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Abstract
We study criteria that compare mechanisms according to a property (e.g., Pareto 
efficiency or stability) in the presence of multiple equilibria. The multiplicity of 
equilibria complicates such comparisons when some equilibria satisfy the property 
while others do not. We axiomatically characterize three criteria. The first criterion 
is intuitive and based on highly compelling axioms, but is also very incomplete and 
not very workable. The other two criteria extend the comparisons made by the first 
and are more workable. Our results reveal the additional robustness axiom charac-
terizing each of these two criteria.

1  Introduction

From the assignment of seats at public schools to the allocation of goods against 
payment in auctions, economics repeatedly faces the problem of choosing among 
outcomes based on the preferences of a set of agents over these outcomes. To guide 
such collective choices, outcomes are often sorted according to desirable proper-
ties, formalized as social choice correspondences. If the agents’ preferences are 
known, the set of outcomes can, for example, be sorted into subsets of Pareto effi-
cient and Pareto inefficient outcomes, or in some applications, into subsets of “fair” 
and “unfair” outcomes.

Of course, preferences are often private information which makes it impossible 
for the social planner to directly compute whether outcomes satisfy a desirable prop-
erty. Instead, the planner must setup a mechanism through which agents interact-
ing strategically determine the selected alternative. Guiding the planner’s design 
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requires determining which mechanism better provides agents with the incentives to 
select strategies that, given their preferences, lead to the selection of outcomes satis-
fying the desirable property.

The comparison of competing mechanisms then follows a three-step procedure. 
The first step consists in predicting the strategies agents might use in each mech-
anism as a function of their preferences. Formally, these predictions are captured 
by solution concepts such as undominated strategy, Nash equilibrium, or dominant 
strategy. Second, one must compute the outcomes selected by the mechanisms when 
agents play the strategies predicted by the solution concepts selected in the first step. 
Finally, one must evaluate the resulting outcomes according to the property of inter-
est. Example applications of this three-step procedure can be found in Ergin and 
Sönmez (2006) and Abdulkadiroğlu et al. (2011).

In practice, given a preference profile, it is common for solutions concepts to 
make multiple predictions about the strategies agents might use in a mechanism. 
When this is the case, some of the predicted outcomes might satisfy the property 
of interest, whereas others might not. When this is the case, it is often unclear how 
mechanisms should be compared. For example, on a given preference profile, how 
does a mechanism with one desirable and one undesirable outcomes compare with a 
mechanism with four desirable and two undesirable outcomes?

In this paper, we propose, characterize and compare three criteria to perform 
such comparisons. First, the “Proportion” criterion compares, on a profile-by-profile 
basis, the fraction of desirable outcomes reached by each mechanism (the higher the 
fraction, the better the mechanism performs in terms of the property at stake). We 
show that this natural criterion is characterized by three compelling axioms. Unfor-
tunately, the Proportion criterion only provides a very partial ranking of mechanisms 
and often concludes that mechanisms cannot be compared. Moreover, this criterion 
is not very workable because it requires counting the number of equilibria and iden-
tifying the fraction of desirable equilibria. Doing so becomes increasingly difficult 
as the number of equilibria grows.

Our two other criteria improve on both limitations and therefore constitute our 
main contribution. Both criteria satisfy the same three axioms as the Proportion cri-
terion, and therefore agree with it on all pairs that the Proportion criterion is able to 
rank. To provide more complete orderings, each of these two additional criteria also 
satisfy an additional robustness axiom. Loosely put, these two mirror robustness axi-
oms require that a comparison between two mechanisms would not be altered if both 
mechanisms had one additional desirable (undesirable) outcome.

Importantly, the two “extended” criteria compare mechanisms by focusing on 
preference profiles for which outcomes are either all desirable, or all undesirable. By 
doing so, they yield more affirmative comparisons because they are not necessarily 
bogged down by the existence of a few preference profiles for which the proportions 
of desirable outcomes are reversed. Moreover, these criteria do not require counting 
the number of equilibria nor computing the fraction of desirable outcomes.

Of course, the strength of an affirmative comparison between two mechanisms 
depends on the criterion used. One can be more confident that a mechanism will per-
form better than another when they can be ranked by the Proportion criterion than 
when this can only be done using our two other criteria. Yet, when the Proportion 
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criterion is silent, comparisons in terms of our dual criteria provide interesting indi-
cations about the respective performance that should be expected from two alter-
native mechanisms. In other words, the improvement on the limitations associated 
with the Proportion criterion comes at some cost. Our robustness axiom can lead to 
comparisons between mechanisms that are somewhat more debatable. This axiom 
can be viewed as capturing the cost of increasing the completeness of the partial 
order.

We illustrate the different discriminative powers and workabilities of these crite-
ria for the comparison of the stability of two school choice mechanisms on a narrow 
domain.

The paper is organized as follows. We integrate our work in the literature in 
Sect. 2. We present the framework in Sect. 3. We derive axiomatically our criteria 
and discuss their shortcomings in Sect. 4. We then illustrate how those criteria can 
be use in the school choice problem in Sect. 5 and conclude in Sect. 6.

2 � Related literature

Our three criteria use a “profile by profile” approach to compare mechanisms, which 
is common in the literature on voting procedures (Dasgupta and Maskin 2008; Ger-
ber and Barberà 2016; Arribillaga and Massó 2015).1 This approach is also common 
in the matching literature. Whereas our paper focuses on comparing the properties 
of outcomes, the matching literature has proposed a number of criteria to compare 
the manipulability of mechanisms. Pathak and Sönmez (2013) for example rank 
mechanisms by comparing the set of preference profiles for which the mechanisms 
admit a truthful Nash equilibirum. If a mechanism admits a truthful Nash equilib-
rium in every profile for which another mechanism also does, then Pathak and Sön-
mez (2013) conclude that the latter is less manipulable than the former. Similarly, 
Andersson et  al. (2014) study manipulability by comparing the number of prefer-
ence profiles at which each mechanism is manipulable. This type of manipulability 
comparisons avoids the issue induced by multiple solutions since it relies on binary 
evaluations: For any given preference profile, either a mechanism is manipulable or 
it is not.

In contrast, the multiplicity issue is key when evaluating the efficiency or fairness 
of outcomes. For example, Chen and Kesten (2017) compare school choice mecha-
nisms with respect to the stability of their Nash equilibrium outcomes. The criterion 
implied by their analysis relies on the comparison of the number of stable equilibria 
in each type profile. Ergin and Sönmez (2006) show that the multiple equilibria of 
the Boston mechanism are all Pareto dominated by that of the Deferred Acceptance 
mechanism.

1  In Gerber and Barberà (2016), the solution concept is “iterated elimination of weakly dominated strate-
gies” and the correspondence is the possibility of agenda manipulation. In Dasgupta and Maskin (2008), 
the solution concept is “truthful revelation” and the correspondence is a collection of five voting proper-
ties.
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When mechanisms do not perfectly satisfy a property of interest, another 
approach consists in comparing them using a criterion formalizing “by how much" 
each solution violates the property. In the case of stability, which requires the 
absence of blocking pairs, Combe et al. (2017), Abdulkadiroglu et al. (2019), Dogan 
and Ehlers (2020b) and Bonkoungou and Nesterov (2020) compare mechanisms by 
measuring, in different ways, the number of blocking pairs or the number of players 
participating to a blocking pair in each profile. Dogan and Ehlers (2020a) axiomati-
cally characterize criteria for stability comparisons based on axioms specific to this 
property. Current research along this approach has so far abstracted from the multi-
plicity issue that we aim at tackling here.

Going even further away from the binary nature of social choice correspondences, 
which only acknowledge two desirable or undesirable categories, some authors pro-
pose to compare mechanisms using fine-grained normative tool, e.g., a social wel-
fare function. Fleurbaey (2012) axiomatically characterize a criterion that compares 
how alternative mechanisms perform in the light of a fined-grained ranking of out-
comes. Again, the setting considered by that author abstracts from the multiplicity 
issue.

Finally, our work shares important similarities with the literature on the measure-
ment of predictive success (Selten 1991). We derive criteria that compare mecha-
nisms as a function of their ability to yield outcomes that are selected by a corre-
spondence. That literature derives rules that compare theories as a function of their 
ability to make predictions that are in line with observations. There are fundamental 
differences between these two objectives, which imply that our criterion are unre-
lated to these rules. Indeed these differences in objectives makes the relevant primi-
tives different as well.2

3 � Framework and notation

This section introduces the terminology and notation for our axiomatic results. We 
let N = {1,… , n} denote the set of players, and o ∈ O denote the set of outcome. 
Each player i ∈ N is characterized by a type yi ∈ Yi , e.g., the player’s preference over 
the outcomes in O. A type profile is denoted by y ∈ Y∶= ×i∈N Yi . Let X ∶ Y → 2O 
be a social choice correspondence, sometimes correspondence, for short.

A mechanism is a game form M ∶ S → O that associates every strategy profile 
s ∈ S∶= ×i∈N Si with an outcome in O, where Si is the finite strategy space of i ∈ N . 
The set of mechanisms is M ( M includes both direct and indirect mechanisms).

2  The relevant primitives for our criteria are the numbers of equilibria that yield an outcome that is (resp. 
not) selected by the correspondence. In contrast, the relevant primitives for these rules include the “hit 
rate”, i.e. the fraction of observations predicted by the theory, and the “area”, i.e. the fraction of potential 
outcomes predicted by the theory. Neither the “hit rate” nor the “area” are relevant primitives for our 
criteria. We provide here the intuition why the “area” is not a relevant primitive for our criteria. The 
following two mechanisms have different area but should be considered equivalent by our criteria. The 
first mechanism has a unique equilibrium that yields an outcome that is selected by the correspondence. 
The second mechanism has multiple equilibria, all of which yield outcomes that are selected by the cor-
respondence.
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Let C ∶ Y ×M → 2S denote a solution concept. The set C(y,  M) corresponds 
to the set of strategy profiles that C predicts could be played in mechanism M when 
the type profile is y. As is common, we henceforth refer to C(y,  M) as the set of 
equilibria of M under C when the type profile is y (whether or not C is an “equilib-
rium" solution concept). Since we assume that strategy spaces are finite, the number 
of equilibria is always finite. We focus on solution concepts that admit at least one 
equilibrium for each type profile. The set of such solution concepts is C.

For a given correspondence X, let ⪰ be a partial order on M × C . A partial 
order is a binary relation that is reflexive, asymmetric, and transitive.3 The relation 
(M,C) ⪰ (M�,C�) indicates that mechanism M satisfies the property corresponding 
to X at least as well as mechanism M′ when the former is played according to solu-
tion concept C and the latter according to solution concept C′ . The symmetric and 
anti-symmetric relations, i.e., (M,C) ≻ (M�,C�) and (M,C) ∼ (M�,C�) , are defined 
accordingly. Because ⪰ is partial, there may exists pairs [(M,C), (M�,C�)] for which 
the relation is undefined.

Observe that we require the partial order to compare pairs (M, C), (M�,C�) that 
are potentially based on different solution concepts. This recognizes the fact that the 
behavior and coordination possibilities of players may depend on the mechanism. 
This is especially true when one of the mechanisms under consideration admits 
dominant strategies whereas the other does not (in which case, it is reasonable to 
use dominant strategies as a solution concept for the mechanisms where the latter is 
non-empty, and use the next best solution concept for the other mechanism, see, e.g., 
Ergin and Sönmez 2006; Abdulkadiroğlu et al. 2011).

Our objective is to identify partial orders satisfying compelling properties. 
Throughout, we restrict our attention to partial orders that satisfy an independence 
property we call Outcome Neutrality. This property forces partial orders to compare 
mechanisms based only on the number of equilibria whose outcome are selected (or 
not) by the social choice correspondence.4 This captures the idea that the only aspect 
of equilibrium outcomes that matters to ⪰ is whether or not they are selected by the 
correspondence X. For any set A, we let #A denote the cardinality of set A.

Axiom 1  (Outcome Neutrality)  For all C,C� ∈ C and all M,M� ∈ M , if for all y ∈ Y  
we have 

	 (i)	 #{s ∈ C�(y,M�) ∣ M�(s) ∈ X(y)} = #{s ∈ C(y,M) ∣ M(s) ∈ X(y)} , and
	 (ii)	 #{s ∈ C�(y,M�) ∣ M�(s) ∉ X(y)} = #{s ∈ C(y,M) ∣ M(s) ∉ X(y)},

then (M,C) ∼ (M�,C�).
All partial orders satisfying Outcome Neutrality can be reformulated as par-

tial orders over particular “counting" functions. Any pair (M,  C) defines an asso-
ciated counting function F that associates any y with a function F(y) such that 

3  In particular, the weak relation is transitive.
4  This property assumes that all equilibria count the same. This is a natural assumption if one believes 
that all equilibria are equally likely to occur.
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F0(y)∶=#{s ∈ C(y,M) ∣ M(s) ∉ X(y)} and F1(y)∶=#{s ∈ C(y,M) ∣ M(s) ∈ X(y)} . 
When no confusion on the types profile is possible, we simply write the components 
of the function F0 and F1.

Outcome Neutrality implies that any two (M, C) and (M�,C�) whose associated 
functions F and F′ are the same perform equally well in terms of correspondence 
X (formally, (M,C) ∼ (M�,C�) whenever F = F� ). Therefore, the partial order ⪰ on 
domain M × C is equivalent to a partial order on domain F = {F ∶ Y → Z} , where 
Z = {(z0, z1) ∈ ℕ

2
0
|z0 + z1 ≥ 1} . Observe that set Z is unbounded, a feature that is 

necessary for some of our results.5
Slightly abusing the notation, we also denote the latter partial order by ⪰ . For 

the sake of improved readability, all remaining properties on the partial order are 
expressed on domain F .

4 � Criteria

We start by presenting three basic axioms for partial orders. When no confusion 
is possible, we ignore the role of solution concepts and simply say that we com-
pare two mechanisms. Also, we write that an equilibrium is “in X” (“not in X”) if 
its outcome is selected (not selected) by correspondence X. Finally, we say that 
two mechanisms M and M′ are equivalent on a type profile y if F0(y) = F�

0
(y) and 

F1(y) = F�
1
(y).

Our first axiom, Domination, requires that if two mechanisms are equivalent 
on all but one type profile for which all the equilibria of one mechanism are in X 
whereas all the equilibria of the other mechanism are not in X, then the former per-
forms better than the latter in terms of X.

Axiom 2  (Domination) For all F,F� ∈ F  , if (i) F1(y
∗) = 0 and F�

0
(y∗) = 0 for some 

y∗ , and (ii) F�(y) = F(y) for all y ≠ y∗ , then F′ ≻ F.

Second, Monotonicity captures the idea that a larger number of equilibria not in 
X does not improve performance, while a larger number of equilibria in X does not 
worsen it. If two mechanisms are equivalent on all but one type profile for which 
they are not exactly equivalent because one mechanism has either one more equilib-
rium in X or one less equilibrium not in X than the other mechanism, then the axiom 
concludes that the former performs weakly better in terms of X.

Axiom 3  (Monotonicity) For all F,F� ∈ F  , if (i) for some y∗ we have either 
F�
0
(y∗) = F0(y

∗) and F�
1
(y∗) = F1(y

∗) + 1 , or F0(y
∗) = F�

0
(y∗) + 1 and F�

1
(y∗) = F1(y

∗) , 
and (ii) F�(y) = F(y) for all y ≠ y∗ , then F� ⪰ F.

5  In particular, Parts 2 of Theorems 1, 2 and 3 require the construction of intermediate mechanisms that 
may have, for some type profiles, more numerous equilibria than the number of equilibria of the mecha-
nisms being compared. However, Parts 1 of Theorems 1, 2 and 3 do not require Z to be unbounded.
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These two axioms are based on demanding preconditions and therefore, on 
their own, only impose relatively weak restrictions on ⪰ . Hence, many implausi-
ble partial orders are not ruled out by these two alone. To illustrate the need for a 
third restriction, consider the following example and the following criterion.

Definition 1  (Absolute Number criterion (AN)) For any two F,F� ∈ F  , we have 
F� ⪰AN F whenever

Moreover, F′ ≻AN F if, in addition,

The Absolute Number criterion compares mechanisms based on their respec-
tive numbers of equilibria in X. This criterion satisfies our first two basic proper-
ties and its logic is implicitly used by Chen and Kesten (2017) (Theorem 2) when 
comparing the stability of school choice mechanisms.

To see why ⪰AN may be problematic, assume that there is a unique type profile 
y, which for two mechanisms F̃ and F̃′ is such that F̃(y) = (1, 1) and F̃�(y) = (4, 2) . 
Clearly, the AN criterion concludes that F̃′ performs strictly better than F̃ because 
F̃1(y) = 1 < 2 = F̃�

1
(y) . This strict comparison is debatable because it ignores the 

fact that both mechanisms admit equilibria not in X and F̃′ admits more equilibria 
not in X than F̃ ( ̃F0(y) = 1 < 4 = F̃�

0
(y) ). Even if F̃′ has twice as many equilibria 

in X as F̃ , it not clear one should conclude that F̃′ performs strictly better than F̃ 
because F̃′ has four times as many equilibria not in X as F̃.

The issue with the AN criterion is that it violates a third basic property. Rep-
lication Invariance requires that two mechanisms that have the same proportion 
of their equilibria in X be viewed as performing equally well in terms of X. More 
precisely, if two mechanisms are equivalent on all but one type profile where one 
mechanism has k times as many equilibria in X and k times as many equilibria not 
in X as the other mechanism, then Replication Invariance concludes that the two 
mechanisms perform equally well in terms of X. When this is the case, we say 
that the former is a k-replication of the latter.

Axiom 4  (Replication Invariance) For all F,F� ∈ F  and k ∈ ℕ , if (i) 
F�
0
(y∗) = kF0(y

∗) and F�
1
(y∗) = kF1(y

∗) for some y∗ , and (ii) F�(y) = F(y) for all 
y ≠ y∗ , then F� ∼ F.

It is easy to see how the axioms introduced thus far reach a different com-
parison of F̃ = (1, 1) and F̃� = (4, 2) than ⪰AN . Consider a third mechanism F̃′′ 
such that F̃��(y) = (2, 1) . By Monotonicity, F̃ performs weakly better than F̃′′ . By 
Replication Invariance, because F̃′ has twice as many equilibria in X and twice 
as many equilibria not in X as F̃′′ , they perform equally well. Together, we must 
conclude that F̃ performs weakly better than F̃′ , in contradiction with the com-
parison obtained with ⪰AN . The debatable comparison obtained with ⪰AN follows 
from its violation of Replication Invariance.

F�
1
(y) ≥ F1(y) for all y ∈ Y .

F�
1
(y∗) > F1(y

∗) for somey∗ ∈ Y .
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4.1 � The Proportion criterion

As we show in Theorem  1, these three axioms jointly characterize the Propor-
tion criterion. It compares mechanisms based on the proportion of their equilibria 
in X.6 This criterion does not come as a surprise given its reliance on Replication 
Invariance.

Definition 2  [Proportion criterion (PROP)]   For any two F,F� ∈ F  , we have 
F� ⪰PROP F whenever

Moreover, F′ ≻PROP F if, in addition,

Observe that, in line with Domination, the Proportion criterion yields strict com-
parisons only if there is a type profile where one mechanism has all its equilibria in 
X while all the equilibria of the other mechanism are not in X.

Our first result shows that the Proportion criterion is the coarsest relation satisfy-
ing our axioms.

Definition 3  (Coarsest relation)  A partial order ⪰co is the coarsest relation satisfy-
ing a set of axioms if 

1.	 ⪰co satisfies the set of axioms.
2.	 For all F,F� ∈ F  and all ⪰ satisfying the set of axioms, 

A partial order that is the coarsest relation satisfying a set of axioms is not neces-
sarily the only partial order that satisfies this set of axioms.

Yet, the coarsest relation is the only partial order that satisfies the set of axioms 
while remaining silent on all pairs (of functions) that are not ranked by the joint 
implications of the axioms.

F�
1
(y)

F�
0
(y) + F�

1
(y)

≥
F1(y)

F0(y) + F1(y)
for all y ∈ Y .

F�
1
(y∗)

F�
0
(y∗) + F�

1
(y∗)

= 1 and
F1(y

∗)

F0(y
∗) + F1(y

∗)
= 0 for some y∗ ∈ Y .

(1)F� ⪰co F ⇒ F� ⪰ F, and

(2)F′ ≻co F ⇒ F′ ≻ F.

6  Under our assumptions, the proportion is always well-defined. Indeed, we assume that solution con-
cepts admit at least one equilibrium for each type profile. As a result, the denominateur of the proportion 
is never zero.
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Theorem 1 identifies the close connection between the Proportion criterion and 
our three basic axioms.7

Theorem 1  The partial order ⪰PROP is the coarsest relation satisfying Domination, 
Monotonicity and Replication Invariance.

Proof  Part 1 of Definition 3: The proof that ⪰PROP satisfies these three axioms is 
straightforward, and is therefore omitted.

Implication (2) in part 2 of Definition 3: F′ ≻PROP F ⇒ F′ ≻ F

We slightly abuse notation and often write F and F instead of F(y) and F�(y) 
whenever there is no ambiguity on y. Let Y1 = {y ∈ Y | F�

0
= 0 and F1 = 0} be the 

set of type profiles for which all equilibria of F′ are in X while all the equilibria of F 
are not in X. Since F′ ≻PROP F , we have that Y1 is not empty and also that 
F�
1

F�
0
+F�

1

≥
F1

F0+F1

 for all y ∈ Y .
We show that any partial order ⪰ satisfying the list of axioms is such that 

F′ ≻ F by constructing two sequences of functions (Lp)p∈{0,1} and (Kp)p∈{0,1} with 
Lp,Kp ∈ F  such that

•	 L0 ≻ K0,
•	 L1 ⪰ L0 and K0 ⪰ K1,
•	 L1 = F� and K1 = F.

If these two sequences exist, then we have indeed that F′ ≻ F.
We construct each function in the sequence type profile by type profile. First, we 

construct L0 and K0 . For all y ∈ Y1 , we take L0 = F� and K0 = F . For all y ∈ Y�Y1 , 
we take L0

1
= K0

1
= (F�

0
+ F�

1
) ∗ F1 and L0

0
= K0

0
= (F0 + F1) ∗ F�

0
 . By succes-

sive applications of Domination we have L0 ≻ K0 . By “successive applications” of 
Domination, we mean that it is straightforward to construct a sequence of functions 
(Fp)p∈{0,…,P} with F0 = K0 , FP = L0 and such that Fp+1 ≻ Fp by the virtue of Domi-
nation for all p ∈ {0,… ,P − 1}.

Then, we construct L1 and K1 from L0 and K0 by changing their images on Y∖Y1 . 
For all y ∈ Y1 , we take L1 = L0 and K1 = K0 . For their construction on Y∖Y1 , we 
define two sequences (L̂q)q∈{0,1} and (K̂q)q∈{0,1} with L̂q, K̂q ∈ F  such that

•	 K0 ⪰ K̂0,
•	 L̂0 ⪰ L0,
•	 K̂1 ∼ K̂0,
•	 L̂1 ∼ L̂0,

7  These three axioms are independent. Showing independence of Monotonicity is the most difficult part. 
We propose the criterion I2, which satisfies all these axioms except Monotonicity. Criterion I2 is based 
on the following function f ∶ [0, 1] → [0, 1] defined as f (x) = 1 − x for x ∈ {0, 1} and f (x) = x for all 
x ∈ (0, 1) . That is, function f is strictly increasing for all x ∈ (0, 1) , but returns the smallest value for 
x = 1 and the greatest for x = 0 . For any two F,F� ∈ F  , we have F� ⪰I2 F whenever 
f
(

F�
1
(y)

F�
0
(y)+F�

1
(y)

)
≥ f

(
F1(y)

F0(y)+F1(y)

)
 for all y ∈ Y  , and we have F′ ≻I2 F if in addition the inequality is strict 

for some y∗ ∈ Y .
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8  Consider the following complete order. For any two F,F� ∈ F  , we have F� ⪰COMP F whenever

Observe that these three axioms do not jointly imply this order. Additional properties would be required, 
typically imposing some form(s) of anonymity.

∑

y∈Y

F�
1
(y)

F�
0
(y) + F�

1
(y)

≥
∑

y∈Y

F1(y)

F0(y) + F1(y)

and we take L1 = L̂1 and K1 = K̂1 , which implies L1 ≻ K1 . For any y ∈ Y�Y1 , we 
take L̂0

0
= L0

0
 and L̂0

1
= L0

1
+ (F�

1
∗ F0 − F�

0
∗ F1) , where we have 

F�
1
∗ F0 − F�

0
∗ F1 ≥ 0 because F�

1

F�
1
+F�

0

≥
F1

F1+F0

 . We have L̂0 ⪰ L0 by (successive 
applications of) Monotonicity. For any y ∈ Y�Y1 , we also take 
K̂0
0
= K0

0
+ (F�

1
∗ F0 − F�

0
∗ F1) and K̂0

1
= K0

1
 . We have K0 ⪰ K̂0 by (successive 

applications of) Monotonicity.
Then, we construct L̂1 from L̂0 and K̂1 from K̂0 . For any y ∈ Y�Y1 , let L̂0 be a 

(F0 + F1)-replication of L̂1 and K̂0 a (F�
0
+ F�

1
)-replication of K̂1 so that we have 

L̂1 ∼ K̂0 and K̂1 ∼ L̂0 by (successive applications of) Replication Invariance.
By construction, we have L1 = F� and K1 = F which completes the proof.
Implication (1) in part 2 of Definition 3: F� ⪰PROP F ⇒ F� ⪰ F

The proof can straightforwardly be adapted from the argument provided above, 
and is therefore omitted. � □�

Theorem 1 calls for three remarks.
First, observe that one can also find complete orders satisfying this set of axioms.8
Second, Theorem 1 would still hold if we restrict ourselves to solution concepts 

with only one outcome per type profile, such as for instance the “truthfulness” solu-
tion concept. For this special case, the criteria must rank functions whose domain of 
images is Z� = {(z0, z1) ∈ ℕ

2
0
|z0 + z1 = 1} . All issues associated with having multi-

ple equilibria are ruled out. For this special case, only Domination has bite because 
the remaining three axioms are trivially satisfied. Observe that the Proportion crite-
rion would still yield a partial ranking of mechanisms. This illustrates that the dif-
ficulty to characterize a complete order is also present even when the equilibrium is 
unique.

Third, using the strict versions of axioms Monotonicity, i.e., if one mechanism 
has one more equilibrium in (resp. not in) X than the other mechanism, it performs 
strictly better (resp. worse) in terms of X, would lead to an impossibility because this 
stronger axiom is directly incompatible with Replication Invariance.

Although the Proportion criterion is very natural, it is affected by two impor-
tant limitations. Since the Proportion criterion relies on relatively weak axioms, it 
provides a very partial ranking and is thus often silent. Moreover, the Proportion 
criterion is not very workable. Indeed, this criterion requires computing the exact 
number of equilibria in each type profile, which can get quite challenging as even 
very simplified type profiles can admit multiple strategy profiles.
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4.2 � Dual extension of the Proportion criterion

To obtain more complete partial orders, we maintain the axioms imposed thus 
far while imposing additional restrictions that increase the number of pairs a par-
tial order can compare. In this sense, our new partial orders extend the compari-
sons from ⪰PROP (they compare in the same way all pairs for which ⪰PROP makes 
an affirmative comparison, and reach affirmative comparisons for some pairs for 
which ⪰PROP is silent).

First, we consider an additional robustness axiom that we call Consistency to 
Additional ∈ X . Loosely put, Consistency to Additional ∈ X requires that a com-
parison would not be altered if both mechanisms had one additional equilibrium 
in X. More precisely, assume that one mechanism M performs better than another 
M′ (in terms of X). Consider slight variants of these two mechanisms such that, 
on a single type profile, both variants have one additional equilibrium in X. Con-
sistency to Additional ∈ X requires that the variant of M also performs better than 
the variant of M′.

Axiom 5  (Consistency to Additional ∈ X ) For all F,F�, F̂, F̂� ∈ F  , if (i) 
F̂0(y

∗) = F0(y
∗) , F̂�

0
(y∗) = F�

0
(y∗) , F̂1(y

∗) = F1(y
∗) + 1 and F̂�

1
(y∗) = F�

1
(y∗) + 1 for 

some y∗ , and (ii) F̂(y) = F(y) and F̂�(y) = F�(y) for all y ≠ y∗ , then F� ⪰ F ⇒ F̂� ⪰ F̂ 
and F′ ≻ F ⇒ F̂′ ≻ F̂.

Even if one may consider that Consistency to Additional ∈ X is somewhat less 
compelling than our three basic axioms, we believe that it constitutes a plausi-
ble way of extending their affirmative comparisons. Observe in particular that 
Consistency to Additional ∈ X does not impose any affirmative comparison on its 
own. It is only in combination with other axioms that it extends their pre-existing 
affirmative comparisons to more pairs.

Theorem  2 presented below shows that Consistency to Additional ∈ X is 
exactly the difference between ⪰PROP and our second criterion. This criterion 
compares mechanisms by focusing exclusively on those type profiles for which all 
equilibria are in X or those for which all equilibria are not in X. More precisely, 
the criterion considers that a mechanism performs at least as well as another if 
the latter has no equilibria in X whenever the former has no equilibria in X and 
if the former has all its equilibria in X whenever the latter has all its equilibria in 
X. The comparison becomes strict if for some type profile, the former has all its 
equilibria in X whereas the latter has not.

Definition 4  [Profiles with Homogeneous Outcomes criterion (PHO)]  For any two 
F,F� ∈ F  , we have F� ⪰PHO F if for all y ∈ Y

Moreover, we have F′ ≻PHO F if in addition

F�
1
(y) = 0 ⇒ F1(y) = 0, and

F0(y) = 0 ⇒ F�
0
(y) = 0.
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The partial order ⪰PHO is more workable than ⪰PROP . Indeed, obtaining affirm-
ative comparisons with ⪰PHO never requires computing the proportion of equilib-
ria in X. Even better, it is not even necessary to compute the number of equilibria 
associated to each type profile. The reason is that the affirmative comparisons 
of ⪰PHO are only based on type profiles for which all equilibria are equivalent in 
terms of X.

Observe that ⪰PHO yields strict comparisons only if there is a type profile 
where one mechanism has all its equilibria in X while the other’s are not all in 
X. In contrast, in the case of ⪰PROP , strict comparisons require that there is a 
type profile where one mechanism has all its equilibria in X while the other’s 
are all not in X. Clearly, the weaker condition for strict comparisons under ⪰PHO 
derives from Consistency to Additional ∈ X , which extends the strict comparisons 
obtained from Domination.

Theorem 2 identifies the close connection between ⪰PHO and our four axioms.

Theorem 2  The partial order ⪰PHO is the coarsest relation satisfying Domination, 
Monotonicity, Replication Invariance and Consistency to Additional ∈ X.

Proof  Part 1 of Definition 3:
The PHO criterion clearly satisfies Domination, Monotonicity and Replica-

tion Invariance. We only prove that the PHO criterion satisfies Consistency to 
Additional ∈ X . We must show that, when its preconditions are met, we have 
F� ⪰PHO F ⇒ F̂� ⪰PHO F̂ and F′ ≻PHO F ⇒ F̂′ ≻PHO F̂ . As the proof of the two 
implications are very similar, we only prove the latter.

Again, we slightly abuse notation and write F0 and F1 instead of F0(y) and F1(y) . 
Given that F′ ≻PHO F , we can partition Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ Y5 , where

F�
0
(y∗) = 0 and F0(y

∗) > 0 for some y∗ ∈ Y .

Mech F’

Mech F

Y 1 Y 2 Y 3 Y 4 Y 5

Fig. 1   Illustration of type profiles for each subset of the partition. Each green dot represents an equilib-
rium in X and each red triangle represents an equilibrium not in X 
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and where Y1 ∪ Y3 is not empty. Such partition is illustrated in Fig. 1.
We show that when comparing F̂ and F̂′ , we can also partition 

Y = Ŷ1 ∪ Ŷ2 ∪ Ŷ3 ∪ Ŷ4 ∪ Ŷ5 with the same definitions as above, except 
that these definitions consider functions F̂ and F̂′ instead of F and F′ , i.e., 
Ŷ1 = {y ∈ Y | F̂�

0
= 0 and F̂1 = 0} , Ŷ2 = {y ∈ Y | F̂�

0
= 0 and F̂0 = 0} , and so on. 

Moreover Ŷ1 ∪ Ŷ3 is not empty. If we can partition Y in this way, then we have 
F̂′ ≻PHO F̂.

There remains to show that the preconditions of Consistency to Additional ∈ X , 
which link F and F′ to F̂ and F̂′ , are such that any y ∈ Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ Y5 is 
such that y ∈ Ŷ1 ∪ Ŷ2 ∪ Ŷ3 ∪ Ŷ4 ∪ Ŷ5 and any y ∈ Y1 ∪ Y3 is such that y ∈ Ŷ1 ∪ Ŷ3 . 
For all y ≠ y∗ , we have F̂(y) = F(y) and F̂�(y) = F�(y) , which directly implies that 
for all p ∈ {1,… , 5} we have y ∈ Ŷp when y ∈ Yp . For y∗ , we have F̂0(y

∗) = F0(y
∗) 

and F̂�
0
(y∗) = F�

0
(y∗) , as well as F̂1(y

∗) = F1(y
∗) + 1 and F̂�

1
(y∗) = F�

1
(y∗) + 1 . 

These preconditions are such that y∗ ∈ Y1
⇒ y∗ ∈ Ŷ3 , y∗ ∈ Y2

⇒ y∗ ∈ Ŷ2 , 
y∗ ∈ Y3

⇒ y∗ ∈ Ŷ3 , y∗ ∈ Y4
⇒ y∗ ∈ Ŷ4 and y∗ ∈ Y5

⇒ y∗ ∈ Ŷ4 . Finally, as Y1 ∪ Y3 
is non-empty, y∗ ∈ Y1

⇒ y∗ ∈ Ŷ3 and y∗ ∈ Y3
⇒ y∗ ∈ Ŷ3 , Ŷ1 ∪ Ŷ3 is not empty, the 

desired result.
Implication (2) in part 2 of Definition 3: F′ ≻PHO F ⇒ F′ ≻ F

Since F′ ≻PHO F , we can partition Y = Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ Y5 using the same 
definitions used for part 1, and moreover Y1 ∪ Y3 is not empty.

We show that any partial order ⪰ satisfying the list of axioms is such that F′ ≻ F 
by constructing two sequences of functions (Lp)p∈{0,…,5} and (Kp)p∈{0,…,5} with 
Lp,Kp ∈ F  such that

•	 L0 ≻ K0,
•	 Lp+1 ⪰ Lp and Kp ⪰ Kp+1 for all p ∈ {0,… , 4},
•	 L5 = F� and K5 = F.

If such two sequences exist, then we have indeed that F′ ≻ F.
First, we define L0 and K0 . We construct these two functions type profile by type 

profile. For all y ∈ Y1 ∪ Y3 we take L0
0
= K0

1
= 0 and L0

1
= K0

0
= 1 . For all y ∈ Y2 

we take L0
0
= K0

0
= 0 and L0

1
= K0

1
= 1 . For all y ∈ Y4 ∪ Y5 we take L0

0
= K0

0
= 1 and 

L0
1
= K0

1
= 0 . By (successive applications of) Domination, we have L0 ≻ K0.

We define the remaining elements of the two sequences in 5 successive steps, 
one for each subset in the partition of Y. Functions Lp and Kp are constructed from 
Lp−1 and Kp−1 in step p in such a way that for all a ∈ {1,… , p} and all y ∈ Ya we 
have Lp(y) = F�(y) and Kp(y) = F(y) . When the construction of a function is left 

Y1 =
{
y ∈ Y | F�

0
= 0 and F1 = 0

}
,

Y2 =
{
y ∈ Y | F�

0
= 0 and F0 = 0

}
,

Y3 =
{
y ∈ Y | F�

0
= 0 and F0 > 0 and F1 > 0

}
,

Y4 =
{
y ∈ Y | F�

0
> 0 and F�

1
> 0 and F0 > 0 and F1 > 0

}
,

Y5 =
{
y ∈ Y | F�

0
> 0 and F1 = 0

}
,
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unspecified on a type profile, it means that this function takes the same image as the 
function from which it is constructed.

•	 Step 1: Define L1 and K1 from L0 and K0 by changing their images on Y1 . 
For any y ∈ Y1 , take L1

0
= K1

1
= 0 and L1

1
= F�

1
 and K1

0
= F0 . That is, L1(y) is a 

F′
1
-replication of L0(y) and K1(y) is a F0-replication of K0(y) . By (successive 

applications of) Replication Invariance, we have L1 ∼ L0 and K1 ∼ K0.
•	 Step 2: Define L2 and K2 from L1 and K1 by changing their images on Y2 . 

For any y ∈ Y2 , take L2
0
= K2

0
= 0 and L2

1
= F�

1
 and K2

0
= F1 . That is, L2(y) is 

a F′
1
-replication of L1(y) and K2(y) is a F1-replication of K1(y) . By (successive 

applications of) Replication Invariance, we have L2 ∼ L1 and K2 ∼ K1.
•	 Step 3: Define L3 and K3 from L2 and K2 by changing their images on Y3 . We 

define two sequences (L̂q)q∈{0,1} and (K̂q)q∈{0,1} with

–	 K̂0 ∼ K2,
–	 L̂0 ≻ K̂1,
–	 L̂1 ∼ L̂0,

	 and we take L3 = L̂1 and K3 = K̂1 , which implies L3 ≻ K3 . For any y ∈ Y3 , we 
take K̂0

0
= F0 and K̂0

1
= 0 . As K̂0(y) is a F0-replication of K2(y) , by (successive 

applications of) Replication Invariance, we have K̂0 ∼ K2 . We then construct 
L̂0 from L2 and K̂1 from K̂0 by addition of the same number of equilibria in 
X(y). For any y ∈ Y3 , we take L̂0

0
= L2

0
 , K̂1

0
= K̂0

0
 , L̂0

1
= L2

1
+ F1 and 

K̂1
1
= K̂0

1
+ F1 . By transitivity we have from the previous steps that L2 ≻ K̂0 . 

Therefore, we get L̂0 ≻ K̂1 by (successive applications of) Consistency to 
Additional ∈ X . For any y ∈ Y3 , we take L̂1

0
= 0 and L̂1

1
= F�

1
 . As L̂1(y) is a F�

1

1+F1

-replication of L̂0(y) , by (successive applications of) Replication Invariance, 
we have L̂1 ∼ L̂0 . If F�

1

1+F1

 is not an integer, then an intermediary function L̂∗ 
must be defined such that L̂∗(y) is a F′

1
-replication of L̂0(y) and, also, such that 

L̂∗(y) is a (1 + F1)-replication of L̂1(y).
•	 Step 4: Define L4 and K4 from L3 and K3 by changing their images on Y4 . We 

define two sequences (L̂q)q∈{0,…,3} and (K̂q)q∈{0,1} with

–	 L̂0 ∼ L3 and K̂0 ∼ K3,
–	 L̂1 ≻ K̂1,
–	 L̂2 ⪰ L̂1 and L̂3 ∼ L̂2,

	 and we take L4 = L̂3 and K4 = K̂1 , which implies L4 ≻ K4 . For any y ∈ Y4 , we 
take L̂0

0
= F�

0
F1 , K̂0

0
= F0 and L̂0

1
= K̂0

1
= 0 . As L̂0(y) is a F′

0
F1-replication of 

L3(y) and K̂0(y) is a F0-replication of K3(y) , by (successive applications of) Rep-
lication Invariance, we have L̂0 ∼ L3 and K̂0 ∼ K3 . We then construct L̂1 from 
L̂0 and K̂1 from K̂0 by addition of the same number of equilibria in X(y). For any 
y ∈ Y4 , we take L̂1

0
= L̂0

0
 , K̂1

0
= K̂0

0
 , L̂1

1
= L̂0

1
+ F1 and K̂1

1
= K̂0

1
+ F1 . By transitiv-

ity we have from the previous steps that L̂0 ≻ K̂0 . Therefore, we get L̂1 ≻ K̂1 by 
(successive applications of) Consistency to Additional ∈ X . For any y ∈ Y4 , we 
take L̂2

0
= L̂1

0
 and L̂2

1
= L̂1

1
+ F1(F

�
1
− 1) . By (successive applications of) Mono-

tonicity, we have L̂2 ⪰ L̂1 . Finally, for any y ∈ Y4 , we take L̂3
0
= F�

0
 and L̂3

1
= F�

1
 . 
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As L̂2(y) is a F1-replication of L̂3(y) , by (successive applications of) Replication 
Invariance, we have L̂3 ∼ L̂2.

•	 Step 5: Define L5 and K5 from L4 and K4 by changing their images on Y5 . We 
define a sequence (L̂q)q∈{0,1} and a function K̂0 with

–	 L̂0 ∼ L4 and K̂0 ∼ K4,
–	 L̂1 ⪰ L̂0,

	 and we take L5 = L̂1 and K5 = K̂0 , which implies L5 ≻ K5 . For any y ∈ Y5 , we 
take L̂0

0
= F�

0
 , K̂0

0
= F0 and L̂0

1
= K̂0

1
= 0 . As L̂0(y) is a F′

0
-replication of L4(y) and 

K̂0(y) is a F0-replication of K4(y) , by (successive applications of) Replication 
Invariance, we have L̂0 ∼ L4 and K̂0 ∼ K4 . For any y ∈ Y5 , we take L̂1

0
= L̂0

0
 and 

L̂1
1
= L̂0

1
+ F�

1
 . By (successive applications of) Monotonicity, we have L̂1 ⪰ L̂0.

By construction, we have L5 = F� and K5 = F , which completes the proof.
Implication (1) in part 2 of Definition 3:
The proof can straightforwardly be adapted from the argument provided above, 

and is therefore omitted.� □

Interestingly, imposing Consistency to Additional ∈ X allows comparing two 
mechanisms by only focusing on the subset of type profiles for which all equilibria 
are equivalent in terms of X. In a sense, type profiles for which both mechanisms 
yield some outcomes in X and some outcomes not in X are “irrelevant” for the com-
parison.9 This greatly increases the number of pairs that can be compared because, 
unlike ⪰PROP , the partial order ⪰PHO is not necessarily bogged down by the existence 
of a few type profiles for which proportions of equilibria in X are reversed.

This reduction of the domain of “relevant” type profile is rather surprising. We 
emphasize that Consistency to Additional ∈ X is not sufficient by itself to yield such 
reduction. In fact, the Absolute Number criterion satisfies Consistency to Additional 
∈ X together with Domination and Monotonicity, but still bases its comparisons on 
all type profiles in the domain. This reduction is the result of the combination of the 
list of axioms used.

Finally, we show that an axiom that is dual to Consistency to Additional ∈ X 
leads to a criterion that is dual to ⪰PHO . Consistency to Additional ∉ X preserves 
the logic of Consistency to Additional ∈ X , but the former focuses on equilibria not 
in X, whereas the latter focuses on equilibria in X. More precisely, assume that one 
mechanism M performs better than another M′ (in terms of X). Consider slight vari-
ants of these two mechanisms such that, on a single type profile, both variants have 
one additional equilibrium not in X. Consistency to Additional ∉ X requires that the 
variant of M also performs better than the variant of M′.

Axiom 6  (Consistency to Additional ∉ X ) For all F,F�, F̂, F̂� ∈ F  , if (i) 
F̂0(y

∗) = F0(y
∗) + 1 , F̂�

0
(y∗) = F�

0
(y∗) + 1 , F̂1(y

∗) = F1(y
∗) and F̂�

1
(y∗) = F�

1
(y∗) for 

9  These type profiles are irrelevant in the sense that the exact fraction of outcomes in X of each mecha-
nism does not matter.
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some y∗ , and (ii) F̂(y) = F(y) and F̂�(y) = F�(y) for all y ≠ y∗ , then F� ⪰ F ⇒ F̂� ⪰ F̂ 
and F′ ≻ F ⇒ F̂′ ≻ F̂.

Unsurprisingly, the partial order ⪰PHO∗ associated to Consistency to Additional 
∉ X is very similar to ⪰PHO . In fact, the weak comparisons of these two criteria are 
based on the same conditions. The difference comes from the condition for strict 
comparisons. The partial order ⪰PHO∗ yields strict comparisons only if there is a type 
profile where one mechanism has some of its equilibria in X while the other has 
none of its equilibria in X.

Definition 5  [Profiles with Homogeneous Outcomes criterion* PHO] For any two 
F,F� ∈ F  , we have F� ⪰PHO∗ F if for all y ∈ Y

Moreover, we have F� ≻PHO∗ F if in addition

Theorem 3 identifies the close connection between ⪰PHO∗ and the four axioms.

Theorem 3  The partial order ⪰PHO∗ is the coarsest relation satisfying Domination, 
Monotonicity, Replication Invariance and Consistency to Additional ∉ X.

Proof  The proof can straightforwardly be adapted from the proof of Theorem 2, and 
is therefore omitted.� □

5 � Illustration with school choice mechanisms

For illustrative purposes, we compare two matching mechanisms for the allocation 
of school seats. In this context, a matching algorithm determines the allocation of 
seats based on the preferences reported by the students and the priorities that stu-
dents receive at the different schools. The players are the students and their strat-
egy set is the set of preferences they can report. A type profile consists in a prefer-
ence profile together with a priority profile. The complete description of the school 
choice model considered is given in Appendix 7.1.

We focus on an extremely simplified domain of school choice problems, with 
only three students and three schools, each endowed with one seat. On this narrow 
domain, we compare two school choice mechanisms with respect to the “stable" 
social choice correspondence, which is central in the school choice literature. This 
fairness property essentially requires that no blocking pair exists in the assignment.10 

F�
1
(y) = 0 ⇒ F1(y) = 0, and

F0(y) = 0 ⇒ F�
0
(y) = 0.

F�
1
(y∗) > 0 and F1(y

∗) = 0 for some y∗ ∈ Y .

10  An assignment has a blocking pair if a student is assigned to a school that another student prefers to 
her assignment and the other student has higher priority at this school than the first student.
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The two mechanisms we compare are constrained versions of the Deferred Accept-
ance (DA) and Boston (BOS) mechanisms, for which students are allowed to report 
preferences on two schools only (Haeringer and Klijn 2009). We denote these mech-
anisms as DA2 and BOS2.11 For both mechanisms, we use undominated strategy pro-
file as a solution concept. Although it is widely used, the Nash equilibrium solution 
concept might not be credible for such mechanisms. In school choice, Nash equilib-
rium may require a degree of coordination that goes beyond what can reasonably be 
expected from parents who play the corresponding game, often as a one-shot game. 
Experimental evidence also suggest that Nash equilibria are rarely reached in these 
mechanisms (Calsamiglia et al. 2010).

Under both DA2 and BOS2 , many type profiles admit multiple undominated strat-
egy profiles, some of which lead to stable assignments while others do not. How-
ever, there are reasons to believe that DA2 should be deemed more stable than BOS2 . 
First, theoretical results have shown that unconstrained DA is stable in dominant 
strategies, whereas unconstrained BOS is stable only in Nash equilibrium, i.e., when 
assuming complete coordination among the players. Second, experimental evidence 
shows that constrained versions of DA are more stable than constrained versions of 
BOS. In a constrained environment, i.e., when players can report preferences on a 
limited number of schools, Calsamiglia et al. (2010) show that, even though stable 
assignments rarely occur, there are significantly more blocking pairs arising in con-
strained versions of BOS than in constrained versions of DA. (Recall that the “sta-
ble” correspondence essentially selects assignments that do not contain any blocking 
pairs.) Also, Klijn et al. (2013) show that, independently of players’ risk aversion, 
BOS is less likely to produce stable assignments than DA.

Unfortunately, Proposition 1 shows that the Proportion criterion cannot compare 
the stability of these two mechanisms: There exist type profiles for which the pro-
portion of stable equilibria is greater under DA2 than under BOS2 , as well as other 
type profiles for which the converse is true.

Proposition 1  Let the solution concept C be undominated strategy profiles. Let X 
denote the stable correspondence. Let FDA2 and FBOS2 be the functions respectively 
associated to DA2 and BOS2 by C and X. There exists a type profile y ∈ Y  such that

Table 1   Type profile y for which all undominated strategy profiles under DA2 are stable but not all 
undominated strategy profiles under BOS2

11  See Appendix 7.2 for the description of both mechanisms.
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and a type profile y� ∈ Y  such that

Proof  Type profile y is presented in Table 1. For visual convenience, the schools at 
which a student has top-priority are starred.

First, we show for y that all undominated strategy profiles under DA2 are stable. 
As i1 has a top-priority at her most-preferred school, she has a dominant strategy 
and is assigned to that school under any undominated strategy profile (Lemma 3). 
As i2 and i3 have a top-priority at their second most-preferred school, they have a 
dominant strategy (Lemma 4) that ranks their two most-preferred schools according 
to their true preference (Lemma 5). Therefore, only one assignment can be reached 
under undominated strategy profiles. This assignment is such that each student is 
assigned to her most-preferred top-priority school. This assignment is stable.

Second, we show for y that one undominated strategy profiles under BOS2 is not 
stable. Consider the reported profile Q shown herebelow.

Profile Q is an undominated strategy profile under BOS2 (Lemma 6). The assign-
ment BOS2(Q) is such that i1 is assigned to s1 , i2 is unassigned and i3 is assigned to s2 . 
This assignment is unstable as i2 prefers s2 over being unassigned and i2 has a higher 
priority at s2 than i1.

Type profile y′ is presented in Table  2. For visual convenience, the schools at 
which a student has top-priority are starred and the only stable assignment is boxed.

Under DA2 , one-third of undominated strategy outcomes are stable. It is a domi-
nant strategy for both i1 and i2 to truthfully report their preference because they each 
have a top-priority at their second favorite school (Lemma 3). In turn, student i3 has 
three undominated strategies (Lemma 5):

FDA2

1
(y)

FDA2

0
(y) + FDA2

1
(y)

= 1 and
FBOS2

1
(y)

FBOS2

0
(y) + FBOS2

1
(y)

< 1,

FDA2

1
(y�)

FDA2

0
(y�) + FDA2

1
(y�)

<
FBOS2

1
(y�)

FBOS2

0
(y�) + FBOS2

1
(y�)

.

Qi1
∶ s1 s2

Qi2
∶ s1 s2

Qi3
∶ s2 s3

Table 2   Type profile y′ for which the proportion of stable undominated strategy outcomes is larger under 
BOS2 than under DA2
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If i3 reports Qi3
 , then the assignment is unstable because i3 is unassigned while the 

seat at s3 is vacant. If i3 reports Q′′
i3
 , then the assignment is again unstable because i2 

is assigned to s1 even if i2 has a lower priority at s1 than i3 . If i3 reports Q′
i3
 , then the 

assignment is stable.
Under BOS2 , more than one-third of undominated strategy outcomes are stable. 

Students i1 and i2 have two undominated strategies whereas i3 has six undominated 
strategies (Lemma 6):

We show that a proportion 10/24 of BOS2 assignments are stable, which is larger 
than the proportion 1/3 obtained under DA2.

First, we consider the six undominated strategy profiles for which i1 and i2 report 
Qi1

 and Qi2
 . None of the six assignments are stable, because for all of them we have 

either that i3 is unassigned or i2 is assigned to s1.
Second, we consider the six undominated strategy profiles for which i1 and i2 

report Q′
i1
 and Q′

i2
 . Under these profiles, i1 is assigned to s1 and i2 is assigned to s2 . 

The assignment is stable if i3 reports s3 , which is the case in all her undominated 
strategies but Qi3

 and Q′′′
i3

 . Hence, four out of these six assignments are stable.
Third, we consider the six undominated strategy profiles for which i1 and i2 report 

Qi1
 and Q′

i2
 . Under these profiles, i2 is assigned to s2 . The assignment is stable if i3 

reports s3 and does not report s1 first. Hence, three out of these six assignments are 
stable.

Fourth, we consider the six undominated strategy profiles for which i1 and i2 
report Q′

i1
 and Qi2

 . Under these profiles, i1 is assigned to s1 . The assignment is stable 
if i3 reports s3 and does not report s2 first. Hence, three out of these six assignments 
are stable.� □

The second important limitation of ⪰PROP is that this criterion is not very work-
able. Even in our extremely simplified domain with only three students and three 
schools, computing the exact number of equilibria in each type profile and identify-
ing the proportion of these equilibria that are in X can be challenging. As we show 
in the proof of Proposition 1, the relatively simple type profile y′ admits 24 differ-
ent undominated strategy profiles under BOS2 . Investigating the stability of all 24 

Qi3
∶ s1 s2

Q�
i3
∶ s1 s3

Q��
i3
∶ s2 s3

Qi1
∶ s2 s

∗
1

Q�
i1
∶ s∗

1
s2

Qi2
∶ s1 s

∗
2

Q�
i2
∶ s∗

2
s1

Qi3
∶ s1 s2

Q�
i3
∶ s1 s3

Q��
i3
∶ s2 s3

Q���
i3

∶ s2 s1

Q����
i3

∶ s3 s1

Q�����
i3

∶ s3 s2
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is quite cumbersome. What is more, the proof only shows that the two mechanisms 
cannot be compared by ⪰PROP , which requires considering only two type profiles.

This example illustrates the need for partial orders that are less partial and more 
workable than ⪰PROP.

The increased discriminatory power of ⪰PHO provides a sense for which we can 
affirmatively compare DA2 and BOS2 in terms of stability. This comparison is in line 
with our expectations.

Proposition 2  Let the solution concept C be undominated strategy profiles. Let X 
denote the stable assignments correspondence. Letting FDA2 and FBOS2 be the functions 
respectively associated to DA2 and BOS2 by C and X, we have FDA2

≻PHO FBOS2.12

Proof  Part 1. FDA2

⪰PHO FBOS2.
First, we show that for all y ∈ Y  for which no undominated strategy profiles under 

DA2 leads to a stable assignment, no undominated strategy profiles under BOS2 leads 
to a stable assignment. To do so, we show that there exists no y ∈ Y  for which no 
undominated strategy profiles under DA2 leads to a stable assignment. Consider the 
contradiction assumption that, for some type profile y∗ ∈ Y  , no undominated strat-
egy profile under DA2 leads to a stable assignment. Let �∗ denote the most-efficient 
stable assignment for type profile y∗.

Assume first that all students are assigned to a school under �∗ . Consider any 
undominated strategy profile Q = (Qi1

,Qi2
,Qi3

) under DA2 for which each student 
i reports �∗(i) , the school to which she is assigned under �∗ . Any student i has an 
undominated strategy with this property. Indeed, if �∗(i) is not her third favorite 
acceptable school, then reporting her two favorite acceptable schools in the order 
of her truthful preference is clearly undominated under DA2 . If �∗(i) is her third 
favorite acceptable school, then i has no dominant strategy under DA2 and reporting 
any two acceptable schools in the same order as the order of preference is undomi-
nated (Lemma 5).

Since strategies in Q are undominated, they report the schools in the order of the 
students’ truthful preference (Lemma 5). Hence, if �∗(i) is not reported first in Qi , 
then i prefers the school reported first in Qi over �∗(i) . Then, because �∗ is a stable 
assignment, either the assignment DA2(Q) is �∗ , which violates the contradiction 
assumption, or DA2(Q) is a Pareto improvement over �∗ . In the latter case, DA2(Q) is 
unstable because �∗ is the most-efficient stable assignment. As DA2(Q) is an unsta-
ble Pareto improvement over �∗ , we have that one student, say i3 , is assigned under 
DA2(Q) to the same school as under �∗ , while i1 and i2 have exchanged the schools 
they are assigned to under �∗ . If all students are assigned to a different school as 

12  Note that with FDA and FBOS the functions respectively associated to unrestricted DA and BOS by C 
and X, we also have FDA ≻PHO FBOS . Indeed, in DA all students have a single dominant strategy which 
consist in ranking all their acceptable schools without switches. There is therefore only one undominated 
strategy profile in DA, and this profile is always stable. It is then sufficient to show that some of the many 
undominated strategy profiles in BOS are not stable.
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under �∗ , then �∗ cannot be the most-efficient stable assignment. This implies that 
Qi1

∶ �∗(i2) �
∗(i1) and Qi2

∶ �∗(i1) �
∗(i2) . Assignment DA2(Q) is unstable because 

there is a school s ∈ {�∗(i1),�
∗(i2)} that i3 prefers over �∗(i3) and i3 has a higher pri-

ority at s than the student assigned to s under DA2(Q) . As i3 prefers s over �∗(i3) we 
have that Q�

i3
∶ s �∗(i3) is undominated under DA2 (Lemma 5). As i3 has a higher 

priority at s than the student assigned to s under DA2(Q) , we must have that 
DA2(Qi1

,Qi2
,Q�

i3
) = �∗ , which violates the contradiction assumption.

Assume then that some student i is not assigned to a school under �∗ . Because 
there are three schools and three students, this implies that student i finds at most 
two schools acceptable. In turn, this implies that any student i′ who is assigned to 
a school under �∗ is assigned either to her most-preferred school or to her second 
most-preferred school. The reason is that i is rejected from all of her acceptable 
schools. Hence, any school s that is acceptable for i is assigned under �∗ to another 
student i′ . This is only possible if i′ prefers s to the school that has a vacant seat 
under �∗ . Hence, any such student i′ is assigned to a school she prefers to at least one 
other school.

Consider any strategy profile Q = (Qi1
,Qi2

,Qi3
) under DA2 for which each stu-

dent reports either her only acceptable school, or her two most-preferred acceptable 
schools in the same order as the order of her true preference. All strategies in Q 
are undominated under DA2 (Lemma 5). The contradiction assumption is violated 
because we have DA2(Q) = �∗ . Indeed, under �∗ , unassigned students find at most 
two schools acceptable and other students are assigned either to their most-preferred 
or their second most-preferred acceptable school. Therefore, on this type profile, 
the Deferred Acceptance mechanism stops before reaching the acceptable schools 
not reported in Q (if any). Hence, when the profile is Q, mechanism DA2 follows 
the same steps as the Deferred Acceptance, and thus yields the most efficient stable 
assignment.

There remains to show that, for all y ∈ Y  for which all undominated strategy pro-
files under BOS2 lead to a stable assignment, all undominated strategy profiles under 
DA2 also lead to a stable assignment. The proof is based on Lemma 1, which shows 
that the set of assignments obtained by undominated strategy profiles under DA2 are 
nested in the set of assignments obtained by undominated strategy profiles under 
BOS2.

Lemma 1  For any undominated strategy profile Q of DA2 , there exists an undomi-
nated strategy profile Q′ of BOS2 such that DA2(Q) = BOS2(Q�).

Proof  Take any profile Q that is undominated under DA2 . Let assignment 
� = DA2(Q).

We construct a strategy profile Q′ that is undominated under BOS2 and such that 
BOS2(Q�) = � . For any student i who is unassigned under � we let Q�

i
= Qi . For any 

student i who is assigned to a school under �,

•	 we let Q�
i
= Qi if �(i) is reported first in Qi,
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•	 else Q′
i
 reports �(i) first and also reports her most-preferred acceptable school dif-

ferent from �(i) (if any).

First, we show that Q′
i
 is undominated under BOS2 . If i finds only one school accept-

able, then reporting this school only is a dominant strategy under both BOS2 and 
DA2 (Lemma 2) and by construction this case is such that Q�

i
= Qi . Assume then that 

i finds at least two schools acceptable.
If the most-preferred school of student i is a top-priority school for i, then it is 

a dominant strategy to report this school first under DA2 (Lemma 3) and i must be 
assigned to this school under � , i.e., this school is �(i) . By construction, Q′

i
 reports 

�(i) first, and therefore Q′
i
 is a dominant strategy under BOS2 (Lemma 3). Assume 

then that i finds at least two schools acceptable and her most-preferred school is not 
a top-priority school for i.

•	 Case 1: Q�
i
= Qi.

	   Since Qi is undominated under DA2 , we have by Lemma 5 that Qi reports two 
schools, ranks these two schools according to i’s true preference and i weakly 
prefers these two schools over her most-preferred top-priority school. As 
Q�

i
= Qi , we then have that Q′

i
 is undominated under BOS2 (Lemma 6).

•	 Case 2: Q′
i
≠ Qi.

	   By construction of Q′
i
 , this case is such that i is assigned under � and �(i) is 

reported second in Qi . Then, since Qi is undominated under DA2 , by Lemma 5, i 
weakly prefers the two schools reported in Qi over her most-preferred top-prior-
ity school. If �(i) is i’s most-preferred top-priority school, then Q′

i
 is undominated 

under BOS2 (Lemma 6), because by construction of Q′
i
 this school is reported first 

in Q′
i
 . If �(i) is not i’s most-preferred top-priority school, then Q′

i
 is undominated 

under BOS2 (Lemma 6) because by construction of Q′
i
 this strategy reports two 

schools, one of them being preferred to i’s most-preferred top-priority school. 
(The school reported first in Qi is strictly preferred to �(i).)

Second, we show that BOS2(Q�) = � . Consider the subset I′ of students who are 
unassigned under � . Since DA2(Q) = � , this implies that no student i ∈ I� can be 
blocking in matching � at a school she reports in Qi . (Indeed, if such student i was 
blocking at a school s, then the student j for whom �(j) = s should have been rejected 
from s in the course of DA2 under Q, a contradiction.) In other words, the seat at the 
schools that i reports in Qi are assigned under � to competitors of i at these schools. 
By construction, for any student i ∈ I� we have Q�

i
= Qi . Since any student j ∉ I� 

reports �(j) first in Q′
j
 , this implies that all seats at all schools reported by any stu-

dent i ∈ I are assigned to competitors of i in the first round of BOS2 under Q′ . As a 
result, all students in I′ are also unassigned under BOS2(Q�) . Finally, since any stu-
dent j ∉ I� reports �(j) first in Q′

j
 , student j is also assigned to �(j) under BOS2(Q�) . 

Together, we have BOS2(Q�) = � . □
Consider any y ∈ Y  for which all undominated strategy profiles under BOS2 

lead to a stable assignment. By Lemma 1, for any undominated strategy profiles 
under DA2 , there is an undominated strategy profiles under BOS2 that leads to the 
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same assignment. As a result, any undominated strategy profiles under DA2 leads 
to a stable assignment.

Part 2. For some y∗ ∈ Y  , all undominated strategy profiles under DA2 lead to 
stable assignments, while some undominated strategy profiles under BOS2 leads 
to unstable assignments.

As shown in the proof of Proposition 1, type profile y presented in Table 1 has 
the required properties. Together, Part 1 and Part 2 imply that FDA2

≻PHO FBOS2 . 
� □

The proof of Proposition 2 illustrates another reason why the partial order ⪰PHO 
is more workable than ⪰PROP . Affirmative comparisons of ⪰PHO are only based on 
type profiles for which all equilibria are equivalent in terms of X. Importantly, 
it is sometimes easier to compare mechanisms on these particular type profiles. 
For instance, the proof of Proposition 2 takes advantage of the focus on these 
type profiles. A key step in the proof of Proposition 2 is that the US-assignments 
under DA2 are nested in the US-assignments under BOS2 . (For short terminology, 
we refer to an assignment sustained by an undominated strategy profile under 
mechanism M simply as an US-assignment under M.) This directly implies that, 
if all US-assignments are stable under BOS2 , then all US-assignments are stable 
under DA2 . The weak comparison FDA2

⪰PHO FBOS2 then follows from the fact that 
there is no type profile in our domain for which all US-assignments under DA2 are 
unstable.

Given the relationships between ⪰PHO∗ and ⪰PHO , we can deduce from Proposi-
tion 2 that, according to ⪰PHO∗ , DA2 performs weakly better than BOS2 in terms 
of stability. The reason is that Proposition 2 shows that, according to ⪰PHO , DA2 
performs strictly better than BOS2 in terms of stability, and the preconditions for 
weak comparisons are the same for both partial orders. Also, we can deduce from 
Proposition 2 that, according to ⪰PHO∗ , BOS2 does not perform weakly better than 
DA2 in terms of stability. The reason is that the precondition for a strict compari-
son according to ⪰PHO precludes a reversed weak comparison according to ⪰PHO∗ . 
These two implications are recorded in Corollary 1.

Corollary 1  Let the solution concept C be undominated strategy profiles. Let X denote 
the stable assignments correspondence. Letting FDA2 and FBOS2 be the functions 
respectively associated to DA2 and BOS2 by C and X, we have FDA2

⪰PHO∗ FBOS2 and 
FBOS2 PHO∗ FDA2.

Proof  Part 1. FDA2

⪰PHO∗ FBOS2.
By definition of ⪰PHO and ⪰PHO∗ , this is a direct implication of FDA2

⪰PHO FBOS2 
(Proposition 2).

Part 2. FBOS2 PHO∗ FDA2.
By definition of ⪰PHO and ⪰PHO∗ , this is a direct implication of FDA2

≻PHO FBOS2 
(Proposition 2). More precisely, this follows from the fact that there exists a type 
profile y (given in Table 1) for which all undominated strategy profiles of DA2 leads 
to a stable assignment whereas it is not the case of all undominated strategy profiles 
of BOS2 .� □
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6 � Concluding remark

The strength of the comparison between two mechanisms depends on the partial 
order used. One can be more confident that a mechanism will perform better than 
another when they can be ranked when using ⪰PROP than when this can only be 
done when using ⪰PHO or ⪰PHO∗ . However, given its two limitations, affirmative 
comparisons obtained with ⪰PROP are bound to be scarce and hard to obtain. In 
their absence, affirmative comparisons obtained with ⪰PHO or ⪰PHO∗ may provide 
interesting indications about the respective performance to expect from two alter-
native mechanisms.

Appendix on school choice application

The school choice model

The model and notation are inspired from Haeringer and Klijn (2009). There are 
three students i1 , i2 and i3 and three schools s1 , s2 and s3 , each endowed with one 
seat. Each student can be assigned to at most one school. Students have prefer-
ences over the schools they could be assigned to as well as the possibility of 
remaining unassigned (i.e., being self-matched). Each school has a strict priority 
ordering over the students. In this setting, a (school choice) problem is a pair 
� = (R,⊵) where 

1.	 R∶=(Ri1
,Ri2

,Ri3
) is the (strict) preference profile of students over the three 

schools, and
2.	 ⊵∶=(⊵s1

,⊵s2
,⊵s3

) is the (strict) priority profile of schools over the three students.

The preference Ri of student i is a linear order over S ∪ {i} . If student i strictly 
prefers school s over school s′ , we write s Pi s

′ . As usual, s Ri s
′ denotes a weak 

preference, allowing for s = s� . We say that a school s is acceptable for a student 
i if s Pi i and unacceptable if i Pi s . To avoid trivialities, we assume that all stu-
dents find at least one school acceptable.

The priority ⊵s of school s is a linear order over the three students. If student 
i has a higher priority than student j at school s, then i ⊳s j and we say that i is a 
competitor of j at school s. School s is a top-priority school for student i if i has 
no competitor at school s.

We denote by Π the domain of problems satisfying these assumptions.
An assignment is a function � ∶ {i1, i2, i3} → {s1, s2, s3} ∪ {i1, i2, i3} that 

matches every student with a school or with herself. We say that student i is 
assigned in the former case, and unassigned in the latter case.

An assignment is feasible if no two students are assigned to the same school.
Given any problem � , an assignment � is stable if it satisfies each of the three 

following properties. 
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Individual rationality:	� For any student i, we have �(i) Ri i.
Non-wastefulness:	� For any student i and any school s, if 

s Pi �(i) , then #{j ∈ I | �(j) = s} = 1.
No justified-envy:	� For any two students i and j, if �(j) Pi �(i) , 

then j is a competitor of i at school �(j).

A (school choice) mechanism M is a function that associates every problem � in 
some domain ΠM ⊆ Π of problems with a feasible assignment. We say that a mecha-
nism is individually rational, non-wasteful or stable, if M(�) is individually rational, 
non-wasteful or stable for all � ∈ ΠM . As is common, when there is no ambiguity 
about ⊵ , we often use M(R) to denote the assignment selected by mechanism M.

We assume that the three schools report their priority ordering truthfully to 
the mechanism. A type profile y is a school choice problem � = (R,⊵) (and thus 
Y = Π ), and the players of mechanism M are the three students. For the two mecha-
nisms that we consider, the strategy space Si of each student i consists in the set of 
reported preference Qi for which at least one school is unacceptable and at least one 
school is acceptable.

For any type profile y, the pair (M, y) defines a strategic form game for which stu-
dents report a preference and the outcome is the assignment selected by M under the 
profile of reported preferences. Given (M, y), the strategy-space of student i is the 
set of all the preferences of i that are featured in at least one problem of ΠM . We call 
these strategies reported preferences. A reported profile is a list Q∶=(Qi1

,Qi2
,Qi3

) 
of the reported preferences of all students.

The outcome of the game when students report Q is assignment M(Q). Student i 
evaluates this assignment according to her true preference Ri . In particular, strategy 
Qi is a (weakly) dominant strategy for student i if

In turn, strategy Qi is a dominated strategy for student i if

and Mi(Q
�
i
,Q�

−i
) Pi Mi(Qi,Q

�
−i
) for some Q�

−i
 . A strategy is undominated if it is not 

dominated.

Two mechanisms

In this section we describe the two school choice mechanisms we compare, which 
are members of the class considered in Haeringer and Klijn (2009). We first describe 
BOS2 , a constrained version of the Boston mechanism for which students are 
allowed to report preferences on two schools only. 

Input :	� A (reported) school choice profile.

Mi

(
Qi,Q−i

)
Ri Mi

(
Q�

i
,Q−i

)
, for any Q−i and any Q

�
i
.

Mi

(
Q�

i
,Q−i

)
Ri Mi

(
Qi,Q−i

)
, for any Q−i and some Q�

i
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Round 1:	� Students apply to the school they reported as their favorite school. 
Every school that receives more applications than its capacity starts 
rejecting the lowest applicant in its priority ranking, up to the point 
where it meets its capacity. All other applicants are definitively accepted 
at the schools they applied to, and capacities are adjusted accordingly.

Round 2:	� Students who are not yet assigned apply to the school they reported 
as their second favorite school. Every school that receives more new 
applications in round 2 than its remaining capacity starts rejecting the 
lowest new applicants in its priority ranking, up to the point where it 
meets its capacity. All other applicants are definitively accepted at the 
schools they applied to. The algorithm terminates and all students not 
yet assigned remain unassigned.

We now turn to DA2 , a constrained version of the Deferred Acceptance mecha-
nism for which students are allowed to report preferences on two schools only. 

Input :	� A (reported) school choice profile.
Round 1:	� Students apply to the school they reported as their favorite school. 

Every school that receives more applications than its capacity defini-
tively rejects the lowest applicant in its priority ranking, up to the 
point where it meets its capacity. All other applicants are temporar-
ily accepted at the schools they applied to (this means they could be 
rejected at a later point).

Round 2:	� Students who were rejected in round 1 apply to the school they reported 
as their second favorite school. Every school considers the new appli-
cants of round 2 together with the students it temporarily accepted. If 
needed, each school definitely rejects the lowest students in its priority 
ranking, up to the point where it meets its capacity. The algorithm ter-
minates and all students not yet assigned remain unassigned.

Preliminary results on undominated strategies under DA2 and BOS2

Propositions 1 and 2 require identifying undominated strategies under DA2 and 
BOS2 . The following lemmas provide the necessary results for such identification. 
They are direct implications of characterization results taken from Haeringer and 
Klijn (2009) and Decerf and Van der Linden (2018a).

Lemma 2  If student i finds only one school acceptable, then reporting only this 
school is a dominant strategy under both BOS2 and DA2.

Proof  This is a straightforward implication of the characterization of dominant 
strategies in constrained BOS and constrained DA in Decerf and Van  der Linden 
(2018b). � □
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Lemma 3  Assume that the most-preferred school of student i is a top-priority school 
for i. Under both BOS2 and DA2 , (1) i has a dominant strategy and (2) i is assigned 
to her most-preferred school when she plays her dominant strategy.

Proof  This is a straightforward implication of the characterization of undominated 
strategies in constrained BOS and dominant strategies in constrained DA in Decerf 
and Van der Linden (2018a) (Propositions 2 and 4). � □

Lemma 4  Assume that the second most-preferred school of student i is a top-priority 
school for i. Student i has a dominant strategy under DA2 , which consists in report-
ing these two schools truthfully.

Proof  This is a straightforward implication of the characterization of dominant strat-
egies in constrained DA in Decerf and Van der Linden (2018a) (Proposition 2). □

Let student i’s most-preferred top-priority school be the school that i prefers 
among the schools that are top-priority for i (if any).

Lemma 5  Assume that the most-preferred school of student i is not a top-priority 
school for i. Strategy Qi is undominated under DA2 only if Qi reports two schools, Qi 
ranks these two schools according to i’s true preference and i weakly prefers these 
two schools over her most-preferred top-priority school.

Proof  Haeringer and Klijn (2009) (Proposition 4.2) show that a necessary condition 
for Qi to be undominated under DA2 is that Qi reports two schools and Qi ranks these 
two schools according to i’s true preference. Decerf and Van der Linden (2018a) 
(Proposition 3) show that another necessary condition for Qi to be undominated 
under DA2 is that i weakly prefers these two schools over her most-preferred top-
priority school. � □

Lemma 6  Strategy Qi is undominated under BOS2 if and only if (i) the school 
reported first is i’s most-preferred top-priority school or (ii) the school reported first 
is not top-priority for i and Qi reports two schools, one of which is strictly preferred 
to i’s most-preferred top-priority school.

Proof  This is a straightforward implication of the characterization of undominated 
strategies in constrained BOS in Decerf and Van der Linden (2018a) (Proposition 4). 
� □
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