed in

(2)Most failures of this algorithm on large problems occured because the time limit was reached.



Gratton, Jerad, Toint: Adaptive Regularization Newton with Negative Curvature 23

all cases that the second-order condition (4.1) did also hold at this point. No step of the
form (4.4) was ever taken in our runs, despite the fact that such steps are necessary in theory
(think of starting the minimization at a first-order saddle point).

These early results are encouraging but the authors are aware that only further experi-
ments will allow a proper assessment of the method’s true potential, both from the number of
function/derivatives evaluations and CPU-usage points of view. Several further algorithmic
developments within the new algorithms are also of interest, including the use of an itera-
tive subproblem solver (allowed by our theory because of (2.3) and (2.10)), a possibly better
balance between (2.2) and (2.6), approximate eigenvalue computations and the use of past
information to speed them up, improved model decrease when a negative-curvature direction
is computed, as well as refinements of the regularization parameter update (2.8), possibly in
the spirit of [23].

6 Conclusions and Perspectives

We have proposed AN2C and AN2E, two second-order methods that alternate between New-
ton and negative-curvature directions for nonconvex problems. These methods differ from
the more standard trust-region and adaptive-regularization techniques in that, beyond the
required eigenvalue calculations, the involved step computation is free of further inner it-
erative processes and only requires the approximate solution of at most two (but typically
one) linear systems per iteration. We have also proved that these algorithms require at most
O
(
| log(ε)|ε−3/2

)
iterations to obtain an ε-approximate first-order critical point. Our proof

builds on some elements of [33, 17] for the convex case and arguments for adaptive regulariza-
tion [3] and other nonconvex optimization methods [15, 38]. At each iteration, the algorithms
either take an explicit Newton step or negative curvature when it is sufficiently large com-
pared to the square root of the gradient. The norm of the residuals of the Newton step are
adjusted dynamically and different types of solvers can be used to solve the linear systems.
The AN2C algorithm is constructed to limit the cost of evaluating eigenvalues as much as
possible and require a single linear solve per iteration for a very large majority of problems.
We also introduced algorithmic variants (SOAN2C and SOAN2E) which are guaranteed to find
second-order critical points, and proved that they require at most O

(
| log(ε)|ε−3

)
iterations

to do so. A first set of numerical experiments with the new methods indicates that they are
very reliable and competitive with standard techniques in terms of number of iterations.

Promising lines of for future work include inexact derivatives, estimating the regularization
parameter without evaluating the objective function (as in [24]), stochastic variants and the
handling of simple constraints such as bounds on the variables in the spirit of [12, Section 14.2].
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A The test problems and their dimensions

Problem n Problem n Problem n Problem n Problem n Problem n
argauss 3 chebyqad 10 dixmaanl 12 heart8ls 8 msqrtals 16 scurly10 10
arglina 10 cliff 2 dixon 10 helix 3 msqrtbls 16 scosine 10
arglinb 10 clplatea 16 dqartic 10 hilbert 10 morebv 12 sisser 2
arglinc 10 clplateb 16 edensch 10 himln3 2 nlminsurf 16 spmsqrt 10
argtrig 10 clustr 2 eg2 10 himm25 2 nondquar 10 tcontact 49
arwhead 10 cosine 10 eg2s 10 himm27 2 nzf1 13 tquartic 10
bard 3 crglvy 4 eigenals 12 himm28 2 osbornea 5 trigger 7
bdarwhd 10 cube 2 eigenbls 12 himm29 2 osborneb 11 tridia 10
beale 2 curly10 10 eigencls 12 himm30 3 penalty1 10 tlminsurfx 16
biggs5 5 dixmaana 12 engval1 10 himm32 4 penalty2 10 tnlminsurfx 16
biggs6 6 dixmaanb 12 engval2 3 himm33 2 penalty3 10 vardim 10
brownden 4 dixmaanc 12 expfit 2 hypcir 2 powellbs 2 vibrbeam 8
booth 2 dixmaand 12 extrosnb 10 indef 10 powellsg 12 watson 12
box3 3 dixmaane 12 fminsurf 16 integreq 10 powellsq 2 wmsqrtals 16
brkmcc 2 dixmaanf 12 freuroth 4 jensmp 2 powr 10 wmsqrtbls 16
brownal 10 dixmaang 12 genhumps 5 kowosb 4 recipe 2 woods 12
brownbs 2 dixmaanh 12 gottfr 2 lminsurf 16 rosenbr 10 yfitu 3
broyden3d 10 dixmaani 12 gulf 4 mancino 10 s308 2 zangwill2 2
broydenbd 10 dixmaanj 12 hairy 2 mexhat 2 sensors 10 zangwill3 3
chandheu 10 dixmaank 12 heart6ls 6 meyer3 3 schmvett 3

Table 2: The OPM small test problems and their dimension

Problem n Problem n Problem n Problem n Problem n Problem n
arglina 400 crglvy 400 dixmaanj 600 fminsurf 400 ncb20b 500 spmsqrt 997
arglinb 50 cube 500 dixmaank 600 freuroth 500 ncb20c 500 tcontact 400
arglinc 50 curly10 500 dixmaanl 600 helix 500 nlminsurf 400 tquartic 500
argtrig 50 deconvu 51 dixon 500 hilbert 500 nondquar 500 tridia 500
arwhead 500 dixmaana 600 dqrtic 500 hydc20ls 99 nzf1 520 tlminsurfx 400
bdarwhd 500 dixmaanb 600 edensch 500 indef 500 penalty1 500 tnlminsurfx 400
brownal 500 dixmaanc 600 eg2 400 integreq 500 penalty2 100 vardim 500
broyden3d 500 dixmaand 600 eg2s 400 lminsurf 400 penalty3 500 wmsqrtals 400
broydenbd 500 dixmaane 600 eigenals 110 mancino 500 powellsg 500 wmsqrtbls 400
chandheu 500 dixmaanf 600 eigenbls 110 msqrtals 400 powr 500 woods 500
chebyqad 150 dixmaang 600 eigencls 110 msqrtbls 400 rosenbr 100
clplatea 400 dixmaanh 600 engval1 500 morebv 500 sensors 100
clplateb 400 dixmaani 600 extrosnb 500 ncb20 500 scosine 500

Table 3: The OPM medium-size test problems and their dimension

Problem n Problem n Problem n Problem n Problem n
arwhead 2000 dixmaand 2400 eg2 1600 integreq 2000 powellsg 2000
bdarwhd 2000 dixmaane 2400 eg2s 1600 lminsurf 4900 powr 2000
broyden3d 2000 dixmaanf 2400 eigenals 2550 msqrtals 1600 rosenbr 2000
broydenbd 2000 dixmaang 2400 eigenbls 2550 msqrtbls 1600 spmsqrt 1498
clplatea 4900 dixmaanh 2400 eigencls 2550 morebv 5000 tcontact 4900
clplateb 4800 dixmaani 2400 engval1 2000 ncb20b 2000 tquartic 2000
crglvy 4000 dixmaanj 2400 extrosnb 2000 ncb20c 2000 tridia 2000
cube 2000 dixmaank 2400 fminsurf 4900 nlminsurf 4900 tlminsurfx 4900
curly10 1000 dixmaanl 2400 freuroth 2000 nondquar 2000 tnlminsurfx 4900
dixmaana 2400 dixon 2000 helix 2000 nzf1 2600 vardim 2000
dixmaanb 2400 dqrtic 2000 hilbert 2000 penalty1 2000 woods 2000
dixmaanc 2400 edensch 2000 indef 2000 penalty3 2000

Table 4: The OPM largish test problems and their dimension


