
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Design, Manipulation and Evolution of Hybrid Polystores

Gobert, Maxime

Award date:
2023

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. May. 2024

https://researchportal.unamur.be/en/studentTheses/6a88369f-8ee2-4aa8-b0fd-784e28d89d9d

Design, Manipulation and
Evolution

of Hybrid Polystores

Maxime Gobert

Jury

Prof. Anthony Cleve
University of Namur, Belgium

Prof. Jean-Noël Colin
University of Namur, Belgium

Prof. Davide Di Ruscio
University of L’Aquila, Italy

Prof. Vincent Englebert
University of Namur, Belgium

Dr. Csaba Nagy
Software Institute, Università della Svizzera italiana, Switzerland

Prof. Wim Vanhoof
University of Namur, Belgium

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy in the subject of Computer Science

Supervised by Prof. Anthony Cleve

University of Namur

Namur Digital Institute

PReCISE Research Center

© UNamur & Maxime Gobert
Rue Grandgagnage, 21
B - 5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre, hors des limites restrictives
prévues par la loi, par quelque procédé que ce soit, et notamment par photocopie
ou scanner, est strictement interdite pour tous pays.

ABSTRACT

Today, data is increasingly important in the software of a wide variety of companies,
so that the requirements in terms of volume, performance or storage have changed.
As a result, the traditional relational model and the long-established database engi-
neering processes are no longer sufficient. Indeed, other models, called NoSQL, have
been developed to meet these new needs. These models, far from totally replacing
the existing one, are on the contrary destined to co-exist in software ecosystems.
These systems with multiple databases are called polystores.

Because of this co-existence of models, the tasks considered complex in database
engineering will be all the more complex.

First, modelling, NoSQL systems allow a great variety of data representation
relying on several data models. No current modelling language can unify these
models while preserving the flexibility of representation of specific models.

Secondly, the manipulation, the multiplication of databases implies, to query
them, to know their own query language. Moreover, this requires the writing of
complex join code in case of overlapping or duplication on distinct heterogeneous
databases.

And finally, the evolution, more models and more languages of manipulations
are as many additional elements to be evolved in order to keep a functional system.

In this thesis we try to bring solutions to facilitate the management of these three
challenges by proposing a new unified modelling language as well as a conceptual
data access code generator facilitating the manipulation and the evolution of hybrid
polystores.

Keywords: database engineering, nosql, polystores, modelling, code generator

iii

RÉSUMÉ

Aujourd’hui les données ont une importance grandissante dans les logiciels d’une
grande diversité d’entreprises, de sorte que les besoins en volumes, performances ou
stockages ont évolués. Si bien que le traditionnel modèle relationnel et les processus
longuement établis d’ingénierie des bases de données ne sont plus suffisants. En
effet d’autres modèles, dit NoSQL, ont été développés afin de répondre à ces besoins
nouveaux. Ces modèles, loin de remplacer totalement celui existant, sont à l’inverse
voués à co-exister dans les écosystèmes logiciels. Ces systèmes à bases de données
multiples sont appelés polystores.

Du fait de cette coexistence de modèles, les tâches réputées complexes de
l’ingénierie de bases de données seront d’autant plus complexes.

Premièrement, la modélisation, les systèmes NoSQL permettent une grande
variété de représentation des données reposant sur plusieurs modèles de données
différents. Aucun langage de modélisation actuel ne permet d’unifier ces modèles
tout en préservant la flexibilité de représentation des modèles spécifiques.

Deuxièmement, la manipulation, la multiplication des bases de données im-
plique, pour les interroger, de connaitre leurs propres langages de requêtes. De plus,
cela nécessite l’écriture de code complexe de jointure en cas de recouvrement ou de
duplication sur des bases de données hétérogènes distinctes.

Et enfin, l’évolution, plus de modèles et plus de langages de manipulations
sont d’autant d’éléments supplémentaires à faire évoluer afin de garder un système
fonctionnel.

Dans cette thèse nous tentons d’apporter des solutions permettant de faciliter la
gestion de ces trois challenges en proposant un nouveau langage de modélisation
unifié ainsi qu’un générateur de code d’accès conceptuel aux données facilitant la
manipulation et l’évolution des polystores hybrides.

v

ACKNOWLEDGEMENTS

This manuscript concludes a research process started in February 2016. This journey
has taken place over several acts, each with its own actors and specific roles in the
plot. One actor is constant throughout the play and deserves the award for best actor,
or rather best director, it is my promoter, Anthony. I would like to thank Anthony for
having, since my last year of master, given me his confidence to be up to the task in
several of his research projects. Throughout these years, he inspired me, guided me
and motivated me thanks to the famous "coup de fouet" sessions. Thanks also for
his communicative pride regarding the accomplished work. And finally, thank you
for being a great companion during our many trips, bars and restaurants where we
met so many "amazing facilities".

The first act of this research journey started with the work done for the Sign
Language/French dictionary. An exciting project with a concrete impact to which
I am proud of having contributed. In addition to Anthony, I would like to thank
Laurence Meurant for including me in this adventure as well as their enthusiasm
during the progress presentations.

The second act brought more doubts and self-questioning, I therefore thank here
particularly my partner Charlotte, who brings me the confidence, the support, the
stability, as well as the fun necessary to a fulfilled personal life. And who along the
way, brought us two beautiful children, Léonard and Sacha.

And finally the final act was the concretization of the reflections and work done
so far. Here I would like to thank Loup who played the role of the needed combustible
in the fire of research which was brewing. Thanks for the long brainstorming and
co-coding sessions, sometimes accompanied by the sweet music of a screaming
Léonard.

Thanks to colleagues and friends for the good time spent, in afterworks or during
the various university events that punctuate the year. Thanks also to the members
of my accompanying committee/jury, Prof. Jean-Noël Colin, Prof. Davide Di Ruscio,
Prof. Vincent Englebert, Dr. Csaba Nagy and Prof. Wim Vanhoof, for their attention,
their questions, their recommendations and their compliments during the different
stages of this thesis. Among them, I would like to thank in particular Csaba for the
work done together and the beer times that marked our reunions.

This PhD thesis was supported by the F.R.S.-FNRS and FWO via the EOS project 30446992 SECO-
ASSIST.

vii

CONTENTS

Contents ix

List of Figures xiii

List of Tables xv

Introduction i

Introduction iii

I Background 1

1 Conceptual Background 3
1.1 Database Design . 3
1.2 Database Manipulation Code . 11
1.3 Polystores . 14
1.4 Database Evolution . 15
1.5 Concluding Remarks . 19

2 State of the Art 21
2.1 Introduction . 21
2.2 Database Design . 21
2.3 Database Manipulation . 26
2.4 Database Evolution . 30
2.5 Concluding Remarks . 34

II Contributions 37

3 Challenges and Best Practices of Testing Database Access Code 39
3.1 Introduction . 39
3.2 Test Coverage of Database Access Code in Open-source Systems . . 40
3.3 Challenges & Problems When Testing DB Access Code 43
3.4 Best Practices When Testing DB Access Code 50

ix

CONTENTS

3.5 Discussion and Implications . 59
3.6 Threats to Validity . 61
3.7 Related Work . 61
3.8 Conclusion . 64

4 HyDRa Polystore Modelling Language 65
4.1 Introduction . 65
4.2 Language General Structure . 66
4.3 Conceptual Schema . 68
4.4 Physical Databases . 68
4.5 Physical Schemas . 69
4.6 Mapping Rules . 75
4.7 Benefits of HyDRa Modelling Language 77
4.8 Conclusion . 78

5 HyDRa Polystore Data Manipulation API 79
5.1 Introduction . 79
5.2 Conceptual Schema and Physical Schema Correspondences 81
5.3 Specification of Generated Conceptual Classes and Methods 84
5.4 Specification of Generated Algorithms 87
5.5 Illustrative Example . 96
5.6 Algorithms . 103
5.7 Tool Implementation . 108
5.8 Benefits . 110
5.9 Conclusion . 114

6 Evolution Framework & Query Adaptation 115
6.1 Introduction . 115
6.2 Background . 116
6.3 Evolution Framework . 118
6.4 Query Adaptation . 121
6.5 Conclusion . 126

III Evaluation 127

7 User Evaluation 129
7.1 Introduction . 129
7.2 Practical Context & Participants Profile 130
7.3 Exercise Design . 131
7.4 Lessons Learned . 137
7.5 Survey Feedback . 139
7.6 Conclusion . 150

8 Systematic Evaluation 151
8.1 Introduction . 151

x

Contents

8.2 Experimental Schemas Data and Queries 152
8.3 Correctness . 155
8.4 Performance Evaluation . 156
8.5 Conclusion . 158

9 Use Cases 159
9.1 Data Comparison . 159
9.2 Data Migration . 162

IV Conclusion 167

10 Conclusion & Future Directions 169
10.1 Summary of the Contributions . 169
10.2 Future Challenges . 172

A StackExchange References 179

B Concrete Grammar of HyDRa language 181
B.1 Xtext Grammar . 181

C HyDRa Files 189
C.1 UNamur Courses Comparison Use Case 189

D HyDRa Student Project Feedback Survey 195
D.1 Feedback Survey Questions . 195
D.2 Answers . 196

E Performance Results 197
E.1 Execution Time Results . 197

Bibliography 201

xi

LIST OF FIGURES

1.1 Standard database design processes. 4
1.2 Example of conceptual, logical and physical schemas of a relational

database. 6
1.3 Document oriented data model. 8
1.4 Column oriented data model. 11
1.5 Conceptual schema of an e-commerce system 15
1.6 Databases and data representation (physical schema) of e-commerce

system . 16
1.7 Atomic evolution . 17
1.8 Impact of change in physical schema . 18

3.1 Overview of the main steps for test coverage analysis of database access
code . 40

3.2 Test coverage rates of Non-DB access methods vs DB access methods . 42
3.3 Taxonomy of issues faced by developers when testing database access code 47
3.4 Taxonomy of best practices proposed by developers when testing database

access code . 53

4.1 Schemas and databases of running IMDB example 67
4.2 Abstract syntax of HyDRa language main components 67
4.3 Conceptual section of a HyDRa schema. 69
4.4 Databases declaration section . 69
4.5 Abstract syntax of HyDRa physical structures 70
4.6 Example of a HyDRa schema physical section. 71
4.7 Syntax of relational schema table structure 72
4.8 Syntax of a document schema collection structure 73
4.9 Syntax of key value schema kvpair structure 73
4.10 Syntax of column schema table column structure 74
4.11 Syntax of graph schema . 75
4.12 Abstract syntax of mapping rules . 76

5.1 HyDRa framework . 80
5.2 Object classes generated for CS 3. 86
5.3 Entity service classes of CS 3. 87
5.4 Extended IMDB example conceptual schema 92
5.5 Double embedded structure . 94

xiii

LIST OF FIGURES

5.6 Descending structure . 94
5.7 Ascending structure . 94
5.8 Conceptual model of running example . 97
5.9 Physical model of running example . 98
5.10 Example of structure where attributes are mapped to multiple nested level104
5.11 Movie split structure example . 106
5.12 Reference structures . 107
5.13 Embedded structures . 108
5.14 Join structures possible physical representations 108
5.15 HyDRa modelling language Eclipse editor 110
5.16 HyDRa API generator menu in Eclipse . 111
5.17 Example of generated packages and classes 111
5.18 HyDRa API In Evolution Context . 113

6.1 Evolution Framework . 119
6.2 Example of evolution operators expressed within the TyphonML unified

model . 120
6.3 Overview of the hybrid polystore evolution process 122
6.4 Detailed view of the Query Adpatation Process 124

7.2 Conceptual model of student use case . 134
7.3 Component diagram of exercise . 136
7.4 Impacted component of polystore evolution 137

8.1 Conceptual schema of systematic tests data 152

9.1 Conceptual schema of courses data . 161
9.2 HyDRa reading and native writing strategy 163
9.3 Native reading and HyDRa writing strategy 164
9.4 HyDRa reading and writing strategy . 165

xiv

LIST OF TABLES

1.1 Example of key value data with key value per field design pattern. 7
1.2 Example of key value data using key value per object design pattern. . . 7

2.1 NoSQL design approaches summary . 26
2.2 Summary of polystore database manipulation approaches 30

3.1 Overview of the projects (minimum, quartiles, median, and maximum
values) . 42

3.2 Overview of the questions selected from Stack Exchange sites 45
3.3 Overview of the selected answers and their scores 51
3.4 Total and labelled questions per main issue categories 52

4.1 Supported Entity Relationship model constructions by HyDRa concep-
tual language . 68

5.1 Conceptual construction and physical correspondences 82
5.2 Conceptual construction and physical correspondences (continued) . . 83

6.1 Schema modification operations supported by our approach and the
worst result category for each input query type. U: Unchanged, M: Modi-
fied, W: Warning, B: Broken . 123

7.1 Participants age repartition . 131
7.6 Quantitative question about HyDRa modelling language 140
7.7 Quantitative question about HyDRa conceptual API 142

8.1 Number of elements in the dataset . 153
8.2 Conceptual construction and physical correspondences 154
8.3 Conceptual construction and physical correspondences (continued) . . 155
8.4 Configuration and reference table results 157
8.5 Response time (in seconds) for single database physical schemas (a) . . 158

9.1 Summary characteristics of data migration strategies 165

A.1 StackExchange posts . 179

E.1 Conceptual schema (1) physical schema (b) results 197

xv

LIST OF TABLES

E.2 Conceptual schema (2) physical schema (b) results 198
E.3 Conceptual schema (2) physical schema (c) results 198
E.4 Conceptual schema (2) physical schema (d) results 198
E.5 Conceptual schema (3) physical schema (b) results 199
E.6 Conceptual schema (3) physical schema (c) results 199

xvi

Introduction

i

INTRODUCTION

Context

Data intensive systems

More and more businesses rely heavily on data, the crucial role of data can be of
economic, legal or security value. This increase of value does not come alone and
is usually associated with an increase of quantity of data to handle. Usually those
business have an ecosystem of applications, websites or databases managing the
reading, the writing, the update or the deletion of data. Those systems are called
data intensive systems.

Databases, data models and hybrid polystores

Relational databases, relying on relational algebra as data model, were de facto and
common technologies for persisting data since decades. Trend initiated by large
companies such as Google, Facebook, Twitter, etc. brought large data volumes to
another scale and they eventually developed their own technologies and data models,
e.g., Google BigTable [31] and Cassandra by Facebook [85]. Those new databases
have different data models than the common relational data model, they fall into the
term NoSQL (Not Only SQL). They were developed with specific purposes ranging
from performances via horizontal instead of vertical scalability, high availability or
query focused data representation. However, these data models are not destined
to completely replace traditional relational databases. To balance requirements for
data consistency and availability, organizations increasingly migrate towards hybrid
data persistence architectures comprising both relational and NoSQL databases for
managing different subsets of their data. Such heterogeneous systems, called hybrid
polystores bring new challenges for research and practice.

Database manipulation code and evolution

Database manipulation code is the part of a program that access data, it is usually
seen as an outsider in the codebase of an information system. It lies between
the programs and the database, so it belongs partially to both, but not entirely
to one. It can also involve multiple development teams. For example, in larger
systems, a complex database requires a department of DataBase Administrators
(DBA) separated from the software engineers who maintain the application code.

iii

INTRODUCTION

Both teams are in charge of maintaining their own side, but they need to share
responsibilities as far as program-database communication is concerned.

Shared responsibilities come at a price, and the dual role of database manipula-
tion code leads software to particular vulnerability towards evolutions. This leads to
software maintenance problems and application decay.

This part of a software program is however crucial in the operation of a data-
intensive system and an error in the data reading or insertion code can have im-
portant consequences. The emergence of different types of databases and their
manipulation languages brings an additional challenge in terms of the difficulty of
building and maintaining this particular code.

Problem Statement

Designing, manipulating, and evolving data intensive systems are known as time-
consuming, risky, and error-prone tasks. The main challenges related to those
three processes originate from the possibly complex interdependencies between the
application programs and their underlying databases. This manipulation code being
crucial, we first explored how well a system’s data manipulation code was being
tested. What are the difficulties encountered by developers when writing these tests,
and what are the recommendations made by the community?

Then, we consider that these three challenges may potentially become even
more complex with the increasing popularity of NoSQL database technologies and
the rise of hybrid polystores.

First, data modelling in a polystore context is challenging because of the level
of maturity and variety of NoSQL data models. Indeed, relational database design
is a well-known and defined process, supported by standard methods. In contrast,
NoSQL database modelling is not yet as stable and mature as standard relational
database design. In particular, NoSQL data representation does not often rely on
a unique explicit schema. Even within the same paradigm, translating conceptual
schema elements into physical data structures can be done in various different ways,
depending on query purposes, performance requirements or technology-specific
constraints. Several specific or unifying abstraction design methods and languages
exist for NoSQL data modelling, but none of them integrate relational and NoSQL
design while allowing developers to specify fine-grained physical data structures.

Second, data querying that involves a combination of relational and NoSQL
databases, and which can manage different types of structured and textual data is
complex and technically challenging. This, because, unlike relational databases
which provide support for SQL and standard Application Programming Interface
(API) such as JDBC/ODBC, each NoSQL database provides its own proprietary API
and query language. As such, developers are required to be familiar with the query
language of each database technology used in the polystore and transversal queries
may even involve more than one database, thus necessitating in addition to write
application glue code for data reconciliation.

Finally, evolving data-intensive systems relying on a single database is already a
difficult task, as several software artefacts (schemas, data and programs) have to be

iv

Introduction

evolved and kept consistent with each other. We argue that this co-evolution process
is even more challenging in the context of hybrid polystores, due to the multiplicity
of data models and the presence of possibly overlapping and interdependent data
across multiple databases.

Goals

This dissertation focuses on data intensive systems and particularly the database
access code in the context of polystore systems. Its main goals are to

(i) Explore current problems and solutions about tests of database access code.
(ii) Provide automated support when designing, manipulating and evolving hy-

brid polystores, and therefore reducing the work of developers.
Through those objectives we can formulate the thesis as follows :

A global conceptual approach to specify polystores and generate manipu-
lation code helps developers reduce time and effort to design, manipulate
and evolve multi database systems.

Research Questions

From this statement we derived several research questions:sRQ 1 What are the problems developers face when testing database manipula-
tion code and what solutions are recommended by the community?sRQ 2 How to build a conceptual and physical modelling language able to keep
specific data model constructions?sRQ 3 To what extent can we use this model to generate data manipulation
code at the conceptual level independent of any physical storage data repre-
sentation?sRQ 4 How can we support the databases’ evolution of a polystore with regard
to their impacted artefacts?sRQ 5 What is the performance, usability and usefulness of the developed
solution?

ContributionssA taxonomy of problems faced by developers when testing database access
code (RQ 1).sA taxonomy of developers solutions regarding best practices about tests in
database access code (RQ 1).sA language to design polystores conceptually and describe data model specific
structures physically (RQ 2).sA tool generating code to access data at the conceptual level based on designed
polystore model language(RQ 3).sA generated conceptual API Code resistant to physical structure evolution (RQ
4).

v

INTRODUCTION

sA query adaptation tool to change existing polystore queries according to
given schema evolutions (RQ 4).sA theoretical framework to evolve polystores (RQ 4).sA quantitative and qualitative evaluation of the framework (RQ 5).

Publications

(i) Gobert, M. (2020). Schema evolution in hybrid databases systems. In Proceed-
ings of the 46th International Conference on Very Large Data Bases (VLDB
2020): PhD workshop track. ACM Press. [52]

(ii) Fink, J., Gobert, M., & Cleve, A. (2020, September). Adapting queries to
database schema changes in hybrid polystores. In 2020 IEEE 20th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM
2020) (pp. 127-131). IEEE. Best Paper Award [48]

(iii) Gobert, M., Nagy, C., Rocha, H., Demeyer, S., & Cleve, A. (2021, June). Chal-
lenges and Perils of Testing Database Manipulation Code. In International
Conference on Advanced Information Systems Engineering (pp. 229-245).
Springer, Cham. (CAiSE 2021) [56]

(iv) Gobert, M., Meurice, L., & Cleve, A. (2021, October). Conceptual Modeling of
Hybrid Polystores. In International Conference on Conceptual Modeling (pp.
113-122). Springer, Cham. (ER 2021) [54]

(v) Gobert, M., Meurice, L., & Cleve, A. (2022). HyDRa: A Framework for Modeling,
Manipulating and Evolving Hybrid Polystores. In Proceedings of the 29th IEEE
International Conference on Software Analysis, Evolution and Reengineering
(SANER 2022). [55]

(vi) Gobert, M., Nagy, C., Rocha, H., Demeyer, S., & Cleve, A. (2023) Best Practices
of Testing Database Manipulation Code. In Information Systems, Volume 111
(InfoSys) [58]

(vii) Gobert, M., Meurice, L., & Cleve, A. (2023 - Accepted). Modeling, Manipulating
and Evolving Hybrid Polystores with HyDRa. In Original Software Publications,
Science of Computer Programming.

Structure of the thesis

Chapter 1 gives the basic required definitions that are at the roots of this thesis.
Chapter 2 explores the state of the art of the research areas addressed. These
works are then summarized and the gaps in relation to our research questions are
highlighted.
Chapter 3 presents an empirical study of the problems and recommendations of
best practices regarding the testing of database access code. This study exploited
questions and answers found on several developer community websites.
Chapter 4 details the modelling language developed to represent a hybrid polystore
system.
Chapter 5 specifies the data access library automatically generated on the basis of a
schema expressed in the developed language.

vi

Introduction

Chapter 6 presents the theoretical framework and the query adaptation tool
developed to facilitate the evolution of polystores.
Chapter 7 exposes the experiment carried out on the use of the modelling language
and the generated access library.
Chapter 8 describes how the correctness and the performances of the library were
established via the application of systematic tests.
Chapter 9 lists others use cases of the proposed modelling or manipulation
solutions.
Chapter 10 concludes this thesis by reviewing the research questions, the contribu-
tions made and by identifying paths for future research.

vii

Part I

Background

1

C
H

A
P

T
E

R

1
CONCEPTUAL BACKGROUND

Contents

1.1 Database Design . 3

1.2 Database Manipulation Code . 11

1.3 Polystores . 14

1.4 Database Evolution . 15

1.5 Concluding Remarks . 19

This chapter presents the important definitions and concepts that consti-
tutes the basis of this thesis. We present the process of database design, the
emergence of new data models called NoSQL, the role and importance
of database manipulation code and last we introduce what it means to
evolve a database.

1.1 Database Design

Database design is the process of modelling and implementing a database that meets
specific user requirements. Databases relying on the relational model were the most
used and de facto standard when using databases for a long period. However, the
emergence of big data brought new challenges and exposed the limitation of the
relational model in this context. New data models (NoSQL) were developed that
may have an impact on how to design a database. This section presents the standard
database design process and then introduces the most common NoSQL data models.

3

CHAPTER 1. CONCEPTUAL BACKGROUND

1.1.1 Standard database design process

The database design process has been described extensively in the literature [24] and
has been available for several decades in standard methodologies and Computer-
Aided Software Engineering (CASE) tools. As shown in Figure 1.1, database design is
typically made up of four main sub processes:

User requirements

Conceptual Design
conceptual

schema

Logical Design

Physical DesignImplementation
(DDL Code)

logical
schema

physical
schema

Figure 1.1: Standard database design processes.

(1) Conceptual design is intended to translate user requirements into a concep-
tual schema that identifies and describes the domain entities, their properties
and their associations in a platform-independent way. This abstract specifica-
tion of the database collects all the informational structures and constraints
of interest.

(2) Logical design produces an operational logical schema that translates the
constructs of the conceptual schema according to a specific technology family,
in principle, without loss of semantics.

(3) Physical design adds performance-oriented construction and parameters,
such as indexes to the logical schema. The output of this process is the physi-
cal schema of the database.

(4) Implementation translates the physical schema (and some other artefacts)
into the Data Definition Language (DDL) code, compliant with the target
database management system. Structural DDL declaration code as well as
components such as checks, triggers and stored procedures are written/gener-
ated to implement the data structures and constraints of the physical schema.

The database schemas express the structures and constraints of a database. As
mentioned above, they are usually classified according to the level of abstraction
they belong to: conceptual, logical and physical.sConceptual schemas A conceptual schema is a platform-independent model

of the database. It mainly specifies entity types, relationship types and at-
tributes. Entity types represent the main concepts of the application do-
main. They can be organized into is-a hierarchies, organizing supertypes and
subtypes. Relationship types represent relationships between entity types.
Attributes represent common properties of the entity type instances.sLogical schemas A logical schema is a paradigm-dependent data structure
definition, that must comply with a given data model. The most commonly

4

1.1.2. NoSQL data models

used families of models include the relational model, the XML model, the
object-oriented model, the NoSQL models (column-oriented, graph-oriented,
document-oriented, key value stores, etc.).sPhysical schemas A physical schema is a logical schema enriched with all
the information needed to implement efficiently the database on top of a
given data management system. This includes platform-dependent technical
specifications such as indexes, physical device and site assignment, page size,
file size, buffer management or access right policies.

Figure 1.2 gives an example of conceptual, logical and physical schemas, ex-
pressed in the Generic Entity-Relationship (GER) data model [69]. In this example,
all the constructs belonging to the conceptual schema have been translated into
equivalent constructs in the logical schema of the relational model. In the concep-
tual schema part we find several important concepts of the considered application
domain, represented by the entity types Customer, Order and Product, each of these
entity types having its own attributes. This schema also contains two relationship
types. Firstly, places represents the fact that an instance of Customer can place more
than one Order, expressed by the presence of the cardinality 0-N, conversely an
instance of Order can only be linked to one instance of Customer (due to the cardi-
nality 1-1), this type of relationship is called a one-to-many relationship. Secondly,
detail expresses that an order contains several (0-N) products Product, and these can
be in several orders as well, this is a many-to-many relation. Lastly, since a product
is present in an order in a certain quantity, quantity is specific to the relation linking
two instances of the entity types and is thus a relationship type attribute of detail.

The equivalent logical schema is found in the middle of Figure 1.2. The logical
schema translates entity types and relationship types into equivalent structures
compatible with the chosen data model, in this case the relational model. The entity
types become tables and the relationship types become reference structures, either
(1) foreign keys i.e., reference attributes (e.g., Order table contains an attribute with
the identifier of Customer); or (2) an intermediate table containing two references
i.e., join structures (e.g., many-to-many relationships detail becomes the table detail
with two references, one to the table Order and one to the table product).

Finally, the physical schema, represented in the lower part of the figure, is similar
to the logical schema except for the mention acc which indicates the presence of an
index on the concerned element. The small difference between these two schemas
means that by abuse of language the terms physical schema or logical schema can
be interchanged in the remaining chapters of this thesis.

1.1.2 NoSQL data models

The number of NoSQL systems is still growing and they represent now nearly half
(171) of the total number of database management systems on the market 1. But, in
contrast with relational database management systems, NoSQL engines do not rely
on the same theoretical data model.

1https://db-engines.com/en/ranking_categories consulted in June 2022

5

https://db-engines.com/en/ranking_categories

CHAPTER 1. CONCEPTUAL BACKGROUND

0-N0-N
detail

quantity
1-10-N places

Product

reference
price

id: reference

Order

num
date

id: num

Customer

code
name
address
phone

id: code

detail

num
reference
quantity

id: reference
num
acc

ref: reference
ref: num

acc

Product

reference
price

id: reference
acc

Order

num
date
code

id: num
acc

ref: code
acc

Customer

code
name
address
phone

id: code
acc

detail

num
reference
quantity

id: reference
num

ref: reference
ref: num

Product

reference
price

id: reference

Order

num
date
code

id: num
ref: code

Customer

code
name
address
phone

id: code

Conceptual schema

Logical schema

Physical schema

Figure 1.2: Example of conceptual, logical and physical schemas of a relational
database.

Those systems can be grouped into four principal different data models, each
having its specific requirements and advantages. We further explain and summarize
them below based on a survey provided by Hecht and Jablonski [72].

1.1.3 Key value stores

The key value store model is the most "schema-less" model among NoSQL systems.
It is indeed based on a simple key-value pair, with no constructs allowing to define
explicit relationships between data instances. The values are stored in byte arrays
and therefore the only way to retrieve data is by means of the keys. They are useful
for very simple operations and basic application usage as they only provide put, get
and delete operations. Other operations or queries have to be managed in the appli-
cation code. This apparent simplicity may lead to possibly complex schema design
problems when deciding how to organize the data. One needs to carefully design
and manage the chosen key patterns. Design methods [19,106] and best practices [7]
identified two main patterns. The first one, called key value per field, creates a
key-value pair for each atomic field. The key is composed of elements identifying the

6

1.1.4. Document stores

entity type and the attribute, and another element identifying a particular atomic in-
stance. Examples of key patterns for this design includes ENTITY:[identifier]:FIELD.
It results in data illustrated in Table 1.1, the table represents data about an entity
type named MOVIE, and more specifically the attributes TITLE and DURATION
of two movies (tt00118715 and tt5126354). MOVIE, TITLE and DURATION are the
common static components of the key. The dynamic component contains the iden-
tifier of a movie instance. The combination of the static and dynamic components
allows to build a complete key and to retrieve the value of the requested instance
attribute. The second design type, key value per object, uses complex data types
instead of simple atomic value, the value contains now multiple fields. Table 1.2
contains the same semantic data as Table 1.1 but instead of representing it using
four key value pairs, we here only use a single pair for a complete MOVIE instance.
Example platforms based on the key value data model are Redis [7], ArangoDB [15]
and Riak [103].

Key Value
MOVIE:tt0118715:TITLE The Big Lebowski
MOVIE:tt5126354:TITLE Vanilla Sky
MOVIE:tt0118715:DURATION 102
MOVIE:tt5126354:DURATION 126

Table 1.1: Example of key value data with key value per field design pattern.

Key Value
MOVIE:tt0118715 title : "The Big Lebowski", duration : 102
MOVIE:tt5126354 title: "Vanilla Sky", duration : 126

Table 1.2: Example of key value data using key value per object design pattern.

1.1.4 Document stores

The document store data model has a similar structure as the key value model. Data
is stored as key-value pairs, but they are wrapped in a JSON like document. This
model offers the flexibility of a schema less data store, but it also helps the developer
to query data using a specific query language. Document store model have a set of
mapping rules to map a relational model. MongoDB2, the leading technology for
this data model, for example provides a set of example on their website 3.

The flexibility of the document model allows to have multiple different docu-
ments in the same collection. Figure 1.3 shows three documents, each of them have
a different set of attributes, the first one is composed of first, last and country fields,
the second document has city instead of country and the third one does have neither
but have a complex field phone. phone is an object, which also contains two sub
attributes, home and work. Despite having different fields all those documents can

2https://www.mongodb.com/
3https://docs.mongodb.com/manual/reference/sql-comparison/

7

https://www.mongodb.com/
https://docs.mongodb.com/manual/reference/sql-comparison/

CHAPTER 1. CONCEPTUAL BACKGROUND

be stored in the same collection. MongoDB [1], Couchbase [36], CouchDB [37] and
ArangoDB [15] are examples of document store model database system.

Figure 1.3: Document oriented data model.

According to the design guidelines [5] of MongoDB [1], data expressing a relation-
ship can be stored in different ways, namely embedding, referencing or denormal-
ization each having their specific benefits. Those design techniques are explained
below.

Embedding Embedding is the ability to store an object in an attribute. This tech-
nique is particularly used for relationships of the type one-to-few, i.e., where there
is a limited number of links between the entities. In Listing 1.1 we have a person
containing an array of addresses, that are in their turn objects with their own at-
tributes. The advantages of this design is that users can retrieve client and address
information can be retrieved in a single query. The drawback is that addresses do
not exist as stand-alone entities and this makes queries on addresses more difficult.

1 {
2 name: ’Kate Monster’,
3 ssn: ’123-456-7890’,
4 addresses : [
5 { street: ’123 Sesame St’, city: ’Anytown’, cc: ’USA’ },
6 { street: ’123 Avenue Q’, city: ’New York’, cc: ’USA’ }
7]
8 }

Listing 1.1: A document with embedded data expressed in textual format

Child referencing This design is used when you need data to exist as stand-alone
entities. This is particularly useful when one wants to use the same object for
multiple references. Two collections exist containing the data for each entity types,
and the link between the two is expressed via a foreign key attribute (i.e., a field

8

1.1.4. Document stores

containing an identifier of the other collection). It usually applies to one-to-many
relationships. Listings 1.2 and 1.3 represent respectively the collection containing
Parts and Products. We notice that a product is composed of parts and this link is
expressed using the part object identifier (in the example the _id field). To read part
objects of a particular product it is now mandatory to use two distinct queries on
both collections.

1 {
2 _id : ObjectID(’AAAA’),
3 partno : ’123-aff-456’,
4 name : ’#4 grommet’,
5 qty: 94,
6 cost: 0.94,
7 price: 3.99
8 },...

Listing 1.2: A collection containing parts documents

1 {
2 name : ’left-handed smoke shifter’,
3 manufacturer : ’Acme Corp’,
4 catalog_number: 1234,
5 parts : [// array of references to Part documents
6 ObjectID(’AAAA’), // reference to the #4 grommet above
7 ObjectID(’F17C’), // reference to a different Part
8 ObjectID(’D2AA’),
9 // etc
10]
11 },...

Listing 1.3: A collection containing products documents with references attributes
to parts documents

Parent referencing Parent referencing is a specific design to mitigate the technol-
ogy constraint that a document must not exceed 16MB. Because of the number of
references that may exist, the size of the array may be too big and therefore child
referencing is not possible. e.g., if we consider data entities of Cities and Residents.
We cannot embed the inhabitants in a city document, specially for big cities such
as New York, as millions of references would have to be in the array. In those sit-
uation we use parent-referencing where the residents will hold the reference to
the city. This design technique is applied to represent so called one-to-millions
relationships.

Two-way referencing If both advantages of referencing one way or the other are
needed one can combine child and parent referencing. Of course, it comes at the
price of having to perform multiple update queries when modifying data.

Denormalization Denormalization saves the application the complexity of writing
joined queries needed when attributes of referenced data are to be retrieved. Instead,
the referencing and referenced data are stored in the same structure. In the Product
and Part example, one need to query the product collection and then perform

9

CHAPTER 1. CONCEPTUAL BACKGROUND

another query on the part collection to retrieve Part data. If only the part attribute
name is needed, one can add it alongside the id of part in the product document, as
depicted in Listing 1.4. This way the product and all its parts names are retrieved
in one single query. This design technique is to use in a context of a high read vs
writes operations. Indeed, in this situation when an update of a part name occurs,
both collections have to be updated, and this cannot be done in a single atomic
operation.

1 {
2 name : ’left-handed smoke shifter’,
3 manufacturer : ’Acme Corp’,
4 catalog_number: 1234,
5 parts : [// Part name is denormalized
6 { id : ObjectID(’AAAA’), name : ’#4 grommet’ },
7 { id: ObjectID(’F17C’), name : ’fan blade assembly’ },
8 { id: ObjectID(’D2AA’), name : ’power switch’ },
9 // etc
10]
11 }

Listing 1.4: Example of denormalized data

1.1.5 Column family stores

The column-oriented model borrows concepts from the relational and key-value
models. Indeed, it is composed of a table data structure containing columns and
rows, these rows are moreover identified by an identifier rowkey as depicted in Figure
1.4. The columns are represented as key-value pairs, the particular specificity of
the column-oriented model is the possibility of grouping several columns under
the concept of column family, these groupings of columns are common to all the
rows, they must be defined during the definition of the table. However, although
these families are defined in advance, it is not mandatory for a row to populate each
specific column of a column family with a value. This model particularly exploits
the denormalization-based design, where other data structures become column
families, allowing for join-avoidance queries.

The column families impact the way the data is stored, indeed the data in these
databases is physically ordered by rowkey and column family, which makes range
selection queries on a very large volume of data much more efficient.

Systems implementing this data model are HBase [3] or Cassandra [2].

1.1.6 Graph databases

The last important data model category is the graph database. This has been built in
order to specifically manage heavily linked data. It can consist of simple triple values
like Resource Description Framework (RDF) or more complex structures containing
key value pairs. Graph databases can be queried in two different ways, either by
trying to find a part of the graph that matches a criterion or by exploring the graph
by starting in a specific node. It is also possible to express constraints that limit
the type of edges applicable to certain type of nodes. An advantage that no other

10

1.2. Database Manipulation Code

Row
Identifier Column 1 Column 2 Column 3

Row 1 key : value key : value key : value

Row 2 key : value key : value

Column Family 1 Column Family 2

Table A

Figure 1.4: Column oriented data model.

data models gives is that it can also be queried with a standard language (SPARQL
Protocol and RDF Query Language). Which is common to more than one graph
database management system. Neo4j [97], GraphDB [65] and ArangoDB [15] are
examples of such databases implementing the graph data model.

1.2 Database Manipulation Code

Choosing the right database and data model for its data is one step of a data intensive
system construction. Afterwards one has to manipulate the data inside the client
applications. This part of the code is particularly important as it stands between the
core application functionalities and the database. A change of business requirements
may impact the database manipulation code while an evolution of data model
may change the database and therefore the manipulation code as well. In large
companies those two responsibilities may be spread between two different teams.
This dual role of code, Stonebraker et al. argue that it is the most significant factor
of database or application decay [122].

Data intensive system’s applications may be written using different programming
languages, and moreover multiple ways to access the data are possible depending
on the chosen database. We explain below several of the most common possibilities
to access data in applications code. The illustrative examples will consider Java as
host programming language.

1.2.1 Native database libraries

Native database libraries are libraries published by official developers of a particular
database. They allow users to access data using via specific methods or via methods
interpreting native database query language.

JDBC Java DataBase Connectivity (JDBC) is a standard Application Programming
Interface (API) able to connect, read, update and delete data of a relational database.
This standard makes the usage of different database providers, such as MySQL,

11

CHAPTER 1. CONCEPTUAL BACKGROUND

PostgreSQL, MariaDB interchangeable with regard to the application code. Code
presented in Listing 1.5 illustrates how to connect to a relational database and how to
execute a SQL selection query statement (line 7). A ResultSet object is then retrieved
and contains each matching lines which can then be treated as needed. In the
example each column of each row are displayed.

1 Connection conn = DriverManager.getConnection(
2 "jdbc:somejdbcvendor:other data needed by some jdbc vendor",
3 "myLogin",
4 "myPassword");
5

6 try (Statement stmt = conn.createStatement()){
7 ResultSet rs = stmt.executeQuery("SELECT * FROM MyTable");
8 while (rs.next()) {
9 int numColumns = rs.getMetaData().getColumnCount();
10 for (int i = 1; i <= numColumns; i++) {
11 System.out.println("COLUMN " + i + " = " + rs.getObject(i));
12 }
13 }
14 } catch (SQLException e) {
15 logger.warn("Could not close JDBC Connection",e);
16 }

Listing 1.5: Example of Java code for relational database using JDBC

Mongo Java Driver The mongo java driver 4 is the official java driver provided by
MongoDB to query their document based database. Listing 1.6 illustrates how to
connect to a MongoDB database and retrieve the data in productCollection with an
attribute price greater than 100. The resulting document are then displayed using
the JSON format.

1 String uri = "mongodb://user:pass@sample.host:27017/";
2

3 try (MongoClient mongoClient = MongoClients.create(uri))
4 {
5 MongoDatabase database = mongoClient.getDatabase("admin");
6 MongoCollection collection = mongoClient.getDatabase("myMongoDB").

getCollection("productCollection");
7 Bson filter = Filters.gt("price", 100);
8 collection.find(filter).forEach(doc -> System.out.println(doc.toJson()))

;
9 }

Listing 1.6: Example of Java code for MongoDB document database

Jedis Jedis is the Java driver to access the key value database Redis. Querying a
Redis database is done using commands instead of a query language. The value of a
key value pair can be a string value, a map, a list, a set, a sorted set etc. There exists
specific command for each data type available. In Listing 1.7, line 3 shows how to
select a pair containing a string as value. Line 4 exposes how to retrieve all fields of a
map value.

4https://mongodb.github.io/mongo-java-driver/

12

https://mongodb.github.io/mongo-java-driver/

1.2.2. Object mappers

1 Statement stmt = conn.
createStatement();

2 ResultSet rs = stmt.executeQuery("
SELECT id, first_name ,
last_name FROM persons where
id=10");

3 String firstName , lastName;
4 while (rs.next()) {
5 firstName = rs.getString(2);
6 lastName = rs.getString(3);
7 }

Listing 1.9: Java code using JDBC to
retrieve attribute data

1 Person p = Person.getById(10);’
2 String firstName = p.getFirstName()

;
3 String lastName = p.getLastName();

Listing 1.10: Java code using ORM

1 Jedis jedis = new Jedis("localhost", 6666);
2

3 String name = jedis.hget("user#1", "name");
4 Map<String, String> fields = jedis.hgetAll("user#1");
5 fields.forEach((k, v) -> System.out.println((k + ":" + v)));

Listing 1.7: Example of Java code for Redis key value database

1.2.2 Object mappers

Object mappers are an intermediary method to query databases. Mappers for
relational databases, Object Relational Mapper (ORM) exist since decades and have
since been standardised via Java Persistence API (JPA) and Java Persistence Query
Language (JPQL).

Instead of manipulating data using native query language or specific drivers
methods, mappers allow the developer to manipulate Java objects representing data,
see Listing 1.8. A mapping between the object and the effective database structures
is declared through annotation or through a configuration file. Finally, read, update
find and delete operations are available on those objects. In Listings 1.9 and 1.10
we compare the code to retrieve lastname and firstname of particular person using
native libraries versus using ORM library.

1 @Entity
2 @Table(name="PERSONTABLE")
3 public class Person {
4 @Id
5 private Long id;
6 private String firstName;
7 private String lastName;
8

9 // getters and setters
10 }

Listing 1.8: Class declaration of an Entity

Those technologies also exist for NoSQL technologies, Object NoSQL Mapper
(ONM). In contrast to the mapping between relational model and object class di-
agram which is well studied and benefits from decades of experience, the NoSQL

13

CHAPTER 1. CONCEPTUAL BACKGROUND

data models mapping to object-oriented class is still an open research area. As we
saw in Section 1.1.4, in document database a relationship between two entities can
be stored in many physical representations such as embedding, child referencing,
parent referencing etc. Existing ONMs are generally focused on one single NoSQL
data model (e.g., they are called Object Document Mapper (ODM) for document
databases) and the possibilities of custom physical data representation are limited.
Those are some limitations among others identified in a survey about ONMs done
by Störl et al. [123].

1.3 Polystores

We briefly described in the introduction the emergence of systems using databases
of different types, mixing both the relational model and the NoSQL models, those
systems are called hybrid polystores. Indeed, each of these data models fulfils
specific needs and use cases of a system in terms of data can be oriented towards
one model as well as another depending on user requirements. In Benats et al. [26]
we studied more than 40,000 open source projects using databases, analysed which
models were the most popular, for which programming languages, what were the
most common combinations in hybrid systems, and finally studied the evolution of
these systems (i.e., what type of database was added or removed in these systems).
We concluded that the trend was upward for the proportion of systems using more
than one type of database (16% of the 40,000 projects in 2020) and highlighted that
in single-database systems the proportion of relational databases versus NoSQL
models was still larger but slightly decreasing (54.72% vs 45.28% in 2020).

Below we will illustrate an example of a hybrid database system and the different
reasons that can push to adopt this kind of architecture. Figure 1.5 shows a con-
ceptual schema of an e-commerce application. This application allows a user to
place orders, which they can pay with credit cards. These orders consist of a set of
products, for which there are pictures as well as reviews, which can be subject to
comments. The reviews and comments are placed by the users.

Figure 1.6 illustrates the databases that can be chosen for such a system. For
each of these databases is associated the logical (or physical) schema of the data
it contains. Below we describe these and the reasons that led to such choices. In
such a system a key value or column oriented database can be a good choice to store
product pictures as the volume of data can quickly be large and while maintaining a
high availability is a crucial requirement, moreover only direct access query and no
query on the value will happen.

Secondly, it is common in an e-commerce application to offer purchase recom-
mendations for similar products, or products that have also been ordered together
by other users. This recommendation functionality intensively exploits the links that
exist between data and for this kind of task traditional relational databases are not
the best choice due to the multiplicity of joins and complex building of such queries.
Therefore, databases based on the graph model are a more appropriate choice.

Next, document databases are effective in building unique data structures con-
taining several related concepts, which in a standard relational database would have

14

1.4. Database Evolution

0-N

1-1

writes

1-10-N replies to

1-1

0-N

composed of

1-1 0-Nplaces1-1 0-Npaid with

0-N1-1 of

1-1

0-N

makes

1-10-N about

USER

Id
Name

id: Id

REVIEW

Id
Title
Rating
ReviewText

id: Id

PRODUCT

Id
ProductName
Description
Price

id: Id

PHOTO

Id
Item

id: Id

ORDER

Id
OrderDate

id: Id

CREDIT CARD

Id
CardNumber
ExpiryDate

id: Id

COMMENT

Id
Content

id: Id

Figure 1.5: Conceptual schema of an e-commerce system

been separated into several tables. In our application domain we see that products,
product reviews and comments are natural aggregates, i.e., they are often retrieved
together, a page displaying a product will also display reviews and comments. This
is why in our e-commerce architecture, these three concepts have been stored in a
single nested structure in a document database.

Finally, sensitive information concerning payments, which must respect strong
Atomicity, Consistency, Isolation, Durability (ACID) constraints, have their place in
relational databases where transactions allow for the protection of data.

Obviously the advantages brought by a hybrid architecture also bring their nega-
tive counterpart. Thus, the application code manipulating the data of this system
will have to deal with the integration of several libraries and query languages specific
to each of the databases used. As we have described in Section 1.2. In the physical
schema and the databases described above, we can also see that the information
concerning products is distributed over several databases, sometimes with a dupli-
cation of data. Managing this duplication and heterogeneity are the main challenges
of hybrid polystores.

1.4 Database Evolution

Database evolution can be defined as a task where the ultimate goal is to change
all impacted artefacts of a data intensive system to be compliant with an evolution
concerning the database.

15

CHAPTER 1. CONCEPTUAL BACKGROUND

Figure 1.6: Databases and data representation (physical schema) of e-commerce
system

Evolution Processes It is a complex process typically composed of a chain of sub
processes which aim to :

(i) Understand the database and its artefacts.
(ii) Identify the impacted artefacts of a particular change.

(iii) Applying the evolution.
(iv) Adapt impacted artefacts.

Artefacts The three classical artefacts to evolve in a data-intensive system evolu-
tion process are :sSchemas, that concerns the modification of the database structures (concep-

tual, logical and physical schemas);sData, which relates to the changes needed on stored data;sClient application, addressing the replacement and adaptation of application
code and queries.

These layers may evolve independently or jointly, depending on the specific
requirements that drive the evolution. Evolving those layers in synchronization with
each other is called co-evolution. Co-evolution involves significant work and is a
risky and error-prone task. An empirical study by Qiu et al. [100] analysed open
source projects and discovered that an atomic database schema change (i.e., an
attribute renaming) involve a mean of 10 to 100 lines of application code to modify.

16

1.4. Database Evolution

Evolution classification Database evolution can be classified according to three
dimensions, namely structural, semantic, platform/language dimensions [33]. Those
dimensions respectively concerns evolutions about the schemas (conceptual, logical
or physical modifications), the semantics of the schemas (adding, removing, or
preserving the global semantics) or databases and manipulation languages.

The platform or language dimension intends to characterize a database evolution
scenario in terms of platform/language change. In the light of polystore systems
integrating both relational and NoSQL data models this dimension have an increased
importance. The following possible cases can be distinguished:s Intra-platform database evolution: the database evolution does not involve

the replacement of the data management system.sInter-platform database evolution: the database evolution requires the re-
placement of the data management system with another one. Two sub-cases
can occur:

– Intra-paradigm platform change: the source and target database plat-
forms belong to the same paradigm. A typical example is the migration
of a relational database from MySQL to PostgreSQL.

– Inter-paradigm platform change: the database evolution relies on a
database paradigm switch, i.e., the source and target database platforms
belong to different paradigms. This is the case, for instance, when migrat-
ing a relational database (e.g., MySQL) to a NoSQL platform (e.g., Mon-
goDB).

Illustrative example Let us consider a polystore representing an e-commerce
system with product information stored for different reasons on multiple different
data models databases, as described in Section 1.3 An illustrative atomic structural
evolution at the conceptual schema level may materialize as a requirement to change
the ProductName attribute of entity type Product to ProductReference, depicted in
Figure 1.7.

Figure 1.7: Atomic evolution

The conceptual schema of Figure 1.5 has to be changed to reflect the new name.
Next, Figure 1.8 shows the impact of this change on logical/physical schemas artefacts.
As this product information is stored in multiple databases, multiple intra platform
database evolution are to be performed on the logical schema. On the physical level,
as a relational table is identified as impacted artefact, an ALTER TABLE statement
renaming a column name will have to be executed.

17

CHAPTER 1. CONCEPTUAL BACKGROUND

As NoSQL databases are schema-less, meaning that only data reflects the schema,
data evolution has to be performed in order for the data to reflect the evolution sce-
nario considered. Listing 1.11 shows a document that has to be modified accordingly.
Lastly program code and queries accessing the old attribute name ProductName
must also be adapted. Listing 1.12 shows the Java code needing code change to
comply to the evolution. In line 2 it is code accessing the document database, in line
4 there is a graph database query and in line 6 there is a relational database query.

Figure 1.8: Impact of change in physical schema

1 {
2 "_id": "5df8b60952264a01b6a8a2fc",
3 "productId": "product0",
4 "productName": "SuperCleaner3",
5 "reviews": [
6 {
7 "review_id": "review1",
8 "user_ref": "user55",
9 "user_name": "Serena",
10 "rating": 1,
11 "title": "Dont buy!!!",
12 "reviewText": "I dropped it from a 5 stories building and it broke!",
13 "comments": []
14 },
15 ...
16]
17 }
18 }

Listing 1.11: Impact in data of a document database

18

1.5. Concluding Remarks

1 // Application code
2 dbcollection.find({productName:"SuperCleaner3"});
3 // Native graph database query
4 match (n:Product{productName:"SuperCleaner3"})←-(o:Order)-->(otherProducts:

Product) return n,o,otherProducts
5 // Native SQL query
6 Select userid from Orders O JOIN Order_Product OP ON O.Id=OP.OrderId JOIN

Product P ON OP.ProductId=P.Id where P.productName="SuperClean3"

Listing 1.12: Impact on queries or application code

If those modifications are not done it exposes the system to multiple data incon-
sistency problems. Data migration and program adaptation may be executed using
multiple strategies that will be presented in the following chapter.

1.5 Concluding Remarks

Throughout this chapter we described the well established process of database
design in data intensive systems, specially for relational databases. We then de-
scribed the four main data models of the so called NoSQL databases. We stated
the importance of the database access code in a software system and the different
choices that are available to the developers. They indeed need to determine the right
technology to use and master very different way of accessing the data depending on
the underlying databases. Finally we detailed the process of database evolution in
data intensive systems. The next chapter will present the state of the art in terms of
design, data manipulation and evolution of database-intensive systems.

19

C
H

A
P

T
E

R

2
STATE OF THE ART

Contents
2.1 Introduction . 21

2.2 Database Design . 21

2.3 Database Manipulation . 26

2.4 Database Evolution . 30

2.5 Concluding Remarks . 34

This chapter presents state-of-the-art approaches regarding the main axis
this thesis, namely design, manipulation and evolution in the context of
data intensive systems. We outline gaps in those works with regard to our
research questions.

2.1 Introduction

Before developing new approaches, techniques and tools contributing to our re-
search questions, we have reviewed the literature in the relevant research areas.
Those include (1) relational and NoSQL database design, (2) database manipulation,
and (3) evolution of databases, both relational and NoSQL.

This state of the art allowed us to better understand the challenges, to refine our
research questions and to identify possible gaps and new contributions to be made.

2.2 Database Design

Database design for NoSQL applications is an emerging research area. Current state-
of-the-art approaches mainly consist of technology, data model-specific design

21

CHAPTER 2. STATE OF THE ART

recommendations or best practices [1–3, 7]. NoSQL databases are often based on
schema-less data models and are therefore oriented towards developers. The under-
lying goal is to develop applications faster, while taking less care of the underlying
database structures, which otherwise are more rigid and harder to evolve in combi-
nation with the programs. However, those advantages can eventually lead to poor
performance as well, since a class embedding, redundancy or bad design decisions
may significantly affect scalability, performance and consistency [62]. With regard
to those problems the importance of NoSQL database design is gathering more and
more attention [107].

In Section 1.1.1 we presented the process of database design which have been the
established standard and good practice for relational database design for decades.
This section will present design methods for NoSQL systems or hybrid polystores
starting with generic approaches then detailing research focused on a specific data
model.

2.2.1 Generic approaches

Atzeni et al. [17, 18] introduce NoAM (NoSQL Abstract Model), an abstract data
model and methodology for NoSQL databases, which exploits the commonalities
of various NoSQL data models, namely key value stores, column and document
databases. They propose a database design methodology for NoSQL systems [28]
based on NoAM, which aims to be (partially) independent of the specific target
NoSQL platform. NoAM is used to specify a system-independent representation of
the application data. This intermediate, pivot representation can then be imple-
mented in a specific NoSQL database platform. The proposed method consists of
four main steps:sAggregate design. Following use cases different entities are grouped together.

This is consistent with the Domain Driven Design methodology [47]. It is
based on conceptual UML class diagram where identification of aggregates is
added.sAggregate partitioning. Performance requirements guide the smaller parti-
tion of aggregates.sHigh level NoSQL database design. Using the NoAM model. It provides high
level design such as Entry per Aggregate Object (EAO) or Entry per Top-level
Field (ETF) using new abstract model terminology such as Blocks, collections,
entries, data unitsImplementation. Manual implementation of NoAM structures to the target
datastore.

NoAM conceptual design method defines is based on an extension of UML class
diagram which is transformed into a custom logical language with new notions such
as Blocks, collections, entries, data unit representing common concepts of different
NoSQL data models (document, key value and column based). The logical data rep-
resentation is based on predefined mapping between the high level representations
(EAO and ETF) and physical structures. It is not possible for the designer to explicitly
specify the logical schema via another mean than the NoAM model elements. The

22

2.2.2. Document oriented

user have to master the new definition introduced in the conceptual level as well as
the implicit mapping between those elements and the effective storage of data.

In Banerjee and Sarkar [22] they define their own conceptual language for NoSQL
databases with a three layer architecture, each having specific construct types. Those
elements are then linked together via specific semantic relationships such as associ-
ation, inheritance or containment. The logical model language is also generic, and
they provide formalized rules and extensive constraints to enforce data validation
and comply with the Basically Available, Soft state, Eventual consistency (BASE) or
Consitency Availability Partition tolerance (CAP) principles. On top of having to
learn a new conceptual modelling language the logical language is complex, not
intuitive and have to be manually written. Further work from this author [21] address
this issue and propose a model to model transformation method. Starting from
the same conceptual model they provide transformation rules to produce a JSON
schema. They state that JSON schema can then be transformed in any NoSQL data
models. However, this affirmation is not straightforward for all data models, and
this logical schema does not give a clear view of how the data will be stored i.e., in a
Redis key value database.

TyphonML model [23], supports conceptual modelling of hybrid polystores as
well as physical modelling of database structures that can be linked together through
the usage of mapping rules. However, it imposes implicit restrictions on the way
conceptual entities, attributes and relationships are physically translated in each
different native backend. In other words, TyphonML does not leave developers the
freedom to explicitly define the mappings between the conceptual schema elements
and the physical schemas of the polystore.

Mortadello [41] is a complete approach from conceptual modelling to database
code generation. They developed a custom conceptual metamodel, Generic Data
Metamodel (GDM), integrating an Entity Relationship (ER) like language to declare
the application domain objects (entities, relationships, attributes) and a language to
specify the access queries that need to be executed on this domain. This metamodel
is generic and independent of any data model. From this model a Model-to-Model
(M2M) transformation translates to logical schema of NoSQL compliant with defined
meta models of document and column based data models. A set of algorithms read
the queries and merge them if needed and then generate database code (CQL code
or JSON Schema)

2.2.2 Document oriented

Shin et al. [118] describes the different levels of database design established by Peter
Chen’s and how they relate to the NoSQL data models. Further they demonstrate
that the entity relationship diagram and relational model can be used in NoSQL
database design. They propose to use UML notation for conceptual modelling and
provide high level mapping transformation rules to transform to document database
data model. For this purpose they propose an extension of UML integrating foreign
keys and embedding possibilities.

23

CHAPTER 2. STATE OF THE ART

De Lima et al. [42] proposes a transformation rule based approach to create a
NoSQL document logical schema based on an Extended Entity Relationship (EER)
conceptual schema. Additional information about the workload of databases i.e., vol-
ume, access frequency and application load is added and used as input parameter
in the transformation rules.

2.2.3 Column based

Mior et al. [95] propose schema design and queries implementation plans for column
based database Cassandra. As input, they use (1) a conceptual model, an entity graph
which is a restricted ER model, (2) a workload and query information to perform
on this model and (3) space constraints. From those they produce a logical schema
syntax with partitioning and clustering keys and column names best fitting the
workload given as input.

Another approach to designing and implementing NoSQL databases is proposed
by Abdelhedi et al. [10], they use a model driven approach and transformation
rules on a conceptual database schema in order to create a NoSQL (specifically a
column oriented) logical schema and then a physical NoSQL schema. It is a two-step
process, a first one is to create a model to conceptualize the data independently
of all technical and data model aspects (PIM Platform Independent Model). After
that is the PSM Platform Specific Model which represents the data with regard to
a specific data model, in this case it is the column-oriented model. The transition
between the two models is done via a set of transformation rules in QVT language
(Query/View/Transformation) following the OMG specification. This work uses a
well-known language i.e., UML as the high level language. Usage of model to model
transformation is more efficient as no manual writing of the mappings is required
by the user. However, this approach is only applied to a single NoSQL data model,
i.e., Column based (HBase and Cassandra)

2.2.4 Graph based

Akoka and Comyn-Wattiau [11] use Roundtrip engineering (RTE), a facet of Model
driven engineering (MDE) to design NoSQL databases. Roundtrip is a combination
of forward and reverse engineering, transforming conceptual models to source
code and vice versa. It relies on bidirectional transformation rules between the
metamodels considered. The advantages of this approach is that it handles evolution
by systematically propagating changes upward and downward. This work is based
on a previous one [12] proposing a MDE approach to transform a conceptual ER
diagram into a logical property graph. Their conceptual model is an Extended Entity
Relationship (EER) which adds information on the 4V’s of big data [49], Volume,
Variety, Velocity, Veracity. This logical representation can then be transformed to a
physical schema, namely a script generating a Neo4j database.

Daniel et al. [40] offer a framework to translate an UML conceptual schema to
an abstract representation of a graph data model. Moreover, they handle conceptual
constraints expressed in Object Constraint Language (OCL). They combine model-

24

2.2.5. Key value

to-model transformation (expressed in ATL [76]), to produce their intermediate
model, and then use model to text transformation to generate code compatible with
a known API accessing graph databases (Blueprints API). While their approach is
complete, from conceptual model to access code generation and even Eclipse plugin
tool available, their focus is solely on graph databases.

2.2.5 Key value

Rossel and Manna [106] provides guidelines to transform a conceptual schema
expressed in ER or UML to a logical schema fitting the key value model. It also take
into account the query patterns. No concrete syntax or rules are given and this
method is mainly a general recommendation than a real transformation solution.

2.2.6 Summary and gaps

Table 2.1 summarizes the works described above with their supported data models
(D for document databases, K V for key value, C for column based, G for graph
databases, R for relational) and the chosen conceptual modelling language. The
lower part of the table describes the representation technique used to establish the
logical schema, and lastly it states the way to go from the conceptual to the logical
schema.

In the analysed approaches to conceptually and physically model NoSQL
databases or polystores we notice that many parameters and choices are possi-
ble. There is the possibility to focus on a single data model and keep its specificities
or to decide to cover several ones and have to add a new abstraction layer. For the
choice of the conceptual model we notice three trends, there are the approaches that
(1) use a known language such as UML or ER, (2) extend or restrict these languages
and (3) define their own language.

The possibilities for the logical language are all the more numerous as it is at
this level that the contribution in this field of research is generally located. There
is thus a dominance of personalized languages. Others have chosen to use known
notations such as JSON Schema, UML, or even do not use an intermediate logical
level and directly translate the conceptual schema into code specific to a database.

The passage from a conceptual schema to a logical or physical schema (column
Transformation) can be of several types, either it is a question of transformation
rules, of model-to-model type, more or less well formalized, or this transformation
is manual, also more or less well guided.

While a transformational approach offers the advantage of avoiding the task of
manually writing mapping rules between conceptual and logical representation it
removes the control and the flexibility of defining fine-grained custom data repre-
sentation. Contrary to some work exposed we do not provide a method for building
the logical/physical schema nor to choose the best fitting NoSQL model.

The previous approaches discussed above are either (1) database design methods
for particular or limited series of data models, (2) abstraction-based approaches
for the conceptual design of multiple NoSQL systems, or (3) polystore modelling

25

CHAPTER 2. STATE OF THE ART

Paper Data model supported Conceptual Approach
Atzeni et al. [17, 18] D, KV, C UML + identification of aggregates
Banerjee and Sarka [22] D, KV, G, C Custom Language
Banerjee and Sarka [21] D, KV, G, C Custom Language
Mortadello [41] D, C Custom Language
TyphonML model [23] R, D, G, KV ER
Abdelhedi et al. [10] C UML
Duggan et al. [46] C, R Only object declaration
de Lima et al. [42] D Extended ER
Rossel and Manna [106] KV UML or ER
Shin et al. [118] D UML
Mior et al. [95] C Restricted ER
Akoka and Comyn-Wattiau [12] [11] G UML
Daniel et al. [40] G UML + OCL

Paper Logical/Physical Ap-
proach

Transformation

Atzeni et al. [17, 18] Custom language Manual, not flexible, not explicit
Banerjee and Sarka [22] Custom language Manual, explicit
Banerjee and Sarka [21] JSON schema Transformation rules
Mortadello [41] CQL code + JSON

schema
Transformation rules + Algo-
rithms

TyphonML model [23] Custom language Manual
Abdelhedi et al. [10] Platform Independent

Model
Transformation rules

Duggan et al. [46] Database Manual
de Lima et al. [42] JSON schema Transformation rules
Rossel and Manna [106] Custom language Not provided
Shin et al. [118] UML with custom stereo-

types
Transformation rules

Mior et al. [95] Custom language Algorithm
Akoka and Comyn-Wattiau [12] [11] Logical graph representa-

tion
Model Driven Approach +
Roundtrip

Daniel et al. [40] GraphDB metamodel
(Platform Specific Model)
+ Gremlin

Transformation rules

Table 2.1: NoSQL design approaches summary

approaches with limited control over the conceptual-to-physical mappings and no
support to express cross-database overlapping within the polystore. In this thesis,
we propose an approach to hybrid polystore modelling and manipulation, that
(1) supports relational as well as the four main NoSQL data models, (2) provides
users with a full and fine-grained control over the mapping between the conceptual
schema and the underlying physical data structures and (3) supports overlapping
across the polystore databases.

2.3 Database Manipulation

In this section, we present existing approaches, techniques and tools manipulating
databases. Presented approaches bring one or more abstraction level higher to the
manipulation code and are able to query hybrid polystores.

26

2.3. Database Manipulation

NotaQL [115] is a modular language used to transform, migrate or perform
aggregate queries on data. Queries are constructed using transformation expressions
between input data and output results. The language is platform independent
however queries still rely on effective physical field names. While it works with an
internal unified data model close to JSON there is no higher abstraction of data
available. Evaluation of the language is done using an algorithm combining Spark
map, filter and reduce operations where only map functions are platform dependent.

The SOS platform [20] provides a common interface to multiple NoSQL systems.
It relies on a generic data model expressing data as object entities with hierarchical
structures and attributes. Operations on data are possible using PUT, GET or DELETE
with path like queries (e.g., get("users/281283/name")) on defined entities in the meta
layer. Path like queries are encapsulated and called on manager class. A manager is
implemented for each underlying type of database. Application code is resistant to
NoSQL infrastructure changes, only the initialisation constructor of the manager
would have to change to use another database.

BigDAWG [46] is another polystore implementation focusing on query optimiza-
tion and data placement. They created the concept of island of information which
is the abstraction the user interacts with. It is defined as a collection of storage en-
gines accessed with a single query language. An island is composed of a logical data
model of the specific databases, a custom query language and interfaces to data
management systems translating queries to native ones. It supports less common
NoSQL systems e.g., Accumulo (column based), SciDB (Multivalue), and PostgreSQL
(relational) databases.

In Shah et al. [117] they access data using a RESTful API and data wrapper
objects. A query is handled by a data mapper calling specific data wrappers based
on configuration files. Each data wrapper is written to query the corresponding
database storing the data. Extension to new data stores is possible thanks to an
agnostic architecture, one just have to write a new wrapper implementation and
adapt configuration files.

Liao et al. [86] propose a data adapter approach to query and migrate data in a
hybrid architecture composed of relational database and HBase, a column oriented
database. They offer a SQL interface which seamlessly access either database via a
translator module to native databases. Application queries therefore do not need to
be adapted. A migration, called data transformation functionality and three different
query policies are also available.

Object-NoSQL Datastore Mapper (ONDM) [27, 29] is a framework to map data to
different NoSQL data representations. It is a variant of Java Persistence API (JPA) in
the sense that application data is organized using classes and annotations. They are
used to declare classes as entities, specify the data representations (following NoAM
logical representations 2.2.1) via @DataRepresentation or declaring the data source.
Data representations annotations allow the developers to specify the mappings
in a declarative manner. Its architecture guarantees that the application code is
independent of the target data store and of the data representation.

ODBAPI [116] propose a streamlined and unified REST API to access key value
(Riak) and document (CouchDB) NoSQL databases as well as relational databases.

27

CHAPTER 2. STATE OF THE ART

They defined their own model and terminology to map to the different concepts
of the other data models. They model a polystore in terms of Environment which
contains Databases, in their turns contains Entity Set, with Entities. CRUD function-
alities are asked on each of the aforementioned resources using GET, PUT, POST and
DELETE HTTP operations of their API. The ODBAPI provides a unique and simple
entry point to different databases however the user has to known and provide the
type of database where the data of the wanted entity is stored via an HTTP header in
the request. This breaks the data independence principle with regard to the target
datastore.

Xu et al. [132] propose to build a middleware system that will integrate relational
database management systems and NoSQL systems. They develop a new language,
called ZQL, which is platform-independent and allows users to write queries that
will eventually be translated and executed using native queries. The ZQL module
translates the given query to the corresponding system and return the results with
full transparency for the user. However, this research is theoretical and has only been
tested on a MySQL and Hive databases, which are both relying on the relational data
model.

NoSQL Layer, proposed by Rocha et al. [105] is a framework to migrate data from
relational databases to MongoDB. It contains two modules: The Data migration
module and the Data Mapping Module. The data migration module automatically
builds an equivalent structure in MongoDB and then migrate the data. The data
mapping module is a data access layer; its goal is to act as an interface between the
databases and the application programs. Its main feature is the ability to translate
each SQL query into an equivalent MongoDB query, and then convert the returned
query results in a SQL-compatible format. Therefore, in principle, no program
adaptation is required.

TyphonQL [83] is a language for querying data among heterogeneous databases.
It is a compiler executing queries expressed on conceptual element declared using
the TyphonML language [23]. Join like queries across heterogeneous databases can
be written and the TyphonQL engine will break them into multiple native queries
which will then be executed in the corresponding databases. Finally, a uniform
representation of the results is sent back to the user.

2.3.1 Summary and gaps

Table 2.2 presents the different query approaches for a polystore system as well as
the supported data models, whether the way of performing queries is at a conceptual
level or not, and finally briefly describes the type of these queries.

The table then continues to characterize these approaches by mentioning
whether it is possible to perform queries on several databases via a single query
(Cross database queries column) or whether the queries are expressed in a way that is
independent of the actual data storage technology. Finally, we characterise if those
queries are resistant to changes in the physical structure of the conceptual data.
Among these approaches several interesting aspects stand out and our proposal
aims at combining these aspects in a single tool. Our goal is to guarantee data

28

2.3.1. Summary and gaps

independence of the application code towards the system hosting the data as well
as towards the representation of the data. We argue that only queries manipulating
objects at the conceptual level of abstraction can achieve this. The identified papers
use several query strategies, either a custom language, or a SQL-like language or
finally an interface to access the data via generic get, put, delete methods. Our solu-
tion to the problem of data manipulation makes the choice of access by API methods
rather than a language based approach. We detail here the differences as well as
the advantages and disadvantages of the two techniques, provided that they both
manipulate data at the conceptual level (TyphonQL [83] is taken as the comparison
tool given the overlap of the supported functionalities).sSimplicity. The method call approach allows providing intuitive names de-

scribing the function behaviour to users. Moreover, calling a function in a
known programming language is also simpler than having to learn and build
a query in a new language. This aspect is confirmed in the user evaluation,
presented in Chapter 7.sExpressiveness. The advantage for this criterion goes to the language ap-
proach, indeed if it supports nested queries, more complex queries can be
written by the user. Whereas the use of pre-built methods of an API requires
potentially large application code using sequence of loops.sPortability/Usability. The API proposed by our framework provides Java meth-
ods. Its usage then requires the import of the generated library and code
calling its methods. While using the language version, provided that the inter-
preter is installed, the user queries data with a string.sError tolerance. The way to execute a query influences error detection. Indeed,
an erroneous use of the API will result in a compilation error that can be
easily detected and corrected by the developer. Whereas an error in a string
query will only be discovered during its execution. This aspect is particularly
interesting in the context of the co-evolution between the database schema
and the application code. As raised by Meurice [92] a schema evolution is not
necessarily linked query adaptations, the code being still compilable.sDevelopment time. Both approaches share the same underlying global oper-
ations to be performed in order to return conceptual results. Those include
the construction of native queries, the retrieval and joining of results and the
encapsulation in a conceptual object. However, offering a new language to
compile/interpret can be considered as an additional layer to develop. There-
fore, the development time of an API version is naturally shorter.

Lastly, given that the context of use of these data manipulation approaches is
a hybrid polystore, we attach importance to the capacity of this manipulation to
perform queries on several databases simultaneously. This is to allow duplication
and heterogeneity of data, but also to avoid the user writing complex join code.

The listed approaches all have advantages on particular aspects but none of them
combines an integrated approach allowing at the same time (1) the manipulation
of data at the conceptual level, (2) the management of multiple databases, (3) the
independence from physical structures as well as from their evolutions.

29

CHAPTER 2. STATE OF THE ART

Paper Data model sup-
ported

Conceptual level Type of queries

NotaQL [115] KV, C, D, CSV ✗ Custom language. Declarative
state IN vs OUT

SOS platform [20] KV, C, D ✓Entities and attributes
only.

Java API implementing basic get,
put, delete operations

BigDAWG [46] R, C ✗ Custom language
Shah et al. [117] R, KV, C, D ✓ RESTful interface (GET, PUT, etc.)
Liao et al. [86] R, C ✗ SQL
ONDM [27] KV, C, D ✓ JPA
ODBAPI [116] R, KV, D ✓Entities and attributes

only.
RESTful interface (GET, PUT,...)

ZQL [132] R, NoSQL (not
specified)

✗ Custom (SQL like)

NoSQL Layer et al. [105] R, D ✗ SQL
TyphonQL [83] R, D, KV ✓ Custom language

Paper Cross database queries Platform inde-
pendent queries

Resistant to evo-
lution

NotaQL [115] ✗ ✓ ✗
SOS platform [20] Partial, combination of get or put mapped

to different dbs (no single get on mutliple
db)

✓ ✓

BigDAWG [46] ✓ ✓ ✗
Shah et al. [117] ✗ ✓ ✓
Liao et al. [86] ✓ ✓ ✓
ONDM [27] ✓(no multiple datastore for a single entity) ✓ ✓
ODBAPI [116] ✗ ✗ ✗
ZQL [132] ✓ ✓ ✗
NoSQL Layer et al. [105] ✗ ✓ ✓
TyphonQL [83] ✓ ✓ ✓

Table 2.2: Summary of polystore database manipulation approaches

2.4 Database Evolution

Database schemas are known to be change-prone [131]. Even small changes to the
schema may have significant impact on the application code [39, 61, 87, 119]. Large
software systems also suffer from the heterogeneity challenge, as they tend to use
multiple database access technologies jointly [59] [35], some of which complement
and reinforce one another [60]. Studies of co-evolution of the database schema and
the application code have revealed that these are not always in sync [101]. Database
schema and format changes have been shown to impact the application code, which
may lead to potential problems when the application code is separated from its
persistent data or database [88]. Several approaches have been proposed that usually
rely on (the combination of) transformational and generative techniques.

This section lists the main works that deal with how to perform database schema
evolution, then we present papers that aim to help perform schema co-evolution
together with manipulation programs. And finally we gather the researches that deal
with schema evolution in NoSQL systems.

30

2.4. Database Evolution

Supporting schema evolution

Hick and Hainaut [73,74] propose the DB-MAIN approach to database schema evolu-
tion. This approach relies on a generic database model, namely the GER model [69],
and on transformational paradigm that states that database engineering processes
can be modelled by (chains of) schema transformations. Indeed, a transformation
provides both structural and instance mappings that formally define how to jointly
modify database structures and related data instances. The authors describe both a
complete and a simplified, more pragmatic version of their approach, and compare
their respective merits and drawbacks.

Database evolutions may involve schema modifications that can in turn impact
the data instances and the database queries. Adapting data and queries to evolv-
ing schemas may constitute a long, risky and often manual process for database
administrators. In [38], Curino et al. present PRISM++, a system that supports the
database evolution process by evaluating the impact of schema modifications on
queries and on data. PRISM++ then helps developers with the rewriting of historical
queries and the migration of related data, thereby reducing the downtime of the
system by reducing manual effort. They achieve this by defining a set of Schema
Modification Operators (SMOs) representing atomic schema changes, and they link
each of these operators with modification functions for data and queries.

The evolution operators considered by PRISM++ are inspired by the operators
defined by Ambler and Sadalage [14]. They defined six main categories of operators,
namely transformation, structure refactoring, referential integrity refactoring, archi-
tecture refactoring, data quality refactoring and method refactoring. In order to be
even more precise, it is possible to further classify those operators into finer-grained
atomic operators, as done by Curino et al.

In the same spirit, Qiu et al. [100] propose an exhaustive list of 24 schema change
operators, each corresponding to an atomic DDL query.

Supporting schema-program co-evolution

The adaptation of client application programs under database schema evolution
is a complex process. Most existing tool-supported approaches to this process rely
on transformational techniques, generative techniques or a combination of both.
For instance, several authors attempt to contain the ripple effect of changes to the
database schema e.g., by generating wrappers [126], views or APIs that provide/en-
able backward compatibility and by transforming the programs in order to interface
them with those intermediate layers.

A first step towards program adaptation has been explored by Grolinger and
Capretz [67]. They propose the integration of database accesses in the unit tests.
They add a layer which effectively accesses the database instead of mocking it. In
this way the actual queries can be checked against the (evolving) schema. If needed
they also modify the queries in order to query the structure of the schema instead
of the actual data, with the aim to increase data access performance. By validating
queries to the schema they can identify source code fragments in the programs that

31

CHAPTER 2. STATE OF THE ART

have become invalid and that would therefore fail, in order to help programmers
when adapting programs to evolutions of the database.

Cleve et al. [34] presented a tool-supported approach that combines the au-
tomated derivation of a relational database from a conceptual schema, and the
automated generation of a data manipulation API providing programs with a con-
ceptual view of the relational database. The derivation of the database is achieved
through a systematic transformation process, keeping track of the mapping between
the successive versions of the schema. The generation of the conceptual API exploits
the mapping between the conceptual and physical database schemas. Database
schema changes are then propagated through API regeneration so that client appli-
cations are protected against changes that preserve the semantics of their view on
the data.

In [50] the authors provide a tool and program slicing technique specifically
designed to adapt the programs source code as well as related regression tests when
a database schema change occurs. This two-folded impact analysis method aims
to identify the source code statements affected by the schema changes and the
affected test suites associated to these source code fragments. They implemented
their approach for PL/SQL applications.

Chang et al. [32] propose a formal framework for database refactoring which is
based on a logical model of changes, and that can automatically identify inconsis-
tencies in the application code as well as database modelling problems.

Meurice et al. [92] present a tool-supported approach, that allows developers
to simulate a database schema change and automatically determine the set of
source code locations that would be impacted by this change. Developers are then
provided with recommendations about what they should modify at those source
code locations in order to avoid query-schema inconsistencies. The approach has
been designed to deal with Java systems that use dynamic data access frameworks
such as JDBC, Hibernate and JPA.

Evolution of NoSQL databases

Recent approaches and studies have focused on the evolution of NoSQL databases.
One of the first attempts on this topic was proposed in [110] by Scherzinger et al.
The authors have addressed the gaps between schema evolution and data migration
for managing NoSQL data stores. On the one hand, they have proposed a declara-
tive evolution language specifying basic evolution operations such as add, delete,
rename, move and copy. On the other hand, they have specified a NoSQL database
programming language implementing these evolution steps by manipulating an
application state and a datastore state. They have also introduced the concept of safe
migration which verifies that an operation does not produce more than one entity
of the same key.

The same authors have later specified, (1) in [112, 113], a data manipulation
language using Datalog, capable of implementing chains of schema changes. They
offer a logical view that allows the data to be migrated eagerly or lazily, transparently
for the user. (2) ControVol [109], a framework controlling schema evolution in

32

2.4. Database Evolution

NoSQL applications. It statically checks types of object mapper class declarations
against earlier versions in the code repository. ControVol is also capable of warning
developers of risky cases of mismatched data and schema. The tool also suggests
and performs automatic fixes to resolve possible schema migration problems.

Evolving data in a NoSQL schema evolution context was also investigated by
Klettke et al. [79]. They analysed lazy and eager data migration for big data appli-
cations in order to reduce time and financial costs. To do so, they have introduced
innovative migration techniques such as (1) composite migration, which consists in
grouping together chains of schema changes or (2) lazy stepwise migration, which
consists in migrating lazily thereby waiting for a certain number of releases before
migrating to the latest version.

Works regarding this data migration aspect may also be data model specific.
Saur et al. [108] have suggested an online lazy data migration tool (Kvolve) for the
key value datastore Redis 1. The authors offer a unique logical view of multiple
data versions and offer query translation mechanisms. If a new version occurs, the
developer must provide a transformer function that will automatically remap the old
key to the new one. Therefore, no changes are required by the end user applications.

Cleager [111] a tool for document databases to translate the evolution language
operation into MapReduce jobs in order to migrate data in an eagerly manner.
They provide support of evolution operations such as splitting or merging through
implementing them via custom Map Reduce jobs.

Meurice and Cleve [91] provide a method analysing the joint evolution of the ap-
plication programs and their underlying NoSQL data store. They use the application
code and its evolution history to identify implicit changes in the data structure and
potential points of failure due to this schema evolution.

Schildgen et al. [115] have specified a transformation language, called NotaQL,
that is used to reach multiple goals: (i) to evolve schemas, (ii) to perform big data
analytics using aggregation functions, (iii) to migrate data within the same database
platform or even towards another platform. The proposed language is based on
the idea of mapping transformation rules between the input format and the output
format. Besides, the authors decided to offer an engine-specific syntax, allowing the
user to work with familiar concepts.

Haubold et al. [70] have implemented ControVol Flex, that analyses the source
code repository to detect potential errors. It then warns the users and recommends
them automatic fixes. They have used the NotaQL [114] declarative transformation
language to migrate data eagerly and Object Mapper Annotations to migrate data
lazily.

Storl et al. [124, 125] have developed a GUI integrated NoSQL schema evolution
tool called Darwin. The users can apply changes and migrate the data eagerly or
lazily. Darwin also analyses data and code repository in order to detect possible
schema changes. Once those schema changes are detected the tool can rewrite
queries or migrate data.

1https://redis.io/

33

https://redis.io/

CHAPTER 2. STATE OF THE ART

Klettke et al. [78] give the algorithm underlying the schema detection of their
previous work. This algorithm detects chains of schema changes instead of a global
unique schema. They are capable of detecting single type evolution operations such
as add, delete, rename and even multi-type operation copy, move. This detection
needs as a prerequisite persisted data with timestamps versions. The derived evolu-
tion steps are proposed to the user in case of ambiguities. They further evaluated
their algorithm to detect inclusion dependencies in MongoDB data sets.

2.4.1 Summary and gaps

From the papers presented allowing support for the evolution of database schemas,
we retain the transformational approach. The evolution process is indeed character-
ized as a sequence of transformations on the different components of the system,
thus favouring co-evolution. Moreover, several works propose to characterize and
specify the evolutions via explicit operators.

Then we have seen that the evolution of NoSQL databases adds some particular-
ities to the data management. Indeed, these systems are not constraining regarding
the data structures, so it is possible to have several versions that co-exist in the same
database. This brings a dimension of data version management in the application
code, but also opens the door to multiple data migration strategies. Such consid-
erations should be part of a future integrated evolutive solution including NoSQL
systems.

This thesis proposes several contributions to the evolution of databases. These
are mainly about the co-evolution of schema and application programs and queries.
First, we aim at supporting the evolution of data structures without conceptual
modifications. Thanks to the generative approach and the conceptual accesses
of our proposed solution for data manipulation, we can guarantee an automatic
co-evolution, via regeneration, of the user application code.

In a second step, we offer an adaptation of queries according to conceptual
evolution expressed with the help of conceptual evolution operators.

Finally, we end with a proposal of a theoretical framework for the evolution of
polystores based on a transformational approach using evolution operators. These
operators characterize the evolution to be carried out and specify the modifications
to be made on each of the components affected by the polystore.

2.5 Concluding Remarks

In this chapter we have reviewed the state of the art for the three main research axes
of this thesis, i.e., the design, the manipulation and the evolution of data intensive
systems. This state of the art was oriented under a polystore angle integrating
a heterogeneous dimension, consisting of a co-existence of databases relying on
relational as well as NoSQL data models.

As for the design part, we have seen that the engineering of relational databases
was a well-known and established research field since decades, which brings ma-
turity of methods and tools that NoSQL systems do not currently possess. Indeed,

34

2.5. Concluding Remarks

because of their variety of data models (document, key value, column or graph
data models) and their variety of use cases, NoSQL systems offer a great diversity of
physical data design methods for a single conceptual schema. This variety is all the
more complex to manage and integrate in a context of hybrid polystore. This is why
our approach proposes a modelling language integrating the conceptual schema,
based on a well-established model (i.e., Entity Relationship) as well as a fine-grained
physical representation of the data for several NoSQL models.

Concerning the data manipulation in a polystore context we have privileged
a conceptual access approach in order to guarantee the independence from the
database and its structures. None of the mentioned techniques allows the combi-
nation of this independence with a complete support of a polystore system hetero-
geneity.

The approach chosen for the data manipulation also brings us solutions to
facilitate the co-evolution of the application code with respect to a database schema
evolution. Of which we have established the main characteristics and the most
important points through the research described in the last part of this chapter.

The rest of this thesis presents the contributions made in each of these three
aspects.

35

Part II

Contributions

37

C
H

A
P

T
E

R

3
CHALLENGES AND BEST PRACTICES OF TESTING

DATABASE ACCESS CODE

Contents
3.1 Introduction . 39

3.2 Test Coverage of Database Access Code in Open-source Systems 40

3.3 Challenges & Problems When Testing DB Access Code 43

3.4 Best Practices When Testing DB Access Code 50

3.5 Discussion and Implications . 59

3.6 Threats to Validity . 61

3.7 Related Work . 61

3.8 Conclusion . 64

This chapter presents an exploratory work conducted on the testing of
database manipulation code. An empirical study of the questions and
answers from the developer communities allowed us to highlight the
problems encountered and the best practices recommanded.

This work has been published [56] at the 31st International Conference on Advanced Information Systems

Engineering (CAiSE 2019) and has been invited to publish an extension in the Information Systems

journal [58].

3.1 Introduction

Through the introduction and the state of the art we have highlighted the main
processes that are involved in the life cycle of a data intensive system, namely design,

39

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

manipulation and evolution. We have noted that these processes are already com-
plex enough for a single database system and we hypothesize that this complexity
increases in a multiple database context (possibly hybrid). This increasing difficulty
will not spare the code accessing databases, namely database manipulation code.
Indeed, the developer will have to know and use several data manipulation lan-
guages (as described in Section 1.2) depending on the number of different database
types used in his project.

This code, being located between the program and the databases, depends
on the modifications made both in the program and in the databases. Evolving
requirements result in changes in the schema, which in turn require adjustments
in the database manipulation code. This dual role of database manipulation code
leads to software maintenance problems. Stonebraker et al. argue that it is the
most significant factor of database or application decay [122]. Developers tend
to minimise their effort to implement modifications, and the application or the
database quality suffers the consequences.

Considering the crucial role that this data manipulation code has, we first anal-
ysed whether this importance was reflected in the software tests. This chapter
unfolds in three studies. In a first step we seek to quantify the coverage of database
manipulation code by tests. This will tell us if the systems are sufficiently protected
from implementation errors that may occur on this part of the code.

In a second step, we will analyse the difficulties encountered by developers when
writing these tests, and we will produce a taxonomy of issues that will highlight the
most significant avenues for improvement in order to help in writing these tests.

And finally we produce a taxonomy of best practices gathering the recommen-
dations of the community developers to write quality tests.

3.2 Test Coverage of Database Access Code in Open-source Systems

We first explore how developers test their database manipulation code in practice.
Figure 3.1 depicts an overview of the three main steps we followed during this
exploration: 1⃝ we selected a set of open-source projects using databases, 2⃝ we
identified which part of their source code was involved in database communication
and 3⃝ we analysed how automated tests covered it.

Extract Test Framework
Dependent Projects

Libraries.io API

Clone Repositories

Data & Test Projects
Source Code

List of Test Framework
Dependent Projects

Project Selection1

SQLInspect

Database Access Locations

Test Coverage Reports

Processed
Result Dataset

Database Access Code Analysis2

Test Coverage Analysis3

Figure 3.1: Overview of the main steps for test coverage analysis of database access
code

40

3.2. Test Coverage of Database Access Code in Open-source Systems

During step 1⃝ Project Selection, we mined open-source systems from Li-
braries.io.1 We chose it because they monitor a broad set of projects (not just
libraries), and maintain an extensive database of dependencies among projects.2

We specifically looked for applications using databases and automated testing tech-
nologies. Libraries.io provides us with the possibility of searching for such projects
through their dependencies.

Selected projects had to satisfy four inclusion criteria: (i) be written in Java, since
we rely on tools that support only Java (i.e., to identify database code and measure
test coverage); (ii) use JUnit3 or TestNG,4 i.e., the top Java testing frameworks accord-
ing to the usage statistics of Maven central;5 (iii) use database access technologies,
e.g., java.sql or javax.persistence; (iv) have executable test suites, as required
by JaCoCo,6 the test coverage tool we rely on.

We relied on version 1.4.0 of the Libraries.io dataset published in December 2018,
which was the most recent release at the time of conducting the survey. We cloned
6,626 systems satisfying a search query for Java projects with testing framework de-
pendencies. Then we filtered them, looking for imports of database communication
libraries. The list of imports can be found in our replication package [57]. At this
stage, we identified 905 candidate projects.

In step 2⃝ Database Access Code Analysis, we identified the part of the source
code involved in database communication. We used SQLInspect7 for this purpose –
a static code analyser for Java applications using JDBC, Hibernate, or JPA [96]. This
tool looks for locations in the source code where queries are sent to a database,
extracts these queries, and analyses them for further inspection, e.g., smell detection.
In the remaining of the chapter, we call database access methods all methods that
construct or execute a DB query. We selected SQLInspect because (i) it supports
popular database access technologies, (ii) it returns all the database access methods
of the project under analysis, and (iii) it relies on a technique reaching a precision of
88% and a recall of 71.5% [93].

SQLInspect identified database access methods in 332 of the 905 projects se-
lected at the first stage. It did not detect database accesses in the other projects. The
reason is that SQLInspect looks for SQL, Hibernate, or JPA queries in the source code.
An import does not necessarily imply query executions, and other DB communica-
tion means can be used (e.g., an object-relational mapping; ORM), or the packages
may not be used at all.

In step 3⃝ Test Coverage Analysis, we looked at how tests cover the DB access
methods. We used the JaCoCo Maven plugin that can be integrated with the tests of
a project to collect coverage data at different granularity levels.

1https://libraries.io/data
2At the time of writing, Libraries.io had 2.7M unique packages, 33M repositories, and 235M interde-

pendencies between them.
3https://junit.org/
4https://testng.org/
5https://mvnrepository.com/open-source/testingframeworks
6https://www.jacoco.org
7https://bitbucket.org/csnagy/sqlinspect

41

https://libraries.io/data
https://junit.org/
https://testng.org/
https://mvnrepository.com/open-source/testing-frameworks
https://www.jacoco.org
https://bitbucket.org/csnagy/sqlinspect

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

We implemented a script modifying the pom files of the 332 projects to execute
tests with JaCoCo. Maven compilation or test execution failures prevented generat-
ing a test report file for 178 projects. For example, many projects (82) did not have a
pom file or tests, despite dependency on a test framework. In the end, we collected
test coverage data for 72 systems. Then we processed the reports along with the
results of step 2⃝.

Metric Min Q1 Med Q3 Max

Java LOC (effective) 225 1,476 3,198 12,929 133,331
GitHub Stars 0 0 2 10 9,152
Methods 11 110 278 1,057 15,188
DB Access Methods (in prod. code) 1 2 4 7 80

Table 3.1: Overview of the projects (minimum, quartiles, median, and maximum
values)

Table 3.1 summarises the main characteristics (with the minimum, quartiles,
median, and maximum values) of the analysed projects. The projects are of various
sizes ranging from 225 LOC to 133 kLOC. The biggest project is Speedment,8 a Java
Stream ORM. The most popular project is MyBatis9 with 9,152 stars.

Regarding database access code, we only considered methods in production
code, i.e., we excluded test classes. We intentionally did not set a minimum threshold
for the projects’ size or database methods. Our goal was to see whether database
access code is tested or not in real-life projects. If the project had only one method
communicating with the DB, we wanted to see its tests.

R = 0.47 , p = 6.1e−08

0

25

50

75

100

0 25 50 75 100
DB access methods test coverage rate

N
on

 D
B

 m
et

ho
ds

 te
st

 c
ov

er
ag

e
ra

te

Figure 3.2: Test coverage rates of Non-DB access methods vs DB access methods

Figure 3.2 shows a scatter plot of all projects and their respective test coverage
rates. In total, 24 projects do not test database access communication at all. A signifi-
cant number of projects with the highest coverage rate had, in fact, full coverage. We

8https://github.com/speedment/speedment
9https://github.com/mybatis/mybatis-3

42

https://github.com/speedment/speedment
https://github.com/mybatis/mybatis-3

3.3. Challenges & Problems When Testing DB Access Code

found a mean value of 2.8 database methods for projects with full coverage. There
are slightly fewer projects (48.6%) in the figure with lower coverage for database
methods. However, considering only the projects above the median (i.e., with at least
five database methods), there is a more significant difference: 59% have a smaller
coverage for database methods than regular methods. Similarly, while 46% of the
projects cover less than half of their database methods, this number increases to
53% for projects above the median. Moreover, 33% of the projects do not test the
database code at all, and it rises again to 35% for projects with at least five database
methods.

We assessed the relationship between the test coverage rates of DB access meth-
ods vs regular methods using the Kendall correlation, as the Shapiro-Wilk normal-
ity test showed a significant deviation from the normal distribution. The result
was a moderate positive correlation with a high statistical significance (τ = 0.47,
p < 0.0001).

In summary, we found a statistically significant correlation between the test cov-
erage of regular and database access methods, but it is a weak-moderate correlation,
and there can be substantial differences between the two. As our closer look at the
sample set showed, the coverage of database code is poor in general together with
regular methods. But it is even more neglected when it comes to more complex
database access code.

3.3 Challenges & Problems When Testing DB Access Code

Our first study aims to understand the difficulties of developers when consider-
ing database access code in their tests. We seek to answer the following research
question (RQ):

RQ1: What are the main challenges/problems when testing database
manipulation code?

We studied developers’ most common problems on popular question-and-
answer (Q&A) websites of the Stack Exchange network. The outcome of this qualita-
tive study is a taxonomy of common issues faced by developers.

3.3.1 Context and data collection

We describe the method of building the taxonomy. We first present the data collec-
tion phase, then discuss the main steps of the manual labelling process.

Identification and extraction of questions

We targeted popular websites of the Stack Exchange network for data collection:
Stack Overflow,10 Software Engineering11 and Code Review.12 Stack Overflow is the

10http://stackoverflow.com
11http://softwareengineering.stackexchange.com
12http://codereview.stackexchange.com

43

http://stackoverflow.com
http://softwareengineering.stackexchange.com
http://codereview.stackexchange.com

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

largest Q&A website in software engineering, making it a popular target of mining
studies. It included over 20M questions and 29M answers for software developers
at the time of our analysis. Questions can be asked about specific programming
problems, algorithms, tools used by programmers, and practical problems related
to software development. Testing the database access code also falls into these
categories. However, the guidelines say that “the best Stack Overflow questions have
a bit of source code in them.”13 More generic questions, not closely related to source
code, are often discouraged as out-of-scope or opinion-based. General discussions
are preferred on Software Engineering. We included this site as we were interested
in higher, conceptual-level problems as well, not only those related to the source
code. Another valuable source for discussions in the Stack Exchange network is
Code Review. There, developers can ask for suggestions on a given piece of code. As
they often include test code, we considered questions from Code Review as well.

From these three Q&A websites, we selected our candidate questions according
to the following criteria:

(a) Scope. We decided to select questions if (i) they explicitly mention testing
in their title and (ii) they use database access terms in their description (e.g., DAO,
SQL). We loaded the dumps of Stack Exchange sites into a database for this filtering.
We created full-text indices on both the titles and question bodies. Then we queried
them, so the description had to match (database | (data & access) | sql |
dao | pdo) & test and the title had to match test. The full-text search handled
normalised text, so stemmed words were also considered (e.g., test-ing, database-s).
Notice that Stack Overflow has a tagging system for classification. However, using
these tags is up to the user, who can easily omit them. Besides, the tagging system is
different for the three sites considered, which led us to our alternative approach.

(b) Impact and quality. Due to the potentially large number of questions and
limited resources, we targeted posts with higher impact and better quality. For this
reason, we relied on the scoring system of Stack Exchange. No up-votes or a negative
score may indicate problems, e.g., an unclear or out-of-scope question. Therefore,
we excluded posts with zero or negative ratings.

We used the Stack Overflow dump published by Stack Exchange in December
2019 and the dumps of Software Engineering and Code Review published in March
2020. A total number of 1,837 questions matched the criteria: 41 on Code Review,
174 on Software Engineering and 1,622 on Stack Overflow (see Table 3.2).

We did a first manual screening of questions on the different sites. We observed
that Code Review and Software Engineering questions were closer to our scope.
Therefore, we selected more questions from these sites and aimed for higher quality.
To reach a 99% confidence level with a 5% margin of error, we set a threshold for a
minimum score of 1 for Code Review, 3 for Software Engineering, and 13 for Stack
Overflow.

13https://stackoverflow.com/help/on-topic

44

https://stackoverflow.com/help/on-topic

3.3.1. Context and data collection

Source
Candidate Selected False
Questions Questions Positives

Code Review 41 41 3
Software Engineering 174 140 25
Stack Overflow 1,622 351 86

Total 1,837 532 114

Table 3.2: Overview of the questions selected from Stack Exchange sites

Manual classification of database testing issues

After collecting the 532 questions, we manually inspected them. We followed an
open coding process often applied to construct taxonomies or systematic mapping
studies [99, 129]. In this approach, participants apply labels to concepts found in the
text of artefacts. Then the tags are organised into an overall structure. During the
process, labels and categories might be merged and renamed [99].

We performed the classification process in three rounds. First, we carried out a
trial round with a random set of 100 questions, wherein two of the authors assigned
labels to the artefacts. We wanted to test the classification platform and see whether
we needed to apply changes to our selection criteria. After this trial round, we
implemented a few adjustments to our platform. Then, we labelled the remaining
questions in a second round by involving four authors. Each artefact was labelled
by two authors, randomly assigned to them. In the last round, we resolved conflicts
where needed.

We implemented a labelling platform for this purpose. It showed the question,
its relevant metadata (score, timestamp, tags) and a link to the original discussion
thread for further inspection. We followed a multi-label approach. Each participant
could assign multiple labels to the artefact from the existing list in the database.
If needed, they could also create new tags. In principle, existing labels should not
be shown to participants. But as we expected a high number of tags, showing the
existing ones could help us use consistent naming without introducing substantial
bias. Indeed, the participants were not aware of the assignments.

After the second round, all 532 questions were labelled by two participants.
At this point, one author reviewed all the tags and proposed merging those with
identical meanings. This merging was discussed among authors and applied to the
database.

We finally agreed and used identical tags for 147 questions; partially agreed for
77 posts (only a subset of identical labels) and used entirely different tags for 308
questions. The high number of unique tags explains this relatively high number of
conflicts (72.37%). Indeed, at this point, the database had 290 different labels. Thus,
participants took advantage of the multi-label classification and captured various
aspects of questions.

To resolve conflicts, a third tagger was assigned to review each conflicting artefact.
This third person was a randomly selected author who took part in the classification
but did not label the same question beforehand. The system showed the labels

45

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

of the previous taggers, and the reviewer could accept or discard them. Minor
modifications were also allowed, if necessary.

At the end of the process, one author carefully reviewed all the tags and organised
them into categories. This categorisation was then discussed among the authors
in multiple rounds. As an outcome, a taxonomy was constructed with 83 database
testing issues in 7 main categories. We present this taxonomy with qualitative
examples in the rest of this section.

3.3.2 Taxonomy of database testing issues

Usman et al. reviewed taxonomies in software engineering and found the hierar-
chical form the most frequently used classification structure [129]. We adopted
this representation as an efficient approach to organise our findings. In this form,
there is a parent-child (is-a) relationship between categories, and one category has
additional subcategories. Categories correspond to issues or problems raised in the
question, and subcategories represent subtypes of a problem. Consider, e.g., Mock-
ing Persistence Layer as a specialised type of Mocking-related issues.

Figure 3.3 shows the final structure of the taxonomy. There are a total number of
83 leaf issues organised in 7 main (root) categories. We indicate the total number of
questions labelled with related problems for each root category. The distribution of
the corresponding questions over the three sites is also provided. For example, the
Mocking category had 54 questions, including 8 from Code Review, 17 from Stack
Exchange, and 29 from Stack Overflow. Recall that we had a multi-label approach,
so one question could represent mixed problems. Thus, a question can belong to
more categories in the hierarchical taxonomy.

We observe intriguing technical and conceptual difficulties, differentiating be-
tween them in Figure 3.3 as follows. We mark the technical problems with ⋔ and
the conceptual ones with . It is interesting to observe the origin of questions for
those abstraction levels. Higher-level conceptual problems mainly originate from
Software Engineering, especially for Maintainability/Testability or Method. Technical
problems are closer to the source code and mostly originate from Stack Overflow,
especially for the Framework/Tool Usage category. Questions from Code Review
cover both abstraction levels, but most of them relate to the general Best Practices
category. None of them deals with Framework/Tool Usage. Below, we describe and
illustrate each main problem category.

⋔ DB Management

The most prevalent technical issues are related to database management: we found
145 questions in this category. Indeed, many have problems initialising the database
before executing the tests. This includes starting the database, configuring it, and
populating it with test data. The test database population was often mentioned as
a root cause of performance issues. These initialisation steps are critical as they
must be performed before test executions. As a developer complained: “This whole
thing takes quite some time [. . .]. Having this run as part of our CI [. . .] is not a

46

3.3.2. Taxonomy of database testing issues

Configuration (58)

! Mocking (54)
Mock DB Calls
Mock Persistence layer
Mock Specific Database
Monitor Status of Mocked DB
Test DB Exceptions with Mocked DB

! Parallelisation (12)
Asynchronous Test Execution with a Single DB
Avoid DB Population Executed in Parallel
Concurrent DB Modification Leads to Test Fail
Parallelize Tests Accessing a Single DB
Parallelize Tests with Several In-memory DB
Test Asynchronous DB Tasks

DB Connection (39)
Close DB Connection When Test Fails
Connect to Multiple Databases
Handle Connection String
Manage Shared Connection Among Tests
Read-Only Connection For Tests
Use Dependency Injection

DB Population (67)
Clear DB Before Tests
Exclude Outdated Data
Generate Random Data
Populate from Dump File
Populate from Fixtures/CSV
Populate from Production DB
Use Development Data
Wait Until the DB is Populated Before Tests

DB Depopulation (37)
Cleanup Production DB
Cleanup Test DB
Introduce Special API for Cleanup
Rollback Changes

! DB Management (145)
Deployment
Isolate Test DB from Production DB
Setup Test DB Before Tests
Start DB Before Tests
Stop DB After Tests
Synchronize Test DB

! Framework/Tool Usage (75)

Configure DB Loading/Population
Configure Logging of SQL Queries
Different Config. for Production/Test DB
Keep Test Data After Tests
Sequential Instead of Parallel Execution
Run Single Tests on a Separate DB
Sequential Instead of Parallel Execution
Transactional Tests

Documentation Clarification
Find Examples/Tutorials
Handle Error/Warning Message

" Maintainability/Testability (27)
Adapt Tests to Schema Changes
Improve Testability of DB Access Code
Manage Schemas
Manage Test Data
Test Isolation
Test Code Organization
Test Reusability

" Best Practices (216)
Handle Exceptions
Naming Convention
Performance Improvement
Test Automation
Test Coverage
Testing for Security
Test/Validate (125)

" Method (44)
Cleanup Before/After Tests
Rely on Tests Without Data
Test Data Access

Test With Deterministic vs Non-Det. Data
Use VM for Testing
Use In-Memory DB vs Local Test DB
Use In-Memory DB vs Mocking
Use Mocking vs Test DB

Configuration Data
DB Access Performance
DB Connection
DB Constraints
DB Creation
Migrations
Models
Persistence/DAO Layer
Services and DB
Stored Procedures
Queries
Test Data
Transactions

Test Implementation vs Behaviour

Unit Testing vs Integration Testing

CR CodeReview SE SoftwareEngineering SO StackOverflow

SE
SO

CR 0%
25%
75%

(0)
(3)
(9)

SE
SO

CR 10%
3%

87%

(4)
(1)

(34)

SE
SO

CR 15%
31%
54%

(8)
(17)
(29)

SE
SO

CR 10%
16%
74%

(7)
(11)
(49)

SE
SO

CR 0%
19%
81%

(0)
(7)

(30)

SE
SO

CR 0%
3%

97%

(0)
(2)

(73)

SE
SO

CR 0%
2%

98%

(0)
(1)

(57)

SE
SO

CR 15%
63%
22%

(4)
(17)
(6)

SE
SO

CR 13%
32%
55%

(28)
(69)

(119)

SE
SO

CR 15%
32%
53%

(19)
(40)
(66) SE

SO

CR 7%
59%
34%

(3)
(26)
(15)

! " Conceptual IssuesTechnical Issues

SE
SO

CR 8%
14%
78%

(11)
(21)

(113)

Figure 3.3: Taxonomy of issues faced by developers when testing database access
code

problem, but running locally takes a long time and really prohibits running them
before committing code” (SE1).14

Questions also came from situations when the design did not support data
deletion (SE2). Others faced issues keeping a test DB in synch with a production or
development DB (SE3), while many had problems handling the connection to a test
DB (SE4, SE5, SE6).

⋔ Framework/Tool Usage

Many problems (75) concern using a concrete tool or framework. Most of them
relate to configuring a framework for a dedicated database in a test/development or
production environment (SE7, SE8). These questions have high scores suggesting

14We cite posts on Stack Exchange sites with SE notation. These references can be found in Table A.1
of Appendix A

47

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

that many developers suffer from such issues. A question to configure Django (SE8)
was voted up 59 times and stared by 16 users.

Similarly, developers ask help for different DB initialisation (e.g., running scripts,
using dumps or fixtures) or cleanup configurations (SE9). Interestingly, in some
cases, they want to keep the test database after running their tests for debugging
purposes (SE10). Many also ask for guidance to solve a particular error message
in the testing framework, e.g., misusing transactional tests (SE11) or configuring
in-memory databases (SE12).

⋔ Mocking

Mocks can help by isolating the tests (i.e., cutting off dependencies) and avoiding the
performance drawbacks of databases (e.g., avoiding IO). Many questions indicate
that developers need help in mocking the persistence layer. As a first step, an
important design decision they have to make is the level at which they implement
the mocks.

For example, a developer reasoned in a question as follows: “I could either mock
this object at a high level [. . .] so that there are no calls to the SQL at all [. . .]. Or I
could do it at a very low level, by creating a MockSQLQueryFactory that instead of
actually querying the database just provides mock data back” (SE13). Recommen-
dations depend on the objectives, as an answer says: “Higher level approaches are
more appropriate for unit testing. Lower-level approaches are more appropriate for
integration testing.”

Broader questions were also about the benefits of mocking (SE14) or guidelines
to mock the data access layer (SE15, SE16). Technical questions tackled, for example,
emulating exceptions in a mocked database (SE17). When mocking is unfeasible, it
can indicate poor software design (SE18). Stored procedures (SE19) and views (SE20)
made mocking impossible in other systems.

⋔ Parallelisation

We observed some (12) technical problems related to parallel test executions. These
were closely related, so we grouped them in this category. One of the highest-rated
questions was about turning off the parallel execution of tests in sbt (a build tool for
Scala and Java) (SE21). The developer complained that a project “mutates state in
a test database concurrently, leading to the test to fail.” Likewise, asynchronous or
lazy calculations led to challenging bug hunts (SE22). They also asked for advice to
parallel test execution, e.g., to handle a dedicated in-memory database per thread
(SE23).

 Best Practices

The most frequently used labels were about testing best practices for DB applica-
tions. Developers either look for general advice or explicitly want to know about
best practices. The highest-rated question has 331 up-votes entitled “What’s the best

48

3.3.2. Taxonomy of database testing issues

strategy for unit-testing database-driven applications?” (SE24). It generates discus-
sion on mocking vs testing against an actual database. In the answers, mocking is
mainly recommended for unit testing, while a copy of the database is favoured for
more complex databases. In other cases, a combined approach might be needed:
“Ideally I want to test the data access layer using mocking without the need to connect
to a database and then unit test the store procedure in a separate set of tests” (SE15).

Best practices are also sought for performance improvements (SE25, SE26, SE27).
In particular, where mocking is not an option, solutions mainly advise using in-
memory databases to reduce IO operations. Other topics include testing for security
vulnerabilities, e.g., looking for static analysers to spot SQL injection attacks (SE28).
Likewise, some questions look for tools to measure test coverage. They want to know,
for example, the coverage of executed queries in test cases (SE29). A majority of
these questions were grouped under Test/Validate. These are looking for advice on
testing or validating a specific code or DB entity, e.g., SQL queries embedded in code
(SE30), database migration (SE31) or transactions (SE32).

 Maintainability/Testability

Several questions tried to address maintainability problems or the testability of
the database access code. In a question, a developer struggled with a system that
validated RESTful APIs with SQL queries in its integration tests (SE33). As he summed
up his root problem: “A small change in the DB structure often results in several man
days wasted on updating the SQL and the SQL building logic in the integration tests.”
The developer wanted to wipe out the SQL code from the tests entirely. In the answer,
they discouraged him from doing so. They acknowledged that relying on the queries
can be a good practice to verify the database state. Instead, it was recommended
to improve the maintainability of the tests: (i) by reducing the coupling inside the
codebase (one table per module), and (ii) by splitting the tests into smaller pieces.

In another question, a developer wanted to reduce the maintenance effort by
omitting the tests of the ORM layer. He was, however, afraid of giving up on aiming
for 100% coverage. As he wrote it, “Our test databases are a bit messy and are never
reseted, hence it’s impossible to validate any data (and that is out of my control).” In
the answers, they supported him that balancing coverage and prioritising efforts is
important, then suggested generating the tests for the ORM layer.

Other questions pointed out that preparing the environment of testing the
database access code is also troublesome. For example, a developer complained:
“The problem I ran into was that I spent a lot of time maintaining the code to set up
the test environment more than the tests” (SE34).

Many questions were also related to the management of changing schema or
test data. As a general guideline, a recommendation said: “I would apply a single
rule: keep your test data close to your test. Test is all about maintenance: they should
be designed with maintenance in mind, hence, keep it simple” (SE35).

49

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

 Method

Many developers were concerned about the problems of their testing method. The
most frequent arguments were whether DB-dependent code should be tested via
unit or integration tests (SE36, SE37, SE38, SE39, SE40). A regular claim was that
“unit tests should not deal with the database, integration tests deal with the database”
(SE37). Recommendations target to maximise the isolation of unit tests and decouple
the database, e.g., through mocking. In contrast, integration tests aim to test more
complex structures by relying on the database.

Interesting questions were related to populating a database before tests,
e.g., whether data should be dynamically generated or pre-populated beforehand
(SE41).

A recurring discussion was on using an in-memory database versus a mocking
strategy (SE42). When performance or decoupling the tests from the database
was more critical, the choice was to mock. Otherwise, we could see cases where
mocking was impossible (e.g., because of stored procedures or views). The in-
memory database was considered a good compromise to test the database access.
It indeed solves the portability issues of testing against an actual DB and improves
the performance. Compared to mocking, the testing can be more extensive, e.g., it
enables the tests to validate embedded SQL queries. In some cases, however, the
in-memory database differs significantly from the production database. This can be
a problem as some DB-specific features cannot be tested, e.g., a special SQL syntax
(SE43).

3.4 Best Practices When Testing DB Access Code

In the previous study, we investigated the challenges of testing database access
code. Here, we study the solutions proposed by developers. We seek to answer the
following research question:

RQ2: What are the best practices when testing database manipulation
code?

We assessed RQ2 by studying answers to the StackExchange sites’ questions
in our previous study. The outcome is a hierarchical taxonomy of best practices
recommended by the developers.

3.4.1 Method

We conduct this research with an open coding process similar to the labelling in
our first study (see Section 3.3.1). First, we describe this process by presenting our
dataset preparation, and then we discuss the details of the manual labelling.

Dataset preparation

We took RQ1’s dataset of questions about database access code testing from Stack
Overflow, Software Engineering, and Code Review. We loaded the same data dump

50

3.4.1. Method

versions into a database to remain consistent with our previous research question.
We exported all the answers to the 418 questions labelled previously (532 questions
excluding 114 false positives). Again, we filtered the answers with negative scores as
they usually suffered from quality issues, i.e., they could be wrong, incomplete, or
irrelevant to the question. Next, we picked the top three highest-rated answers for
each question. When the accepted answer was not among the top three, we included
it as a fourth answer.

Scores

Site Questions Answers Min Max Avg Median

Code Review 38 50 0 19 3.22 2
Software Engineering 115 243 0 182 5.70 3
Stack Overflow 265 691 0 545 21.10 10

Total 418 984 0 545 16.39 6

Table 3.3: Overview of the selected answers and their scores

Table 3.3 presents an overview of the answers to the questions after the selection
process. The table shows, for each Stack Exchange site, the number of questions,
answers, and statistics (min, max, average, and median) of their scores. Overall, we
had 984 answers to 418 questions in our database. The highest-rated answer had
545 upvotes. It responded to a Stack Overflow question about “MySQL - force not to
use cache for testing speed of query” (SE44). Also interesting to notice an answer to
a Software Engineering question, which had 182 likes. The question with the title
“Shouldn’t unit tests use my own methods?” addressed the unit testing of Data Access
Objects’ methods (SE45).

Manual labelling

We used a similar open coding process to RQ1 and manually labelled the answers.
However, we had some significant differences, which we explain below.

First, we needed to adapt the labelling platform to the answers, as it was designed
for labelling questions. When someone started tagging, the platform randomly
assigned a question to the user and showed it with the highest-rated answers. The
platform also displayed the metadata of the question (score, time, URL) and its
answers (score, URL, and whether it was accepted). It also presented the problem
categories assigned to the question in the previous round.

We could assign multiple labels to each problem category for each question,
covering all answers. For example, if a question had been labelled in RQ1 as “Best
Practices > Test/Validate > Queries” and “Mocking,” one could assign a “Don’t mock
the connection” tag to the mocking category and another “Avoid In-Memory DB as it
might not be fully compatible” tag to the query validation.

This is a significant difference from RQ1, where we assigned problem labels
directly to the question.

51

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

Second, we added a feature to highlight relevant sentences in questions or an-
swers. We needed this feature as the answers had many exciting ideas, guidelines, or
takeaway messages, which could easily get lost in the longer texts and code examples.
After our first trial round, we also anticipated that highlights would be helpful when
reviewing each others’ tags. We highlighted 835 text fragments, in the end, 3.27 on
average per question. The highlighted sentences are available with our tagging in
the replication package [57].

Third, we simplified the process, and each question was first tagged by an au-
thor then reviewed by another one. In RQ1, two authors labelled each question
independently, and then a third one reviewed it. We altered the process because
we experienced many conflicts due to the large number of tags, and the reviewing
typically meant merging the two authors’ tags. In RQ2, the second tagger had an
explicit reviewer role instead of an independent tagger.

All five authors participated in the labelling. Like in the first study, we conducted
the process in three main rounds. First, we had a trial round of 27 questions, adding
the highlighting feature and minor fixes to the platform. Then, we performed the
first labelling round, followed by the reviewing round. After each round, we held
discussions among all authors, shared our experience, and renamed or merged tags
where needed (e.g., because of their identical meaning).

We did not label all the questions from RQ1 because of limited time constraints.
Instead, we focused on Best Practices, the most extensive and significant problem
category (see Figure 3.3).

Questions Answers

Issue Category Total Labelled Total Labelled

Best Practices 216 216 510 510
DB Management 145 57 351 142
Framework/Tool Usage 75 34 185 75
Maintainability/Testability 27 16 50 32
Method 44 21 106 56
Mocking 54 34 123 75
Parallelisation 12 3 29 7

Total 418 255 984 598

Table 3.4: Total and labelled questions per main issue categories

Table 3.4 presents an overview of the labelled questions and their answers per
each main issue category. A question could belong to multiple problem categories
in RQ1. Thus, “Total” represents the union of the questions, and its figures do not
necessarily equal the sum of all categories. We labelled 598 answers of 255 questions,
61% of all the answers and 100% of the Best Practices category. Among these, we
found 4 questions without answers, and 18 with irrelevant answers, e.g., they were
unrelated to database manipulation code.

Finally, one author carefully reviewed all the tags and organised them into a
hierarchical taxonomy. This categorisation was then discussed among the authors in

52

3.4.2. Taxonomy of database testing best practices

multiple rounds. The final taxonomy had 363 tags in 9 main categories. We present
this taxonomy through qualitative examples in Section 3.4.2.

3.4.2 Taxonomy of database testing best practices

Test Characteristics

Atomic

Compliant

Consistent

Deterministic

Isolated/Independent

Maintainable

Paralysable

Repeatable

Self-explaining

Simple

Small

Up-to-date

Testing Environment

Configuration

In-Memory DB

Tool

Real DB

Mocking

How

What

When

Performance

Benchmarking

General Improvements

Query Optimisation

Process

Automatization

Continuous Integration

Development

Debugging

Testing

Test Code

API

Assertions

Code Correction

Code Example

Organisation

Parallelisation

Re-use production code

Testing DB Schema

Testing Queries

Testing Stored Procedures

DB Management

Cleanup

Transactions

Connection

Preparation

Generation

Storage

Usage
Test DB

Test Data

Code Structure/Design

Coupling

With DB

Design Patterns

Testability

Concepts

Book recommendation

Coverage

Definitions

Test Scope

Don’t test it

Test it

8560

3530 3833

6856

6433

1012

12989

4031

6419

QuestionsTags

Figure 3.4: Taxonomy of best practices proposed by developers when testing
database access code

Figure 3.4 shows the main categories in the taxonomy of database testing best
practices. The taxonomy follows the same hierarchical structure as we described in
Section 3.3.2. We had a total number of 363 tags at the end of the manual labelling
process. Each tag represents a solution to a problem fitting into contexts like “The
developers recommend...” or “The solution to this problem is...”. We organised the tags
into 9 root categories following a similar classification to the taxonomy of issues. The
figure presents the number of questions (? icon) and the number of tags ($ icon)
for the root categories. The lower-level tags, that are not in the figure, are listed in
the replication package [57]. In the rest of the section, we describe each category
through intriguing examples.

53

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

Test characteristics

Many answers expressed that sound tests should adhere to specific characteristics
and principles. Suggestions are mainly general, such as the FIRST (Fast, Indepen-
dent, Repeatable, Self Validating, Thorough) principle (SE46), or that tests should
be atomic, small, simple, consistent and in compliance with requirements (SE47).
Many highlighted that tests should be independent/isolated. For example, an an-
swer says that “if the tests can not run independently, then they are not unit tests”
(SE48). This is especially important for database-centred applications where it can
be tempting to write tests relying on a database state from a previous test, which
would be against the rule of isolation. It can also affect repeatability and further
complicate test failures. An answer points it out, “relying on the order of your tests
indicates that you are persisting state across tests. This is smelly” (SE49). Leaving the
database in a consistent state requires extra effort. Developers have various sugges-
tions, e.g., transactions, in-memory databases, mocks, fakes, stubs. We have more
specific tags for these in the following taxonomy categories. It is also interesting to
note the up-to-date test property, highlighting the importance of syncing tests with
changes applied to the production database (SE50).

Code structure/design

This category contains recommendations targeting source code structure or design.
We grouped tags into three subcategories: Coupling, Design Patterns, and Testability.
Although they are interrelated, we differentiated them based on the primary aim of
the suggestion.

Coupling was a primary concern for testing: 15 questions had answers falling
under this category. We identified tags such as design with loose coupling for better
mocking or decouple tests from implementation. An answer noted: “Make sure you
design them [service classes] with loose coupling in mind so you can mock out each
dependency” (SE51).

We separated a subgroup where they specifically targeted coupling With DB.
Common recommendations were to keep logic out of the database, have a separate
data access layer, and decouple the data layer. As a developer said, “I would strongly
suggest decoupling it [the data access layer] from both the web and from the DB”
(SE52). Others added, “if your objects are tightly coupled to your data layer, it is
difficult to do proper unit testing” (SE53); “The test knows too much about intimate
details of the implementation” (SE54). Developers also proposed keeping logic out
of the database (SE19, SE55). An answer stressed that “too much business logic is
making its way into databases these days” (SE56).

Recommendations also aimed for general testability improvements, such as a
design with single responsibility and break the code down to smaller testable units –
for stored procedures too (SE57).

Many suggestions mentioned design patterns. For example, developers recom-
mended dependency injection in the answers to 14 questions. They employed it
to automatically inject a connection to a test database instead of the production
database.

54

3.4.2. Taxonomy of database testing best practices

Developers said, “using dependency injection, have the unit tests select a different
database than what the production (or test, or local) builds use” (SE58); “I’ve found
that dependency injection is the design pattern that most helps make my code testable”
(SE59). A design recommendation was also to have a dedicated base class or tem-
plate interface for tests involving database access code, e.g., simplifying database
initialisation, cleaning up, or mocking (SE60).

Concepts

We found valuable discussion threads about definitions, various aspects of tests,
and coverage. We grouped them under the Concepts category. In particular, 34
questions were tagged as explanation of levels of tests: unit, interaction, integration,
and acceptance tests, the second most used tag.

Many answers state the differences between unit and integration testing when
databases are involved. A common argument is that unit tests should test their
units in isolation; hence, they should mock, fake, or stub the database. In contrast,
integration tests consist of an actual test database with test data reset in a known
state before and after each test.

An answer summarises it as follows: “A unit test deals with a part of the code
which is granular enough to be able to narrow the search of a bug if the unit test fails.
There is no long polling here. No REST calls. No AJAX. No database access. REST,
access to files, database calls, and all those operations which are exterior to the tested
code are mocked, i.e. a mock or a stub is created for everything your tested unit needs.
[. . .] Once you have unit tests covering the critical parts of the application, you can
start assembling the parts. Interfaces between different components of a system are
good places for mistakes, so the integration of components needs to be tested as well.
This is what integration tests are about” (SE61).

We found interesting discussions about Coverage. They generally agreed that
border and corner cases must be covered (SE62). They also argued the importance
of testing data access code: “If you don’t test your database operations, how do you
know that your data access component works?” (SE63)

The Scope subcategory collects answers about what to or what not to test. De-
velopers suggested not to test (i) anything that can’t fail (SE64), (ii) third-party code
(SE65) and (iii) code without logic (SE66). For example, an answer said, “there are
many purists who say that you shouldn’t test technologies such as EF and NHibernate.
They are right, they’re already very stringently tested and [. . .] it’s often pointless to
spend vast amounts of time testing what you don’t own” (SE65). Another argued, “if
it’s really thin and there’s no interesting code there, don’t bother unit testing it. Don’t be
afraid to not unit test something if there’s no real code there” (SE66). The data access
layer has a special role in this case, as noted by a developer: “Some people [. . .] say
you should only test code which has conditional logic (IF statements etc.), which may
or may not include your DAL [Data Access Layer]. Some people (often those doing
TDD [Test-Driven Development]) will say you should test everything, including the
DAL, and aim for 100% code coverage” (SE67).

55

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

What to test was more sparse with suggestions such as check both entities and
queries, one test for each type of output resultset (one row, multiple rows, empty
resultset), test DAO[Data Access Object]/Repository normally if it performs any logic.
Developers suggested tests for pre- and postconditions (SE68), query correctness
(SE69, SE70, SE71), the connection string (SE5), database schema (SE15), UI (SE72),
and CRUD operations. The importance of the latter one was highlighted in an
answer as follows: “To really test your service layer, I think your layer needs to go down
to DLLs and the database and write at least CRUD test” (SE66).

We also found book recommendations, e.g., Growing Object-Oriented Software,
Guided by Tests (SE73, SE74), The Art of Unit Testing (SE75 SE76), and xUnit Test
Patterns (SE76).

Database management

The second most prevalent category was Database Management. The same problem
category was also significant in the taxonomy of issues. We divided it into subcate-
gories, i.e., the preparation or clean up of a test database, the generation, storage,
and usage of test data, or handling the connection to the database.

The tags revolve around reaching a known state before each test execution
(e.g., SE77, SE78). Indeed, the recommendation to clean up before each test (known
state) was the most prevalent, with 20 occurrences. We have seen mainly two best
practices as follows. (i) Using an actual database, loading the schema and test data
before each test, then cleaning the database before the next test case. There are
various tuning practices. For example, one can optimise database initialisation by
loading the schema once then populating only with necessary minimal data. Then
clean up only the modified records if there were any. Many also proposed in-memory
databases for performance reasons or simply because they are easily destroyable
after each test run. (ii) The other thread was about transactions, i.e., load the schema
and test data, run the tests in transactions, then rollup changes. We tagged these as
use transaction scopes (which revert the state of DB after each test).

Interestingly, many frameworks provided support for these techniques. We
counted answers recommending setUp() & tearDown() methods for database ini-
tialisation and clean up in unit tests. Spring also supports test execution through
transaction management.

Developers had intriguing arguments for these approaches as follows. “Just
remember: At the start of the test, everything is created, at the end of the test everything
is destroyed” (SE79). “I suggest either connecting to an empty DB and filling with data
in the test set-up phase, then either emptying it or deleting it in the test clean up phase
or creating a copy of a constant DB, connecting to it in the test set-up phase, then
deleting in the test clean up phase. It is important to do this per test, so that the tests
are truly independent” (SE55). “Using setUp() and tearDown() to get a consistent state
for your data before running your tests is (imho) a fine way to write DB-driven unit
tests” (SE80).

We also grouped generic DB-related recommendations in the Test DB subcat-
egory. For instance, an answer advised avoiding a different type of DB than in

56

3.4.2. Taxonomy of database testing best practices

production to prevent cross-platform issues (SE81).
Finally, the Test data subcategory consists of recommendations to generate,

store, and use testing data. For example, use the ORM [Object-Relational Mapping]
to initialise test data (SE65) or generate random but valid data entries (SE82).

Mocking

We separated a Mocking category in the taxonomy due to the prevalence of these
tags. The use Mocking tag was assigned to the most questions; we encountered it 46
times. A recurring discussion of Concepts argued unit tests should imply mocking.
An answer stated it as follows: “If you test class B, which is a client of A, then usually
you mock the entire A object with something else, [. . .]. Likewise, when you write a
unit test for class C, which is a client of B, you would mock something that takes the
role of B” (SE5).

Answers proposed what to mock, e.g., “You shouldn’t mock calls to the database
because that would defeat the purpose. What you SHOULD mock are, for example,
calls to your DAO from, say, a service layer. Mocking allows you to test methods in
isolation.” (SE83). Others elaborated on how to mock and presented complete code
examples (SE84). Mocking frameworks (e.g., Easymock, Mockito, Moq, Rhino Mocks)
were often recommended. Many threads also discussed the differences between
mocks, stubs and fake objects (SE85, SE86, SE27).

Interestingly, a few answers hinted that caution is needed in using mocks (SE87,
SE88). An answer argues that “I’d try to use them [mocking] sparingly in unit tests
since by using them you actually try to test the function implementation and not the
adherence to its interface” (SE88).

Performance

We separated a group for performance tuning or optimisation recommendations.
These were often context-specific or fine-tuning alternatives. For example, an answer
(SE81) recommended using tmpfs (i.e., run the database on an in-memory filesystem)
when a per se in-memory database was not a viable option (e.g., because of a different
SQL dialect). Another answer suggested using prepared statements in loops (SE82)
or deferring garbage collection for the tests (SE27). A recurring recommendation was
using a lightweight database (in-memory) to optimise performance (SE89, SE90).

Process

Process category groups tags about automatisation, continuous integration, test
failure debugging, or the testing process in general (e.g., SE78 SE50). The most
recurring discussions revolved around integration and unit tests. In particular, they
suggested separating integration from unit tests (SE5), highlighted the importance
of automated UI tests (SE91), or proposed testing the persistence layer manually
(SE74).

Recommendations were also related to debugging, e.g., logging failing or slow
queries (SE92). They also suggested integration testing in certain situations (SE93,

57

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

SE31). As an example, an answer says, “there’s no way to unit test Spring Data
JPA [Java Persistence API] repositories reasonably for a simple reason: it’s way too
cumbersome to mock all the parts of the JPA API we invoke to bootstrap the repositories.
Unit tests don’t make too much sense here anyway, as you’re usually not writing any
implementation code yourself [. . .] so that integration testing is the most reasonable
approach” (SE94).

Test code

Recommendations also focused on the source code of the tests, e.g., recommended
specific APIs. We group these under the Test code category. The answers include
configuration fixes, general how-tos of APIs, code examples, or asserts in tests.

For example, developers often stress the importance of single asserts. An answer
says, “The tests are far more granular, each test verifies one property [. . .] single asserts
are good” (SE65). Another developer argues that “there should only be one reason for
a test to fail” (SE95).

We learned that many testing frameworks actually provide APIs to support
database testing. In particular, we found API recommendations for Android, Entity
Framework, Django, LINQ, Spring Framework, and NUnit.

Testing environment

We separated a group of Testing environment recommendations. This group has the
highest number of tags and questions due to the several tools named in the answers.
It consists of advice about the application or build frameworks, configurations,
database management system, or various tool proposals.

Many answers recommended in-memory databases, e.g., H2, HSQLBD, Hyper-
SQL, Ephemeral PG, and SQLite. These are not exclusively relational. For example, a
thread talks about using MongoDB in memory mode (SE12).

Tool recommendation includes also mocking libraries (e.g., Easymock, Mockito,
Moq, or Spring Data Mock). Database configuration concerned various technologies
such as Laravel (SE96), JUnit (SE97), Spring Boot (SE98), Django (SE99, SE100). These
were mainly related to configuring a test database, fixtures, or migrations. Flyway
and Liquibase were also notable tools in this context (SE81). They were mentioned
to manage (track, version, and deploy) database schema changes.

We also found tool recommendations for vulnerability testing, e.g., SQL injec-
tions (SE101, SE102), and tools for virtualisation or container environments (SE81).

Finally, it is interesting to notice that 24 answers proposed DBUnit,15 a testing
framework for database-centred applications (SE103, SE89, SE77, SE81).

An answer remarks that “the DbUnit framework (a testing framework allowing to
put a database in a known state and to perform assertion against its content) has a
page listing database testing best practices that, to my experience, are true” (SE78).

15https://www.dbunit.org/

58

https://www.dbunit.org/

3.5. Discussion and Implications

3.5 Discussion and Implications

Below, we discuss the main observations we made in our investigation, together
with future directions for researchers and practitioners.

Maintainability of database tests Test maintenance was a frequent issue. A devel-
oper aptly outlined, “if it is hard to maintain, you’re doing it wrong” (SE39). Many
answers recommended following sound characteristics or principles. However, their
implementation guidelines were often unclear. A common challenge was to isolate
tests. Best practices suggested mocking in unit tests and a separate testing database
for integration tests. They preferred in-memory databases for this purpose. A well-
designed source code where the database access code is loosely coupled to other
parts also played a crucial role in maintainability. Many struggled to keep tests in
sync with database schema changes. Indeed, developers hardly get any support for
this task.

Our study is exploratory by nature. More studies are needed to understand the
factors affecting the maintainability of database-related test code. Understanding
more from the practices of the developers and good, maintainable database test
code [13, 104] is a promising direction. Alternatively, automated approaches could
help in regular tasks of developers. Some approaches aim to identify the system
fragments impacted by schema changes [90, 94]. Such methods could be extended
to the testing context, e.g., to maintain a mapping between schema elements and
mocks.

In-memory database vs actual database vs mocking We have seen many argu-
ments for and against mocking, in-memory databases, or the actual database. In our
motivational study, we found that 19 out of the 72 projects (26%) used mocks: 17 had
Mockito,16 and 2 had EasyMock tests.17 This low number surprised us, as mocking
was the recommended approach for unit tests to decouple them from the database.
This is in line with the findings of Trautsch and Grabowski [127], who observed only
a small amount of unit tests in open source Python projects, especially with mocks.
A potential explanation is that it is easier to set up an in-memory database and rely
on integration tests; instead of bothering with the implementation of mocks, despite
its advantages.

We also found positive examples when manually inspected top-starred projects
from the motivational study.

For instance, MyBatis,18 a popular project with 17k stars and 11.4k forks, had a
74% of its database access methods covered with tests. It is a persistence framework,
hence the high coverage. They use mocking for unit testing19 and a test database
with test data in scripts for integration testing.20 The test database is initialised

16https://site.mockito.org/
17https://easymock.org/
18https://github.com/mybatis/mybatis-3
19https://tinyurl.com/2dm37hv5
20https://tinyurl.com/39vkk8j2

59

https://site.mockito.org/
https://easymock.org/
https://github.com/mybatis/mybatis-3
https://tinyurl.com/2dm37hv5
https://tinyurl.com/39vkk8j2

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

before executing all tests, using the @BeforeAll annotation. Finally, each test ends
with a rollback function to get back to the initial state of the database.21

As another example, AxonFramework,22 a framework for building event-driven
microsystems, has 2.6k stars and 699 forks. They use dependency injection in the
Spring framework to mock the data source of tests.23 Their tests flush the database
before each test using the @BeforeEach annotation.24

In any respect, developers need help in the implementation of database-related
tests. They use frameworks’ features when available, but they would benefit
from more automated support in this context. Researchers have already explored
generating tests with mocks [16, 98]. Such tools’ emergence and initial success
(e.g., EasyMock,17 MockNeat25) encourages similar approaches.

Database support in testing frameworks In our motivational study, we excluded
projects with failing tests. Many failures were due to misconfigured testing environ-
ments. The systems either (i) relied on an external database for their tests or (ii) used
in-memory databases but did not set them up correctly. We observed related prob-
lems in our qualitative study: many developers struggled to configure frameworks
with multiple database connections. Consequently, our most extensive category
among the solutions was the testing environment. Almost half of the questions and
a third of the tags were related to this category.

Testing frameworks could provide more support to developers with database-
dedicated features. Especially if these are configurable from the build systems.
Some frameworks already offer similar functionalities. For example, Spring Test has
JdbcTestUtils,26 a collection of JDBC-related functions. It also supports test fixtures
and transactional tests. Rails and Django offer similar features.

Answers also mentioned dedicated tools to support databases in unit or inte-
gration tests. For example, DBUnit is a JUnit extension targeted at database-driven
projects, “an excellent way to avoid the myriad of problems that can occur when one
test case corrupts the database and causes subsequent tests to fail or exacerbate the
damage.”15 PHPUnit’s database extension has similar features.27

We observed that the most desired features pertained to the initial configuration
of databases and the efficient recovery of the database state between successive
tests. The high demand and many problems related to such features indicate that
developers’ needs remain unexplored in this field. Moreover, only a few answers
tackled trending technologies such as clouds and virtualisation or docker containers.
Such technologies could offer robust solutions, but they appear to be unexploited.

Further research is necessary to improve testing practices as far as database
access is concerned. As an answer notes, “the database is the bread and butter of
most business” (SE104).

21https://tinyurl.com/2p9ftswk
22https://github.com/AxonFramework/AxonFramework
23https://tinyurl.com/yckjv4h5
24https://tinyurl.com/5bs4nbzp
25https://github.com/nomemory/mockneat
26https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
27https://phpunit.de/manual/6.5/en/database.html

60

https://tinyurl.com/2p9ftswk
https://github.com/AxonFramework/AxonFramework
https://tinyurl.com/yckjv4h5
https://tinyurl.com/5bs4nbzp
https://github.com/nomemory/mockneat
https://docs.spring.io/spring/ docs/current/spring-framework-reference/testing.html
https://phpunit.de/manual/6.5/en/database.html

3.6. Threats to Validity

3.6 Threats to Validity

In this section, we discuss threats to the validity of our motivational study and two
research questions.

Construct validity In our motivational study, we rely on SQLInspect to identify
the database access methods of projects, i.e., methods involved in querying the
database. As a static tool, it may miss some DB methods, particularly in the case of
highly dynamic query construction.

For test coverage, we rely on JaCoCo, a state-of-the-art tool used in industry and
academia [75]. It might miss execution paths, and its configuration can influence the
coverage results (e.g., missing classes from the classpath). To avoid this, we executed
tests according to Maven standards and excluded projects with failing tests.

Internal validity In our qualitative analysis, the manual classification of Stack
Exchange questions is exposed to subjectiveness. To mitigate this risk, two authors
examined each post independently, and a third author resolved conflicts in the first
study. In the second study, one author assessed a question first, and then a second
author reviewed it. Already assigned tags could influence a reviewer. However,
the statistics confirmed that reviewers did not simply accept the taggings but also
removed or added new tags when needed. The questions had 2.51 tags on average in
the first round and 3.25 after the reviews. The total number of tags has also increased
21% from 300 to 365.

External validity Our motivational study is exploratory by nature. It considers
various types of projects in terms of their application domain, size, and intensity
of DB interactions. They are, however, all from Libraries.io and limited to the Java
programming language. Projects not considered in our study might lead to other
results.

In our first qualitative study, we extracted questions from three different Stack Ex-
change sites, intending to reach a higher level of diversity. We selected higher-ranked
questions which are likely to influence more developers. Similarly, we labelled only
the top three answers in the second study. This might introduce a bias towards the
posts we selected. In reality, developers might face even more diverse challenges
when (not) testing database code.

3.7 Related Work

In this section, we overview the related work of our study. First, we present empirical
studies inspiring our research. Then, we discuss approaches to support testing
database applications and present studies mining Stack Overflow.

61

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

3.7.1 Empirical studies on software testing

Our research got motivated and inspired by more general studies analysing testing
practices and maintainability issues.

In this context, Kochhar et al. [81] investigated the adoption of testing in open
source projects. They studied more than 20 thousand projects and explored the
correlation of test cases with project development characteristics, including project
size, development team size, number of bugs, number of bug reporters, and the
underlying programming languages.

Greiler et al. [66] conducted a qualitative study about testing practices of plug-in
based applications. They interviewed 25 senior practitioners and surveyed more
than 150 professionals. As an outcome, they provide an overview of testing practices.
They identified obstacles limiting the adoption of automated tests and proposed
recommendations and areas for future research.

Beller et al. [25] conducted a large-scale field study on testing practices, monitor-
ing five months of activities from 416 software engineers. They observed, among
others, that (i) developers rarely run tests in the IDE, (ii) test-driven development is
not widely spread among the participants, and (iii) developers usually spend 25% of
their time on testing.

Gonzalez et al. [63] analysed over 80k open-source projects. They found that
only 17% of those projects included test cases, and 76% did not implement testing
patterns that would ease maintainability.

Trautsch and Grabowski [127] analysed more than 70k revisions of 10 Python
projects. They observed that most projects had minimal unit tests, resulting in poor
test coverage. They also showed that developers tended to overestimate the coverage
of their tests and that mocks did not significantly influence the number of unit tests.

Our qualitative analysis revealed that many Stack Exchange questions concerned
mocking, a testing technique often used to isolate the component under test. Spadini
et al. [120] empirically analysed the usage of mocking dependencies on testing. Their
goal was to understand how and why developers used mocking. They explored four
projects with 2,178 test dependencies and surveyed 105 developers. Their results
indicate that mocking is often used on dependencies, complicating tests dependent
on external resources.

Alsharif et al. [13] studied the understandability of auto-generated database tests.
They argued that studies on creating database tests did not consider the human
cost to understand such tests. They used five database test generators and asked
participants to explain the results. The authors highlighted two main findings: (i)
the values in insert statements affected understandability, and (ii) using null values
with integrity constraints may confuse human subjects on the outcome of tests.

3.7.2 Support for testing database applications

Several researchers have proposed approaches to support testing database applica-
tions.

62

3.7.3. Mining stack exchange discussions

In this regard, Deng et al. [43] proposed a white-box testing approach for web
applications. They extracted URLs from the application source code to create a path
graph and generate test cases.

Ran et al. [102] proposed a similar framework for black-box testing of web applica-
tions. They used a directed graph of web page transitions and database interactions
to generate test sequences and capture how the database gets updated with the test
cases.

Marcozzi et al. [89] proposed an approach to symbolic execution of SQL state-
ments integrated with the traditional symbolic execution of the application source
code. Their approach handled interdependent interactions between the application
and the database. They also presented a symbolic execution algorithm for a subset
of Java and SQL, implemented as a testing tool for generating test cases.

Another important aspect of testing database applications is specialised coverage
since standard coverage techniques appear unsuitable for preserving all database
constraints.

In this sense, Kapfhammer and Soffa [77] presented a test coverage technique to
monitor interactions with database elements. They employed instrumentation of
the application and test cases to capture SQL statement usage. Then they collected
database-aware coverage reports of a test suite. Their coverage results also con-
sidered database interactions from the test cases and the program methods. They
used six database-centric applications as case studies and observed a testing time
increase from 13% to 54% as a drawback.

Tuya et al. [128] presented an approach to measure SQL query coverage. They
argued that SQL queries embedded in code are not considered for test design, al-
though queries implement an important part of the business logic. Their approach
identified test data requirements for SQL statements and expressed them as a set of
predicate rules. They demonstrated it on an open-source ERP application as a case
study.

3.7.3 Mining stack exchange discussions

We collected and classified questions in Stack Exchange sites through a multi-label
approach, inspired by previous work in our field.

Vasilescu et al. [130] investigated relationships between StackOverflow question-
s/answers and GitHub commits. They argued that developers could find suitable
technical solutions in StackOverflow, affecting their commit productivity on GitHub.
Their study showed a positive correlation indicating that developers’ activity on
StackOverflow affected their commit activity on GitHub.

Finally, Gonzalez et al. [64] proposed a five-way classifier approach assigning
multiple tags to StackOverflow questions. They used a dataset of over 3 million
questions.

63

CHAPTER 3. CHALLENGES AND BEST PRACTICES OF TESTING DATABASE ACCESS

CODE

3.7.4 Summary

The analysis of related research shows that database access code is sufficiently
different from regular code to warrant specialised approaches. Several research
works proposed approaches to support testing database access code. Nevertheless,
no research has investigated how developers test database access code in practice,
the main issues they face in this context, and the best practices recommended by the
developer community.

Our work tried to fill this gap by analysing how tests in open-source systems
cover the database access code and investigating the challenges and best practices
of testing database access code.

3.8 Conclusion

In this chapter we studied developers’ challenges and best practices in testing
database access code. In our first motivational study, we analysed 72 open-source
Java projects and investigated how their tests cover database access code. We found
that 46% of those projects did not test half of their database methods, and 33% of
them did not test the database communication at all.

We then conducted two qualitative studies28. (i) First, we analysed 532 StackEx-
change questions about database code testing and identified 83 issues, classified in
a taxonomy of 7 main categories. We found that developers mostly look for general
best practices to test DB access code. Concerning technical issues, they ask mostly
about DB handling, mocking, parallelisation, or framework/tool usage. (ii) Next,
we examined the answers to the questions. We distinguished 363 best practices
and organised them with 9 main categories in a taxonomy. Most of the tags and
questions were related to the testing environment and proposed various tools or
configurations. The second most significant category was about database manage-
ment best practices for initialising and cleaning a test database. The remaining
categories were code structure or design, concepts, performance, processes, test
characteristics, test code, and mocking.

Through the identification of these main difficulties and best practices we
propose several paths of future research in order to help developers in the writing of
quality tests of database manipulation code and thus improve the general quality of
data intensive systems’ software.

In the following chapters of this thesis we propose a database access code gener-
ator that can integrate the identified recommendations and facilitate the writing of
tests.

28All data, scripts, and detailed results of our study publicly are available in a replication package [57].

64

C
H

A
P

T
E

R

4
HYDRA POLYSTORE MODELLING LANGUAGE

Contents
4.1 Introduction . 65

4.2 Language General Structure . 66

4.3 Conceptual Schema . 68

4.4 Physical Databases . 68

4.5 Physical Schemas . 69

4.6 Mapping Rules . 75

4.7 Benefits of HyDRa Modelling Language 77

4.8 Conclusion . 78

This chapter presents the modelling language we developed to model hy-
brid polystores. We will go through all the main sections of the language,
detailing the grammar and show applied examples. We finally illustrate
its benefits.

It is an extension of the work [54] published and presented at the 40th International Conference on

Conceptual Modeling (ER 2021).

4.1 Introduction

As we have seen in Chapter 2, approaches to NoSQL databases design, as well as
hybrid polystores, suffer from shortcomings because they (1) are specific to partic-
ular types of databases, or (2) are approaches based on the abstraction of NoSQL
models erasing their specificities, or (3) are approaches combining several types of

65

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

databases but allowing limited control over mappings between the conceptual and
the physical representation.

This chapter presents the HyDRa modelling language allowing the user to (1)
conceptually model the domain of a multi database system, (2) model the physical
schema of data on several types of databases, (3) finely control the mappings be-
tween the conceptual and physical levels, (4) represent overlapping data on several
types of databases.

The remaining of this chapter illustrates the HyDRa language, based on an
example polystore schema built on the IMDB dataset1, a dataset about movies.
Figure 4.1 shows the complete case study of our running example. At the top of the
figure is the conceptual schema of this application domain represented using Entity
Relationship (ER) model. It consists of Movie, Actor and Director entity types. Those
entity types are linked together with many-to-many or one-to-many relationship
types play and direct. Alongside the cardinalities are the names of the role played by
the entity type in the relationships. For example, the Movie entity type plays the role
of directed_movie in the relationship direct. Those role names are facultative in an
entity relationship schema.

In the bottom are represented our illustrated polystore’s four database back-
ends, two document databases (mymongo, mymongo2), a key-value (myredis) and a
relational (mydb) database.

In the middle is represented the data stored on those databases that reflect the
conceptual schema. Data is illustrated using a custom graphic notation to conform
to their respective data models.sactorCollection is a collection of JSON-like documents with several nested

levels of attributes.smovieKV is a set of key value pair sharing the same key pattern (movie:[ID],
i.e., a constant string component movie: and a dynamic component ID being
the movie identifier), the value is composed of a hash structure2sdirected & directorTable are two classical relational tables. directed having
three foreign keys represented.

Each part of the designed language is detailed in the rest of this chapter and
illustrated using this running example.

4.2 Language General Structure

The HyDRa polystore model language is composed of four main parts, each having
its specific purpose. The next sections describe the abstract syntax of the language,
in Appendix B is the concrete grammar expressed in the Xtext [9] language. A valid
HyDRa schema, depicted in Figure 4.2 at lines (4.1) and (4.2), must be composed of
a conceptual schema, a number of physical schemas, a mapping rules section and
finally databases section.sConceptual schema specifies the domain-specific data model of the complete

system.

1https://www.imdb.com/interfaces/
2https://redis.io/docs/data-types/hashes/

66

https://www.imdb.com/interfaces/

4.2. Language General Structure

movie

0-N
character

0-N
play

director

0-N

directed_movie

1-N
direct

movieKV

«key» "movie:"[ID]

«value» hash

title

originalTitle

isAdult

startYear

runtimeMinutes

id: "movie:"[ID]

Movie

id

primaryTitle

originalTitle

isAdult

startYear

runtimeMinutes

averageRating

numVotes

id: id

directorTable

id

fullname: [firstname]" "[lastname]

birth

death

id: id

Director

id

firstName

lastName

yearOfBirth

yearOfDeath

id: id

directed

director_id

movie_id

gr: movie_id

gr: movie_id

gr: director_id

actorCollection

id

fullname

birthyear

deathyear

movies[0-N]

id

title

rating

rate: [rate]"/10"

numberofvotes

gr: movies[*].id

Actor

id

fullName

yearOfBirth

yearOfDeath

id: id

mymongo

actorCollection

myredis

movieKV

mydb

directorTable

directed

mymongo2

actorCollection

Conceptual Schema

Physical Schemas

Databases

Figure 4.1: Schemas and databases of running IMDB example

sPhysical schema describes the data structures in the underlying physical
databases. It uses data model specific notation elements.sMapping rules is where the mappings between conceptual schema elements
and physical schema elements are expressed.sDatabases declares the physical databases and their respective configurations.

In the remaining lines (4.3) (4.4) and (4.5) physical schema element is detailed. A
physical schema represents a schema containing representation of the structure of
data stored in a specific database of a specific data model. There are five types of
data model supported and therefore five types of physical schemas available.

〈HyDRa schema〉 |= 〈ConceptualSchema〉〈PhysicalSchema〉* (4.1)

〈Mapping Rules〉〈Databases〉 (4.2)

〈PhysicalSchema〉 |= 〈RelationalSchema〉 | 〈DocumentSchema〉 | (4.3)

〈KeyValueSchema〉 | 〈GraphSchema〉 | (4.4)

〈ColumnSchema〉 (4.5)

Figure 4.2: Abstract syntax of HyDRa language main components

67

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

4.3 Conceptual Schema

The conceptual schema represents the entities and the links between them that the
polystore manipulates. As in standard database engineering methods, at the concep-
tual level, the user specifies the domain model [30] based on Entity-Relationship
model constructions. The domain is described by means of entity types, attributes,
binary relationship types, conceptual identifiers, n-ary relationship types or relation-
ship types with attributes. Table 4.1 details the constructs of the Entity-Relationship
model supported by the HyDRa conceptual language.

Entity Relationship
Construction

Supported by HyDRa

Entity type ✓
Attributes ✓
Complex attributes ✗
Facultative attributes ✓
Binary relationship types ✓
N-ary relationship types ✗
Relationship with attributes ✓
Multi type roles ✗
Is-a relationship ✗

Table 4.1: Supported Entity Relationship model constructions by HyDRa conceptual
language

The conceptual schema of our IMDB movie database example is illustrated in
the top of Figure 4.1 and was described in Section 4.1. In Figure 4.3 is the equivalent
model in the textual HyDRa modelling language. Entity types have attributes and
declare one of several identifier(s) in the identifier block using specified attributes.
Next we specify the relationship types, the cardinalities and mandatory role names
played by the entity types within them.

4.4 Physical Databases

In the context of the development or reverse engineering of a polystore (section 1.3)
several databases, possibly of different types, are involved. This is why our modelling
language integrates a part allowing to declare the existence of these databases. Figure
4.4 shows the four databases, one relational (MariaDB), one key value (Redis) and two
document databases (MongoDB) declared for our running example. The declaration
of a database starts with its type that can be chosen between several technologies
such as MariaDB, MySQL or SQLite for relational databases, Redis for key value,
MongoDB for document, Cassandra or HBase for column based databases and
Neo4j for graph data. Next is the specified name of database that will be referenced
in the other parts of the HyDRa schema. Inside the block of a specific database
we can find the server address (in our example three databases are run locally and
there is a second MongoDB database mymong o2 on Line 16 running on an external

68

4.5. Physical Schemas

1 conceptual schema cs{
2 entity type Actor {
3 id : string,
4 fullName : string,
5 yearOfBirth : int,
6 yearOfDeath : int
7 identifier { id }
8 }
9 entity type Director {
10 id : string,
11 firstName : string,
12 lastName : string,
13 yearOfBirth : int,
14 yearOfDeath : int
15 identifier { id }
16 }

17 entity type Movie {
18 id : string,
19 primaryTitle : string,
20 originalTitle : string,
21 isAdult : bool,
22 startYear : int,
23 runtimeMinutes: int,
24 averageRating : string,
25 numVotes : int
26 identifier { id }
27 }
28 relationship type direct{
29 directed_movie[1-N]: Movie,
30 director[0-N] : Director
31 }
32 relationship type play{
33 character[0-N]: Actor,
34 movie[0-N] : Movie
35 }
36 }

Figure 4.3: Conceptual section of a HyDRa schema.

server) and the port, note that for relational databases we also find dbname which
indicates the name of the database which is an additional information necessary for
the correct establishment of the connection during the generation of the code.

These connections’ information are read by the code generator to provide access
classes with required connection string to the modelled data. Finally, they are used
in the physical part of the language, allowing to link the concrete data structures to
real databases. Moreover, duplication is allowed by mapping a physical schema to
more than one declared databases. This can be particularly useful in a data loading
use case, e.g., to populate both production and test environment databases using a
single application, which is a problem that has been identified as one of the obstacles
to better test coverage in Chapter 3.

1 databases {
2 mariadb mydb {
3 host: "localhost"
4 port: 3307
5 dbname : "mydb"
6 }
7 redis myredis {
8 host:"localhost"
9 port:6379
10 }

11 mongodb mymongo{
12 host : "localhost"
13 port: 27100
14 }
15 mongodb mymongo2 {
16 host : "hydra.unamurcs.be"
17 port: 27000
18 }
19 }

Figure 4.4: Databases declaration section

4.5 Physical Schemas

The physical schema section of our model allows the designer to specify how the
data is actually persisted in native databases. We support the relational data model
as well as the four most popular NoSQL data models [71], namely document, key-

69

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

〈PhysicalStructure〉 |= 〈Table〉 | 〈Collection〉 | 〈TableColumn〉 | (4.6)

〈Node〉 | 〈Edge〉 | 〈KeyValuePair〉 (4.7)

〈PhysicalField〉 |= 〈ShortField〉 | 〈LongField〉 | 〈ComplexField〉 (4.8)

〈Reference〉 |= 〈PhysicalField〉→〈PhysicalField〉 (4.9)

(4.10)

Figure 4.5: Abstract syntax of HyDRa physical structures

value, column wide and graph-based representations. One of the key advantage of
the physical section is the ability to represent each design technique of each data
model, by providing the designer with full control on physical data structures. Below,
we illustrate how those common design strategies fit in HyDRa language and how
the different physical data models are supported.

In our running example, the physical schemas are depicted in Figure 4.6. It repre-
sents three schemas based on three different data models. The first one, movieRedis
(line 3) is a key-value schema stored on the key-value database myredis declared in
the physical databases section (see Section 4.4), the second one is a schema based
on the document database model, IMDB_Mongo will be stored on the two MongoDB
databases, one local and the other on a remote server. This line allows, in a simple
way, to duplicate the data of a schema (line 16). The third schema is a relational
schema myRelSchema stored on the MariaDB mydb (line 35). The contents of each
schema sections are described next.

In Figure 4.5 is specified the abstract grammar of a physical schema. As Physical
Schemas may represent five different types of data models, we had to define com-
mon terms across them to refer to data structures, each data model specific data
structures are grouped under the term Physical Structure. In their turn, those struc-
tures are composed of more detailed elements called Physical Fields, that can be of
different types and complexity that we explain further next. Finally, a structure may
contain a Reference towards another structure, allowing cross-database referencing.

Below we further define the chosen terms of physical structures, physical fields
as well as references. A physical structure is an abstraction of technology-specific
structures able to receive multiple data units. They contain multiple physical fields.
Typical physical structures include Table in a relational database, Collection in a
document database, and Tablecolumn in column oriented databases. For graph
databases Nodes as well as Edges are considered as physical structures as each of
them can declare fields. For key-value databases, we introduce the KeyValuePair
concept. It reflects a set of key-value pairs sharing the same pattern of keys and
values (see lines 3-14 of Figure 4.6).

A physical field is the term we use for data units in the corresponding technology-
specific databases: Columns in relational, Fields in document, Properties in graph,
Columns in column-oriented and Value Properties in key-value data models. If
the field declared is composed of a single element we call it a ShortField. In our

70

4.5. Physical Schemas

1 physical schemas {
2

3 key value schema movieRedis :
myredis {

4 kvpairs movieKV {
5 key : "movie:"[id],
6 value : hash{
7 title,
8 originalTitle ,
9 isAdult,
10 startYear ,
11 runtimeMinutes
12 }
13 }
14 }
15

16 document schema IMDB_Mongo :
mymongo, mymongo2{

17

18 collection actorCollection {
19 fields {
20 id,
21 name:[fullname],
22 birthyear ,
23 deathyear ,
24 movies[0-N]{
25 id,
26 title,
27 rating[1]{
28 rate: [rate] "/10" ,
29 numberofvotes
30 }
31 }
32 }
33 }
34 }
35

35 relational schema myRelSchema :
mydb {

36

37 table directorTable{
38 columns{
39 id,
40 fullname:
41 [firstname]" "[lastname],
42 birth,
43 death
44 }
45 }
46

47 table directed {
48 columns{
49 director_id ,
50 movie_id
51 }
52

53 references {
54 directed_by : director_id

-> directorTable.id
55 has_directed : movie_id ->

movieRedis.movieKV.id
56 movie_info : movie_id ->

IMDB_Mongo.actorCollection.
movies.id

57 }
58 }
59 }
60 }

Figure 4.6: Example of a HyDRa schema physical section.

language we allow the declaration of fields which are composition of multiple simple
elements, being ShortFields or string component. Those are called LongField
and are detailed further in section 4.7. For NoSQL complex, potentially multiply
nested, data types such as arrays or objects fields, we use a different word by calling
them ComplexFields. This object type is recursive and it can contain again the
aforementioned type of physical fields.

A Reference block expresses a link between two physical fields. In a polystore, a
source field can reference a target field declared in a different database, and relying
on a different data model. In other words, HyDRa offers the possibility to express
cross-references between heterogeneous databases.

For instance, lines 53-57 in Figure 4.6 declare three references. Reference di-
rected_by indicates that physical field director_id values are also stored in the id
field of directedTable. This reference is the expression of a foreign key of the many-
to-many table directed. The other column of this join table, movie_id, is a multiple
hybrid reference, as has_directed targets id in the movieRedis key-value database
and movie_info targets document database IMDB_Mongo.

71

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

4.5.1 Relational schemas

Relational schemas are composed of tables and columns where columns may only
contain simple values as established by the relational data model. The abstract
syntax depicted in Figure 4.7 describes the syntax of a table declaration in HyDRa.
The declaration starts with table keyword followed by a name identifier. columns key-
word comes before the columns’ declaration which may be ShortField or LongField
(as described in Section 4.5). Then it can possibly be followed by the definition of
references. Source fields of the declared references are part of the current relational
schema, while target fields may belong to a different physical structure.

〈Table〉 |= table ID columns { 〈ShortField〉* | 〈LongField〉*}
〈Reference〉*

Figure 4.7: Syntax of relational schema table structure

In our running example at lines 35-59 of Figure 4.6 we declare the relational
schema structures. For instance Table directed (line 47) is a join table containing
foreign keys declared in the reference block 53-57. director_id is a classical for-
eign key to another table directorTable of the same database (line 54). While the
movie_id attribute is a foreign key to two structures, the movieRedis.movieKV key
value database (line 55) and the IMDB_mongo document database (line 56).

4.5.2 Document schemas

Document schemas follow a JSON-like data model. It consists of pairs of field
names and values organized by documents, each document field may in turn be
a document, allowing embedded structures at any levels of depth. The syntax for
document structures in HyDRa is shown in Figure 4.8, we start by mentioning the
keyword collection followed by its identifier, then we declare the different fields, of
any type (ShortField, LongField or ComplexField) after the keyword fields. This
physical structure can also host explicit references (Reference blocks). Embedding
data structures, referred to as one-to-few, as we describe in the corresponding data
model section (Section 1.1.4) is illustrated in the running examples at Lines 24-31.
The nested structure is represented using a ComplexField named movies as an
array of movie objects. If, for design purposes or for technical reasons, embedding
documents is not possible, the user can choose to use referencing values across
collections of documents, using References blocks.

4.5.3 Key-Value schemas

Key-value schemas simply consist of key-value pairs, with no constructs allowing
explicit references between data instances. Keys are made of string characters while
values may be of different data types such as lists, sets, hash, etc. (see the Redis

72

4.5.4. Column-oriented schemas

〈Collection〉 |= collection ID fields { 〈PhysicalField〉*}
〈Reference〉*

Figure 4.8: Syntax of a document schema collection structure

documentation 3 for a complete list). However HyDRa currently supports lists and
hashes. As this database does not contain a pre-built physical structure of its own, we
have created our own concept, named KvPair, which allows us to gather key-values
that share the same key pattern. This structure is the equivalent, a PhysicalStructure
of tables or collections in previous data models, so a key-value schema consists of a
set of KvPair structures. Figure 4.9 shows the syntax KvPair in HyDRa. It consists
first of the declaration of the identifier of the structure after the keyword kvpair.
Then the key keyword indicates the specification of the key pattern, it can be a series
of constant string and variables (ShortField). Afterward comes the value declaration
which are PhysicalField. Finally, it is also possible to explicitly declare references
between structures using the Reference declaration block.

The two main design patterns are described in Section 1.1.3. The first one,
called key value per field, creates a key-value pair for each atomic field. The key is
composed of different elements identifying a particular atomic instance. Examples
of key patterns for this design includes ENTITY:[identifier]:FIELD. It results in data
such as MOVIE:tt0118715:TITLE as key, and a binary object The Big Lebowski as
value. The second design type, key value per object, uses complex data types instead
of simple atomic values, this allows the grouping of multiple fields under the same
key. Lines 3-14 in our running example illustrate this pattern.

〈KeyValuePair〉 |= kvpair ID { key : (string | 〈ShortField〉)*
value : 〈PhysicalField〉*
〈Reference〉*}

Figure 4.9: Syntax of key value schema kvpair structure

4.5.4 Column-oriented schemas

Column-oriented schemas are based on a model similar to the relational model in
that they use tables and columns. However, here there is the possibility of using
complex-valued columns, i.e., multivalued columns or columns containing objects.
Two different syntaxes exist depending on whether modelling a Cassandra or a

3https://redis.io/docs/data-types/

73

https://redis.io/docs/data-types/

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

HBase database. Indeed, these two models have a slightly different functioning. The
concept of column family is obsolete and is no longer used in Cassandra, which
means that the syntax is very similar to relational tables. Only HBase keeps the
concept of column family as a central element of its modelling, its syntax is depicted
in Figure 4.10. HBase schemas rely on row identifiers (rowkey), and each row is
composed of groups of key-value pairs (column families). Design methods identified
in [2, 3], such as row per object representation or single cell per object (see Section
1.1.5) are also supported in the HyDRa language. As this model is not represented in
our running example the Listing 4.1 illustrates this modelling pattern.

〈TableColumn〉 |= table ID rowkey { 〈LongField〉 | 〈ShortField〉}
〈ColumnFamily〉*〈Reference〉*}

〈ColumnFamily〉 |= ID〈ShortField〉*

Figure 4.10: Syntax of column schema table column structure

1 column schema colSchema {
2

3 table Client {
4 rowkey{
5 clientnumber
6 }
7

8 columnfamilies {
9 personnal {
10 name:[first]"_"[last]
11 }
12 address{
13 street,
14 number,
15 zipcode
16 }
17 }
18 }
19 }

Listing 4.1: Example of a physical schema of a column based data model

4.5.5 Graph schemas

Graph schemas represent data that are heavily linked together and where relation-
ships plays a central role. The data model is composed of Nodes and Edges that may
contain Properties (i.e., ShortField). This is why graph data are also called property
graphs. The common way to design graph databases is described by the leading
technology of graph databases, namely Neo4j [97]. Nodes usually represent entities
and relationships between data are expressed using edges. The syntax for graph
schemas in HyDRa is illustrated in Figure 4.11. It states that such a schema consists
of any number of nodes, edges and references. A node consists of the keyword
node, an identifier, and simple fields of type ShortField. An edge also consists of an

74

4.6. Mapping Rules

identifier and any ShortField in addition to the keyword edge and a line establishing
the two nodes linked by the current edge. ID is in this case the name of a previously
specified node identifier.

〈GraphSchema〉 |= 〈Node〉*〈Edge〉*〈Reference〉*
〈Node〉 |= NodeID 〈ShortField〉*
〈Edge〉 |= Edge〈ID〉->〈ID〉 〈ShortField〉*

Figure 4.11: Syntax of graph schema

Again, as the running example does not integrate graph databases, Listing 4.2
illustrates a design of a graph schema in HyDRa. In this representation there are
two types of nodes, Products and Orders each with their respective attributes. These
node types can be linked via CONTAINS edges, which also contain an attribute value
quantity.

1 graph schema myGraphSchema {
2 Node Product {
3 product_id ,
4 Name,
5 Description
6 }
7

8 Node Order {
9 orderid
10 }
11

12 Edge CONTAINS {
13 Order -> Product,
14 quantity
15 }
16 }

Listing 4.2: Example of a graph schema

4.6 Mapping Rules

The mapping rules section of an HyDRa polystore schema specifies links between
the conceptual schema elements and the physical structures. Exploiting the possibly
hybrid nature of those mapping rules, the designer can specify complex construc-
tions such as data structure split, data instance partitioning, data heterogeneity
and data duplication (see Section 4.7).

Figure 4.12 exposes the abstract syntax of mapping rules types and of their
components. The left-hand side of the rule (before the arrow) is the conceptual
component and the right-hand side corresponds to the physical component. Two
types of mapping rules are supported: entity mapping rules and role mapping
rules.

75

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

〈EntityMappingRule〉 |= 〈EntityType〉(〈Attribute〉+)→
〈PhysicalStructure〉(〈PhysicalField+〉)

〈RoleMappingRule〉 |= 〈Role〉→〈Reference〉 | 〈ComplexField〉

Figure 4.12: Abstract syntax of mapping rules

EntityMappingRule is a type of rule used to map conceptual entity types to
physical structures. A conceptual entity type can be mapped to one or more hetero-
geneous physical structures. Mapping rules of our IMDB running example linking
conceptual schema of Figure 4.3 and physical schema of Figure 4.6 are in Listing
4.3. First, at line 2, entity type Actor and its attributes are mapped to collection
actorCollection in document database schema IMDB_Mongo (schema at lines 16-34).
Second, at line 4, entity type Director is mapped to table directorTable, belonging
to relational database schema myRelSchema (lines 35-59). Last, entity type Movie
is mapped to three physical structures and one complex field (lines 8,9, 10, 11).
Line 9 maps attributes averageRating and numVotes to physical fields contained
into a third-level embedded structure rating in the movies array of actorCollection.
Similarly, line 11 maps attributes of Movie to a key-value hash structure.

RoleMappingRule is another mapping rule type that maps Roles of Relationship
types to Reference blocks or to ComplexFields. Line 3 maps the role character
played by the entity type Actor of the relationship play to the physical complex field
movi es in the document schema. This field is an array type with cardinality 0-N,
given that the other fields it contains are mapped to conceptual attributes of Movie
(lines 8 and 9) and that the fields located at the same level as the array are linked to
conceptual attributes of Actor (line 2), we can deduce that the array movies contains
the movies in which the actor of the root document played. This is why we can map
the role to the complex array field.

The lines 6 and 7 are role mappings on references and not on a complex ob-
ject like the previous rule. The two references contained in the directed table,
has_directed and movie_info (lines 54 and 55 in Figure 4.6) have been declared
as foreign keys to the respective identifying fields of the physical structures mapped
to Movie and Director. This explicit physical link expressed by the references is a
reflection of an existing conceptual link represented by the direct relationship type
between the Movie and Director conceptual entity types. The two role mapping rules
make this link between physical references and conceptual relationship explicit.

Role mapping is important for the access code generator, as it provides various
methods of manipulating data at a conceptual level both via the entity types and via
the roles they play (we detail this in Chapter 5).

76

4.7. Benefits of HyDRa Modelling Language

1 mapping rules{
2 cs.Actor(id,fullName ,yearOfBirth ,yearOfDeath) -> IMDB_Mongo.

actorCollection(id,fullname,birthyear ,deathyear),
3 cs.play.character -> IMDB_Mongo.actorCollection.movies(),
4 cs.Director(id,firstName ,lastName , yearOfBirth ,yearOfDeath) -> myRelSchema

.directorTable(id,firstname ,lastname,birth,death),
5 cs.direct.director -> myRelSchema.directed.directed_by ,
6 cs.direct.directed_movie -> myRelSchema.directed.has_directed ,
7 cs.direct.directed_movie -> myRelSchema.directed.movie_info ,
8 cs.Movie(id, primaryTitle) -> IMDB_Mongo.actorCollection.movies(id,title),
9 cs.Movie(averageRating ,numVotes) -> IMDB_Mongo.actorCollection.movies.

rating(rate,numberofvotes),
10 cs.Movie(id) -> movieRedis.movieKV(id),
11 cs.Movie(primaryTitle ,originalTitle ,isAdult,startYear ,runtimeMinutes) ->

movieRedis.movieKV(title,originalTitle ,isAdult,startYear ,runtimeMinutes
)

12 }

Listing 4.3: Example of a HyDRa schema, mapping rules section.

4.7 Benefits of HyDRa Modelling Language

Data duplication & heterogeneity HyDRa allows data duplication at the level of
conceptual objects as well as at the physical schema level. Data duplication at the
level of entity types can be expressed through multiple entity mapping rules, with
the same entity type as left-hand side, but mapping it to several physical structures.
An example was given above with the mappings of attribute primaryTitle of Movie
entity type (lines 8 and 11) which is mapped to both a document database and a
key-value database. HyDRa also allows one to duplicate an entire physical schema
into several databases. For instance, line 16 in Figure 4.6 declares that physical
schema IMDB_Mongo is stored in both databases mymongo and mymongo2.

Long fields The physical fields of an HyDRa schema may be a composition of
several elements, namely mapped conceptual attributes and constant element. We
refer so far to those field as LongFields. This is made possible by means of complex
physical field declarations and related mapping rules. For instance, line 41 of Figure
4.6 specifies that the value of column fullname in relational table directorTable results
from the concatenation of conceptual attributes firstname and lastname. This is
expressed using the entity mapping rule at line 4. As another example, physical field
rate at line 28 concatenates the rate conceptual attribute value with the "/10" string
constant.

Data structure split Conceptual entity types can be split and stored in multiple
and heterogeneous databases. Multiple entity mapping rules can be expressed
for distinct fragments of a single entity type, e.g., by splitting its attributes into
multiple and possibly heterogeneous databases. For instance, conceptual entity
type Movie is composed of eight attributes, but those attributes are stored either in
the IMDB_Mongo schema or in movieRedis schema, or in both physical schemas. As
expressed by the mapping rules of lines 8, 9, 10 and 11, some movie attributes are

77

CHAPTER 4. HYDRA POLYSTORE MODELLING LANGUAGE

subject to data duplication across several physical schemas, while attributes isAdult,
startYear, runtimeMinutes are only present in the movieRedis schema.

Data instance partitioning Using data instance partitioning, an HyDRa polystore
schema can map only a subset of the data instances of a given entity type to a
particular physical structure. The data instances are discriminated based on user-
defined conditions on the value of a particular entity type attribute. For instance,
in Listing 4.4, a mapping rule expresses that the instances of entity type Movie that
have an averageRating value greater than 9 must be stored in the topMovies physical
structure.

1 cs.Movie(id,primaryTitle ,averageRating ,numVotes) -(averageRating > 9)->
IMDB_Mongo.topMovies(id,title,rate,numberofvotes),

Listing 4.4: Mapping rule data instance partitioning

4.8 Conclusion

In this chapter we have detailed the HyDRa (Hybrid Data Representation and Access)
modelling language that we have developed to enable the modelling of multiple
and possibly hybrid database systems. The language is composed of four main
parts, each with its own distinct prerogatives. Firstly, it is possible to establish a
textual conceptual schema of the application domain using a subset of the Entity
Relationship model. Secondly, the user specifies the concrete databases of which the
polystore is made up, by giving their connection information. Then it is a question
of specifying the format of the data structures hosted in each of these databases.
To this purpose, physical modelling is possible for the relational, document, key-
value, column-oriented and graphs data models. Each of these models having
different terminologies and specific constructions, they have been grouped under
concepts specific to HyDRa, such as Physical Structures or Physical Fields. The
explicit declaration of foreign keys between several databases of different types is
also a specificity of the declaration of physical schemas in HyDRa. And finally the
last part of the modelling language consists of the establishment of the rules of
correspondence between the two defined schemas, the conceptual and the physical.
The mapping rules section allows mapping entity types as well as their roles played
in relationships to references or complex objects in the physical schema.

This language allows several advantages among which are the explicit modelling
of links between heterogeneous databases, the duplication of data, the flexibility of
physical modelling with regard to the conceptual schema. In the following chapter
we will see that this model brings other benefits, i.e., in terms of data manipulation,
via the implementation of a code generator based on the HyDRa modelling language.

78

C
H

A
P

T
E

R

5
HYDRA POLYSTORE DATA MANIPULATION API

Contents
5.1 Introduction . 79

5.2 Conceptual Schema and Physical Schema Correspondences . . 81

5.3 Specification of Generated Conceptual Classes and Methods . . 84

5.4 Specification of Generated Algorithms 87

5.5 Illustrative Example . 96

5.6 Algorithms . 103

5.7 Tool Implementation . 108

5.8 Benefits . 110

5.9 Conclusion . 114

In this chapter we present the generated conceptual data access library of
the HyDRa framework. We will go through why we chose this approach,
what is actually produced, and how it is build. Finally, we summarise
the advantages of such generated library.

This work has been published [55] at the 29th IEEE International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER 2022) and has been invited to publish in Original Software Publications

track in Science of Computer Programming journal (accepted, publication in 2023).

5.1 Introduction

When a new or existing polystore system has been modelled using the HyDRa mod-
elling language presented in the previous chapter, the developer is still confronted

79

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

with the data access problems identified in Section 1.2. Data manipulation in a
polystore system is complex given the possible duplication of data across databases,
as well as the heterogeneity of data models. Moreover, this data manipulation code,
as described in Chapter 3, is not well tested and therefore more subject to bugs. It
is to mitigate those data manipulation and evolution challenges that in addition
to polystore data modelling, HyDRa also supports conceptual API code genera-
tion. It provides developers with a ready-to-use library, allowing polystore data
manipulation operations on the conceptual level.

Before detailing this API in this chapter we will look back at the overview of the
complete HyDRa framework through Figure 5.1.

Hybrid Polystore

Conceptual
Schema

Physical
Schema

Mapping Rules

HyDRa Model HyDRa API Generation
Algorithm

designs uses

links

links

models

Construction of
native queries

Join of
datasets

Construction of
conceptual

objects

Generated
Conceptual API

Object classes

Service classes

Database
access drivers

uses

returns

input generates

Figure 5.1: HyDRa framework

HyDRa Model HyDRa provides a textual modelling language, detailed in Chapter
4, to specify (1) the conceptual schema of the polystore, expressed in the Entity-
Relationship model; (2) the physical schemas of each of its databases (NoSQL or
relational), specifying data structures and their fields; and (3) a set of mapping rules
to express possibly complex correspondences between the conceptual elements
and the physical databases. Mapping rules enable possibly complex design choices,
such as data structure split, data instance partitioning, data heterogeneity and
data duplication.

HyDRa API Generation HyDRa relies on the automatic generation of a concep-
tual data manipulation API, derived from the polystore schema. This generation
algorithm must read the model and produce classes capable of (1) building native
queries for each of the supported database types and according to the physical map-
pings mentioned in the mapping rules, (2) performing joins of the collected data in
case several databases are involved in a conceptual query, and (3) reconstructing
conceptual objects based on the native database results.

80

5.2. Conceptual Schema and Physical Schema Correspondences

Generated Conceptual API The generated API provides developers with a ready-
to-use library, allowing polystore data manipulation operations on the conceptual
level. The code generated contains (1) object classes which represent of the declared
conceptual elements in the schema, (2) service classes which provide methods for
manipulating the data objects and (3) classes responsible for handling the different
database connections via native access drivers. Using the API to manipulate poly-
store data enforces the data heterogeneity, duplication and overlapping constraints
declared in the mapping rules.

Hybrid Polystore The set of databases of the considered system which may be of
different data models and also have data with implicit link between them.

The user He writes and designs the HyDRa model, generates the API using the
code generator and then uses it in his own application code.

The rest of the chapter motivates the interest of a conceptual API with respect to
the different physical variations possible in a polystore system. Then a generic spec-
ification and an example of the library produced is described. A description of some
code generator algorithms follows with use cases illustrating them. Some technical
considerations and a summary of the advantages of the generation approach finally
conclude this chapter.

5.2 Conceptual Schema and Physical Schema Correspondences

To illustrate the functionalities of the generated API, we will first review a particular
specificity that appears when modelling systems with multiple databases, more-
over with NoSQL models. For the same conceptual schema it is possible to have
several physical representations according to the user’s needs, via the use of several
databases, (e.g., Products are stored in a document database while Orders data are
stored in a relational database as described in Section 1.3).

Tables 5.1 & 5.2 illustrate the variety of physical structures that can be chosen to
implement conceptual constructs. All those physical structures can be expressed
in HyDRa, via a combination of mapping rules. The databases depicted in physical
schema column may be either of relational or NoSQL types.

Row CS (1) represents the design construct of entity split in multiple databases;
an entity type can be entirely stored in a single database (a), or its attributes may be
split among two databases (b). Entity data duplication is also possible, by declaring
the same attribute in more than one database.

Row CS (2) shows foreign keys, cross-database foreign keys or embedding
structures design choices. A one-to-many relationship type can be stored in a single
database (a) and (d), or in different databases (b) and (c). In a single database, one
can use an inner database foreign key reference (a), or an embedded structure (d).
Physical schemas (b) and (c) implement cross-databases references, which can be
hybrid i.e., when the databases are of different types. In (b), a mono-valued foreign
key is established between E1 and E2, i.e., the value in E1.e2 references a particular

81

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

E2.id. In (c), a multivalued foreign key is established, in the opposite direction,
i.e., each value in E2.E1 list references a particular E1.id.

Row CS (3) shows how a many-to-many relationship type (with attributes) can
be physically represented in one (a), two (b) or three databases (c). A physical join
structure R stores the relationship type attributes and references particular E1 and
E2 instances (two foreign keys within R).

Table 5.1: Conceptual construction and physical correspondences

CS# Conceptual Schema Physical Schema

(1)
(a)

(b)

(2)

(a)

(b)

(c)

(d)

82

5.2. Conceptual Schema and Physical Schema Correspondences

Table 5.2: Conceptual construction and physical correspondences (continued)

CS# Conceptual Schema Physical Schema

(3)

(a)

(b)

(c)

The different representations presented consider the databases as being of any
type. The actual physical variations are therefore much wider if we consider each
type individually for a database. So if each database can be either relational, key
value or document oriented, the nine physical schemas give rise to hundreds of
different possible polystores 1.

In this context, one can easily imagine the interest of manipulating data at a
conceptual level, which makes it possible to abstract oneself from these variations of
configurations. Indeed, a developer who would have to retrieve, for example, all the
products linked to an order, would have to (1) know where the products and orders
are stored, (2) write code specific to the databases encountered for these data and
(3) write join code at the application level. This is a complex task and can introduce
multiple bugs at each of these code writing steps. Moreover, what would happen
to this code if, during a change in requirements, the products had to be migrated
to a different type of database? Each piece of code linked to the modification must
be rewritten, introducing new possibilities of errors. This is why we propose, via
an automatic code generation tool based on the HyDRa model, a set of conceptual
methods allowing to manipulate the data at a higher level of abstraction allowing
the developers to be transparent with respect to the underlying databases.

1The implemented API generation currently supports 3 data models, namely key-value, document
and relational ones.

83

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

5.3 Specification of Generated Conceptual Classes and Methods

In this section we will detail the conceptual elements, classes and methods, gen-
erated as well as the correspondence with the conceptual schema given as input.
Below, we further describe the object classes, service classes and access methods
that are generated from the HyDRa polystore schema. Let us define the following
sets, composed of the available conceptual objects :

Entities = {E1, ...,En} :: Ei (ai 1, ..., ai x), x > 0 (5.1)

Relations = {R1, ...,Rm} :: Ri (ri 1 : Ei 1, ...,ri y : Ei y , ai 1, ..., ai z), y > 1, z ≥ 0 (5.2)

Entities is the set of all entity types, each entity Ei has a set of conceptual attributes
ai . Relations is the set of all relationship types, each composed of a list of at least
two or more entity types E . Each component entity type plays a role named r , with a
minimum and a maximum cardinality. A relationship type may contain attributes.

5.3.1 Object classes

Object classes are classes that describe a conceptual element of the schema, an
entity type or a relationship type. They wrap data conceptually and the application
therefore uses them to perform manipulation operations transparently to the actual
stores. All manipulation functions generated by the API take as input or return
objects of this type. Listings 5.1 and 5.2 respectively formalizes the generation
of object classes for entity and relationship types. First, ∀E ∈ Entities and ∀R ∈
Relations, we generate an object class E and an object class R. An object class
contains attributes declarations. There are two types of attributes, simple or class
attributes. Simple attributes are declared for each conceptual attribute of the entity
or relationship type, with its data type ti (e.g., int, float, date, ...). If E is involved
in a binary R relationship type, i.e., R(r : E ,r ’ : E ’), then class attributes of E are
declared as E ’ objects. Depending on the cardinality of role r (i.e., [1-1] or [0-N]), we
declare either a simple or a list attribute of type E ’ in E . If E is involved in an n-ary R
relationship type, i.e., R(E ,E1,E2, ...), entity E declares an attribute of type R instead.

1 ∀E(a1 : t1 , ...,an : tn) ∈ Entities,n ≥ 1
2 Class E {
3 ∀i,0 ≤ i ≤ n
4 ti ai ;
5

6 ∀R(r : E,r′ : E′) ∈ Relations
7 (E ′∨E ′[]) r ′; // array type depending on cardinality of r
8

9 ∀R(r : E,r1 : E1 , ...,rx : Ex ,a1 : t1 , ...,ay : ty) ∈ Relations, (x ≥ 2)or(y ≥ 0)
10 (R ∨R[]) R;
11 }

Listing 5.1: Entity object classes generation

1 ∀R(r : E,r1 : E1 , ...,rn : En ,a1 : t1 , ...,am : tm) ∈ Relations,n ≥ 2,m ≥ 0
2 Class R {
3 ∀i,0 ≤ i ≤ m
4 ti ai ;

84

5.3.2. Data manipulation classes

5

6 ∀i,0 ≤ i ≤ n
7 Ei ri ;
8 }
9

Listing 5.2: Relationship object classes generation

5.3.2 Data manipulation classes

Data manipulation classes or service classes are in charge of providing data manipu-
lation methods, including selection, update, insertion and deletion for a particular
E or R. ∀E ∈ Entities and ∀R ∈ Relations, we generate a service class, respectively
EService and RService. Listing 5.3 specifies those methods, by providing the gener-
ated signatures. Actual example instances are provided in the next section. Multiple
variants of selection methods are specified. An entity can be retrieved based on a
particular attribute value of the entity either by (1) calling specific methods on this
attribute and giving the attribute value (line 4) or (2) by giving a condition expression
object that can represent simple or multiple and or or conditions (line 5).

Moreover, it is possible to (3) retrieve entities by exploiting the declared con-
ceptual relations in which this entity type is concerned. In the lines 8 and 9 are
expressed the methods selecting the entities E bearing the role name r0 involved
in a relation R. We can call these functions by giving as argument either a set of
conditions, expressed on each of the roles of the relation, or by giving directly an
object class instance of the other types of entities of the relation.

The lines 11 up to 13 add a possible condition in case the concerned relation
contains relation attributes. Similarly, insert, update and delete methods are offered.

1 ∀E(a1 : t1 , ...,an : tn) ∈ Entities,n ≥ 1
2 Class EService{
3 ∀i,0 ≤ i ≤ n
4 E[] getEListByai (ti ai);
5 E[] getEList(Condition <E> condition);
6

7 ∀R(r0 : E,r1 : E1 , ...,rx : Ex) ∈ Relations
8 E[] getr 0ListInR([Condition <E> r0], [Condition <E1> r1],..., [Condition

<Ex > rx]);
9 E[] getr 0ListInR([Condition <E> r0], E1 e1 ,..., Ex rx);
10

11 ∀R(r0 : E,r1 : E1 , ...,rx : Ex ,a1 : t1 , ...,ay : ty) ∈ Relations
12 E[] getr 0ListInR([Condition <E> r0], [Condition <E1> r1],..., [Condition

<Ex > rx], [Condition <R> c]);
13 E[] getr 0ListInR([Condition <E> r0], E1 e1 ,..., Ex rx , [Condition <R> c]);

14

15 void insertE(Ee, [E1e1 ,..., Ex ex]); // Ex are the other mandatory entity
types of r where E is involved

16 void updateEList(Condition <E> c, Set <E> set);
17 void deleteEList(Condition <E> c);
18 }

Listing 5.3: Entity data manipulation classes generation

85

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

5.3.3 Generic illustration

Here we will give an example of the methods and classes generated for the conceptual
schema CS (3) of Table 5.2, being the most complete and allowing to illustrate all
previously specified rules. Figure 5.2 shows the object classes of entity types E1 and
E2 with their respective ax attributes. The attributes types are specified as T , which
means that it will be replaced by the corresponding primitive conceptual type (such
as int, float, string, etc.). Moreover, these two entity types being linked together via a
relation R with attribute and cardinalities [0-N] they also have an attribute of type
List containing objects of type R. On the right side of the figure is the object class of
the conceptual relationship R, declaring two object attributes of the involved entity
types. Those attributes are named with their respective role names. The R class also
contain the relationship attribute r .

1 Class E1 {
2 T id ;
3 T a1 ;
4 T a2 ;
5

6 List<R>
RListAsRoleE1;

7 // Getters and
setters,
constructors ,...

8 }

1 Class E2 {
2 T id ;
3 T a3 ;
4 T a4 ;
5

6 List<R>
RListAsRoleE2;

7 //...
8 }
9

1 Class R {
2 E1 roleE1 ;
3 E2 roleE2 ;
4 T r;
5 //...
6 }

Figure 5.2: Object classes generated for CS 3.

Next are illustrated the service classes of these two respective classes in Figure
5.3, they follow the specification established in Listing 5.3. First, an entity type can
be retrieved by (1) giving an attribute value, e.g., List<E1> getE1ListByA1(T a1) or (2)
using the generic method which takes as input an object representing a condition
(which are described further in Section 5.4.2) e.g., (List<E1> getE1List(Condition<E1>
condition)).

Then follow the access methods exploiting the R relation with the different
choices of arguments, i.e., Condition objects (getRoleE1ListInR(Condition<E1>
roleE1Condition,. . .)) or instances of objects on the opposite role
(getRoleE1ListInRByRoleE2(E2 roleE2)), respectively E1 or E2.

Listing 5.4 details the service of relationship type R. Selection methods return
R objects, depicted on the right side of Figure 5.2 containing instances of linked
entity types E1 and E2. Insertion and deletion methods on R instances also exist.
Inserting a new R instance consists in connecting two existing E1 and E2 instances
via R. Deleting a R instance consists in disconnecting (i.e., removing their reference
attribute) those instances, without deleting them.

86

5.4. Specification of Generated Algorithms

1 class E1Service {
2 List<E1> getE1List();
3 List<E1> getE1List(Condition <E1

> condition);
4 E1 getE1ById(T id);
5 List<E1> getE1ListByA1(T a1);
6 List<E1> getE1ListByA2(T a2);
7 List<E1> getRoleE1ListInR(

Condition <E1> roleE1Condition ,
Condition <E2> roleE2Condition
, Condition <R> R_condition);

8 List<E1>
getRoleE1ListInRByRoleE2(E2
roleE2);

9

10 void insertE1(E1 e1);
11 void updateE1List(Condition <E1>

roleE1Condition , SetClause <E1
> set);

12 void deleteE1List(Condition <E1>
condition);

13 }
14

1 class E2Service {
2 List<E2> getE2List();
3 List<E2> getE2List(Condition <E2

> condition);
4 E2 getE2ById(T id);
5 List<E2> getE2ListByA3(T a3);
6 List<E2> getE2ListByA4(T a4);
7 List<E2> getRoleE2ListInR(

Condition <E2> roleE2Condition ,
Condition <E1> roleE1Condition
, Condition <R> R_condition);

8 List<E2>
getRoleE2ListInRByRoleE2(E2
roleE2);

9

10 void insertE2(E2 e2);
11 void updateE2List(Condition <E2>

roleE2Condition , SetClause <E2
> set);

12 void deleteE2List(Condition <E2>
condition);

13 }
14

Figure 5.3: Entity service classes of CS 3.

1 class RService {
2 List<R> getRList();
3 List<R> getRList(Condition <E1> roleE1condition , Condition <E2>

roleE2condition , Condition <R> Rcondition);
4

5 void insertR(R r);
6

7 void updateRList(Condition <E1> roleE1condition , Condition <E2>
roleE2condition , Condition <R> rcondition , SetClause <R> set);

8 void delete(Condition <E1> roleE1condition , Condition <E2> roleE2condition
, Condition <R> rcondition , SetClause <R> set);

9 //...
10 }
11

Listing 5.4: Relationship service class of CS 3.

5.4 Specification of Generated Algorithms

We have first described which classes and objects would be generated according to
a HyDRa polystore schema as input. This section now details the implementation
of these generated methods, i.e., the important steps to be respected, whatever the
final database that will be reached, in order to retrieve or insert data using concep-
tual objects. This challenge is increased by the additional specificities brought by
the HyDRa modelling language (e.g., data duplication, heterogeneity or structure
splitting).

The challenges to be managed in the implementation code include:sThe identification of the databases involved in the conceptual objects being
manipulated.

87

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

sThe construction of multiple native queries, whether for selection, insertion,
update or deletion.sThe join of datasets retrieved from different databases.sThe reconstruction of conceptual objects.sThe conceptual extraction of complex fields (ComplexFields) and fields built
on patterns (LongFields).sThe identification of possible data conflicts.

Through the following sections we will detail some generated methods and
specify their algorithms, which, depending on the final goal of the method, integrate
one or the other of the above-mentioned challenges.

5.4.1 Database specific methods

First, we specify that in parallel to the methods located at the conceptual level of ab-
straction, such as getEList or insertE (Section 5.3.3), there are also methods generated
at a lower level of abstraction, in charge of interacting with actual databases.

Indeed, the goal of conceptual methods is that the developer only needs to
manipulate these high level abstraction methods in order to manipulate the data.
Regardless of the mapping rules established in the HyDRa schema, if entity type E is
stored in a document, relational or key-value database, or even if it is duplicated or
separated on several databases, the conceptual methods offered to the user remain
the same (i.e., the signatures are identical) and are not impacted by the physical
representation.

However, these generic methods must ultimately be able to reach the real
databases containing the data of the entity type concerned. This is why the data ma-
nipulation classes, specified in Section 5.3.2, also contain methods that manipulate
the conceptual data at the level of the physical structures indicated in the physical
schema. These functions are responsible for performing the operation on a specific
database where the conceptual element has been stored.

As an example, taking the CS (1) schema with the physical schema (b) of the
Table 5.1, the entity type E1 is distributed on two different databases, DB1 and DB2
in two physical structures having the same name as the entity type. This distribution
means that in the generated EService class, in addition to the methods described
above such as insertE1 or getE1List(), etc. There will also be the presence of these
database specific methods :sE1[] getE1InDB1sE1[] getE1InDB2s insertE1InDB1s insertE1InDB2

In the following specifications of the generated implementation algorithms, we
refer to these methods using the notation getEInDB.

88

5.4.2. Condition classes

5.4.2 Condition classes

In order to perform filtered selections on entity types, the Condition class is gen-
erated and can be instantiated to represent a filter condition on one or several
attributes, according to given values and operators. These Condition objects can
then be given as arguments to conceptual data selection methods of type getEList.

A condition consists of three elements:sA conceptual attribute existing for an entity type or a relation type. This
attribute will be the one on which the condition will be checked.sAn operator. Designates the comparison operator to be performed, among
which are equal, smaller, larger, contains, etc.sA value. Contains the value to compare with the actual value of the object.

Listing 5.5 describes the Condition class. A condition can be simple, i.e., contain-
ing the three elements mentioned or also be complex, i.e., it is a condition composed
of other conditions. Complex conditions are used to represent AND/OR operators.
An OR or AND condition will be composed of two simple conditions, one left and
one right, which themselves can be complex, this allows the construction of multiple
chains of conditions. Finally, this Condition object can be evaluated on an instance
of a conceptual object (instance of interface IPojo).

1 interface Condition <E> {
2

3 <E> SimpleCondition <E> simple(E attribute , Operator op, Object value);
4

5 <E> AndCondition <E> and(Condition <E> left, Condition <E> right);
6

7 <E> OrCondition <E> or(Condition <E> left, Condition <E> right);
8

9 boolean evaluate(IPojo obj);
10 }

Listing 5.5: Condition object interface

5.4.3 Selection methods

Here we describe the algorithms involved in the implementation of conceptual ob-
jects selection methods. First we start with conceptual level method implementation
and then we go deeper and specify database specific methods.

Algorithm 1 illustrates the generic implementation code for a generated concep-
tual selection method (such as getEList(Condition<E> condition) or getEListInR(. . .)).
Line 3 declares the final object list of E objects that will be returned. Line 2 is a list of
lists of E , it is a temporary variable containing the results of each of the databases
where data of E is stored. The first step of the algorithm (line 5) thus consists in filling
this list by calling for each of the databases concerned by E (db) its specific generated
method i.e., getEInDB(condition) (as in Section 5.4.1), returning a list of objects of
type E satisfying the given condition. Then if indeed several databases had to be
queried, then this implies that a join must be performed on these datasets in order
to consolidate the results. This operation is represented by the call to fullOuterJoin at

89

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

line 8, the implementation of this method can be of different degrees of complexity
depending on the physical schema encountered as shown in Section 5.2.

Algorithm 1 Generic implementation of selection method of entity type E

1: E ∈ Enti t i es
2: Li st < Li st < E >> enti t i esLi st = {}
3: Li st < E > f i nalResul t = {}
4: for all Database db where E attributes are stored do
5: enti t i esLi st ← g etE InDB([condi t i ons])∪enti t i esLi st
6: end for
7: if enti t i esLi st .si ze() ≥ 1 then
8: f i nalResul t ← f ul lOuter Joi n(enti t i esLi st)
9: else

10: f i nalResul t ← enti t i esLi st [0]
11: end if
12: return f i nalResul t

Database specific implementation algorithm (i.e., getEInDB(condition)) is de-
scribed by Algorithm 2. The necessary variables consist of (1) a list of objects of type
Row and (2) the final list of objects of type E . The Row type is a class type that acts
as a wrapper for the various specific object types that each of the database access
drivers can return. In order to select a set of data from a database, it is necessary
to query it in the language it understands, so the first step of our algorithm is to
build a native query satisfying the given condition. This is represented by the call to
a sub-method generateNativeQuery (line 4). It will return, according to the type of
database, a query such as SELECT . . . FROM . . . WHERE . . . (for relational databases),
a $match:. . . (document databases), or a key pattern (key-value databases). Once
this query is built, it is executed on the right database connection, and the results
are converted into Row list, a custom wrapper object. However, these Row objects
do not correspond to the conceptual object of type E expected as a return by the
user. Therefore, the last step of the algorithm is to convert each Row object into
an object of type E . Note that at this stage the E object will only contain values for
the attributes concerned by the queried database. The complete construction of all
attributes of the E object, if it has been separated, will take place in the fullOuterJoin
step (line 8 of Algorithm 1).

5.4.4 Insertion of entity types

The implementation of the insertion methods is, like the selection methods, depen-
dent on the different mappings performed at the physical level. This is to identify
and build the right insertion query on the corresponding underlying database(s).
The particular additional aspect brought by the insertion in a model integrating
complex NoSQL structures (such as the modelling of nested structures i.e., physical
schema (d) of CS (2) in Table 5.1) is that the insertion can concern an entity that
is at the lowest level of the nested structures. This means that the insertion results
in an update query on existing data instead of a new complete object insertion. In

90

5.4.4. Insertion of entity types

Algorithm 2 Specific database selection getEInDB implementation

1: E ∈ Enti t i es
2: Li st < Row > r owResul t s = {}
3: Li st < E > enti t i esResul t = {}
4: quer y ← g ener ateN ati veQuer y(condi t i on)
5: r owResul t s ← executeQuer y(db, quer y)
6: for all r ow ∈ r owResul t s do
7: enti t i esResul t ← bui ldOb j ect (E .cl ass,r ow)∪enti t i esResul t
8: end for
9: return enti t i esResul t

order to be able to build these update requests, the data on the structure containing
the nested data must also be available when calling the generic method insertE(E e).
This is why in the signatures of the insertion methods, as arguments, are all the entity
types opposite to the linked mandatory roles (1-1 and 1-N cardinalities) of E . These
signatures are generated using only the cardinalities of the conceptual relationships.
It is therefore critical that the mapping rules between roles and physical structures
are correctly written in the HyDRa schema.

Types of physical structures

In addition to the conceptual signature considerations of the insertion methods,
it is also necessary to construct the correct query based on the mapped physical
structures. By considering the different physical schemas proposed in Section 5.2
we can identify different types of physical structures having an impact on insertion
implementation.s Insert in standalone structures. Concerns the addition of data for an entity

type in a physical structure not linked to another (Physical schema (a) and (b)
of CS 1 in the table 5.1). The data of E in this structure are neither referenced
nor contain mandatory references. This insertion will result in the translation
of the E object and its attributes into a simple native insert query.s Insert in complex embedded structures. Here we consider the addition of
data in a nesting structure where (1) there is at least one element nested in
an already nested structure (meaning at least a three-level structure), where
(2) the first level contains an attribute of the E entity to be inserted, (3) the
lower levels are mapped to mandatory roles. These structures require special
implementation since they may involve multiple relationships and mandatory
entity types outside the direct scope of E .s Insert in descending structures. In this configuration we study the insertion
in a nesting structure consisting of two levels. The first one contains attributes
of E and the nested array is mapped to a mandatory role of type E1. This
means that the insertion must also insert at the same time one of the entity
types passed as an argument to the insertion method.s Insert in ascending structures. The ascending structure represents the fact
that an entity E is stored in a nested attribute mapped to a role whose opposite

91

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

is mandatory. These structures mean an update of existing data by inserting E
into the complex attribute.s Insert in reference structures. Here we identify the structures concerned by
reference attributes mapped to mandatory roles of E or to its opposites E1

which have not been involved in the previous structures. These structures
represent foreign key type constructs. In this category we also detect and
process join structures involved in many-to-many relationships.

In order to illustrate the different insert structures as well as the influence of the
conceptual roles on the signatures of these insert methods, we present an extended
conceptual schema of Chapter’s 4 schema representing an application domain on
movies. In this schema we have added the entity types Review and User. A User
writes reviews (0-N) via the writes relation type. These reviews are written by a user
(1-1) and concern a single movie (1-1).

Figure 5.4: Extended IMDB example conceptual schema

The presence of these mandatory roles implies that a review cannot exist con-
ceptually without its movie or user. This is why the code generator, according to
the specification of Listing 5.3 will generate the following insertion method in Re-
viewService :

insertReview(Review review, Movie r_reviewed_movie , User r_author)

For movies, the mandatory roles being of maximum cardinality N, the arguments
will be of type lists

92

5.4.4. Insertion of entity types

insertMovie(Movie movie, List<Director> directorDirect , List<Actor>
characterPlay).

Figure 5.5 represents a complex embedded structure reviewCol for the entity
type Review, this structure is a collection in a document database which fulfils the
conditions stated in Section 5.4.4 :sThere are top-level attributes mapped to Review (idreview, content and note)sThere is a complex attribute, movie, mapped to a mandatory role of Review,

in this case it is mapped to r_review since it contains information about the
movie review.sMoreover, this complex attribute contains itself another complex attribute
mapped to a role which is also mandatory, actors is an array mapped to the
role movie (1-N) of the relation play. This array attribute contains the actors
of the movie containing it.

The example of this reviewCol structure shows that when we want to insert a new
review, in order to respect the conceptual constraints, it is also necessary to fill in
information about the film and its actors. However, if we look at the signature gener-
ated for the insertion of a review, we notice that it does not contain any information
about the actors. This is normal given that the entity type Review is not directly
linked to the entity type Actor via any relationship type. The link between Review
and Actor is indeed indirect, and goes through the Movie entity type first. This kind
of link requires a special implementation to check that the passed Movie object
contains the actor information in its attributes.

In Figure 5.6 is illustrated a descending structure for the entity type Movie, when
inserting a movie, the complex array object actors being mapped to the mandatory
conceptual role movie (1-N) will be constructed, populated and inserted along with
the new movie into the collection movieCol.

At the same time, the insertion of a movie will impact the actorCollection struc-
ture, represented in Figure 5.7. This structure is indeed an ascending structure
affected by Movie because the complex object movies is mapped to a role (character)
whose opposite is mandatory (role movie). This means that although movies are
optional in the actorCollection, the fact that a movie cannot exist without its actors
from the conceptual point of view, it is possible that an already existing actor in the
database has to be updated in order to mention the new movie in its movies array.

Insert in standalone structure algorithm

Algorithm 3 describes the generic algorithm for implementing an insertion of an
instance of E into a standalone structure. struct designates the standalone structure
in which it has been identified that there are attributes of E entity type. db designates
the database in which this structure is stored, and db.type designates the type of this
database. The main steps of this algorithm are :

(i) Identify the database type of the structure (Lines 3, 10, 17).
(ii) Identify the conceptual attributes of E that are mapped into this structure

(Lines 4, 12), for structures kvpairs (Section 4.5.3), there is a distinction be-

93

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

reviewCol

idreview
content
note
author

authorid
username
city

movie
movieid
title
avgrating
actors[1-N]

id
name

Figure 5.5: Double em-
bedded structure

movieCol

idmovie
title
actors[1-N]

actorid
name

Figure 5.6: Descending
structure

actorCollection

id
fullname
birthyear
deathyear
movies[0-N]

id
title
rating

rate: [rate]"/10"
numberofvotes

Figure 5.7: Ascending
structure

tween attributes mapped into the key part (line 24), or into the value part (line
31).

(iii) For each of them the corresponding native structure with the name of the
attribute and its value must be build.

(iv) Construct the final native query based on the constructed structure (Lines 8,
15, 35).

5.4.5 Join of datasets and data conflict identification

As described in Section 5.4.3, in order to retrieve the data concerning an entity type
E , it is necessary to first perform a selection on all the databases, and particularly
on each physical structure where at least one attribute of E is mapped. However,
each of these structures does not necessarily contain all the attributes of the entity
type, this is called structure split and is one of the advantages brought by the HyDRa
modelling language. This is why, in Algorithm 1 at line 8, the result lists of each call
to the specific databases are passed in a join function(fullOuterJoin). This function,
starting from a list of several lists of partially filled E objects, will return a single list
of complete E objects, i.e., with all attributes having a filled value. Furthermore, this
join function fulfils a second objective of identifying data value conflicts.

The join is a common operation that consists of comparing two subsets of objects
with each other on the basis of a common attribute. If the two object instances
of each of these sets share an identical value for this attribute, then their other
attributes are combined to form a single object. There can be two types of joins, an
inner or an outer, the difference lies in the set operator applied. Either it consists
in the application of the INTERSECTION operator on the join attribute, or it is the
application of a UNION between two subsets. Its implementation (described by
Algorithm 4) relies on several input parameters. datasets is the set of subsets of E on
which to perform the join. joinMode contains the type of join to perform, inner or
outer.

Once we have identified two instances of E on two subsets of datasets which

94

5.4.5. Join of datasets and data conflict identification

Algorithm 3 insertE(E entity) in standalone structures algorithm

1: str uct is the structure containing mapped element of E
2: db is the database of str uct
3: if db.t y pe is RELATIONAL then
4: for all at tr ∈ enti t y.at tr i butes mapped to str uct do
5: columns ← at tr.name
6: values ← at tr.value
7: end for
8: quer y ←’INSERT INTO (columns) VALUES (values)’
9: end if

10: if db.t y pe is DOCUMENT then
11: doc is an empty Document
12: for all at tr ∈ enti t y.at tr i butes mapped to str uct do
13: doc.append(at tr.name, at tr.value)
14: end for
15: quer y ← setOnInser t (doc)
16: end if
17: if db.t y pe is KEYVALUE then
18: ke y is the string containing the key
19: value is the value
20: for all component ∈ str uct .ke y pat ter n do
21: if component is a string constant then
22: ke y ← component
23: else if component is a mapped variable then
24: ke y ← enti t y.value of mapped attribute to component
25: end if
26: end for
27: if str uct .value is a string value type then
28: value ← enti t y.value of mapped attribute to str uct .value
29: else if str uct .value is a hash structure then
30: value ← Li st < Tuple < Str i ng ,Str i ng >>
31: for all at tr ∈ enti t y.at tr i butes mapped to str uct .value do
32: value.add(at tr.name, at tr.value)
33: end for
34: end if
35: quer y ← SET ke y value
36: end if

share the same identifier value2, a comparison of the value for each of the attributes
they have in common is carried out (this is possible in the case of a duplication of
data across physical structures permitted by the HyDRa framework, but not in the
cases of a duplication of data in the same context). If we notice two different values
for the same attribute, we have detected a data inconsistency for the same identifier.

2Each structure must indeed have the identifier, this is a constraint of the HyDRa framework (de-
scribed in Section 5.7)

95

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

This error is recorded and reported to the user via a log. If no conflict is detected,
finalEntity which contains all attributes of E , is added to the final list of results to be
returned.

Algorithm 4 j oi n(Li st < Li st < E >> d at aset s, j oi nMode) algorithm

1: f i nalDat aset ← d at aset s[1]
2: for all d ∈ d at aset s do
3: for all E enti t y1 ∈ d do
4: for all E enti t y2 ∈ f i nalDat aset do
5: if enti t y1.i d = enti t y2.i d then
6: for all at tr ∈ {enti t y1.at tr i butes ∩ enti t y2.at tr i butes} do
7: if enti t y1.at tr = enti t y2.at tr then
8: f i nalEnti t y ← enti t y1.at tr
9: else

10: DATA CONFLICT FOUND for at tr
11: end if
12: end for
13: f i nalDat aset ← f i nalEnti t y
14: end if
15: end for
16: end for
17: end for

5.5 Illustrative Example

The conceptual schema of Figure 5.8 represents a more complete model including
all the conceptual constructions supported by the HyDRa modelling language. This
schema is based on the Northwind database [6] which is a representative example
of data of a company, containing products, orders, suppliers, customers, etc. In
this schema we find structures such as one-to-many relations, mandatory (1-1) or
optional (0-1) cardinalities, many-to-many relations as well as a relationship type
with attributes.

The physical schema, presented in Figure 5.9 illustrates the tables, collections,
and sets of key values storing the data of the conceptual schema. In this physical
schema, the following structures are notably present:sHybrid foreign key. Products, Orders and Order_details contain a reference

field to a target database different from the source structure.sJoin table. Order_details is a join table representing a many-to-many relation-
ship (composedOf) with attributes.sEntity split. The entity type Shippers and its attributes are split into two
different key-value structures, SHIPPERS:[ID]:COMPANYNAME and SHIP-
PERS:[ID]:PHONE, two queries are needed to retrieve all the attributes, as well
as a join to reconstruct the conceptual object.

96

5.5.1. Select entity in split structures

territories
0-N

employed
0-N

works

category
0-N

product
0-1

typeOf
supplier

0-N
suppliedProduct

0-1
supply

shipper
0-N

shippedOrder
1-1

ships

boss
0-N

subordonee
0-1

reportsTo

employeeInCharge
0-N

processedOrder
1-1

register

region
0-N

territories
1-1

locatedIn

orderedProducts
0-N

order
0-N

composedOf

unitPrice
quantity
discount

customer
0-N

boughtOrder
1-1

buy

Territories

territoryID
territoryDescription

id: territoryIDSuppliers

supplierId
companyName
contactName
contactTitle
address
city
region
postalCode
country
phone
fax
homePage

id: supplierId

Shippers

shipperID
companyName
phone

id: shipperID

Region

regionID
regionDescription

id: regionID

Products

productId
productName
quantityPerUnit
unitPrice
unitsInStock
unitsOnOrder
reorderLevel
discontinued

id: productId

Orders

id
orderDate
requiredDate
shippedDate
freight
shipName
shipAddress
shipCity
shipRegion
shipPostalCode
shipCountry

id: id

Employees

employeeID
lastName
firstName
title
titleOfCourtesy
birthDate
hireDate
address
city
region
postalCode
country
homePhone
extension
photo
notes
photoPath
salary

id: employeeID

Customers

customerID
companyName
contactName
contactTitle
address
city
region
postalCode
country
phone
fax

id: customerID

Categories

categoryID
categoryName
description
picture

id: categoryID

Figure 5.8: Conceptual model of running example

sNested structure. The collection Customers contains an array of objects orders,
containing the orders bought by a customer (expressing the buy relation of
the conceptual schema).sData duplication. The data concerning the orders are present both in Orders, of
the key-value database, and in the nested structure of the Customers collection
in the document database.

In this section we will present some concrete examples of the generated Java
code for the different specifications mentioned above. These examples present the
important parts 3 of the specifications presented in Sections 5.3.3 and 5.4.

5.5.1 Select entity in split structures

In the illustrative use case presented, Shippers is an entity type whose complete set of
conceptual attributes is distributed over several physical structures. According to the

3Lines of code not part of the core of the example case explained have been removed.

97

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

Territories

TerritoryID
TerritoryDescription
RegionRef

gr: TerritoryID
gr: RegionRef

Suppliers

SupplierID
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax
HomePage

gr: SupplierID

ShippersPhone

«key» "SHIPPERS:"[1]":PHONE"
«value»«comp» [2]
«var» ShipperID
«var» Phone

ShippersCompany

«key» "SHIPPERS:"[1]":COMPANYNAME"
«value»«comp» [2]
«var» ShipperID
«var» CompanyName

gr: ShipperID

Region

RegionID
RegionDescription

gr: RegionID

Products

ProductID
ProductName
QuantityPerUnit
UnitPrice
UnitsInStock
UnitsOnOrder
ReorderLevel
Discontinued
SupplierRef
CategoryRef

gr: ProductID
gr: CategoryRef
gr: SupplierRef

Orders

«key» "ORDER:"[1]
«value» hash

OrderID
OrderDate
RequiredDate
ShippedDate
Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCode
ShipCountry
CustomerRef
EmployeeRef
ShipVia

«var» OrderID

gr: OrderID
gr: hash.ShipVia
gr: hash.EmployeeRef
gr: hash.CustomerRef

Order_Details

OrderRef
ProductRef
UnitPrice
Quantity
Discount

gr: ProductRef
gr: OrderRef

EmployeeTerritories

EmployeeRef
TerritoryRef

gr: TerritoryRef
gr: EmployeeRef

Employees

EmployeeID
LastName
FirstName
Title
TitleOfCourtesy
BirthDate
HireDate
HomePhone
Extension
Photo
Notes
PhotoPath
Salary
Address
City
Region
PostalCode
Country
ReportsTo

gr: EmployeeID
gr: EmployeeID
gr: ReportsTo
gr: EmployeeID

Customers

CustomerID
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax
orders[0-N]

OrderID
OrderDate
RequiredDate
ShippedDate
Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCode
ShipCountry

gr: CustomerID

Categories

CategoryID
CategoryName
Description
Picture

gr: CategoryID

mongoDB

Customers
Suppliers

kvDB

ShippersCompany
ShippersPhone
Orders

relDB

Products
Categories
Employees
Region
Territories
Order_Details
EmployeeTerritories

Figure 5.9: Physical model of running example

physical schema in Figure 5.9, the data concerning Shippers is found in the kvpairs
ShippersCompany and ShippersPhone. This representation is an implementation
of the design key value per field. Here these physical structures are on the same
database.

According to the generator specification, each of the entity types as well as the
relationship types will have a dedicated service class, allowing access to the data of
the conceptual object it represents via different conceptual access methods. We will
illustrate the generated code of the method getShippersList(Condition condition)
in ShippersService, this method is the implementation of Algorithm 1. Listing 5.6
presents this code. This method takes as argument a Condition object which can
also be null, i.e., in the case of the selection of all the data of Shippers. It will
return a Dataset object, a class inheriting from the List class, containing Shippers
conceptual objects. The generator, having read the physical schema and mapping
rules, identified that Shippers was distributed in two distinct physical structures.
The implementation of the method to select all the entities will therefore call the

98

5.5.2. Select in specific database

two specific methods on the identified structures. At lines 6 and 8 we will retrieve
the datasets coming from the two kvpairs involved. One of these specific methods is
detailed in the next subsection. Structure specific results are stored in a provisional
list which will then be combined via the join algorithm (Section 5.4.5) returning a
single dataset of Shippers objects.

1 class ShippersService {
2 // ...
3 public Dataset<Shippers> getShippersList(Condition <ShippersAttribute >

condition){
4 List<Dataset<Shippers >> datasets = new ArrayList <Dataset<

Shippers >>();
5 Dataset<Shippers> finalResult = null, d = null;
6 d = getShippersListInShippersPhoneFromMyRedisDB(condition);
7 datasets.add(d);
8 d = getShippersListInShippersCompanyFromMyRedisDB(condition);
9 datasets.add(d);
10

11 if(datasets.size() > 1) {
12 finalResult=fullOuterJoinsShippers(datasets);
13 }
14 return finalResult;
15 }
16 //...
17 }

Listing 5.6: Implementation of getShippersList() for Shippers entity type (structure
split)

5.5.2 Select in specific database

In the previous example we showed that the call to getShippersList involved two
calls to database specific methods implied by Shippers. Here we will detail one of
these calls, i.e., getShippersListInShippersPhoneFromMyRedisDB which will return
a Dataset of Shippers objects, containing only the data of Shippers present in the
kvpair structure ShippersPhone. This function is an implementation example of
Algorithm 2. The main steps consist in the creation of a native query compatible
with the target database type, then the execution and the retrieval of the results in
a generic data format. And finally the last step converts these generic objects into
conceptual objects.

As the target database is a key-value database, the retrieval of data can only
be done via the key. First, we have to build the key pattern based on the pattern
indicated in the physical structure, i.e., "SHIPPERS:"[ShipperID]":PHONE. It consists
of three elements, two of which are string constants. The variable part ShipperID
is mapped to the conceptual identifier of the entity type Shippers. The Lines 3
to 15 build the complete pattern by concatenating the elements. This part also
reads the passed selection condition, in order to identify if it does not concern an
element which is part of the key 4. Indeed, in this case, it may be possible to directly
indicate the value of the attribute to recover only the desired key. If it is not the case,
the dynamic element of the key will be replaced by the wildcard character *. The

4This condition must also be an equality operator

99

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

treatment of a condition on an element of the value will be carried out in the method
calling this method and is not the focus of this section.

Once the key pattern has been constructed, it is sent to the database and ex-
ecuted (line 19) in order to retrieve objects of type Row, which contain for the
ShippersPhone structure two String objects with the retrieved key and value.

Then these objects will be converted into conceptual objects Shippers, for each
of the attributes of this object we identify if its mapped physical fields are in the key
or in the value, then according to a pattern and regular expression construction, the
actual value is extracted and put into the object shipper_res via the corresponding
setter. Given that the concerned structure contains only the identifier ShipperID
and the attribute phone. The final shipper object will only be populated with those
attributes. In the end a list (or Dataset) of partial Shippers is returned. As indicated
in the previous section, in Listing 5.6, at line 12, it is the generic selection function
that will take care of the join of the different partial Dataset retrieved from the two
physical structures mapped to Shippers.

1 public Dataset<Shippers> getShippersListInShippersPhoneFromMyRedisDB(
Condition <ShippersAttribute > condition){

2 // Build the key pattern
3 keypattern=keypattern.concat("SHIPPERS:");
4 if(...)// condition on attribute in key pattern
5 {
6 // Get value in condition argument
7 }
8 else{
9 valueCond=null;
10 }
11 if(valueCond==null)
12 keypattern=keypattern.concat("*");
13 else
14 keypattern=keypattern.concat(valueCond);
15 keypattern=keypattern.concat(":PHONE");
16 // ...
17

18 Dataset<Row> rows;
19 rows = SparkConnectionMgr.getRowsFromKeyValue("myRedisDB",keypattern);
20 // Transform to POJO. Based on Row containing (String key, String value)
21 Dataset<Shippers> res = rows.map((MapFunction <Row, Shippers >) r -> {
22 Shippers shippers_res = new Shippers();
23 // attribute [Shippers.ShipperID]
24 // Attribute mapped in a key.
25 key = r.getAs("key");
26 // Build pattern and regex code to retrieve attribute.
27 // ...
28 shipperID = // matched element;
29 shippers_res.setShipperID(shipperID);
30 // attribute [Shippers.Phone]
31 // Attribute mapped in value part.
32 value = r.getAs("value");
33 // Build pattern and regex code to retrieve attribute.
34 // ...
35 phone = // matched element
36 shippers_res.setPhone(phone == null ? null : phone);
37 return shippers_res;
38 }, Encoders.bean(Shippers.class));
39 return res;
40 }

Listing 5.7: Specific implementation code for
getShippersListInShippersPhoneFromMyRedisDB

100

5.5.3. Select by entity attribute

5.5.3 Select by entity attribute

The selection methods also include simplified access methods that allow data to be
selected according to the value directly given as an argument for a specific attribute.
The implementation of these methods is very simple and consists solely of calling
the generic getEList with a constructed condition transparent to the user. This code
is presented in Listing 5.8.

1 public Dataset<Customers > getCustomersListByPhone(String phone) {
2 return getCustomersList(conditions.Condition.simple(conditions.

CustomersAttribute.phone, conditions.Operator.EQUALS, phone));
3 }

Listing 5.8: Implementation of getEListByAttribute()

5.5.4 Role selection

As shown in Figure 5.3 in lines 7 and 8, the generated selection methods also exploit
the relationship types and their roles. Thus, there are methods that can select data
of one entity type based on another entity type linked by a relationship. In our
conceptual schema of Figure 5.8 we can quote for example the presence of :sgetBoughtOrderListInBuy(Condition<Customers> condCustomers, Condi-

tion<Orders> condOrders). This function retrieves the objects Orders, playing
the role boughtOrder in the relationship buy. As arguments, Conditions ob-
jects (See 5.4.2) can be passed. They are specific to each of the two entity
types involved in buy, namely Orders or Customers. There are also varia-
tions allowing to give an object as argument instead of a condition. e.g., get-
BoughtOrderListInBuyByCustomer(Customer customer).sgetCustomerListInBuy(Condition<Customers> condCustomers, Condi-
tion<Orders> condOrders) This one is the opposite equivalent of the previous
one. Here we want to retrieve Customers from the purchase relation.sgetOrderListInComposedOf(Condition<Orders> orderCondi-
tion,Condition<Products> orderedProductsCondition, Condi-
tion<ComposedOf> composedOfcondition) This method implies the
many-to-many relationship type composedOf which also contains attributes,
this implies the possible presence of a condition on the relationship type
itself.

The signature of these methods follows a precise pattern based on the names
declared in the conceptual schema. This takes the form of

g etROLE1NAMELi st InRELATIONSHIPNAME(Condi ti on...)
or
g etROLE1NAMELi st InRELATIONSHIPNAMEB yROLE2NAME(E N T I T Y 2...)

for the instance-based version.
These methods are also conceptual and are therefore not impacted by possible

physical mappings. The same results will be returned no matter if the database of
role 1 entity type data is different from the one where role 2 entity type data is stored.

101

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

The implementation of these methods relies mainly on the entity type selection
methods described above, and on the join algorithm that will return the right subset
based on the fields containing the source and target references.

5.5.5 Insert an entity type

The insert method illustrated in Listing 5.9 allows to insert a conceptual object Orders
into its mapped physical structures. The first important thing is that the signature
of insertOrders does not only contain the Orders object to be inserted. Indeed,
according to the Section 5.4.4 the signature also takes into account the cardinalities
of the roles of the relations in which the entity type to be inserted is involved. Here
according to the conceptual schema presented in Figure 5.8, the entity type Orders
is involved in three relations in which Orders plays a role of cardinality 1-1. This
means that an order cannot exist without a delivery person (Shippers), nor without
an employee who has encoded it (Employees), nor without the customer who has
placed this order (Customers). This is why in the signature of the insert function,
instances of these objects are also requested.

Then the implementation of the insert will, similarly to the selection methods,
call the database specific sub-methods. In the example case and given the physical
schema of Figure 5.9, Orders is involved in (1) an ascending structure (Customers)
(due to boughtOrder role), (2) a reference structure Orders, which is a kvpair stored
in the kvDB key value database.

1 public void insertOrders(Orders orders, Customers customerBuy , Employees
employeeInChargeRegister ,

2 Shippers shipperShips){
3 // Insert in standalone structures
4 // Insert in structures containing double embedded role
5 // Insert in descending structures
6 // Insert in ascending structures
7 insertOrdersInCustomersFromMyMongoDB(orders,customerBuy ,

employeeInChargeRegister ,shipperShips);
8 // Insert in ref structures
9 insertOrdersInOrdersFromMyRedisDB(orders,customerBuy ,

employeeInChargeRegister ,shipperShips);
10 // Insert in ref structures mapped to opposite role of mandatory

role
11 }

Listing 5.9: Insert code for Orders entity type

5.5.6 Insert in an ascending structure

The method in Listing 5.10 presents the implementation to insert the entity type
Orders into the ascending structure Customers identified by the insert function.
The myMongoDB database hosting the Customers collection is of type document.
We must therefore first create the object of type Document which will be inserted
using the native MongoDB driver, as described in Section 1.2.1. Lines 6 to 8 actually
create this document by going through the attributes of the Orders object passed
as parameter of the insert method. Only the attributes mapped to the physical
structure considered will be taken into account.

102

5.6. Algorithms

Then the created order document, for the considered ascending structure must
be added to the orders array of the client’s root document. The client identifier is
also passed in parameter. Line 13 declares the filter operator specifying the client
identifier, allowing to select the right client on which to add the order. In the native
mongodb library, there is a specific operator allowing to add an element to an array,
Line 14 declares this parameter by assigning it the order document created above.
This operator and the filter condition are finally transferred and executed on the
myMongoDB database.

1 public boolean insertOrdersInCustomersFromMyMongoDB(Orders orders,
2 Customers customerBuy ,
3 Employees employeeInChargeRegister ,
4 Shippers shipperShips) {
5 // Implement Insert in ascending complex struct
6 Document docorders_1 = new Document();
7 docorders_1.append("OrderID",orders.getId());
8 docorders_1.append("OrderDate",orders.getOrderDate());
9 // ... remaining attributes mapped to current physical structure.
10

11 // level 1 ascending
12 Customers customers = customerBuy;
13 Bson filter = eq("CustomerID",customers.getCustomerID());
14 Bson updateOp = addToSet("orders", docorders_1);
15 DBConnectionMgr.upsertMany(filter, updateOp , "Customers", "

myMongoDB");
16

17 return true;
18 }

Listing 5.10: Insert code for Orders entity type in ascending structure

5.6 Algorithms

As described in the generated API specification, the methods used by the user are at a
conceptual level of abstraction. For the selection methods, this means that no matter
what the actual representation of the underlying physical structures is, with duplicate
or entity split structure, the returned value will be a set (i.e., no duplicate with respect
to the identifier) of complete conceptual objects (which contain all the attributes
declared in the conceptual entity type). The satisfaction of this requirement by the
generated code, and by consequence also by the algorithm generating the code,
depending on the complexity of the physical structures encountered, give rise to
several challenges. The following section does not detail the those algorithms in a
generic way but illustrates, via particular examples, some complex and/or original
configurations that are managed by the code generator.

5.6.1 Creation of objects from multi level embedded structure

Returning complete conceptual objects is particularly complex in certain situations
made possible by the nested structures of the document data model (Section 1.1.4).
Indeed, these structures, in a single document, can hold several entity types, contain
several instances thanks to the object arrays, and even have attributes of the same

103

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

entity type spread over several embedded levels. This section illustrates such a
situation with an example.

In the following structure (Figure 5.10) are represented data concerning movies
in a collection (document database), at the first level are the identifier (idmovie),
the year (startYear) and the duration (duration) of a movie. Then, in an object
attribute, notes, the average of the notes (averageRating) as well as the number of
votes (numVotes) regarding that particular movie are found. These attributes are
embedded at a lower level. Next, in actors, an attribute of type array containing
objects as well, we find the actors of this movie. However, here, for a reason specific
to the user, the title of the movie originalTitle is included for each actor 5.

On the right side of the Figure we illustrate such structure in with example data
in JSON format.

1 {
2 idmovie : 54836684,
3 startYear: 2020,
4 duration : 150,
5 notes : {
6 averageRating : 7.3,
7 numVotes : 487523
8 },
9 actors : [{
10 lastname : "Washington",
11 firstname : "John David",
12 originalTitle:"Tenet"
13 },
14 {
15 lastname : "Pattinson",
16 firstname : "Robert",
17 originalTitle : "Tenet"
18 }]
19 }
20

Figure 5.10: Example of structure where attributes are mapped to multiple nested
level

When calling the getMovieList method, in order to build the complete movie
object, it will be necessary to :sConstruct a root object with the movie attributes of the first level.sRetrieve the attributes of the second level in the complex field notes and add

them to the root object.s Iterate on all the elements of the array actors in order to recover each orig-
inalTitle and check that they have the same value since they are linked to the
same root object.sSet the definitive title attribute to the root object and add it to the final returned
list.

This process can be confronted with undefined levels of nesting and where the
attributes of the concerned entity type are found at each of them. This is why the
code implementing this reconstruction is a recursive algorithm.

5This is an interesting structure indeed, but it is possible as NoSQL models are designed to respond
to queries that are as close as possible to the user’s needs.

104

5.6.2. Filtering on attributes in a split entity

5.6.2 Filtering on attributes in a split entity

In the case where the attributes of an entity type are split over several databases
(a construction called entity structure split), the selection based on a condition on
one of these attributes must also be able to be satisfied. Indeed, Conditions objects
passed as arguments to the selection methods are also conceptual and therefore
independent of the database where the attribute of the condition is actually stored.
In the example we show that a condition can concern an attribute present only in a
single physical structure and that the data stored on the other physical structures
will be retrieved and will also respect the selection constraint.

In Figure 5.11 is represented a many-to-many relationship type between movies
and directors. directorTable contains information on the directors, directed is the
join table containing the foreign keys to movie and director structures. The movie
structure (movieCol) is a document collection containing information about movies
as well as an array (actors) including the actors of that movie. For user-defined reason,
the ratings information for a movie is stored in another structure (movieRating).
Therefore, the conceptual attributes forming the complete conceptual entity type
Movie are thus split into two structures. The access methods to a movie such as
getMovieList(Condition<Movie> condMovie), but also the access method to a director
according to a condition on the movie getDirectorListInDirect(Condition<Movie>
condMovie) must be able to satisfy any condition on any attribute of Movie.

For example in the case where the user wants to retrieve all movies whose average
(avgRating) exceeds 9 the following steps will be performed:sA query on movieRating respecting the condition on avgRating will be ex-

ecuted. It will thus return all the satisfying Movie objects. Which will only
contain the attributes mapped in this structure (numVotes and avgRating).sA query retrieving movieCol data will also be built and executed. However,
here, there is no field allowing to satisfy the condition on the average, so the
constructed query will retrieve all the data. A flag indicating that the condition
could not be directly verified will be created.sTwo datasets containing Movie objects are retrieved. Each of them consists
of Movie objects partially filled (given the attributes encountered in their
respective structures). Moreover, one will contain more elements than the
other one since the condition could not be directly satisfied using the query.sThese two results lists must be joined in order to reconstruct a complete Movie
object. This join will read the selection condition and thus be in charge of
re-filtering the possible Movie objects not satisfying the condition.

With this example we illustrate that it does not matter how the conceptual
attributes are physically distributed in the different databases. The conceptual
selection conditions can be satisfied.

5.6.3 Get role in relationship

We have specified that it is possible to select entity type data based on its role in
a relationship, and also based on conditions on the other entity types involved in

105

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

movieRating

id
numVotes
avgRating

movieCol

idmovie
title
year
actors[0-N]

idactor
lastname
firstname

gr: idmovie

directorTable

id
fullname: [firstname]" "[lastname]
birth
death

gr: id

directed

director_id
movie_id

gr: movie_id
gr: director_id

Figure 5.11: Movie split structure example

that relationship (Section 5.5.4). Their implementations are particular and several
configurations must be taken into account.

If we consider R(r ol e1 : E1,r ol e2 : E2), a relation R between two entity types, E1

and E2, playing respectively the roles named r ol e1 and r ol e2. In the data access
class E1Service there are therefore selection methods that exploit the R relation. As a
reminder, these take the following form:sgetRole1ListInR(Condition<E1> role1Cond, Condition<E2> role2Cond)sgetRole1ListInRByRole2(E2 role2)

The implementation of these functions depends, like all the others, on the physi-
cal schemas and the mapping rules of the HyDRa schema. It varies greatly depending
on the possibilities of physical configurations. We can quote several elements which
influence the code to be generated:sThe physical structures hosting the data of r ol e1 and r ol e2. Are they in the

same database or a database of the same type?sThe type of link between the two roles. Is it a foreign key reference, or a nested
structure?sThe direction of the reference. Is it r ol e1 that references r ol e2 or the other
way around?sThe type of the reference field. Is the reference mono or multivalued, i.e., is it
a single field or an array of references?sThe cardinalities of the roles. Is the relationship many-to-many? Is there a join
table?

Each of these dimension leads to different implementations of the selection
methods. These must be taken into account by the code generation algorithm. In
order to illustrate the configurations managed by the algorithm we will define :sE1 as being the physical structure being mapped to the conceptual attributes

of E1 (and thus to the role r ol e1 as well).

106

5.6.3. Get role in relationship

sE2, the physical structure mapped to the attributes of E2.sE1 → E2. This arrow indicates that there is a reference (or foreign key) in the
physical structure E1 to a field of E2.srefE1refE2. Indicates a join structure that contains two fields referencing a
value of E1 and a value of E2.

In the following we will describe different situations that have an impact on the
implementation of role-based selection methods.

Reference structures

This category identifies configurations that contain two separate physical structures,
declaring a reference from one to the other. Figure 5.12 represents some of these
variations, 5.12a represents a foreign key field from the E1 structure to E2. This field
will be used to host a reference value to the identifier of E2. When executing a role
selection method we also need to capture this field and include it in the constructed
native query. In Figure 5.12b this logic is reversed, and it is E2 which references E1.

Finally, the last impacting dimension is the type of reference, the schema 5.12c
indicates that the field e2 which contains the reference to the structure E2 is an array
of several values.

It is interesting to note that for all represented situations of Figure 5.12, if they
are in the same database, implementation is again impacted. Indeed, in this case
the generated code is different and more efficient in the sense that we can perform
the two operations of selections and join in a single native query 6.

E2

id
a3
a4

id: id

E1

id
a1
a2
e2

id: id
ref: e2

(a) E1 → E2

E2

id
a3
a4
e1

id: id
ref: e1

E1

id
a1
a2

id: id

(b) E1 ← E2

E2

id
a3
a4

id: id

E1

id
a1
a2
e2[0-N]

id: id
ref: e2[*]

(c) E1 → E2 (multi valued)

Figure 5.12: Reference structures

Embedded structures

Figure 5.13 depicts the possibilities of modelling a conceptual relationship type
between E1 and E2 in nested structures. There are mainly two ways, either the first
entity type contains the second (Schema 5.13a) or vice versa (5.13b). Here we only
represent a structure with two levels of nesting, the algorithm generating the access
code takes into account nesting at any level.

6If the native database language allows it

107

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

E1

id
a1
a2
E2[0-N]

id
a3
a4

id: id

(a) E1[E2]

E2

id

a3

a4

E1[0-N]

id

a1

a2

id: id

(b) E2[E1]

Figure 5.13: Embedded structures

DB1

R
e1
e2
r
id: e1

e2
ref: e1
ref: e2

E2
id
a3
a4
id: id

E1
id
a1
a2
id: id

(a) (E1 ← r e f E1r e f E2 →
E2)

(b) E1 ← (r e f E1r e f E2 →
E2)

(c) (E1 ← r e f E1r e f E2) →
E2

Figure 5.14: Join structures possible physical representations

Join structures

Making a selection on the role of a relationship type is ultimately influenced by the
presence of a join structure (and thus a many-to-many relation). The main challenge
of the implementation algorithm will be influenced by the groupings of physical
structures within the databases. The number of queries as well as their type will be
different depending on whether the join structure is in the same database as one or
both entity types (5.14a and 5.14b in Figure 5.14), or whether this structure is on an
isolated database (5.14c).

5.7 Tool Implementation

In this section we will describe the technical aspects of implementing and using the
HyDRa framework.

5.7.1 Architecture

HyDRa is implemented as an Eclipse plugin, publicly available on GitHub [53]. The
plugin includes the textual editor for the polystore modelling language of Chapter

108

5.7.2. Modelling constraints

4, and the conceptual Java API generator. The modelling language grammar was
specified with Xtext 7, a framework for developing Domain Specific Languages.
The editor provides auto-completion, syntax checking and highlighting. It currently
supports the design of relational, document, graph, column and key-value databases.

The user can create a polystore schema file to specify the conceptual and physical
schemas as well as mapping rules to possibly pre-existing databases. This file can
then be given as input of the API generator, that then produces a set of ready-to-
use Java classes with their configuration files. The API generator uses the Acceleo
technology 8 and as of June 2022 is made of 10302 lines of code (excluding comments,
blank lines and generated code). The generated API currently supports selection
and insertions operations on relational databases (MySQL and MariaDB), document
databases (MongoDB) and key-value databases (Redis) via generated code using
native access libraries (JDBC, Mongo Java driver and Jedis).

5.7.2 Modelling constraints

In order for the generated code to work properly there are some technical constraints
that need to be respected. Some of them could be translated into validation rules
directly in the schema editor of the Eclipse plugin. If any of these validation rules are
not met, then the schema will be indicated as being in error and the line in question
will be underlined (cf Figure 5.15). The rules implemented are the followings:sConceptual attributes must not start with an uppercase letter. As method

names are generated according to the camelCase notation, a getter method
generated on a "name" or "Name" attribute will generate two identical meth-
ods getName(). This must be avoided.sRelationship role names must be unique among the model. To ensure unique-
ness of attribute names, getters and setters in object classes without having
too long names and signatures.sMandatory identifier. In order for the conceptual join (Section 5.4.5) and
reconstruction of a single split entity type to work correctly, the join must be
done on an identifier field. Therefore, conceptual entity types must declare
one and furthermore, each physical structures hosting attributes of a particular
entity type should also contain the identifier.sThe number of conceptual attributes specified on the left side of a mapping
rule should be equal to the number of physical fields specified on the right
side. This is so that each item listed has a match.

5.7.3 Plugins example usage

Figure 5.15 shows a view of the Eclipse plugin editor of a HyDRa model. We can see
the syntax highlighting associated with the language and also notice the implemen-
tation of one of the validation rules. Here it indicates that the model being written is
in error. The illustrated rule specifies that the number of conceptual elements on

7https://www.eclipse.org/Xtext/
8https://www.eclipse.org/acceleo/

109

https://www.eclipse.org/Xtext/
https://www.eclipse.org/acceleo/

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

the left of a mapping rule must be equal to the number of physical fields mentioned
in the physical part on the right of the rule.

Figure 5.15: HyDRa modelling language Eclipse editor

Once the HyDRa schema file (.pml) is completed and valid right-clicking on this
file brings up the pop-up menu to generate the conceptual API code. Figure 5.16
illustrates this menu.

Finally, the project containing the model file will contain several packages, de-
picted in Figure 5.17 including the two packages containing the services classes and
object classes.

5.8 Benefits

In this section we will review the benefits of using this conceptual API for manipulat-
ing a hybrid polystore.

5.8.1 Conceptual manipulation

Manipulating data via its conceptual representation allows the developer to abstract
from the databases and thus not be required to master the data query language, or
the access libraries as illustrated in Section 1.2.1. In this way the developer can write
code that is completely transparent to the actual data storage. This is a potentially
significant time saving.

Moreover, in a context of physical data evolution, i.e., migration or duplication,
preserving the conceptual model of the polystore. The application code written

110

5.8.1. Conceptual manipulation

Figure 5.16: HyDRa API generator menu in Eclipse

Figure 5.17: Example of generated packages and classes

using the conceptual API does not require modification. This is illustrated in the
next sections.

111

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

5.8.2 Data validation

By exploiting the declared mapping rules and the generated conceptual API. HyDRa
users are able to perform two types of data validation when using the API in their
applications.

First, at the conceptual level, our entity reconstruction algorithm is independent
of any entity structure split or duplication while retrieving data instances. It returns
complete conceptual objects, by joining data from multiple backends when neces-
sary. Therefore, HyDRa-based applications could detect possible inconsistencies
between the values of a conceptual attribute stored into multiple databases. Going
back to our running example in Figure 5.9, Orders attributes are duplicated into two
databases, first in Orders key value structure and second in Customers document
collection. When querying the Order entity type through the conceptual API, the lat-
ter would then detect when data instances sharing the same identifier have different
orders attribute values. This verification happens when joining the datasets, which
was detailed in Section 5.4.5.

A second data validation is carried out at the level of referential integrity. Thanks
to the mappings from relationship type roles to reference blocks, a generated HyDRa
API provides data manipulation methods exploiting the related entity types. An
example of role-based selection method is getBoughtOrderListInBuy, role based
selections were detailed in Section 5.5.4. A similar referential constraint implemen-
tation is provided for insert methods where, due to the presence of a mandatory role,
inserting a new Order requires a Customer object, validating that the given entity to
save contains mandatory linked entities, as a referential value or as an embedded
structure.

Thanks to these two validation methods, a developer can detect possible in-
consistencies in the data when using the selection methods. This is particularly
useful when HyDRa is used in a database reverse engineering context. The use of
the insertion methods provided by the API allows keeping conceptual consistency
of the data across several heterogeneous databases.

5.8.3 Evolution

Evolving data intensive systems is a complex and error-prone task, since it often
requires co-evolving the application code to keep the system consistent. HyDRa, by
generating conceptual data manipulation APIs, aims to facilitate this co-evolution
problem.

Figure 5.18 illustrates how HyDRa can help with this co-evolution task. The upper
left of the figure depicts a first version v1 of a polystore system, manipulating Product,
Order and Customer entities. The mapping rules are represented with arrows, linking
the conceptual elements to their physical databases. Customer instances are stored
in a relational MySQL database, Orders are stored in MongoDB database and Product
data is stored in both databases. This v1 version of the polystore schema was given as
input to the HyDRa API generator. Based on the generated API, developers developed
application code accessing the polystore databases declared in v1.

112

5.8.4. Improving test coverage

Let us now assume that evolving requirements require the polystore to evolve
from version v1 to v2. Customer is migrated to the MongoDB database and Order
is duplicated in a newly deployed key-value Redis database. Without HyDRa, ap-
plication programs would use database native queries to access the polystore data.
Those programs would need to be manually rewritten to (1) change the queries
manipulating Customer from MySQL to MongoDB, (2) add Redis queries for Order
data, (3) add glue code to handle the duplication of Order data in multiple databases.
On top of that, the developers would need to know, or to learn, the Redis query
language.

In contrast, by using the HyDRa API conceptual methods to access the poly-
store in version v1, the developers only need to adapt the HyDRa polystore model,
regenerate the API, and recompile their application programs. The latter remain
unchanged and can immediately manipulate the v2 data structures of the target
polystore.

pList = productService.getProductListByCategory(«Beers»);

Customer customer = customerService.getCustomerById(idcust);

Order newOrder = new Order(orderId, LocalDate.now(), price);

orderService.insertOrder(newOrder, customer, pList);

Figure 5.18: HyDRa API In Evolution Context

5.8.4 Improving test coverage

The low rate of test coverage of the database access methods is due to several factors
identified in Chapter 3. The generation of this code as presented in the current
chapter brings solutions to some of these problems in order to allow a better coverage
of tests and thus a better quality of the system.

Thanks to the databases section of the HyDRa modelling language (see Sec-
tion 4.4) it is easy to generate an API specific to the environment dedicated to the
tests. This makes it possible to easily insert test data via the use of conceptual
insertion methods. Indeed, one of the important problems highlighted by the taxon-
omy of difficulties (see Chapter 3, Section 3.3) is the database management, i.e., the
management of connections and data specific to test databases.

113

CHAPTER 5. HYDRA POLYSTORE DATA MANIPULATION API

Conceptual access methods integrates the handling of the databases connec-
tions and allows easy access to the data. Developers can thus write tests in a more
intuitive way which requires less effort. Furthermore, those conceptual level tests
can benefit from the support of evolution as described in the previous section (Sec-
tion 5.8.3), in this way the tests remain consistent with the evolution of the schema,
this being also a recurrent problem raised by developers. Finally, it is also possible
to generate test classes in parallel to the service classes and object classes. These
can therefore integrate a certain number of best practices recommended by the
developer community. This is a future development of the API.

5.9 Conclusion

In the last two chapters we have detailed the two main components of the HyDRa
framework, i.e., the modelling language and the conceptual API generator. The
HyDRa language has made it possible to separate the conceptual schema (the appli-
cation domain of the system) from the physical schemas (the actual representation
of the data in the databases). The link between these two parts is established via the
mapping rules offered by the language.

Based on this HyDRa schema, this chapter has described how a conceptual data
access library is generated. First we have described the different elements generated
by our algorithm. Two main classes are thus at the heart of the API, (1) the object
classes, which are the representations of the conceptual entity and relationship
types, and (2) the service classes, which contain data manipulation operations using
the conceptual object classes.

Second we presented the main steps each method generated must respect. The
implementation of these manipulation methods depends on the correspondences
with the actual physical schemas, but the main steps are common.

In the third part of this chapter we have illustrated some available generated
methods and their implementation with the help of the actually generated Java code.
Then we presented the different challenges that the code generator algorithm had to
meet, and we also listed some technological constraints of the chosen tools.

In the light of these descriptions and illustrations, we then reviewed the advan-
tages brought by such a conceptual access code generator, i.e., keeping conceptual
consistency across multiple heterogeneous databases, allowing conceptual query-
ing and facilitating co-evolution of application code towards structural evolutions

114

C
H

A
P

T
E

R

6
EVOLUTION FRAMEWORK & QUERY ADAPTATION

Contents
6.1 Introduction . 115

6.2 Background . 116

6.3 Evolution Framework . 118

6.4 Query Adaptation . 121

6.5 Conclusion . 126

In this chapter we propose a theoretical framework to manage the evo-
lution of database schemas with a top-down approach, starting from
the evolution operation to all the involved artefacts. Then we detail an
approach developed to automatically adapt queries according to schema
evolutions.

The work presented in this chapter has been published [48, 52] in the 46th International Conference on

Very Large Databases (VLDB 2020 PhD Workshop) and in the 22nd IEEE International Working Conference

on Source Code Analysis and Manipulation (SCAM 2020 NIER Track) where it received the Best New Idea

and Emerging Results Paper Award.

6.1 Introduction

Database schema change has long been recognized as a complex, time-consuming
and risky process. These evolutions can be of different types, depending on whether
they impact the semantics of the conceptual schema (by adding or removing con-
structions), or whether they only affect the structure of the data (constant semantic

115

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

evolutions). Moreover, these evolutions have an impact on several artefacts of the
data intensive system considered, those involve (1) the structure of the databases,
(2) the format or the data themselves, (3) the conceptual, logical or physical schemas
as well as (4) the programs or queries manipulating these databases. The developer
in charge of implementing a database schema change will have to be able to iden-
tify and adapt these artefacts correctly in order to keep the system running. This
co-evolution task is therefore at high risk of introducing errors, and has already been
the subject of several approaches, techniques and tools (detailed in Chapter 2). We
argue that the difficulty of this task is even higher in a hybrid polystore context.

In the previous chapters we have presented a modelling language allowing
to unify, for a system comprising several databases, the conceptual and physical
schemas. On the basis of this model, a conceptual data access library has been
proposed, and we have described the advantages that this approach brings to the
evolution of databases (Section 5.8.3) and particularly the support to the evolution
of data manipulation programs.

In this chapter, we first propose a complete theoretical framework for the evo-
lution of polystores implementing a top-down approach. It starts from the desired
schema evolution operation and goes towards the different impacted artefacts. Sec-
ondly, we will detail an additional approach to the evolution of data manipulation
code, this time focused on queries.

6.2 Background

The work presented in this chapter has been developed within the framework of the
European project Typhon [8]. It is a project involving several academic and indus-
trial partners with the aim of developing a global architecture allowing the design,
manipulation, evolution, analysis and deployment of hybrid polystores. The contri-
butions concerning the evolution of hybrid polystores are therefore partly based on
two elements, (1) TyphonML and (2) TyphonQL developed by other partners of the
project.

TyphonML Firstly, the TyphonML modelling language, a polystore modelling lan-
guage, at the basis of the reflection and development of the HyDRa language (Chap-
ter 4). Both languages share the presence of a conceptual part that describes the
semantics of the data of the polystore (in terms of entity types and relations be-
tween them), as well as a physical part describing the physical components (tables,
collections, etc.) of the databases involved.

Compared to HyDRa, TyphonML imposes implicit restrictions on the way con-
ceptual entities, attributes and relationships are physically translated in each dif-
ferent native backend. In other words it does not leave developers the freedom to
explicitly define the mappings between the conceptual schema elements and the
physical schemas of the polystore at the level of the attributes. In addition, it does
not support data structure split, data instance partitioning, and data redundancy
across the different polystore databases. However, TyphonML integrates an addi-
tional section in its language allowing to specify schema evolutions to be performed.

116

6.2. Background

This part represents the starting point of the evolution framework and will be de-
scribed later in this chapter. Listing 6.1 exposes an example of TyphonML schema,
where we notice the presence of the conceptual and physical schemas sections, and
finally in the last lines the presence of change operators.

1 // Conceptual section
2 entity Description{
3 id : int
4 description : string[500]
5 product :-> Product[1]
6 }
7 entity Product{
8 id : string[256]
9 name : string[50]
10 price: float
11 }
12 entity Order{
13 id: int
14 total_price : float
15 products :-> Product[0..*]
16 owner :-> User[1]
17 }
18 entity User{
19 id : int
20 name: string[50]
21 cardNumber : string[16]
22 orders :-> Order."Order.owner"[0..*]
23 }
24

25 // Physical mapping section
26 relationaldb RelationalDatabase{
27 tables{
28 table{
29 ProductDB: Product
30 index productIndex{
31 attributes(’Product.name’)
32 }
33 idSpec(’Product.name’)
34 }
35 }
36 }
37 documentdb DocumentDatabase{
38 collections{
39 UsersDB: User
40 }
41 }
42

43 //Schema Modification Operators
44 ChangeOperators[
45 merge entities Product Description as Product,
46 split entity User to CreditCard attributes:[cardNumber]
47]

Listing 6.1: TyphonML example

TyphonQL A Typhon polystore can be queried using the TyphonQL language [82].
The language proposes a unified concrete syntax for CRUD operations performed
on the polystore. The TyphonQL query engine compiles those queries into native
queries manipulating the actual databases of the polystore. This means that migrat-
ing a polystore entity from one database platform to another within the polystore,
does not impact the related TyphonQL queries, which may remain unchanged. The

117

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

TyphonQL engine maps dynamically the query towards the right DBMS based on
the physical part of the TyphonML schema. Some examples of TyphonQL queries
are given in Listing 6.2.

// select the review entity of a specific product
from Product p select p.price where p.name == ’laptop’

// insert a product
insert Product {id: ’298’, name:
’kettle’, price: 5.23}

// update
update Product p where p.id == 563 set{name: ’laptop ’}

Listing 6.2: Query examples

Our query adaptation approach presented next in this chapter is able to auto-
matically transform TyphonQL queries based on given evolution operations present
in the TyphonML schema.

6.3 Evolution Framework

Based on the arguments developed in the introduction, we believe that the database
schema evolution process can greatly benefit from an integrated approach. This
approach allows to perform the co-evolution of other artefacts of the system in an
exhaustive and semi-automatic way by having as a single starting point the evolu-
tion operations to be performed. This section describes the theoretical framework
developed for this purpose.

Below we specify the elements that constitute the expected inputs and outputs
of the framework.

InputssMSour ce , represents the hybrid database schema at both conceptual and phys-
ical levels.s {SMO} is a set of schema modification operators to apply to MSour ce .s {DBSour ce } is the set of source native data structures and data instances.s {QSour ce } is the set of existing queries expressed on MSour ce .

OutputssMTar g et is the source model adapted according to the evolution operators in
{SMO}.s {DBTar g et } represents the set of database structures and instances adapted
according to those operators.s {QTar g et } gives, when possible, equivalent queries as {QSour ce }, but expressed
on MTar g et .s {D AO} is a set of database access classes on specific drivers.

Figure 6.1 summarizes the different components of our framework. The rest of
this section will further detail each of those components.

118

6.3. Evolution Framework

Unified
Conceptual

Model

Schema
Modification

Operators (SMO)
Impact Matrix

Data Migration
Strategy

Modeling
Strategy

Data models

Atomic
Evolution

Operations

Unified Model
Change

Structure
Change Data Change

Query /
Program
Change

integrates

specifies

type of type of type of

Evolution Framework

type of

1. 2. 3.

4.

Figure 6.1: Evolution Framework

Unified Conceptual Model (1)

Our approach starts from a data model that allows one to design hybrid polystore
systems. The HyDRa modelling language presented in this thesis is an example of
such a unified language integrating multiple data models (i.e., relational, document,
key value, graph and column based). The evolution framework implements a top-
down evolution approach, meaning it propagates from model to the related software
artefacts (data, queries, programs). For this reason the modelling language must
therefore be extended and integrate schema modification operators to allow users
to trigger the execution of evolution operations. HyDRa does not integrate these
evolution operators in the language for the moment, however they have been tested
via the TyphonML language [23].

Schema Modification Operators (2)

Schema Modification Operators (SMO) are the entry point of the whole evolution
process and help keeping the software artefacts of the hybrid polystore consistent
with each other. It is a combination of a domain model object (i.e., a conceptual
element) and an evolution operation. The domain model object can be either entity
type, attribute, relationship, or identifier. The available evolution operations span
from simple changes, manipulating a single domain object add, remove, rename,
modify to more complex ones such as horizontal split, vertical split, merge, or migrate.
Figure 6.2 gives an example list of operators applied in an extended unified data
model syntax. First is the example of adding a rating attribute of type int to the
entity type Review. Then we want to add a one-to-many relationship responses from
Review to Comment. And finally the last example of operator expresses the will to
merge the two types of entities User and CreditCard.

119

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

1 changeOperators [
2 add attribute rating : int to Review,
3 add relation responses to Review -> Comment[0..*],
4 merge entities User CreditCard as User
5]

Figure 6.2: Example of evolution operators expressed within the TyphonML unified
model

Impact Matrix SMO (3)

The impact matrix defines the atomic operations that need be applied to related
software artefacts to actually propagate the polystore schema evolution operators.
The rows of the matrix correspond to the available Schema Modification Operators.
The columns of the matrix then characterize each of the operators according to
several dimensions; each influencing the propagating operations that should be
applied. The first dimension specifies the underlying data models of the object(s)
subject to evolution. The possible values of this dimension include relational, docu-
ment, key-value, graph or column databases. The second dimension concerns the
chosen design strategy, as detailed in Section 2.2. The third dimension relates to the
chosen data migration strategy (as stated in Section 2.4 migrating data in NoSQL
systems can follow different strategies). Each cell of the impact matrix specifies
the set of atomic, paradigm-specific operations to apply to the polystore artefacts
(native structures, data, queries, etc.), in order to propagate the requested SMOs
according to the dimensions’ values.

Atomic Evolution Operations (4)

The set of atomic operations will be an exhaustive list of function specifications.
Their goal is to enable the actual transformation required to propagate the desired
schema evolution. They are classified into four categories, depending on which
software artefacts are involved.sUnified conceptual schema change. Each evolution operator will result in a

change in the unified schema reflecting that evolution.sNative data structures. According to the underlying logical mappings some
SMOs require the adaptation of the native data structures. This adaptation, in
the case of a relational database, translates as SQL DDL commands, i.e., create
table, alter table, create index, add constraint,. . . . Equivalent structure manip-
ulation for NoSQL data models include create collection, create index for docu-
ment data model, create table, create column family for column databases.sData. The propagation of operators to data instances aims at transforming/mi-
grating the data in order to make them comply with the target polystore data
model/paradigm.sQueries and programs. Evolution operations may also require the adaptation
of existing database queries, that would become invalid due to the applied
schema changes. Depending on the semantics-preserving nature of the op-

120

6.4. Query Adaptation

erator, it will be possible or not to translate the source database queries into
equivalent queries expressed on the target polystore schema, using rule based
transformations.

6.4 Query Adaptation

Chapter 5 presented the conceptual data access library generated based on the Hy-
DRa schema. The use of this library in application code made this code impervious
to evolutions of physical structures. Evolutions that did not modify the concep-
tual schema. The approach presented in this section focuses on query adaptation
managing evolutions made on the conceptual schema. The proposed approach
takes advantage of a conceptual modelling language for representing the polystore
schema (TyphonML), and considers a generic query language for expressing queries
on top of this schema (TyphonQL). Given a source polystore schema, a set of input
queries and a list of schema change operators, our approach (1) identifies those
input queries that cannot be transformed into equivalent queries expressed on the
target schema, (2) automatically transforms those input queries that can be adapted
to the target schema, and (3) generates warnings for those output queries requiring
further manual inspection.

6.4.1 Approach

Hence, our problem becomes: how to adapt TyphonQL polystore queries to an evolv-
ing TyphonML polystore schema? Without the TyphonML and TyphonQL abstrac-
tions, this process would require query transformation rules for each specific native
query language of the polystore. This would result in a complex and hard to maintain
implementation. The adoption of the TyphonQL unified query language allows us
to mainly focus on the semantic changes applied to the polystore schema. The
evolution process of an hybrid polystore consists into producing a target version
of the polystore starting from a source model and applying a set of Schema Modi-
fication Operators. Figure. 6.3 depicts the evolution process involved in the query
adaptation tool. It takes as input a source TyphonML schema (as described in Listing
6.1), a set of TyphonQL queries (as in Listing 6.2) running on the source schema and
a set of Schema Modification Operators (SMOs section in Listing 6.1) to apply on
the source schema. The output of the query adaptation process is the transformed
set of queries running on the target TyphonML schema with their categories and
annotations.

The starting point of the query evolution process are the Schema Modification
Operators (Section 6.3). They are evolution operations that manipulate objects of the
TyphonML model, those objects include the Entity, the Relation or the Attribute.
Our query adaptation approach is able to handle all changes that could happen
on one of those three types of objects. The evolution operators can be classified
in three categories, depending on their semantic impact, i.e., the extent to which
they preserve, augment or decrease the informational content of the polystore. A
semantics-preserving schema modification (S=), also called schema refactoring,

121

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

Figure 6.3: Overview of the hybrid polystore evolution process

does not impact the informational content of the polystore, but only the way the
data is structured. This is the case, for instance, when renaming an attribute or
when migrating an entity. Semantics-augmenting schema modifications (S+) add
informational contents to the polystore, for instance by adding an entity or an
attribute. Conversely, semantics-decreasing schema modifications (S−) remove
some informational contents, e.g., when removing an entity or when restricting the
cardinalities of a relationship.

S= operations can generally be propagated automatically to related queries and
in some cases the queries may even be left unchanged. In the case of S− or S+

operations, automated adaptation of queries is not always possible or needed. To
express those different situations, our query adaptation process distinguishes four
possible categories of output queries:s (U)NCHANGED: the input query has not been changed since it remains valid

with respect to the target schema;s (M)ODIFIED: the input query has been transformed into an equivalent output
query, expressed on top of the target schema;s (W)ARNING : the output query (be it unchanged or transformed) is valid with
respect to the target schema, but it may return a different result set;s (B)ROKEN: the input query has become invalid, and it cannot be transformed
into an equivalent query expressed on top of the target schema.

The queries labelled as BROKEN or WARNING are also annotated with a message
explaining to the user which operator caused trouble. This helps the user to identify
the issue and to manually adapt the query (or its context) to the new schema seman-
tics, when needed/possible. Table 6.1 lists all the schema modification operators

122

6.4.2. Implementation

that we currently support and shows the worst result expected by this change on
each type of queries (create, read, update and delete).

Object Operation Semantic
class

Create Read Update Delete

Entity

Add S+ U U U U
Remove S− B B B B
Rename S= M M M M
Merge S= B W M W
Split S= B W B B
Migrate S= U U U U

Attributes

Add S+ B W U W
Remove S− B B B B
Rename S= M M M M
Change type S−/+ W W W W

Relations

Add S+ U U U U
Remove S− B B B B
Cardinality
change

S−/+ W W W W

Rename S= M M M M

Table 6.1: Schema modification operations supported by our approach and the
worst result category for each input query type. U: Unchanged, M: Modified, W:
Warning, B: Broken

6.4.2 Implementation

Figure 6.4 goes into details of the query adaptation process. Firstly the tool parses
the TyphonML schema provided as input to extract, on one hand, the current model
structures and, on the other hand, the set of SMOs to apply. Secondly each operator
is applied sequentially to each input query. The operator, the query and the schema
are passed through routing rules that send them to the correct handler function
according to the change operator processed. This routing is done by using exten-
sively the pattern matching scheme of the Rascal Meta Programming Language [80].
Finally, the handler function produces the required transformations and query adap-
tation category. This complete structure makes it easy to support further additional
SMO. The developer just has to add a new routing rule and a new handler function
for the new change operator.

The resulting tool consists of an Eclipse plugin. Its code is open sourced1 and an
installation guide is also available along with demo scripts.2

1https://github.com/typhon-project/typhon-evolution/tree/master/plugin-evolution
2https://figshare.com/articles/online_resource/Query-adaptation-examples/12821567

123

https://github.com/typhon-project/typhon-evolution/tree/master/plugin-evolution
https://figshare.com/articles/online_resource/Query-adaptation-examples/12821567

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

Figure 6.4: Detailed view of the Query Adpatation Process

6.4.3 Illustrative example

In this section we illustrate the query adaptation process using a concrete example.
Previously described Listing 6.1 represents a TyphonML schema containing evolu-
tion operators, which describe the modification required by the user. The change
operators are applied sequentially to the source schema. In this example, firstly the
user wants to merge the Description entity type into the Product entity type (Line
45) and secondly she wants to extract the attribute cardNumber of the entity type
User to a new entity type called CreditCard (Line 46).

Applying those evolution operations consists of several atomic operations, re-
spectively removing the Description entity, adding an attribute description to entity
Product for the merge operation, the creation of a new relationship to_CreditCard in
User and the creation of entity CreditCard for the split operation. The application of
those operators results in a target TyphonML schema as shown in Listing 6.3.

entity Product{
id : string[256]
name : string[50]
price: Real
description : string[500]

}
entity Order{

id: int
total_price : float
products :-> Product[1..*]
owner :-> User[1]

}
entity User{

id : int,
name: string[50],
orders :-> Order."Order.owner"[0..*]
to_CreditCard :-> CreditCard[1]

}
entity CreditCard{

124

6.4.3. Illustrative example

cardNumber : string[16]
}
//... Physical section

Listing 6.3: Target TyphonML Schema

Let us consider the set of TyphonQL queries expressed in Listing 6.4. They consist
of CRUD queries involving entities or attributes impacted by the provided SMOs.

/*1*/ from Product p, Description d select d.description
where d.product == p, p.id == "AZKIU",
/*2*/ from User u select u.cardNumber where u.name == "Doe",

/*3*/ insert User {id: 1, name: "Doe", cardNumber:"536864726"},

/*4*/ delete Product p where p.id = "EYIR",
/*5*/ delete User u where u.id == 5,

/*6*/ update Product p where p.id == "EYIR"
set{name: "Blender"},
/*7*/ update User u where u.id == 5
set {cardNumber:"5362637"}

Listing 6.4: TyphonQL queries expressed on the source TyphonML schema

The result of the query adaptation process is shown in Listing 6.5.

/*1*/ MODIFIED
#@ Product and Description merged @#
from Product p select p.description
where p.id == "AZKIU",

/*2*/ WARNING
#@ Entity User split into User, CreditCard @#
from User u, CreditCard c select c.cardNumber
where u.name == "Doe", u.to_CreditCard == c,

/*3*/ BROKEN
#@ Entity User split into User, CreditCard @#
insert User {id: 1, name: "Doe", cardNumber:"536864726"},

/*4*/ WARNING
#@ Product and Descriptions merged.
Delete will erase more information than before @#
delete Product p where p.id == "EYIR",

/*5*/ BROKEN
#@ Entity User split into User, CreditCard @#
delete User u where u.id == 5,

/*6*/ MODIFIED
#@ Product and Description merged @#
update Product p where p.id == "EYIR"
set{name: "Blender"}

/*7*/ BROKEN
#@ Entity User split into User, CreditCard @#
update User u where u.id == 5
set {cardNumber:"5362637"}

Listing 6.5: Output TyphonQL queries expressed on the target TyphonML schema

125

CHAPTER 6. EVOLUTION FRAMEWORK & QUERY ADAPTATION

sQuery 1 in Listing 6.4 selecting the Description attribute does not require the
join condition anymore as this attribute in the target schema is now in the
Product entity.sQuery 2 now needs a new join condition.sQuery 3 & 7 are now broken as cardNumber is not in User anymore.sQuery 5 is also marked as broken as cardNumber will not be deleted with the
user anymore, in order to keep the same semantics two queries are required,
one deleting the correct CreditCard entity and one deleting the User. This
multi query adaptation constitutes a current limitation of this tool.sQuery 6 is not changed as it does not involve impacted attributes.

Using the adaptation classification (broken, warning, unchanged, modified) and
its motivation messages above each query the user can make an informed decision
of whether to use or not the output queries in his programs.

6.5 Conclusion

In this chapter, we have first proposed a theoretical framework for evolution allow-
ing to implement an evolution management of database schemas via a top-down
approach. Evolution operators are integrated into the unified modelling language
of the hybrid polystore. These operators characterize an evolution on one of the
conceptual or physical elements declared in the schema. An impact matrix taking
into account all the dimensions of the polystore (the type of databases, the design
or data migration strategy etc.) as well as the evolution operator makes it possible
to specify each of the atomic evolution operations to be carried out on each of the
system’s artefacts (structures, data, models and programs).

In a second part of this chapter we proposed a tool-supported approach, avail-
able through an Eclipse Plugin3, which, given a conceptual polystore schema and a
list of changes applied to this schema, is able to transform polystore queries into
equivalent queries expressed on the evolved schema, when it is possible. If this is not
possible, the user is provided with insight about what went wrong or what should be
checked manually. The proposed approach is designed to work on a hybrid polystore,
and relies on (1) a conceptual modelling language for representing the polystore
schema, (2) a finite set of atomic schema modification operators to apply to this
schema, (3) an intermediate polystore query language enabling the manipulation
of the polystore data independently of the physical platforms (relational, NoSQL)
where the data are actually stored.

3https://figshare.com/s/bf85f501ec3e6546df45

126

https://figshare.com/s/bf85f501ec3e6546df45

Part III

Evaluation

127

C
H

A
P

T
E

R

7
USER EVALUATION

Contents
7.1 Introduction . 129

7.2 Practical Context & Participants Profile 130

7.3 Exercise Design . 131

7.4 Lessons Learned . 137

7.5 Survey Feedback . 139

7.6 Conclusion . 150

In this chapter we describe an evaluation of the HyDRa framework con-
ducted on a set of about 40 students. First we present the context of the
experiment as well as the profile of the participants, then we analyze the
results and finally conclude with the analysis of the survey to which each
of them responded.

7.1 Introduction

The HyDRa framework, i.e., the modelling language (Chapter 4) and the generated
conceptual API (Chapter 5) have been evaluated by users. These users, of different
levels of expertise in terms of programming or knowledge of database modelling,
were confronted with a scenario including (1) the reverse engineering of polystores,
(2) the physical and conceptual modelling of this system, (3) the programming of
representative functionalities, with or without the HyDRa API and finally (4) the
evolution of these functionalities. This allowed us to obtain quantitative metrics on
the written code, as well as qualitative comments via a questionnaire submitted to
users.

129

CHAPTER 7. USER EVALUATION

In this chapter we present the context of the evaluation as well as the profile
of the participants. Then we will detail the statement of the given exercise. We
will then analyze the results and draw some illustrative examples of the problems
and benefits brought by the framework. Finally we will analyze the comments
given by the students on the two main parts of the framework, the design and the
manipulation via the conceptual API.

7.2 Practical Context & Participants Profile

The participants who had the opportunity to use and give feedback on the HyDRa
framework are mainly composed of two groups. The first group consisted of 36 mas-
ter students who took the course entitled "Big Data: Engineering and Processing"
at the University of Namur 1. They carried out the exercise as part of the course
assignments. The different deliverables were part of their final evaluation of the
course. As a prelude to the exercise they received a 4-hour session introducing
conceptual modelling, the NoSQL models supported by HyDRa, as well as a guide
to the usage of mapping rules specific to HyDRa. The exercise was spread over four
working sessions in class where two experts of the HyDRa framework were present to
answer any questions. In addition, resources such as guides, documentation, videos
or example cases were available on the HyDRa GitHub [53].

The second group of experimenters was composed of three doctoral students of
the Università Svizzera italiana in Lugano who were following a two-day introductory
course on database engineering. They had deliberately chosen to follow this course
among several choices proposed. The work requested was evaluated in a "pass or
fail" manner. They had similar resources to the first group of users. In the remainder
of this chapter, unless otherwise stated, the discussions will be valid for both groups
tested.

In Table 7.1 we find the age distribution of the participants, since the course is
an integral part of the first master’s degree program in data science in daytime, we
find logically an overwhelming majority of respondents belonging to the 21-25 years
old bracket. Then we asked them to evaluate their level of expertise concerning the
different topics addressed by the HyDRa framework. They answered with a value
between 1 (None) and 5 (Expert) for their knowledge of (1) the modelling and use
of relational databases (SQL), (2) the modelling and use of NoSQL databases and
(3) the use of the Java programming language. We identify that the participants are
globally more experienced with relational databases, which is explained by the fact
that many of them have benefited from previous courses and projects using them in
academic lessons. Regarding NoSQL expertise, this is relatively low and none of the
participants indicated a level higher than 3. Finally, experience in Java programming
is more spread out and balanced with about ten people for levels 1 to 3, and six
responses for the maximum levels 4 and 5.

In addition to this numerical evaluation of their own expertise, the participants
also had the opportunity to provide a free text response in order to specify this expe-

1https://directory.unamur.be/teaching/courses/IDASM101/2021

130

https://directory.unamur.be/teaching/courses/IDASM101/2021

7.3. Exercise Design

< 20 years old 1
21-25 years old 31
26-30 years old 2
31-35 years old 2
36-40 years old 3

Table 7.1: Participants age repartition

1 2 3 4

0

5

10

15

20

n
u

m
b

er
o

fp
ar

ti
ci

p
an

ts

in SQL in NoSQL in Java

Figure 7.1: Expertise level of participants (1-None to 5-Expert)

rience. Among these answers, we can mention that seven people have professional
experiences with relational databases and that almost all the respondents have only
a very limited knowledge (notions) of NoSQL databases.

7.3 Exercise Design

In this section we will describe precisely the requested exercise as well as the main
steps and deliverables to be provided in order to evaluate the work done.

The participants were divided into groups of four people for the UNamur stu-
dents, the composition of these groups was made in order to balance the profiles
of the students, indeed some had followed their bachelors in computer science
while others came from the faculty of economic sciences, and could thus have a
more limited experience of programming. The doctoral students from Switzerland,
constituted two groups of two participants 2.

The main tasks to be performed were:

2One participant did not complete the exercise and therefore did not answer the final questionnaire.

131

CHAPTER 7. USER EVALUATION

sModel physical and conceptual schemas of an existing hybrid polystore (re-
verse engineering).sManipulate the data of the polystore by writing representative usage function-
alities. These functionalities had to be written in two different ways, using
(1) the native Java libraries of the databases (Section 1.2.1), (2) the generated
HyDRa conceptual API.sEvolve the HyDRa schema and the written code in order to make the written
functionalities work on a new polystore implementing physical evolutions 3.

7.3.1 Modelling of existing hybrid polystore

Each group of students had a polystore deployed with the different databases con-
taining data according to the conceptual schema in Figure 7.2. This conceptual
schema repeats the case already presented in previous part of this thesis. It is based
on the Northwind database [6], which describes an e-commerce system, with cus-
tomers, orders, employees, products, etc.

These polystores were different from each other in terms of their physical
schemas and the way data was distributed and structured in the databases. In order
to create these ten different physical configurations, we used the data migration
possibilities offered by the HyDRa framework (this complete process is described in
Section 9.2). The different physical schemas used design construction permitted by
the HyDRa modelling language. Constructs such as hybrid, mono or multivalued
references, multi level embedding, structure split, or duplication. Tables 7.2, 7.3, 7.4
give the physical mappings of the conceptual elements represented for each of the
polystores given to the students (named S1 to S9).

On the basis of these polystores, the groups of students had to model the Hy-
DRa schemas representing their assigned polystore. To do this they connected to
the databases and browsed the data in order to transcribe the different physical
structures encountered. Once the data was modelled, they were able to infer the
corresponding conceptual schema. Finally, they established the links between these
physical and conceptual elements and expressed them concretely in the mapping
rules part of the HyDRa schema.

The HyDRa file representing the polystore marked the end of the first phase of
the exercise.

7.3.2 Manipulating polystore data

After modelling the conceptual schema and the physical schemas of the databases in
the given polystore, the second step is to query the data contained in this polystore.
Each group has been assigned data query functionalities to implement. These
queries are meant to be realistic and exploit the different complex structures of the
polystore, the split structure or the hybrid foreign keys, so that each functionality
requires one, two or three databases. These were expressed in a conceptual way :sRetrieve a list of all suppliers.

3This task was only asked to the PhD students of Lugano.

132

7.3.2. Manipulating polystore data

Conceptual
element

S1 S2 S3

Orders Embedded in
Customers + KV

DocDB DocDB

Suppliers DocDB KV DocDB
Products RelDB Rel KV + RelDB

(Structure split)
Shippers KV (Structure

split)
Embedded in Or-
ders (DocDB)

KV (Structure
split)

Customers DocDB RelDB DocDB + Embed-
ded in Orders

Categories RelDB RelDB RelDB
Employees RelDB RelDB DocDB
Region RelDB RelDB RelDB
Territories RelDB RelDB RelDB
composedOf RelDB RelDB RelDB
works RelDB RelDB RelDB

Table 7.2: Description of conceptual elements and their physical storage in each
polystores

Conceptual
element

S4 S5 S6

Orders DocDB RelDB DocDB
Suppliers DocDB DocDB KV
Products KV + RelDB

(Structure split)
KV + RelDB
(Structure split)

RelDB

Shippers RelDB RelDB RelDB
Customers DocDB + Embed-

ded in Orders
DocDB (with an
array of refer-
ences to orders)

Embedded in Or-
ders + RelDB

Categories KV KV KV
Employees DocDB KV KV
Region Embedded in ter-

ritories
DocDB DocDB

Territories Embedded in
Employees +
RelDB

DocDB DocDB

composedOf RelDB RelDB Embedded in Or-
ders

works via embedding RelDB RelDB

Table 7.3: Description of conceptual elements and their physical storage in each
polystores (continued)

133

CHAPTER 7. USER EVALUATION

territories
0-N

employed
0-N

works

category
0-N

product
0-1

typeOf
supplier

0-N
suppliedProduct

0-1
supply

shipper
0-N

shippedOrder
1-1

ships

boss
0-N

subordonee
0-1

reportsTo

employeeInCharge
0-N

processedOrder
1-1

register

region
0-N

territories
1-1

locatedIn

orderedProducts
0-N

order
0-N

composedOf

unitPrice
quantity
discount

customer
0-N

boughtOrder
1-1

buy

Territories

territoryID
territoryDescription

id: territoryIDSuppliers

supplierId
companyName
contactName
contactTitle
address
city
region
postalCode
country
phone
fax
homePage

id: supplierId

Shippers

shipperID
companyName
phone

id: shipperID

Region

regionID
regionDescription

id: regionID

Products

productId
productName
quantityPerUnit
unitPrice
unitsInStock
unitsOnOrder
reorderLevel
discontinued

id: productId

Orders

id
orderDate
requiredDate
shippedDate
freight
shipName
shipAddress
shipCity
shipRegion
shipPostalCode
shipCountry

id: id

Employees

employeeID
lastName
firstName
title
titleOfCourtesy
birthDate
hireDate
address
city
region
postalCode
country
homePhone
extension
photo
notes
photoPath
salary

id: employeeID

Customers

customerID
companyName
contactName
contactTitle
address
city
region
postalCode
country
phone
fax

id: customerID

Categories

categoryID
categoryName
description
picture

id: categoryID

Figure 7.2: Conceptual model of student use case

sRetrieve the supplier of the product named "Escargots Nouveaux".sRetrieve the list of all shippers.sRetrieve customers having placed an order encoded by the employee named
"Margaret".

As an example, applied to the polystore S1 of the Table 7.2, the first functionality will
only query the document database, whereas the second one will have to query the
products in a relational database, and then query the document database before
joining the results together. For the fourth query, if we take the polystore S5 of the
Table 7.3, the three types of databases will be interrogated, since the employees, the
orders and the customers are distributed on three different databases.

For each of these tasks, the final result had to be a list of conceptual objects (i.e., a
class containing the simple conceptual attributes of the requested entity type as
specified in Section 5.3.1).

The implementation of these features had to be done in two different ways. The

134

7.3.3. Evolving polystore

Conceptual
element

S7 S8 S9

Orders DocDB KV DocDB
Suppliers KV KV KV
Products RelDB RelDB Rel
Shippers RelDB RelDB Embedded in Or-

ders (DocDB)
Customers Embedded in Or-

ders
DocDB (with an
array of refer-
ences to order)

KV

Categories KV KV RelDB
Employees RelDB RelDB RelDB
Region DocDB DocDB RelDB
Territories DocDB DocDB RelDB
composedOf Embedded in Or-

ders
RelDB RelDB

works DocDB DocDB RelDB

Table 7.4: Description of conceptual elements and their physical storage in each
polystores (end)

first one by using only the native database access libraries, e.g., Jedis 4, mongo-java-
driver5 or a JDBC driver. The second way is to use the conceptual API generated by
HyDRa. The code of these respective implementations were the second and third
deliverables of the student project.

Figure 7.3 shows the different components of the exercise at this stage, the
elements in italics are the contributions that had to be written manually by the
students.

7.3.3 Evolving polystore

Finally, a last part of the exercise was asked only to the Swiss doctoral students. It
consisted in adapting the written artefacts to adapt to evolved physical structures of
the polystores. To do this we gave each group access to another polystore containing
data still conforming to the same conceptual schema but with different physical
schemas. They also had a list of evolution scenarios which occurred on their first
polystore in order to comply with the new target polystore. Below is an example of
the given evolutions:sEach supplier in the collection now contains a new array products containing

the identifiers of their supplied products.sThe details of an order (its products) are now embedded in an array named
products in the embedded orders array of the Customer collection.sThe products are removed from the relational database and are now stored in
hash structure in a Redis database.

4https://github.com/redis/jedis
5https://mongodb.github.io/mongo-java-driver/

135

https://github.com/redis/jedis
https://mongodb.github.io/mongo-java-driver/

CHAPTER 7. USER EVALUATION

Document
Database

Key Value
Database

Relational
Database

mapping rules

HyDRa
Conceptual

Schema

represents

generates

HyDRa
Physical
Schema

uses

HyDRa Generated
API

Student HyDRa
Application Code

uses

Student Native
Libraries Application

Code

accesses

Native Libraries

Polystore S1

Figure 7.3: Component diagram of exercise

Figure 7.4 shows the components of the exercise by highlighting (in bold) the
components impacted by the polystore replacement. It was requested that the data
manipulation code written for the first polystore be re-run on the new polystore and
return the same results. To do that they had to modify the :sHyDRa Physical Schema. The schema is indeed different because it must

reflect the data of the databases of the new polystore.sMapping rules. These new structures must be adapted in the existing mapping
rules.sHyDRa Generated API. The API must be regenerated so that the conceptual
data access classes query the new structures.sStudent Native Libraries Application Code. The native code written by the
students accessing directly to the databases must be adapted because it has
become obsolete since these old structures no longer exist.

We can thus notice that the application code written by the students accessing
the data via the use of the HyDRa generated API will not have to be adapted since
it is at a conceptual level, the conceptual schema not having been modified, the
available methods will be identical. Only the implementation of these methods is
impacted, and will be automatically updated via the API regeneration.

7.3.4 Survey

Finally, each student had to fill in a questionnaire about the use of the HyDRa
framework. The questions submitted and complete set of responses are available in

136

7.4. Lessons Learned

Document
Database

Key Value
Database

Relational
Database

mapping rules

HyDRa
Conceptual

Schema

represents

generates

HyDRa
Physical
Schema

uses

HyDRa Generated
API

Student HyDRa
Application Code

uses

Student Native
Libraries

Application Code

accesses

Native Libraries

Polystore SX

Figure 7.4: Impacted component of polystore evolution

Appendix D.1. The quantitative and qualitative results are described in the following
sections.

7.4 Lessons Learned

In this section we describe the lessons learned from the analysis of the deliverables
for each phase of the exercise.

7.4.1 Polystore schema produced

In addition to some problems of reverse engineering methods applied by the stu-
dents, we were able to note through the analysis of the produced HyDRa schema
files several difficulties specific to the HyDRa modelling language as well as to the
Eclipse tool implementing it. These difficulties highlight areas for improvement of
the tool, the language and the documentation of HyDRa.

The first recurrent error detected in several of the students’ diagrams concerns
the mapping of the relationship type roles to their physical representations. On
one hand we found that the physical fields of complex types, representing nested
structures, were not mapped to any role, while on the other hand the foreign keys/ref-
erences were properly mapped to a role. This can be explained by the fact that the
students were already familiar with relational modelling and that foreign key struc-
tures are a more familiar concept than nested structures. However, although the

137

CHAPTER 7. USER EVALUATION

declared references were mapped to roles, the second recurring error was an inver-
sion of the correct role to be actually mapped.

A third type of error occurred when the polystore integrated an entity structure
split on the attributes (construction present in polystores S1, S3, S4, S5), in which
case the students declared a reference between the identifiers of the physical struc-
tures concerned. This is neither necessary nor correct, because foreign keys are
used to represent roles of relationship types, but in the case of a structure split, no
relationship is involved.

These detected errors have allowed improvements of various types, which have
been partly implemented in later versions of the framework.sAn additional validation rule can check that the cardinality and the type of the

role are compatible with the mapped physical element (reference or nested
structure).sAn improvement to the documentation concerning the mapping of roles.sSuggestions for correct mappings can be provided.

7.4.2 Implementation of data access functionalities

Browsing through the code written by the students revealed several interesting cases.
Many of them, in the code using only the native access libraries, were performing
non-filtering queries and retrieving all the data from the databases in memory to
finally filter the finer selection requested by the query in the Java code. Not only can
this slow down the overall execution time, but it is also not a good practice since the
system memory may not be large enough to hold all the data, which will eventually
crash the system.

On the other hand, the code written using HyDRa made good use of the con-
ditions objects which are automatically translated into native filtering queries. By
these examples we can consider that HyDRa can help to build more precise selection
queries.

Some groups guessed the identifiers for Redis data in order to do a direct get
(hardcoded a value). Instead of extracting the identifier component by splitting the
key using the pattern. This proves that manipulating Redis data natively without
direct get on keys is not intuitive.

However offered by the generated API, few groups made use of the relationship
specific selection methods. This led to a longer and more complex code instead of
having the complete operation done in one line. This proves that the documentation
of the code or the possibilities offered by the API were not properly exposed to better
guide the user.

Table 7.5 exposes the numbers concerning the code manually written to imple-
ment the requested functionalities using the HyDRa conceptual API or using only
the native libraries. For each way the table shows the number of files and the number
of lines of code. The lines of code have been calculated by the tool cloc 6 and do
not include blank lines and comment lines. These measures only take into account

6https://github.com/AlDanial/cloc

138

https://github.com/AlDanial/cloc

7.5. Survey Feedback

HYDRA NATIVE
Group number # loc # files # loc # files
1 65 1 641 10
2 74 1 967 15
3 68 1 836 16
4 112 4 866 12
5 76 4 3968 4
6 74 1 758 6
7 55 1 3708 10
8 89 1 1569 3
9 75 1 565 9

Table 7.5: Manually written code, HyDRa vs Native libraries

handwritten code, so for the implementation using the API, all code generated by
HyDRa is excluded from the line count 7.

The numbers in this table indicate that the size of the program to be written
to fulfil the same functionalities is significantly smaller when using the generated
conceptual API. This may indicate that the development time is also reduced.

7.5 Survey Feedback

After completing the various steps of the exercise, students were asked to complete
a questionnaire that included questions with qualitative and quantitative answers.
This section provides a table of the answers obtained for these two categories.

7.5.1 Quantitative results

The quantitative questions were formulated according to a Likert Scale, evaluating
the satisfaction on a scale of values from 1 (Strongly disagree) to 5 (Strongly agree).
The questions were separated into two main parts, those on the HyDRa modelling
language, and those on the generated API.

HyDRa modelling language

Within the modelling part, the different sections of the language, i.e., the conceptual
part, the physical schema part and the mapping rules were the subject of specific
questions. The combination of all these questions was generally related to the
usability of the HyDRa modelling language, and they could be used to calculate the
internal consistency of the questionnaire. According to Gliem [51] the interpretation
results of a questionnaire including Likert scales, are only valid for a questionnaire
including several questions and whose Cronbach’s Alpha value lies in a precise
interval. The general rule of thumb is :

7The number of lines for the API generated for an empty HyDRa schema is 2729
8These groups have not written the getters and setters on the attributes of the object classes.
9This group did not write the object classes.

139

CHAPTER 7. USER EVALUATION

Question Mean
1 - I find the language in general was easy to use 3,54
2 - I think that most people would learn to use the lan-
guage very quickly

3,62

3 - I would use HyDRa to design polystores 3,41
4 - I find the conceptual schema section of the language
easy to use

4,23

5 - I think that most people would learn to use the con-
ceptual schema language very quickly

4,05

6 - I find the physical schema section of the language
easy to use

3,82

7 - I think that most people would learn to use the physi-
cal schema language very quickly

3,69

8 - I find the mapping rules section of the language easy
to use

3,28

9 - I think that most people would learn to use the map-
ping rules section very quickly

3,10

Table 7.6: Quantitative question about HyDRa modelling language

sα> 0.9 - Excellentsα> 0.8 - Goodsα> 0.7 - Acceptablesα> 0.6 - Questionablesα> 0.5 - Poorsα< 0.5 - Unacceptable.

We calculated this value from the nine questions listed in Table 7.6. Using the
IBM SPSS Statistic and Viewer software10, the 39 results obtained for these nine
questions were encoded, and the Cronbach’s Alpha value obtained is 0.823, therefore
the internal consistency is qualified as good.

The Table 7.6 gives information about the means obtained for each of the ques-
tions.

The remainder of this section presents results for individual questions.

Figure 7.5 shows the details of the answers on the questions concerning the
usability (ease and speed of learning) of the HyDRa modeling language in general.
The questions included are Q1 and Q2 of Table 7.6.

In Figure 7.6 is presented the detail of the results concerning the specific parts of
the language. As can be seen in the table of questions asked, for each of these parts
two questions were asked, one about the ease and the second about the learning
speed of the language (Q4 & Q5, Q6 & Q7, Q8 & Q9). We were thus able to calculate
the internal consistency of these questions on the usability of specific parts. We
obtained respectively α values of 0.658 for the conceptual section, 0.832 for the
physical schema part, and 0.911 for the section concerning the mapping rules.
Considering the results obtained as well as the mean of answers of the questions, we

10https://www.ibm.com/spss

140

https://www.ibm.com/spss

7.5.1. Quantitative results

1 2 3 4 5

0

5

10

15

20

from strongly disagree to strongly agree

n
u

m
b

er
o

fa
n

sw
er

s

Easy (Q1) Quickly learned (Q2)

Figure 7.5: Usage of the HyDRa language in general

can conclude that the mapping rules section is considered the least usable of the
three. Nevertheless, a score above three corresponds to "Neither agree nor disagree"
in the Likert scale. These findings will be supported in the following section by the
comments received via the qualitative questions.

HyDRa generated API

Concerning the use of the generated conceptual API, the questions asked also con-
cerned the usability of this API, several questions of the same order were asked
and could therefore be used together in order to calculate the Cronbach’s Alpha
variable verifying the internal integrity of the questionnaire. The questions used
as well as the average of the answers are listed in Table 7.7. It should be noted that
question 6 being the strict opposition of question 1, the values have been inverted
when calculating the alpha variable. The result for the five questions related to the
usability 11 of the API is 0.7, which falls into the "Acceptable" category according to
the scale presented.

Figure 7.712 details the results concerning the use of the conceptual API com-

11(Q5) was excluded from this calculation as it was not directly linked to the usability aspect of the
API.

12Note that for those results there was an inconsistent response for one student where the free text
response was the complete opposite of the rate given. For this particular case we adapted the number
from 5 to 1 (Q6). The complete free text answer was the following : Taking data from the database was
faster and less tedious in Hydra. It took us several hours to connect and retrieve the data natively, which
was not the case with Hydra. Hydra is thus easier to handle for data recovery than Java. The fact that three
of us had never really coded in Java and that coding with Hydra took us less time to execute the different
queries shows that Hydra is easier to handle to execute the different queries. Also, it takes fewer lines of code
in Hydra to get the same results.

141

CHAPTER 7. USER EVALUATION

1 2 3 4 5

0

5

10

15

20

25

Conceptual (Q4) Physical (Q6) Mapping rules (Q8)

Figure 7.6: Usage of the specific HyDRa language part

Question Mean
1 - I think that using HyDRa to access data is easier than
using native Java code

4,34

2 - I find the database access code generated by HyDRa
was easy to use

3,97

3 - I would use this generated code to access databases
data in my future projects

3,24

4 - It was easy to find the method that I needed to access
the data

3,71

5 - The data that I retrieved using the code generated by
HyDRa was what I expected

4,37

6 - It is simpler to access data using native libraries than
using HyDRa methods

2,1

Table 7.7: Quantitative question about HyDRa conceptual API

142

7.5.2. Qualitative analysis

1 2 3 4 5

0

5

10

15

Easier (Q1) More complicated (Q6-reversed)

Figure 7.7: Usage of the HyDRa generated API compared to native libraries

pared to the implementation via the use of native access libraries. Thus, we can
notice that the use of the conceptual API is considered simpler.

To finish the numerical analysis, Table 7.8 presents the answers given regarding
their personal future use in other projects of the HyDRa framework. Either for poly-
store design tasks or for accessing data. 20 out of 39 answered "agree" or "strongly
agree" for design, and 17 out of 38 for data access task.

7.5.2 Qualitative analysis

Here we will list the different characteristics that appear repeatedly in the students’
responses to the qualitative questions. These characteristics will be illustrated
with a quote. Some of these responses were originally in French and have been
translated. In the online appendix are the original responses [4]. Again we divide
this section according to the two main features of HyDRa, the modelling language
and the conceptual API and then by presenting negative aspects followed by positive
feedbacks.

HyDRa modelling language

The questions about the HyDRa modelling language were about the language in gen-
eral as well as about the specific parts (conceptual, physical and mapping rules). For
each of the questions we asked them to mention positive aspects as well as negative
aspects. We finally ended with a question asking them to suggest improvements to
the language. Below is a complete list of the qualitative questions asked:sMention positive aspects of the HyDRa modelling language

143

CHAPTER 7. USER EVALUATION

1 2 3 4 5

0

5

10

15

To design polystores To access data

Figure 7.8: I would use HyDRa in my future projects

sMention negative aspects of the HyDRa modelling languagesWhich improvements regarding the HyDRa modelling language would you
suggest?sWhat are your positive or negative remarks about the conceptual part of the
language?sWhat are your positive or negative remarks about the physical schemas’ section
of the language?sWhat are your positive or negative remarks about the mapping rules section?sDo you have any other remarks?

Negative aspects and improvements The main criticisms made to HyDRa concern
particular technical aspects constraints and bugs that hinder the good functioning
and the handling of the tool. Some of them have been mentioned in the Section 5.7.
The rule regarding the use of capitalization in conceptual attributes was a recurring
complaint. Moreover, they disliked the use of the Eclipse IDE, which many students
prefer to avoid.

Eclipse is not the best app and it has an old design aspect.

The most recurring item found among the responses is that students did not like
to model using a textual language and would prefer a graphical interface. This was
also a recurring item in recommendations of improvements. However this aspect is
not completely related to the HyDRa language, but more to the lack of Computer-
Aided Software Engineering (CASE) tools to help database development in which
the HyDRa language can be integrated. Below are some example citations :

144

7.5.2. Qualitative analysis

Graphical modeling will really be a plus for this language. In any case,
doing it manually helped me a lot in the realization of phase I.

Not easy to learn, only a textual language thus the representation in mind
is hard and the mapping rules are also a bit hard to aboard.

Text modelling is less intuitive than visual modelling (when modelling
and also when you watch the model after). For modelling purposes only,
I prefer to use conceptual and physical schemas. Also, write every column
in conceptual, physical and mappings sections can be a bit boring.

Some felt that the help of the teaching assistants during the exercise sessions
was necessary to help with the installation or to clarify the documentation. These
errors are nevertheless normal at this stage of the framework’s development and are
generally mitigated as the project matures.

As a developer, I have had the opportunity to use and experiment with
a number of Java projects. However, the project documentation is not
well provided in my opinion. All the cases seen during the course should
be found in the GitHub project documentation. To bring precisions on
how to configure its Eclipse. The management engineers of my group are
totally lost by the absence of this information. Without the explanation
seen in the course I would have been unable to produce correct mapping
links (except die & retry).

I think that the practical use of Hydra could be complicated because
of the length of the implementation, and the particular tools to use. It
would not convince any data analyst to use it instead of the classical SQL
and NoSQL tools. It’s normal that the use seems a bit rough since it’s a
development language, but I think that can be a big brake to its use.

Others pointed the fact that conceptual modelling is required and may be a
difficulty for bigger companies. However, we think that conceptual modelling is a
needed part and common best practice in the database engineering process that
should not be seen as an extra step required by HyDRa specially.

It needs conceptual schema so it can be harder to implement in bigger
companies when they jump that step.

Several remarks also concerned the mapping rules section, which confirms the
feeling given by the metric values that this part is the least accessible to the user. In
parallel, they recommended extending the auto complete in order to integrate all
conceptual attributes at once.

The construction of mapping rules is very complicated when the cases
considered are more complex, even if the logic behind it is similar to
simple cases (tendency to make mistakes in the construction of certain
references for example).

145

CHAPTER 7. USER EVALUATION

More difficult to understand at first glance than the two schemas but easy
to understand once the different examples have been studied in more
detail.

The mapping rules are complicated to understand and require a lot of
focus and reflection to make right.

Creating those was a bit more complicated for me. The rules can vary a
lot depending on the type of relationships between tables, and especially
in cases where a table is only used as a link, and therefore does not appear
in the conceptual schema.

And finally, several reported that the documentation was not sufficient or that
the key value schema syntax was more complex.

Part on references are not well documented on the project.

Positive aspects of HyDRa modelling language The most recurring positive items
mentioned were the simplicity, comprehensibility of the language. Moreover, they
spotted the usefulness of the examples provided in the documentation which al-
low a quick understanding of how the language works. Some also underlined the
clarification brought by the separation of the conceptual and physical schemas as
well as the interest of being able to model several types of databases. Finally, the
positive contribution of the editor’s auto-completion function and the implemented
validation rules were regularly mentioned.

The conceptual part is easy to understand and apply to a real case. Trans-
lating from a conceptual schema to a HyDRa model is straightforward.
Only the relational database paradigm knowledge is needed to under-
stand the meaning of relations, in my opinion.

The conceptual schema is very logical, if someone knows relational
databases then he understands very quickly that first we create the tables
via the entity, and then we create all the relations between the different
tables, how they are connected together. With the help of a paper concep-
tual schema made in advance, the realization of the hydra conceptual
schema is therefore simple.

Easy to use when you have knowledge about NoSQL databases because
the representation is almost the same as the representation in the native
languages.

No complex syntax, no unnecessary code, clear error reporting (most of
the time), useful and simple autocomplete.

Relatively easy to handle. Allows to "combine" different databases (SQL,
Redis and MongoDB) with no additional constraints.

146

7.5.2. Qualitative analysis

Actually, I don’t know any other tools that allow to integrate different
kind of database. With a small example it is easy to understand how it
works.

Documenting separately the physical and conceptual schemas is its
biggest strength IMHO.

Others had the opportunity to understand more precise advantages of using
the HyDRa modelling language in the process of data migration or inconsistency
detection.

Types are tied to conceptual entities, thus introducing a single truth
that should remain consistent through data migration processes of the
physical schema of the polystore (inconsistencies should be matched fairly
easily).

Although the mapping rules section scored lower overall, some still considered
their writing easy.

The mapping rules are the easiest HyDRa coding rules to understand,
in my opinion. The mapping between tables can be done very easily for
anyone with a bit of knowledge about databases.

Once the conceptual schema and the physical schema have been created,
the mapping step remains, which is the simplest of all since it is simply
a matter of copying what we have written previously. This task is not
very complex but the fact that you have to copy all the columns and not
just the name of the table makes it time-consuming. I don’t know if it’s
feasible but mapping the tables just by their name would be very useful.

HyDRa Conceptual API

We will list the most recurrent elements and quote the most relevant and constructive
feedbacks regarding the HyDRa conceptual API. Two questions were asked regarding
the advantages and disadvantages.sMention positive aspects of the code generated by HyDRasMention negative aspects of the code generated by HyDRa

Negative aspects Similar to the criticisms made against the modelling language,
the conceptual API suffers from some shortcomings in the documentation provided.
However, the remarks are more precise because it was for example raised that the
provided methods were without comment blocks. This indeed gives an additional
channel, i.e., within the source code itself, to distribute the documentation.

Although the names are rather explicit, without comment it is sometimes
not quite obvious to understand the principle of the method.

147

CHAPTER 7. USER EVALUATION

Some methods, especially conditions methods, can be more complicated
to use.

Undocumented methods (naming is somewhat good but not enough
IMHO).

In addition, some people were surprised to discover the extent of the possibilities
offered by the API by browsing the code, which had not been perceived through the
documentation.

We don’t necessarily realize that there are so many functions at our dis-
posal, which makes us a bit lost when we start coding.

Although there was a sense of being able to perform certain operations more
easily, some had difficulty identifying whether a generated conceptual method
existed.

For specific type of request it can be hard to find where the method is
implemented. It’s kinda hard to know if some requests can be done in one
method or if we need more than one.

Others pointed to difficulties with technical aspects of HyDRa, including the
residual presence of bugs that prevented confidence in the logic of the written user
application code.

It is difficult to know if the problems we are dealing with are bugs or a
logic and writing problem on our part.

Or the fact that the plugin is only operational in Eclipse.

The use of hydra over eclipse makes it less useful and nice to use because
eclipse is getting old and ugly. (sic)

Finally, we highlight two comments where the student takes into account the
installation and modelling time involved before accessing the data, and puts this in
perspective with the size of the system studied.

HyDRa generates a lot of code and methods that are not necessarily always
interesting to use. By this I mean that I would use HyDRa for very large
projects that require access to different data with different types of queries
rather than for small projects.

Positive aspects The positive point that comes up most often in student feedback
is the ease of use and the time savings compared to using native libraries, even for
users with very little experience in Java or NoSQL databases.

The use of the program is a real time saver and a simplicity (once mas-
tered) that changes the game. Nevertheless, in my case, some were much
harder in the realization of hydra, but I think that it is mainly due to my
lack of knowledge in programming.

148

7.5.2. Qualitative analysis

Compared to native JAVA accesses, using HyDRa seems to be very simple
for the tasks at hand. The code is relatively clear (even for me who never
used JAVA), and allows intuitively to go and get the desired information.
I think the real advantage is to think in conceptual terms, and thus to
be able to detach oneself from the technique and the way the data are
encoded, and where they are located. So you get away from that technical
aspect with this preliminary phase of creating the polystore.

1. There is a way to retrieve the data you want easily, even if it is very
specific. 2. Having generated code removes a lot of work, especially for
connecting to different types of databases, automatic creation of models
and services to access the data, ... 3. Offers a nice interface for data re-
trieval. Doesn’t require us to know the specifics of the database connection
libraries to be able to retrieve the data.

HyDRa is much more efficient than the native implementation because
you don’t have to make the database connections yourself. It is also easier
to use HyDRa for the implementation because the code is more concise
than the native implementation.

The undeniable advantage of HyDRa compared to using Java is that it is
not necessary to take into account the types of databases from which the
information comes. Also, for someone who doesn’t have a lot of program-
ming experience (mainly Python and SQL), the examples provided on the
GitHub of the tool allowed me to easily get the hang of it.

Then even if gaps in the documentation were highlighted, many pointed out the
consistency of the method names, making it easy to find them and understand their
meaning.

The writing syntax is regular and logical. A certain pattern emerges

Names are clear / easy to search

First of all, I think it’s not that difficult to learn. Secondly, the autocom-
pletion helps a lot, especially when calling functions. The fact that you
don’t have to create the functions yourself is a great time saver and it also
avoids errors. Moreover, even if the function name is long, I find that each
name is explicit in relation to the purpose of the function and the use of
capital letters at the beginning of each word makes it less difficult to read
(e.g.: it is easier to read and understand "getProcessedOrderListInRegis-
terByEmployeeInCharge" than "getprocessedorderlistinregisterbyemploy-
eeincharge")

And finally they have highlighted the potential of writing complex queries in a
simpler way.

Complex queries can be done in one or two lines of code

There is also the condition package which makes queries much easier.

149

CHAPTER 7. USER EVALUATION

7.6 Conclusion

In this chapter we have detailed a scenario of use of the HyDRa framework by a set of
more or less forty students. They had the opportunity to use the framework to model
an existing hybrid polystore. They then manipulated the data of this polystore by
writing two applications using (1) the native data access libraries, and (2) the HyDRa
conceptual generated API. Some of them were also able to understand HyDRa in a
context of evolution of the physical structures of a polystore. Finally, they completed
a survey about their reactions to the use of the tool. This data was analysed and
quantitative and qualitative conclusions were drawn.

Following the analysis of the polystore schemas created by the students, we could
see that they were realized without major difficulties, and allowed us to identify more
precisely the points that need a better documentation or adjustments of the editor.
They also considered that writing the mapping rules was the most complex part of
the HyDRa modelling language, but the ability to model several databases in a single
file while being close to the native terms was appreciated.

As for the conceptual API, by analysing the code produced to implement the
representative features, we were able to measure that the amount of code to be
written manually is significantly smaller for the application code using HyDRa.
This indicates a gain in time in the development of this code. The results of the
questionnaire given by the students confirm this observation, both qualitatively and
quantitatively that using HyDRa is considerably easier than using native libraries.

150

C
H

A
P

T
E

R

8
SYSTEMATIC EVALUATION

Contents
8.1 Introduction . 151

8.2 Experimental Schemas Data and Queries 152

8.3 Correctness . 155

8.4 Performance Evaluation . 156

8.5 Conclusion . 158

In this chapter we describe the systematic evaluation performed checking
the results obtained for a set of queries on 32 polystores. This allowed us
to establish the correctness and measure the performance of the HyDRa
conceptual API.

8.1 Introduction

In the previous chapters we have described and specified the HyDRa framework.
Once the code generator producing the conceptual access library is implemented,
it is necessary to perform checks to ensure that the correct results are returned for
as many variations of physical schemas as possible. For this task we performed
a systematic evaluation of the execution results of a set of queries (11) on a set of
conceptual/physical schema and database type combinations (32). In addition, we
performed these tests on a one GB dataset in order to gather indicative information
about the framework’s performance time.

The rest of this chapter describes the data, schemas and databases considered
for this systematic evaluation. Then we describe how this helped us to establish the

151

CHAPTER 8. SYSTEMATIC EVALUATION

correctness of the developed code generator. We conclude with a description of the
observed execution times and the lessons learned from them.

8.2 Experimental Schemas Data and Queries

In order to perform a large and comprehensive systematic experiment we have
created 32 polystores combining the three types of databases (document, relational,
key-value), as well as variations of conceptual and physical schemas. They include
one-to-many, many-to-many, entity structure split, single or multivalued references.

8.2.1 Data

The data used for the tests come from Unibench1 [134]. They generated data simulat-
ing an e-commerce system using multiple data formats. For example social network
information was stored as graphs, purchase history as documents and customer
information in relational tables.

For our tests we kept a subset of their conceptual schema, depicted in Figure
8.1. This schema consists of Customer who buy Orders, those orders are composed of
Products. The size of the dataset is about 1 GB, Table 8.1 represent this data in terms
of entity numbers. We then load it into the databases currently managed by HyDRa,
i.e., the relational, document and key value databases (similarly to the creation of the
student’s polystores, we used the data migration capabilities of HyDRa, cf. Section 9.2,
to create our tests polystores).

0-N1-N composed_of1-10-N buys

ORDER

id
orderdate
totalprice

id: id

PRODUCT

id
title
price
photo

id: id

CUSTOMER

id
firstname
lastname
gender
birthday
creationDate
locationip
browser

id: id

Figure 8.1: Conceptual schema of systematic tests data

1https://github.com/HY-UDBMS/UniBench

152

https://github.com/HY-UDBMS/UniBench

8.2.2. Schemas considered

Conceptual element #
Product 10 116
Order 142 257
Customer 9 949
Buys (relationship) 142 257
Composed_of(relationship) 693 910

Table 8.1: Number of elements in the dataset

8.2.2 Schemas considered

In order to test the selection queries generated by the API in a large set of possible
scenarios, we have used the table of correspondences between conceptual and
physical schemas described previously (in Section 5.2). The different conceptual
configurations are again depicted in Tables 8.2 & 8.3. They represent respectively
a single entity type, a one-to-many relation and a many-to-many relation. The
three conceptual schemas give rise to nine different physical variations. Taking
into account that each database (DB1, DB2 or DB3) can be of one of the three
types of databases (document, relational or value key), this leads us to a set of
32 different configurations. Given the conceptual schema considered, CS (2) one-
to-many relationship type is equivalent to the buys relationship between Orders
and Customer, and CS (3) many-to-many relationship type refers to composed_of
between Product and Order.

Each of the physical structures involved in one of the 32 possible polystore
configurations has therefore been created and populated with the corresponding
data. The 32 polystores schema files are available in the online appendix 2.

8.2.3 Queries

To test access times and correctness of data retrieval we have established several
types of read queries. These are representative of selection queries that a user
could perform, but they also represent core functionalities of HyDRa, such as the
conceptual selection of a relationship type as well as on the basis of an attribute of a
linked entity type.sComplete selection queries. On the basis of a conceptual element (entity or

relationship type) we wish to recover all the data (e.g., read all the Orders).sSelection on the basis of an identifier. This query gives an identifying value as
input and the expected result therefore should contain only one object.sSelection on the basis of an attribute. A value of an attribute is given and several
objects are to be returned.sSelection based on an entity linked by a relationship. These queries reflect the
possibility of requesting entities linked to another according to the value of an
attribute of the linked entity (e.g., give the orders of a customer living at such
address).

2https://github.com/gobertm/HyDRa/tree/main/be.unamur.polystore.unittests

153

https://github.com/gobertm/HyDRa/tree/main/be.unamur.polystore.unittests

CHAPTER 8. SYSTEMATIC EVALUATION

CS# Conceptual Schema Physical Schema

(1)
(a)

(b)

(2)

(a)

(b)

(c)

(d)

Table 8.2: Conceptual construction and physical correspondences

154

8.3. Correctness

CS# Conceptual Schema Physical Schema

(3)

(a)

(b)

(c)

Table 8.3: Conceptual construction and physical correspondences (continued)

Given the different conceptual constructs considered, these queries may con-
cern different conceptual objects. The exhaustive list of the queries performed is
the following : getOrders(), getOrderByID(int id), getOrderByOrderDate(Condition
orderDateCondition), getCustomerByOrderInBuys(Order order), getOrderByClientIn-
Buys(Customer client), getBuys(), getComposedOf(), getOrderByProductInCom-
poseOf(Product product), getProductByOrderInComposedOf(Order order). The last
two functions were tested using an argument criteria returning one or many ele-
ments.

8.3 Correctness

Performing these different data selection operations on these conceptual schema/-
physical schema/database combinations allowed us to verify that the implementa-
tion of the code generator was correct for each of these variations.

The polystores considered are based on three different conceptual schemas, CS
(1-3) Tables 8.2 & 8.3, we therefore have created three classes containing the execu-
tion code of the queries in the form of test methods. As these tests are conceptual,
they are also valid, with the regeneration of the API, for all other physical schemas
variations.

Listing 8.1 presents the application code of the test concerning the selection
method of orders based on a condition on an order date i.e., getOrderByOrder-

155

CHAPTER 8. SYSTEMATIC EVALUATION

Date(Condition cond). After having recovered the conceptual objects Orders (Line 4),
we check that the number of elements contained is indeed the one expected (Line
5). We then check that each of the conceptual attributes is well populated (Line 6).

1 @Test
2 public void testGetByAttr(){
3 SimpleCondition <OrderAttribute > orderDateCond = SimpleCondition.

simple(OrderAttribute.orderdate , Operator.GT, LocalDate.of(2021, 01,
01));

4 orderDataset = orderService.getOrderList(orderDateCond);
5 assertEquals(85632, orderDataset.count());
6 for(Order o : orderDataset) {
7 assertNotNull(o.getOrderdate());
8 assertNotNull(o.getTotalprice());
9 //...
10 }

Listing 8.1: getOrderByOrderDate verification code

The overall process of checking the consistency of the generator implementation
therefore includes the following steps:sGeneration of the conceptual API based on one of the 32 polystores.sExecution of the test methods including the selection queries.

– Call to the corresponding conceptual selection method.
– Verification of the total number of objects returned.
– Verification of the completeness of the attributes of the conceptual ob-

jects.
The rigorous verification of the results obtained for each of the executions of

these methods for each of the polystores allowed us to identify implementation bugs
and situations not covered in the algorithm under development. This crucial step
has considerably improved the consistency of the returned results and the stability
of the HyDRa framework.

8.4 Performance Evaluation

During the execution of the selection methods in order to establish the accuracy
of the returned data we also recorded the execution time of these methods. The
machine hosting the polystores and executing the methods of the HyDRa API was
a common laptop3, these measurements were taken only once, it is thus advisable
to take these results with the necessary distance, they are given as an indication.
However, these results reveal significant orders of magnitude that allow us to high-
light some inefficient designs, as well as possible algorithmic and technological
improvements in the implementation of the code generator.

As indicated in the previous sections we have tested the functionalities on 32
different polystores, Table 8.4 shows for each combination of conceptual schemas/-
physical schemas the reference to the Table containing the details of the results for
this configuration. Some of these results will be described in this section while the
others are available in Appendix E.

316GB RAM, i5 1.6 Ghz

156

8.4. Performance Evaluation

Physical Schema
Conceptual Schema a b c d
(1) Table 8.5 Table E.1 - -
(2) Table 8.5 Table E.2 Table E.3 Table E.4
(3) Table 8.5 Table E.5 Table E.6 -

Table 8.4: Configuration and reference table results

Table 8.5 shows the results for all physical variations that involve only one
database i.e., all (a) physical schemas. Each of these schemas has been tested for
each of the three supported database types. The queries included are the specific
queries for each conceptual schema.

We can first notice that the execution time of a selection on a simple entity
type (CS (1)) is not at all efficient (nearly 10 min of execution time) in a key-value
database for the complete selection function (getOrders) and the selection based on a
condition (getOrderByOrderDate). This is because these databases are not designed
to perform selection queries based on values. There is no built-in mechanism
that allow to perform this type of query. Unlike relational or document databases
where the selection value is directly indicated in the executed query, key-value
databases only allow direct access to a key-value pair using the key (Section 1.1.3).
So, for HyDRa to retrieve all the stored orders, we have no choice but to (1) retrieve
all the keys stored in the database, and (2) query each of them to retrieve their
corresponding values. Then, in the case of condition criteria selection, (3) filter
the data in the Java generated code. It is for this reason that execution times for
large selection in key value databases are considerably longer. However, it is not the
specific cause of the HyDRa framework, to support this we notice the response time
of single selection method (getOrderByID) which is similar to other database types
response time.

The second remarkable point is the longer time for operations involving joins in
non-relational databases. This is particularly the case for CS (3), which is a many-
to-many relationship with a join table. In fact, for document databases, these did
not originally support native join queries 4, the implementation code generated
by HyDRa does not exploit this type of query and therefore performs the joins
in the application code (according to the implementation presented in Section
5.4.5). On the other hand, the execution time for these same queries on the physical
schema (a) containing only relational databases is much smaller. This is because
the implementation algorithm of the role selection methods (Section 5.5.4) has
detected that all the databases concerned are relational, so only one SQL join query
could be generated and executed. The information on the execution time during
an application join allowed us to identify a performance problem blocking the
production of results in certain cases. Indeed, in the case of the join on composeOf
(which contains 693 910 rows), the previous implemented algorithm was not able to
return results before several hours. We have therefore changed the join algorithm
from a nested loop implementation to an algorithm involving hash structures.

4However, since version 3.2 of MongoDB the operator $lookup has been introduced.

157

CHAPTER 8. SYSTEMATIC EVALUATION

CS# Query Relational Document Key Value

(1)
getOrders 1,36 8 600
getOrdersByID 6,9 2,93 4,8
getOrderByOrderDate 1,8 3,4 601

(2)
getOrderByClientInBuys 0,1 6,7 446
getCustomerByOrderInBuys 0,82 0,8 23,9
getBuys 3,77 7,25 448

(3)

getOrderByProductInComposeOf (one) 0,02 19,2 674
getOrderByProductInComposeOf (many) 2,66 15,7 630
getProductByOrderInComposedOf (one) 0,03 7,6 46
getProductByOrderInComposedOf (many) 0,1 23,5 1647
getComposedOf 7,9 18,7 -5

Table 8.5: Response time (in seconds) for single database physical schemas (a)

8.5 Conclusion

In this chapter we have presented the systematic tests performed with the Hy-
DRa framework. We established an experimental environment with a 1 GB dataset,
on different conceptual and physical configurations of polystores. Three concep-
tual schemas for nine different physical configurations to be run on three types of
databases gave us 32 tested polystores configurations. Each of these polystores was
modelled using the HyDRa modelling language, then we generated the conceptual
API for each of them.

Then a representative set of selection queries using the generated methods was
tested. The tests included a check of the total number of instances returned as well as
a completeness check of the returned objects. The error situations led to corrections
of the implementation allowing a better coverage of the possible polystores managed
by the HyDRa framework.

These different executions on several configurations allowed the achievement
of two objectives, (1) the verification of the correct implementation of the API code
generation, as well as (2) the identification of the performance difficulties of the API.

5This particular situation raises a bug that was not immediately fixed during the tests.

158

C
H

A
P

T
E

R

9
USE CASES

Contents
9.1 Data Comparison . 159

9.2 Data Migration . 162

In this chapter we present use cases of the HyDRa framework that go
beyond its primary purpose. For example, it has been used to perform an
administrative task and is now part of the business process. It can also
perform data migrations between polystores.

9.1 Data Comparison

Within the context of a data analysis requested by the university IT service, the
HyDRa tool have been used in a real business context. Here it is the use of the
conceptual access methods generated that took precedence over the management
of hybrid polystores.

Context

In an administrative department of the University of Namur, following the departure
of a person performing a data analysis task manually, there was an urgent need to
replace this manual task.

This request was received and after evaluation we concluded that the time saving
linked to the use of the HyDRa framework allowed us to meet the request within the
deadline. Moreover, we saw the opportunity to test the framework on a real use case
database.

159

CHAPTER 9. USE CASES

The requested data analysis consisted of comparing the data related to the
courses given at the university between two distinct academic years and thus iden-
tifying and listing all the differences for each of the characteristics involved in the
course programs.

Process

The entire process to arrive at the desired outcome result file involved the following
tasks:sReverse engineering of the database.sThe modelling of the conceptual schema and physical schema of the database

in HyDRa.sThe generation of the conceptual API code.sWriting the code for the data comparison application using the generated API.sProduction of a result file.

Modelling

For the first reverse engineering task, this was done by combining a data mining
approach with interviews with expert users of the application domain. We were
thus able to produce a conceptual schema of the application domain. Figure 9.1
represents this schema, which is restricted to the information necessary for the
analysis of the requested data.

The two main concepts of the application domain are the Program and the
Course, they represent a course program, which contains several courses followed
by students. These courses or programs are organized by academic year and may
have particular characteristics for a specific year (ProgramOrganization and Course-
Organization). Each program per academic year also has two Person who are the
program secretary or chair. The concept of Allocation links together the programs in
an academic year with the course organized for that academic year. An allocation
also has its own attributes and is linked to a general subject group SubjectGroup
(i.e., a category).

After conceptualizing the database, we were able to model it using HyDRa (the
complete schema is listed in Appendix C.1) and generate the conceptual API to
manipulate the data using simple conceptual methods.

Application code

This allows to easily create an application program that performed the requested
data comparison without having to master a database query language and perform
manual joins. This application can also be reused from year to year. In Algorithm
5, we detail in a simplified way the algorithm of the application code allowing the
comparison of courses between academic years.

The courses of an academic year being organized by program, the first phase con-
sists in recovering all programs (generated conceptual method getProgramList() was

160

9.1. Data Comparison

1-1

0-N

belongs to

1-10-N contains 1-1 0-Nrepresents

1-1

0-N

organised

1-1

0-N

jury_secretary

1-1

0-N

jury_president

1-1

0-N

is organised

SubjectGroup

id

name

ProgramOrganisation

id

academic_year

Program

id

name

short_name

group_refer

Person

id

LastName

FirstName

CourseOrganisation

id

name

partim_name

course_credits

exercises_q1

exercises_q2

theory_q1

theory_q2

Course

id

title

prerequisites

assesment

readings

content

goals

exercises

teaching

objectives

Allocation

id

alloc_credits

required

not_to_publish

level

Figure 9.1: Conceptual schema of courses data

used for this) and iterating on each of them in order to recover the two ProgramOr-
ganization of the considered academic years. This retrieval uses a role selection
method exploiting the organization relationship between Program and ProgramOrga
(getOrganizationListInOrganizationByProgram(Program program)). If nothing is
retrieved for any of them, we have detected an addition or non-organization of a
program.

The second phase then consists in comparing the courses of a program from one
academic year to another, via the Allocations. These are also recovered using HyDRa
methods (getAllocationListInAllocationProg(Condition<ProgramOrga> progOrga,
Condition<Allocation> condAlloc), getCourseOrga(. . .), getCourse(. . .)). If the Courses
is the same as for two allocations, it means that we have found two identical courses
for the same program, organized on two different years. We can then go further, and
compare these two allocations with each other. As HyDRa methods return concep-
tual objects that are easily manipulated, this comparison consists in comparing the
attributes between them using simple getters functions. Finally, once again, if one
of the allocations from one year to the other does not match, it means that we are
facing an addition or a deletion of courses between two years.

The last step of the application program is to produce a readable file of the
identified differences.

161

CHAPTER 9. USE CASES

Algorithm 5 Simplified comparison algorithm

pr og r ams ← getProgramList()
for p ∈ pr og r ams do

pr og r amOr g aY 1 ← getProgramOrga(year One,p)
pr og r amOr g aY 2 ← getProgramOrga(year T wo,p)
if pr og r amOr g aY 1 =;∨pr og r amOr g aY 2 =; then

Program p has been deleted or created
end if
al locati onsY 1 ← getAllocation(programOrgaY1)
al locati onY 2 ← getAllocation(programOrgaY2)
for al locY 1 ∈ al locati onsY 1 do

f ound = f al se
for al locY 2 ∈ al locati onsY 2 do

if al locY 1.g etCour seOr g a().g etCour se() =
al locY 2.g etCour seOr g a().g etCour se() then

f ound = tr ue
compare(al locY 1,al locY 2) # This is where we compare two Allocation
objects and produce results if modification

end if
if ¬ f ound then

An allocation of course has been removed in the program p
end if

end for
end for

end for

Benefits

The result of this work has allowed us to highlight the possibility and simplicity of
using generated conceptual methods to access data and the time gained compared
to writing a classical data analysis program. The application written for this use case
has greatly facilitated and accelerated the task of the requesting service and is now
part of the year-to-year process.

9.2 Data Migration

As we have already mentioned in Chapters 7 and 9, HyDRa was used to perform data
migration from one polystore to another. This has greatly facilitated and accelerated
the creation of multiple polystores based on the same conceptual schema.

Indeed, for a single conceptual schema there may be several physical represen-
tations of the data, this is particularly true in the context of a polystore. As these
different representations can have a significant impact on query performance, a
developer may need to test several of these representations. Thanks to the HyDRa
framework this task of migrating or loading data on different physical representa-
tions is considerably easier. For this, HyDRa offers four data migration strategies

162

9.2. Data Migration

: sNative reading and writingsHyDRa reading and native writingsNative reading and HyDRa writingsHyDRa reading and writing

Native reading and writing The first migration strategy consists of manually writ-
ing a migration program or scripts for each of the desired representations. The
source data is read from files or databases and then written to the target databases
using native code corresponding to each desired target structure. This is very time-
consuming and requires the developer to know the languages of each of the tech-
nologies involved. Furthermore, there is no flexibility as the written program is only
usable for the written configuration. In this migration strategy, to create the ten
polystores of the user evaluation, ten different programs would have been needed.

HyDRa reading The second strategy, depicted in Figure 9.2 combines the use of
HyDRa for reading data and the use of native access libraries for writing. The reading
of data is done from existing databases that have been represented in a HyDRa
model. Once the API has been generated it is possible to read the data using the
conceptual methods offered. This brings two advantages, (1) the user can abstract
from the source database query language and (2) the reading code can be reused on
another source database. For example, in the scenario of a data migration from a
relational database to a document database, using this strategy allows the user to
abstract from at least one query language i.e., he will not need to write SQL queries.
However, the writing of data must still be done via the use of native queries. In case
several polystores are to be created, this strategy still requires the writing of several
corresponding programs.

Figure 9.2: HyDRa reading and native writing strategy

HyDRa writing The third strategy shown in Figure 9.3 uses HyDRa conceptual
methods for writing data to the target polystore. The reading is done manually from

163

CHAPTER 9. USE CASES

any sources, e.g., csv files or databases. The target polystore is modelled in a HyDRa
model. Once the API has been generated, it provides conceptual object classes and
conceptual insertion methods capable of inserting the data into the corresponding
mapped physical format. (See Chapter 5). The user-written migration program must
therefore encapsulate the read data into the corresponding conceptual objects and
use the associated service insertion methods. This way the migration program does
not have to be adapted to create another polystore with a different configuration.
The only required step is to model and regenerate the API of the new polystore’s
corresponding HyDRa schema. It is this method that was used to create the user
evaluation polystores where a single application code file is needed.

Figure 9.3: Native reading and HyDRa writing strategy

HyDRa reading and writing The fourth and last method of creating or migrating
polystores (Figure 9.4) is the HyDRa read/write data strategy. To use this approach it
is necessary to model the source and target physical schemas in the same HyDRa
file. The conceptual mappings must be mapped to the two structures concerned,
i.e., source and target databases. In this way the generated API implementation
will integrate for each conceptual object both the source and the target database.
The migration program written by the user consists therefore only in the use of
the generated HyDRa methods. However, in order to avoid unnecessary reads and
writes in the source or target databases, the generated methods to be used in this
program are not located at the conceptual level but at the logical level (the code
will use the database specific method generated, cf. Section 5.4.1). This implies that
the written program is not fully reusable without modification for creating multiple
configurations, but it is still fully independent of native database code.

Summary Table 9.1 summarises the different characteristics of the strategies pre-
sented. The column "Generic Migration Code" indicates if the program that the user
writes to perform the migration is applicable to more than one physical configura-
tion. The column "Needs native code or queries" specifies if the migration code will
have to contain code reading or writing data with another library than HyDRa. "#

164

9.2. Data Migration

Figure 9.4: HyDRa reading and writing strategy

Hydra model" indicates how many HyDRa schemas files must be written in order
to perform a migration. The columns "Source Data" and "Target Data" specify the
format of the data needed to apply this strategy, "Any" indicates that the data can
be stored in any format, e.g., files or databases. "HyDRa dbs" specifies that the data
must be stored in a database supported by the code generated in the HyDRa API.

Strategy Generic Migration Code Native Code
Native reading and writing No Yes
HyDRa reading / Native writing Reading Yes
Native reading / HyDRa writing Writing Yes
HyDRa reading and writing Partially No

HyDRa model Source Data Target Data
No Any Any
One for source data HyDRa dbs Any
One for each target polystore Any HyDRa dbs
One HyDRa dbs HyDRa dbs

Table 9.1: Summary characteristics of data migration strategies

Data migration strategies using HyDRa have distinct advantages depending on
the context of the migration. The number of physical schema variations is probably
the most important factor, as a single program written using the HyDRa conceptual
API represents a significant time savings and ease of use.

This migration functionality, its ease of use and the flexibility offered towards
the target physical structures was a determining factor in the implementation of the
student polystores and thus in the conduct of the evaluation presented in Chapter 7.

165

Part IV

Conclusion

167

C
H

A
P

T
E

R

10
CONCLUSION & FUTURE DIRECTIONS

Contents

10.1 Summary of the Contributions . 169

10.2 Future Challenges . 172

To conclude, we will return to the research questions posed at the begin-
ning of the manuscript and provide the answers developed throughout
this document. We will describe what we did, what it brought and we
will end with what we will do, thanks to the opened perspectives.

10.1 Summary of the Contributions

RQ 1 : What are the problems developers face when testing database manipulation
code and what solutions are recommended by the community?

Our first research question, addressed in Chapter 3, sought to analyse the importance
of testing database access code, this part of the code being particularly sensitive and
error-prone in a data intensive system.

Through the analysis of the data access code as well as the test code of 72 open-
source Java systems, we were able to calculate that 46% of them tested barely half of
the access code and that 33% did not test it at all.

Based on this observation of a lack of test coverage, we sought to identify the
problems that developers were encountering. To do this, we analysed more than 500
questions on database code testing from sites of the StackExchange network. We
extracted a taxonomy of 83 problems divided into 7 categories, with a preponder-

169

CHAPTER 10. CONCLUSION & FUTURE DIRECTIONS

ance of general questions asking the best practices for testing this code as well as
technical questions about database management.

Finally, we analysed and tagged 598 answers to the questions in the category
best practices. We also built a taxonomy of 363 recommendations and 9 categories.
The main recommendations concern the configuration of an environment and the
management of test data.

From these results we could outline the main axes of research concerning the
testing of data access code. Moreover, as these results are public in a replication
package [57], they can also be used as a best practice guide for developers writing
tests.

The conclusions of this research question were therefore an additional motiva-
tion for the development of the solutions proposed in the rest of this thesis. The
generation of this data access code, manipulating the data at a conceptual level,
constitutes the two approaches we have chosen to explore in order to minimize
errors in this code and to help in the writing of these tests.

RQ 2 : How to build a conceptual and physical modelling language able to keep
specific data model constructions?

Chapter 4 presents a modelling language (HyDRa) of hybrid polystore composed of
three main parts, a first one containing the conceptual schema, a second one with
the physical schemas and a third one including rules of correspondence between
the conceptual elements and the physical elements.

The conceptual modelling allows to represent the application domain of the
polystore system. The language used is based on the Entity Relationship (ER) model,
an existing model commonly used in the classical database engineering process.
The use of this language has the advantage of not introducing any new concept to
be understood by the designer.

The physical section of the HyDRa model is a language allowing to describe the
structure of the data stored in the polystore databases. The supported databases
are of several data models, i.e., relational, document, column, key-value or graph. It
uses a terminology close to the specific models in order to facilitate its learning. The
developer can thus specify data both at the level of structures (tables, collections,
nodes, etc.), called Physical Structure, and at the level of precise fields (Physical
Field). Finally, the definition of References authorizes the representation of links
between fields of different, possibly heterogeneous databases.

Finally, there is the section of mapping rules establishing the correspondences
between the conceptual elements (e.g., type of entities, attributes, type of associa-
tions, roles) and the specific physical elements (i.e., Physical Structure or Physical
Field).

It is this physical breakdown and the low-level mapping rules that offer the
possibility of integrating the different existing NoSQL design approaches as well
as the flexibility to create a wide variety of physical configurations for the same
conceptual schema. These variations can also include data duplication, cross-
database references or structural separation of entity types.

170

10.1. Summary of the Contributions

RQ 3 : To what extent can we use this model to generate data manipulation code at
the conceptual level independent of any physical storage data representation?

Via Chapter 5 we describe a Java code generator allowing to manipulate conceptu-
ally the polystore data. This generator takes as input a HyDRa schema as specified
in Chapter 4 in order to produce Java classes representing on the one hand the
conceptual objects (e.g., entity types and relationship types) and on the other hand
service classes manipulating these objects. The manipulation of data via the service
objects takes place at the conceptual level with functions such as getEntityList()
or insertEntity(Entity e). These methods are the entry point to the data used by a
developer, the names of these methods being derived from the names of the con-
ceptual schema, they are an intuitive way to query a polystore. Moreover, since the
implementation code of these service classes is generated, the developer gains in
ease and time of development of the final application. Indeed, in this way he is (1)
exempted from knowing the exact location and physical structure of the queried
data, (2) freed from the need to know the query languages of the specific databases
hosting the data, (3) does not have to write the join code in case of queries involving
several databases, etc.

To manage this, the generator code must be able to identify and produce the
necessary code allowing (1) to identify the databases involved, (2) to build the
corresponding queries in native language, (3) to make the joins of the results and to
identify the potential data conflicts, and (4) to reconstruct the conceptual objects on
the basis of the recovered physical structures.

The HyDRa modelling language as well as the generator have been developed
as an Eclipse plugin that can be easily installed and used thanks to the guides
provided [53].

RQ 4 : How can we support the databases’ evolution of a polystore with regard to
their impacted artefacts?

Database evolutions in a polystore system can be of different types and involve
several components of the system. An evolution can increase or decrease semantics,
i.e., it adds or removes elements of the system’s conceptual schema, or it can be
structural, i.e., it involves only a change in the data structures in the logical/physical
schemas.

In Chapter 5 we have proposed a conceptual API for data manipulation. The use
of this API as data manipulation code in the user application allows the support of
structural evolutions. Indeed, this type of evolution will only require a modification
of the physical schemas and the mapping rules. Once the evolution is reflected
in the HyDRa schema representing the polystore, an API code regeneration will
be enough to manage the co-evolution of the application code. This is achieved
thanks to the preservation of the method names by the API, which are based solely
on the conceptual schema, which remains unchanged.

After having developed a solution for managing structural evolutions for the
application code, we have proposed in Chapter 6 a solution for adapting queries to
semantic evolutions. Based on a polystore model including operators specifying the

171

CHAPTER 10. CONCLUSION & FUTURE DIRECTIONS

semantic evolution to be performed, as well as a set of queries manipulating this
polystore, we have developed a tool allowing to adapt, if possible, these queries to
the new configuration, and if not possible, to notify the impact on the result.

Finally, as our first two contributions only concerned the co-evolution of pro-
grams or queries, we finally proposed a theoretical evolution framework to integrate
all the artefacts to be modified in a system. The evolution of databases becomes a
top-down process starting from evolution operators to impacted artefacts (e.g., the
schemas, the structures, the data, the programs). These operators are included in
an impact matrix, which given the artefact of the system, the operator and other
determining dimensions (e.g., the data models, the modelling strategy, the migration
strategy etc.) indicates the operations to be carried out to fulfil the evolution.

RQ 5 : What is the performance, usability and usefulness of the developed solution?

We have evaluated the modelling language and the HyDRa code generator through
two separate evaluations. Chapter 7 describes a scenario of the framework usage
by a set of students, they were asked to perform a modelling of a polystore in a
reverse engineering context using HyDRa modelling language. Then they had to use
the generated methods of the API to query the data. Following this experience, we
collected quantitative and qualitative data on the use of HyDRa, which shows that
they positively evaluate the usefulness and the ease of use of the framework, despite
some shortcomings in the documentation. Moreover, we found that the manually
written application code is significantly less than the code written without HyDRa.

In a second experiment we tested the performance and correctness of the
generated API by setting up dozens of different polystores to answer a series of
representative requests to cover a maximum of situations. Thanks to these tests we
were able to correct the implementation of the generator and identify the response
time problems.

Finally, the Chapter 9 also showed that the developed solution could be used
in real scenarios in order to perform a data analysis, or polystores migrations and
loading.

10.2 Future Challenges

HyDRa framework security An important aspect of any information system and
especially of systems using data is the security aspect. This was not given much
attention in the initial development of the HyDRa framework, which is why it is
an additional area of work for the future. In this section we will elaborate on the
potential security problems, their solutions, and their application within HyDRa.

According to Denning [44], the data security in a system depends on four safe-
guards. The first is access control, which controls which users have access to which
parts of the system and also to which data. The second is data encryption, which
prevents the data from being read and manipulated by malicious interception. The
third is the protection of the flow of information, which ensures that information of
a defined security level cannot, through various operations (copies, transfers, etc.),

172

10.2. Future Challenges

end up in the hands of a user who does not have the required security level. And
finally, the fourth safeguard, concerns inference control, which applies to statisti-
cal databases in order to avoid circumventing the confidentiality of the data with
queries allowing the inference of information.

These four facets of data security have been established for several decades and
are detailed in a reference work on cybersecurity [45]. In addition, other authors [133]
have noted that the advent of Big Data systems brought additional challenges.

In the rest of this section we will however focus on access control and encryp-
tion applied to the HyDRa framework. Although we are aware that only a strategy
integrating all dimensions can guarantee maximum security.

In HyDRa we have identified several moments where an access control mecha-
nism (based on a previously established Role Based Access Control (RBAC) matrix)
can be implemented:sBefore the generation of the API code. A user authentication can be requested

before generating the access library in order to prevent a user from disposing
of it.sAt use. Each call to the generated methods of HyDRa can be subject to an
authorization check in the matrix before its execution.sAt the querying of the data. Once the execution is authorized, we can finally
add an access control to the data, in the databases themselves. Indeed, each
database managed by HyDRa also includes its own access control.

Adding an encryption to these access controls allows protecting against identity
and data theft. This encryption can also occur at different points:sThe modelling file as well as the file containing the credentials of the databases.sThe communication between the API and the databases.sThe data. Using the native encryption mechanisms of the databases.

Finally, a last point of attention concerns the generated API code. Indeed, it is
currently generated in the form of a library of classes in textual format. If this library
were to be shared with users whose access to the data must be controlled. It will also
be necessary to protect it against possible alteration. Indeed, a user by modifying
the code has the possibility to perform request injections and alterations. In order to
avoid this, the API can be generated only in binary format that cannot be modified.

The combination of access control and encryption at these different points
allows an end-to-end control of the authentication and integrity of the code and
data in the HyDRa framework.

Improve performance and big data scalability The performance tests presented
were performed on a single machine with a reasonable size dataset. These have
already highlighted some weaknesses of the framework and relatively long response
times. Given the vocation of NoSQL databases to manage large volumes of data, a
crucial aspect of the future development of the framework is its ability to manage
these volumes.

There are several possibilities and areas of development that will improve perfor-
mance and that may eventually allow HyDRa to manage large volumes of data and
step up its game to be considered as a big data tool.

173

CHAPTER 10. CONCLUSION & FUTURE DIRECTIONS

A first approach is to modify the specification and implementation of the selec-
tion methods, which currently require retrieving all the data from the underlying
databases in order to return a list object containing the results. In addition to being
inefficient, this technique makes the system vulnerable. Indeed, if the results re-
turned by the databases are too large for the memory, the application will crash. To
get around this, the methods may rely on streaming techniques, both for reading the
database and for the returned objects. Streaming avoid creating a complete list in
memory and return the results on-the-fly, however other constraints and difficulties
will appear, notably in the management of joins between databases.

A second possibility involves using big data reading frameworks. Such frame-
works implement data reading in a distributed manner and natively integrate opti-
mization features such as caching, lazy loading, parallel processing, etc. A framework
such as Apache Spark1 is one of the most popular and promising beginnings of inte-
gration into HyDRa have been tested.

Finally, a shift to a client-server architecture can bring improvements in perfor-
mance, scalability, availability and security. HyDRa is an Eclipse plugin generating
Java code, which can be used in a client application as an import package. These
packages can be encapsulated in a REST type service and hosted on a server. This
way a client application will call the conceptual methods via this service. This allows
to take advantage of the server’s computing power in order to calculate the results.
This also allows for resource monitoring, the addition of centralized access control,
increased caching capabilities, etc. Moreover, this encapsulation opens the door
to hosting and executing the generated API in a cloud computing environment
such as Microsoft Azure or Amazon Web Services. These infrastructures offer many
possibilities and can certainly help to make HyDRa a more powerful tool.

Transaction support HyDRa in its current version does not consider transactions,
meaning that during an insert operation involving several databases, if the insert
fails for one of them it is possible that the other databases involved have already
performed the operation, leaving the polystore in an inconsistent state across all
structures. This is not acceptable in a professional solution.

This is why it is necessary to group operations that concern several structures into
one transaction. Transactions are operations that respect the Atomicity, Consistency,
Isolation, Durability (ACID) properties. Atomicity, for example, guarantees that for
a transaction, all the operations composing it are either all performed on all the
databases, or none of them are performed at all.

Transactions occur at two different levels, they are either local, i.e., specific to
particular databases, which implement the necessary mechanisms to guarantee
the ACID properties. Or they are distributed, i.e., the ACID properties must be
guaranteed across several resources of a system. For this purpose one can use
the Two Phase Commit (2PC) protocol which coordinates the different resources
involved by sending prepare, commit or abort messages.

1https://spark.apache.org/

174

https://spark.apache.org/

10.2. Future Challenges

The implementation of 2PC requires two conditions, (1) the databases or re-
sources involved must support local transactions and (2) they must understand the
XA protocol, which specifies the 2PC messages. The use of the 2PC process requires
a Distributed Transaction Coordinator (DTC), which synchronizes the actors in-
volved in a distributed transaction, there are several implementation libraries such
as Atomikos, Bitronix or Narayana. In order for HyDRa to guarantee the transactions,
Atomikos code encapsulating all the manipulations on the different physical struc-
tures (i.e., in the database specific methods of Section 5.4.1) can be added in the
generic code generated from the high level conceptual methods (Section 5.3).

The databases supported by the HyDRa API support local transactions, Mon-
goDB2, Redis3 et MySQL4. However, Redis and MongoDB do not implement the XA
protocol, it is necessary to implement it in a manual way, by relying on the operations
of the local transactions and by using the library of the chosen DTC (e.g., Atomikos
library and implementation of the interface Synchronization).

Note that in case a future version of HyDRa handles databases that do not sup-
port local transactions. Integrating it in a 2PC process will still be possible, however
the management of the local ACID properties will have to be implemented manually
using for example a compensating transactions mechanism [121].

Add support of object-oriented design in conceptual model The conceptual
model supported by HyDRa only integrates the simple elements of the Entity Re-
lationship (ER) language (Section 4.3), which means that it is not possible for a
designer to express inheritance relationships. However, in the context of generating
application code in an object-oriented language, the absence of these constructs
can be a real obstacle to the adoption of a tool such as HyDRa. Indeed, as it stands in
HyDRa, an application domain including the concepts of Person, from which inherit
other entity types such as Employee and Worker will have to be modelled using three
distinct entity types, without any explicit inheritance relationship. This will result
in separate object classes and services. The developer who wants to manipulate
Person objects containing both workers and employees will therefore be forced to
call specific selection methods on both Employee and Worker.

In order to support inheritance in HyDRa (single and disjoint inheritance as
supported by Java), some parts have to be adapted:sAdd inheritance construction in the conceptual part of the language via the

keyword extends.sThe physical part of the language is not impacted.sThe mapping rules are also identical, and as they are, they allow the mapping
to be done according to the chosen physical representation of the inheritance
(i.e., ascending, descending or materialization [68]).sObject classes. The generator code must be adapted in order to read the
inheritance relations declared in the conceptual schema and then add these
to the inherited classes.

2https://www.mongodb.com/docs/manual/core/transactions/
3https://redis.io/docs/manual/transactions/
4https://dev.mysql.com/doc/refman/8.0/en/commit.html

175

https://www.mongodb.com/docs/manual/core/transactions/
https://redis.io/docs/manual/transactions/
https://dev.mysql.com/doc/refman/8.0/en/commit.html

CHAPTER 10. CONCLUSION & FUTURE DIRECTIONS

sService classes and methods. This part will be the most impacted. The meth-
ods of the super-type class must now also call the database specific method of
each structure mapped to a sub-entity type (this in order to return the workers
as well as the employees when calling getPerson()). Moreover, the implemen-
tation of subtype methods will have to take into account the specific physical
representation of the inheritance (e.g., add a selection condition in the case of
a representation with ascending inheritance)

Through these different adaptations of varying complexity it is indeed possible
for the HyDRa framework to support object-oriented modeling.

Extend data models supported by the modelling language The data models cur-
rently supported by the HyDRa modelling language are four, i.e., relational, docu-
ment, key-value and column-oriented. These are currently the most popular, but
other types exist and have met with some success in hybrid architectures. We can
notably mention the search engines (Elasticsearch or Solr), databases specialized in
textual data. It is also possible to integrate the reading of data from files in CSV or
XML formats.

Integrate a recommendation algorithm In the context of the design of a polystore,
it can be complex to choose the database model that best corresponds, and once
this choice has been made, it is still necessary to apply an adequate physical data
representation strategy. We have indeed seen in Chapter 2 that the NoSQL design
methods are multiple and that these choices greatly impact performances. In order
to help this decision, following the example of several works presented, it is possible
to integrate other criteria in the conceptual schema which will be used in order to
propose physical schemas coherent with user requirements. These criteria can in-
clude descriptions of requests, maximum response times, sets forming transactions,
modelling strategies to be respected, etc. Once the conceptual schema and these
criteria are filled in, a generator, possibly trained by machine learning on the basis
of real cases, will be able to propose compatible physical schemas.

Recommendations can also be integrated into the schema editor to provide sets
of physical schemas and mapping rules that meet common requirements. This saves
the user from having to fill in these requirements and allows him to choose between
several default possibilities.

Add an automatic physical schemas’ extractor When using the modelling lan-
guage in the context of reverse engineering of databases, it is possible to use existing
database schema inference techniques, both relational and NoSQL, in order to
generate as output the physical HyDRa schemas of the considered databases.

Integrate HyDRa in evolution of microservices applications More and more sys-
tems are based on microservices architectures, and according to [84], the evolution
of the database schemas of these microservices constitutes a main challenge that
can damage multiple systems relying on these microservices. HyDRa can be a so-
lution to manage these evolutions, via the regeneration of the access code during

176

10.2. Future Challenges

an evolution. Here an additional challenge is to be able to manage the regeneration
without interruption of services.

Improve user experience when modelling In order to improve the user expe-
rience when modelling a HyDRa schema, several avenues are possible. Via the
feedback forms completed by the students, many of them mentioned that they
would have liked a graphical interface for modelling the polystore. In addition, the
auto-completion of the editor can be further improved in order to minimize the
manual writing of mapping rules.

Extend support of language and of operations in generated API The current
version of the API generator does not support all the data models proposed (the
graph model is not taken into account) by the modelling language, nor all the CRUD
operations for each of them. It will thus be necessary to continue the development
of the generator, and also to extend the polystores and reading tests to these new
developments.

Specify fully and implement the evolution framework The evolution theoretical
framework is a promising way to perform and control the evolution of polystore
systems. However, it is still necessary to specify the impact matrix completely by
integrating all the dimensions that matter. Then this framework will have to be fully
implemented in HyDRa.

177

A
P

P
E

N
D

I
X

A
STACKEXCHANGE REFERENCES

Table A.1: StackExchange posts

Id Title URL

SE1 Integration Testing best practices http://www.stackoverflow.com/questions/1328730
SE2 TDD: "Test Only" Methods http://www.stackoverflow.com/questions/2295965
SE3 Good approach/Strategy to keep integration... https://softwareengineering.stackexchange.com/questions/302458
SE4 Managing database connections for unit tests https://codereview.stackexchange.com/questions/201711
SE5 Unit-Tests and databases: At which point do... https://softwareengineering.stackexchange.com/questions/206539
SE6 In JUnit 5, how to run code before all tests http://www.stackoverflow.com/questions/43282798
SE7 Spring integration tests with profile http://www.stackoverflow.com/questions/20551681
SE8 Different db for testing in Django? http://www.stackoverflow.com/questions/4650509
SE9 How to run Django tests on Heroku http://www.stackoverflow.com/questions/13705328
SE10 Django test to use existing database http://www.stackoverflow.com/questions/6250353
SE11 How to suppress... http://www.stackoverflow.com/questions/44080733
SE12 In-memory MongoDB for test? http://www.stackoverflow.com/questions/13607732
SE13 Should mock objects for tests be created at... https://softwareengineering.stackexchange.com/questions/216072
SE14 What’s the idea behind mocking data access... https://softwareengineering.stackexchange.com/questions/262686
SE15 Ways of unit testing data access layer http://www.stackoverflow.com/questions/15000908
SE16 How to Mock Test Data for complicated... https://softwareengineering.stackexchange.com/questions/405456
SE17 How to throw a SqlException when needed for... http://www.stackoverflow.com/questions/1386962
SE18 How to write unit tests without mocking data https://softwareengineering.stackexchange.com/questions/193614
SE19 Unit testing Systems with Logic Tightly... https://softwareengineering.stackexchange.com/questions/356087
SE20 Rethinking testing strategy https://softwareengineering.stackexchange.com/questions/212887
SE21 How to turn off parallel execution of tests... http://www.stackoverflow.com/questions/11899723
SE22 Unit testing Room and LiveData http://www.stackoverflow.com/questions/44270688
SE23 How to run tests in parallel in Django? http://www.stackoverflow.com/questions/5303819
SE24 What’s the best strategy for unit-testing... http://www.stackoverflow.com/questions/145131
SE25 How do you handle testing applications that... http://www.stackoverflow.com/questions/2393428
SE26 Integration Testing best practices http://www.stackoverflow.com/questions/1328730
SE27 Rails 3.0.7 -> How do you get your tests to... http://www.stackoverflow.com/questions/6087329
SE28 How can I automatically test my site for SQL... http://www.stackoverflow.com/questions/9685884
SE29 Django: is there a way to count SQL queries... http://www.stackoverflow.com/questions/1254170
SE30 Do you test your SQL/HQL/Criteria? https://softwareengineering.stackexchange.com/questions/33182
SE31 How do I test database migrations? http://www.stackoverflow.com/questions/2332400
SE32 How to show SQL query log generated by a... http://www.stackoverflow.com/questions/6884408
SE33 SQL queries in integration tests https://softwareengineering.stackexchange.com/questions/326003
SE34 Integrating Automated Web Testing Into Build... http://www.stackoverflow.com/questions/1240057
SE35 What is a good method of storing test data... https://softwareengineering.stackexchange.com/questions/238971
SE36 Do the terms "unit test" and "integration... https://softwareengineering.stackexchange.com/questions/302559
SE37 Databases and Unit/Integration Testing https://softwareengineering.stackexchange.com/questions/101273

Continued on next page

179

http://www.stackoverflow.com/questions/1328730
http://www.stackoverflow.com/questions/2295965
https://softwareengineering.stackexchange.com/questions/302458
https://codereview.stackexchange.com/questions/201711
https://softwareengineering.stackexchange.com/questions/206539
http://www.stackoverflow.com/questions/43282798
http://www.stackoverflow.com/questions/20551681
http://www.stackoverflow.com/questions/4650509
http://www.stackoverflow.com/questions/13705328
http://www.stackoverflow.com/questions/6250353
http://www.stackoverflow.com/questions/44080733
http://www.stackoverflow.com/questions/13607732
https://softwareengineering.stackexchange.com/questions/216072
https://softwareengineering.stackexchange.com/questions/262686
http://www.stackoverflow.com/questions/15000908
https://softwareengineering.stackexchange.com/questions/405456
http://www.stackoverflow.com/questions/1386962
https://softwareengineering.stackexchange.com/questions/193614
https://softwareengineering.stackexchange.com/questions/356087
https://softwareengineering.stackexchange.com/questions/212887
http://www.stackoverflow.com/questions/11899723
http://www.stackoverflow.com/questions/44270688
http://www.stackoverflow.com/questions/5303819
http://www.stackoverflow.com/questions/145131
http://www.stackoverflow.com/questions/2393428
http://www.stackoverflow.com/questions/1328730
http://www.stackoverflow.com/questions/6087329
http://www.stackoverflow.com/questions/9685884
http://www.stackoverflow.com/questions/1254170
https://softwareengineering.stackexchange.com/questions/33182
http://www.stackoverflow.com/questions/2332400
http://www.stackoverflow.com/questions/6884408
https://softwareengineering.stackexchange.com/questions/326003
http://www.stackoverflow.com/questions/1240057
https://softwareengineering.stackexchange.com/questions/238971
https://softwareengineering.stackexchange.com/questions/302559
https://softwareengineering.stackexchange.com/questions/101273

APPENDIX A. STACKEXCHANGE REFERENCES

Table A.1 – continued from previous page

Id Title URL

SE38 How do you unit test business applications? http://www.stackoverflow.com/questions/38598
SE39 Unit Test vs Integration Test in Web... http://www.stackoverflow.com/questions/15292751
SE40 What’s the best strategy for unit-testing... http://www.stackoverflow.com/questions/145131
SE41 Should on each test create and nuke a... https://softwareengineering.stackexchange.com/questions/394145
SE42 Testing - In-Memory DB vs Mocking https://softwareengineering.stackexchange.com/questions/358491
SE43 Unit testing a service to return items from... https://codereview.stackexchange.com/questions/98301
SE44 MySQL - force not to use cache for testing... http://www.stackoverflow.com/questions/181894
SE45 Shouldn’t unit tests use my own methods? https://softwareengineering.stackexchange.com/questions/330304
SE46 How to test data based on SQL queries? https://softwareengineering.stackexchange.com/questions/315178
SE47 Testing my VB.NET code? https://softwareengineering.stackexchange.com/questions/159943
SE48 Should each unit test be able to be run... https://softwareengineering.stackexchange.com/questions/64306
SE49 Is it bad form to count on the order of your... http://www.stackoverflow.com/questions/497699
SE50 My first model test in PHPUnit https://codereview.stackexchange.com/questions/59662
SE51 How do I unit test a WCF service? http://www.stackoverflow.com/questions/37375
SE52 unit/integration testing web service proxy... https://softwareengineering.stackexchange.com/questions/167906
SE53 How to unit test an object with database... http://www.stackoverflow.com/questions/30710
SE54 Unit test for a method that adds tweets to a... https://codereview.stackexchange.com/questions/128287
SE55 Unit/Integration Testing my DAL https://softwareengineering.stackexchange.com/questions/133448
SE56 Is Unit Testing your SQL taking TDD Too far? http://www.stackoverflow.com/questions/730488
SE57 Am I Unit Testing or Integration Testing my... https://softwareengineering.stackexchange.com/questions/81801
SE58 How to test the data access layer? https://softwareengineering.stackexchange.com/questions/219362
SE59 Is a class that is hard to unit test badly... http://www.stackoverflow.com/questions/2658859
SE60 Basic Unit Test of Application Service,... https://codereview.stackexchange.com/questions/234960
SE61 How to create unit/integration tests for my... https://softwareengineering.stackexchange.com/questions/214529
SE62 SQLite Database inserting + Unit tests in... https://codereview.stackexchange.com/questions/132742
SE63 Unit Testing - What not to test http://www.stackoverflow.com/questions/1316848
SE64 Unit Testing - What not to test http://www.stackoverflow.com/questions/1316848
SE65 How are people unit testing with Entity... http://www.stackoverflow.com/questions/22690877
SE66 How do I unit test a WCF service? http://www.stackoverflow.com/questions/37375
SE67 Should I Unit Test Data Access Layer? Is... http://www.stackoverflow.com/questions/3333120
SE68 How to add rigor to my testing? https://softwareengineering.stackexchange.com/questions/270422
SE69 How to write unit tests for database calls http://www.stackoverflow.com/questions/1217736
SE70 What kind of unit tests should be written... https://softwareengineering.stackexchange.com/questions/336880
SE71 Unit testing with MongoDB http://www.stackoverflow.com/questions/7413985
SE72 Beginning Automated Testing http://www.stackoverflow.com/questions/12907080
SE73 Does TDD include integration tests? http://www.stackoverflow.com/questions/18988040
SE74 Do we need test data or can we rely on unit... https://softwareengineering.stackexchange.com/questions/113441
SE75 Never written much unit tests, how can I... https://softwareengineering.stackexchange.com/questions/128859
SE76 Removing the "integration test scam" -... https://softwareengineering.stackexchange.com/questions/135011
SE77 How to test the data access layer? https://softwareengineering.stackexchange.com/questions/219362
SE78 How to do database unit testing? http://www.stackoverflow.com/questions/3772093
SE79 Should you hard code your data across all... https://softwareengineering.stackexchange.com/questions/212678
SE80 Phpunit testing with database http://www.stackoverflow.com/questions/4585345
SE81 How to simulate a DB for testing (Java)? http://www.stackoverflow.com/questions/928760
SE82 Creating many random test database entries https://codereview.stackexchange.com/questions/14411
SE83 Why do we write mock objects when writing... https://softwareengineering.stackexchange.com/questions/61366
SE84 How to test DAO methods using Mockito? http://www.stackoverflow.com/questions/28388204
SE85 How to create unit/integration tests for my... https://softwareengineering.stackexchange.com/questions/214529
SE86 Testing properties with private setters https://softwareengineering.stackexchange.com/questions/317121
SE87 Unit Testing with massive lookup tables? https://softwareengineering.stackexchange.com/questions/287735
SE88 Where is the line between unit testing... https://softwareengineering.stackexchange.com/questions/322909
SE89 How do I unit test jdbc code in java? http://www.stackoverflow.com/questions/266370
SE90 How to Test Web Code? http://www.stackoverflow.com/questions/2913
SE91 Unit testing database application with... http://www.stackoverflow.com/questions/2609204
SE92 Best practices for database testing with... http://www.stackoverflow.com/questions/3697815
SE93 Unit-testing an adapter https://codereview.stackexchange.com/questions/38906
SE94 How to test Spring Data repositories? http://www.stackoverflow.com/questions/23435937
SE95 Is this good practice with unit-testing? https://codereview.stackexchange.com/questions/37584
SE96 Laravel 5 : Use different database for... http://www.stackoverflow.com/questions/35227226
SE97 JUnit tests always rollback the transactions http://www.stackoverflow.com/questions/9817388
SE98 Initialising a database before Spring Boot... http://www.stackoverflow.com/questions/38262430
SE99 How can I specify a database for Django... http://www.stackoverflow.com/questions/4606756
SE100 How to create table during Django tests with... http://www.stackoverflow.com/questions/7020966
SE101 Do you have any SQL Injection Testing "Ammo"? http://www.stackoverflow.com/questions/274659
SE102 Testing for security vulnerabilities in web... http://www.stackoverflow.com/questions/2351315
SE103 Best way to test SQL queries http://www.stackoverflow.com/questions/754527
SE104 How do you unit test your T-SQL http://www.stackoverflow.com/questions/2765212

180

http://www.stackoverflow.com/questions/38598
http://www.stackoverflow.com/questions/15292751
http://www.stackoverflow.com/questions/145131
https://softwareengineering.stackexchange.com/questions/394145
https://softwareengineering.stackexchange.com/questions/358491
https://codereview.stackexchange.com/questions/98301
http://www.stackoverflow.com/questions/181894
https://softwareengineering.stackexchange.com/questions/330304
https://softwareengineering.stackexchange.com/questions/315178
https://softwareengineering.stackexchange.com/questions/159943
https://softwareengineering.stackexchange.com/questions/64306
http://www.stackoverflow.com/questions/497699
https://codereview.stackexchange.com/questions/59662
http://www.stackoverflow.com/questions/37375
https://softwareengineering.stackexchange.com/questions/167906
http://www.stackoverflow.com/questions/30710
https://codereview.stackexchange.com/questions/128287
https://softwareengineering.stackexchange.com/questions/133448
http://www.stackoverflow.com/questions/730488
https://softwareengineering.stackexchange.com/questions/81801
https://softwareengineering.stackexchange.com/questions/219362
http://www.stackoverflow.com/questions/2658859
https://codereview.stackexchange.com/questions/234960
https://softwareengineering.stackexchange.com/questions/214529
https://codereview.stackexchange.com/questions/132742
http://www.stackoverflow.com/questions/1316848
http://www.stackoverflow.com/questions/1316848
http://www.stackoverflow.com/questions/22690877
http://www.stackoverflow.com/questions/37375
http://www.stackoverflow.com/questions/3333120
https://softwareengineering.stackexchange.com/questions/270422
http://www.stackoverflow.com/questions/1217736
https://softwareengineering.stackexchange.com/questions/336880
http://www.stackoverflow.com/questions/7413985
http://www.stackoverflow.com/questions/12907080
http://www.stackoverflow.com/questions/18988040
https://softwareengineering.stackexchange.com/questions/113441
https://softwareengineering.stackexchange.com/questions/128859
https://softwareengineering.stackexchange.com/questions/135011
https://softwareengineering.stackexchange.com/questions/219362
http://www.stackoverflow.com/questions/3772093
https://softwareengineering.stackexchange.com/questions/212678
http://www.stackoverflow.com/questions/4585345
http://www.stackoverflow.com/questions/928760
https://codereview.stackexchange.com/questions/14411
https://softwareengineering.stackexchange.com/questions/61366
http://www.stackoverflow.com/questions/28388204
https://softwareengineering.stackexchange.com/questions/214529
https://softwareengineering.stackexchange.com/questions/317121
https://softwareengineering.stackexchange.com/questions/287735
https://softwareengineering.stackexchange.com/questions/322909
http://www.stackoverflow.com/questions/266370
http://www.stackoverflow.com/questions/2913
http://www.stackoverflow.com/questions/2609204
http://www.stackoverflow.com/questions/3697815
https://codereview.stackexchange.com/questions/38906
http://www.stackoverflow.com/questions/23435937
https://codereview.stackexchange.com/questions/37584
http://www.stackoverflow.com/questions/35227226
http://www.stackoverflow.com/questions/9817388
http://www.stackoverflow.com/questions/38262430
http://www.stackoverflow.com/questions/4606756
http://www.stackoverflow.com/questions/7020966
http://www.stackoverflow.com/questions/274659
http://www.stackoverflow.com/questions/2351315
http://www.stackoverflow.com/questions/754527
http://www.stackoverflow.com/questions/2765212

A
P

P
E

N
D

I
X

B
CONCRETE GRAMMAR OF HYDRA LANGUAGE

B.1 Xtext Grammar

Also available online1

1 grammar be.unamur.polystore.Pml with org.eclipse.xtext.common.Terminals
2

3 generate pml "http://www.unamur.be/polystore/Pml"
4

5 // Root
6 Domainmodel:
7 conceptualSchema=ConceptualSchema & physicalSchema=PhysicalSchemas &

mappingRules= MappingRules & databases = Databases & sparkFlag?=’spark
’?

8

9 ;
10

11 // Conceptual schema elements
12 ConceptualSchema :
13 ’conceptual ’ ’schema’ name=ID ’{’
14 (entities+=EntityType)* & (relationships+=RelationshipType)*
15 ’}’
16 ;
17

18 EntityType returns EntityType:
19 ’entity’ ’type’ name=ID ’{’
20 (attributes+=Attribute (’,’attributes+=Attribute)*)?
21 (identifier=Identifier)?
22 (unique+=Unique)*
23 ’}’
24 ;
25

26 Identifier:
27 ’identifier ’ ’{’
28 attributes+=[Attribute](’,’ attributes +=[Attribute])*

1https://github.com/gobertm/HyDRa/blob/main/be.unamur.polystore/src/be/unamur/
polystore/Pml.xtext

181

https://github.com/gobertm/HyDRa/blob/main/be.unamur.polystore/src/be/unamur/polystore/Pml.xtext
https://github.com/gobertm/HyDRa/blob/main/be.unamur.polystore/src/be/unamur/polystore/Pml.xtext

APPENDIX B. CONCRETE GRAMMAR OF HYDRA LANGUAGE

29 ’}’
30 ;
31

32 Unique :
33 ’unique’ ’{’
34 attributes+=[Attribute](’,’ attributes +=[Attribute])*
35 ’}’
36 ;
37

38 Index :
39 ’index’ ’{’
40 fields+=[PhysicalField](’,’ fields+=[PhysicalField])*
41 ’}’
42 ;
43

44 RelationshipType:
45 ’relationship ’ ’type’ name=ID ’{’
46 (roles+=Role (’,’roles+=Role)*)+
47 (’,’attributes+=Attribute)*
48 ’}’
49 ;
50

51 Role:
52 name = ID (’[’cardinality=Cardinality ’]’) ’:’ entity=[EntityType]
53 ;
54

55 Attribute:
56 name=ID (’[’cardinality=Cardinality ’]’)? ’:’ (type=DataType)
57 ;
58

59 enum Cardinality returns Cardinality:
60 ZERO_ONE = ’0-1’ | ONE = ’1’ | ZERO_MANY = ’0-N’ | ONE_MANY = ’1-N’;
61

62

63 // Physical schemas elements
64 PhysicalSchemas:
65 {PhysicalSchemas} ’physical’ ’schemas’ ’{’
66 physicalSchemas+=AbstractPhysicalSchema*
67 ’}’
68 ;
69

70 AbstractPhysicalSchema:
71 // (kvschemas+=KeyValueSchema* & documentschemas+= DocumentSchema* &

relationalschemas+=RelationalSchema* & graphschemas+= GraphSchema* &
columnschemas += ColumnSchema*)

72 KeyValueSchema | DocumentSchema | RelationalSchema | GraphSchema |
ColumnSchema

73 ;
74

75 AbstractPhysicalStructure:
76 Table | Collection | EmbeddedObject | TableColumnDB | Node | Edge |

KeyValuePair
77 ;
78

79 Reference:
80 name=ID ’:’ sourceField+=[PhysicalField|QualifiedName](’,’sourceField+=[

PhysicalField|QualifiedName])* ’->’ targetField+=[PhysicalField|
QualifiedName](’,’targetField+=[PhysicalField|QualifiedName])*

81 ;
82

83 PhysicalField returns PhysicalField:
84 ShortField | EmbeddedObject | BracketsField | LongField
85 ;
86

87 LimitedPhysicalField returns PhysicalField:
88 ShortField | LongField
89 ;

182

B.1. Xtext Grammar

90

91 ShortField :
92 name=ID
93 ;
94

95 LongField returns LongField:
96 physicalName=ID ’:’pattern+=TerminalExpression*
97 ;
98

99 BracketsField:
100 ’[’name=ID’]’
101 ;
102

103 EmbeddedObject:
104 name=ID ’[’cardinality=Cardinality ’]’(’{’
105 (fields+=PhysicalField (’,’ fields+=PhysicalField)*)?
106 ’}’)?
107 ;
108

109 TerminalExpression:
110 {TerminalExpression} literal=STRING | BracketsField
111 ;
112

113 QualifiedName:
114 ID (’.’ ID)*
115 ;
116

117 // Relational data model
118 RelationalSchema:
119 ’relational ’ ’schema’ name=ID (’:’ databases+=[Database] (’,’databases+=[

Database])*)?’{’
120 tables+=Table*
121 ’}’
122 ;
123

124 Table:
125 ’table’ name=ID ’{’
126 ’columns’ ’{’
127 (columns+=LimitedPhysicalField (’,’ columns+=LimitedPhysicalField)*)
128 ’}’
129 (’references ’ ’{’references+=Reference*’}’)?
130 (index+=Index)*
131 //Identifier and index section
132 ’}’
133 ;
134

135 // Document data model elements
136 DocumentSchema:
137 ’document ’ ’schema’ name=ID (’:’ databases+=[Database] (’,’databases+=[

Database])*)?’{’
138 (collections+=Collection)*
139 ’}’
140 ;
141

142 Collection:
143 ’collection ’ name=ID ’{’
144 ’fields’ ’{’
145 (fields+=LimitedPhysicalFieldDoc (’,’ fields+=LimitedPhysicalFieldDoc)*)

?
146 ’}’
147 (’references ’ ’{’references+=Reference*’}’)?
148 ’}’
149 ;
150

151

152 LimitedPhysicalFieldDoc returns PhysicalField:
153 ShortField | LongField | EmbeddedObject | ArrayField

183

APPENDIX B. CONCRETE GRAMMAR OF HYDRA LANGUAGE

154 ;
155

156 ArrayField:
157 physicalName=ID ’[]’ ’:’ name=ID
158 ;
159

160 // Key value
161

162 KeyValueSchema:
163 ’key’ ’value’ ’schema’ name=ID (’:’ databases+=[Database] (’,’databases+=[

Database])*)?’{’
164 kvpairs+=KeyValuePair*
165 ’}’
166 ;
167

168 KeyValuePair:
169 ’kvpairs’ name=ID ’{’
170 ’key’ ’:’ key=Key ’,’
171 ’value’ ’:’ value=KVPhysicalField
172 (’references ’ ’{’references+=Reference*’}’)?
173 ’}’
174 ;
175

176 Key:
177 pattern+=TerminalExpression+
178 ;
179

180 KVPhysicalField returns PhysicalField:
181 ShortField | LongKVField | KVComplexField
182 ;
183

184 LimitedKVPhysicalField returns PhysicalField:
185 ShortField | LongField
186 ;
187

188 LongKVField returns LongField:
189 pattern+=TerminalExpression+
190 ;
191

192

193 KVComplexField:
194 type=KVDataType (’{’
195 (fields+=LimitedKVPhysicalField (’,’ fields+=LimitedKVPhysicalField)*)?
196 ’}’)
197 ;
198

199 // Column based
200 ColumnSchema:
201 ’column’ ’schema’ name=ID (’:’ databases+=[Database] (’,’databases+=[

Database])*)? ’{’
202 tables+=(TableColumnDB)*
203 ’}’
204 ;
205

206 TableColumnDB:
207 ’table’ name=ID ’{’
208 ’columns’ ’{’
209 (columns+=LimitedPhysicalField (’,’ columns+=LimitedPhysicalField)*)
210 ’}’
211 (’references ’ ’{’references+=Reference*’}’)?
212 ’}’
213 ;
214

215 ColumnFamily:
216 name=ID ’{’
217 columns+=LimitedPhysicalField (’,’columns+= LimitedPhysicalField)*
218 ’}’

184

B.1. Xtext Grammar

219 ;
220

221

222 Rowkey:
223 {Rowkey} ’rowkey’ ’{’
224 fields+=ShortField*
225 ’}’
226 ;
227

228 // Graph data model
229 GraphSchema:
230 ’graph’ ’schema’ name=ID (’:’ databases+=[Database] (’,’databases+=[

Database])*)?’{’
231 (nodes+=Node)* (edges+=Edge)* (’references ’ ’{’references+=Reference*’}’

)?
232 ’}’
233 ;
234

235 Node:
236 ’Node’ name=ID ’{’
237 fields+=PhysicalField (’,’fields+=PhysicalField)*
238 ’}’
239 ;
240

241 Edge:
242 ’Edge’ name=ID ’{’
243 sourceNode=[Node] ’->’ targetNode = [Node] (’,’ fields+=PhysicalField)*
244 ’}’
245 ;
246

247 // Mapping rules section
248 MappingRules:
249 {MappingRules} ’mapping’ ’rules’ ’{’
250 (mappingRules+=AbstractMappingRule (’,’mappingRules+=AbstractMappingRule

)*)?
251 ’}’
252 ;
253

254 AbstractMappingRule:
255 EntityMappingRule | RelationshipMappingRule |

RoleToEmbbededObjectMappingRule | RoleToReferenceMappingRule |
RoleToKeyBracketsFieldMappingRule

256 ;
257

258 EntityMappingRule:
259 (entityConceptual=[EntityType|QualifiedName]’(’(attributesConceptual+=[

Attribute|QualifiedName] (’,’attributesConceptual+=[Attribute|
QualifiedName])*)?’)’

260 (’->’ | ’-’’(’conditionAttribute+=[Attribute|QualifiedName] operator=
Operator value=ValueCondition ’)->’)

261 physicalStructure=[AbstractPhysicalStructure|QualifiedName]’(’(
physicalFields+=[PhysicalField|QualifiedName] (’,’physicalFields+=[
PhysicalField|QualifiedName])*)?’)’)

262 ;
263

264 RelationshipMappingRule:
265 ’rel’ ’:’(relationshipConceptual=[RelationshipType|QualifiedName]’(’(

attributesConceptual+=[Attribute|QualifiedName] (’,’
attributesConceptual+=[Attribute|QualifiedName])*)?’)’

266 (’->’ | ’-’’(’conditionAttribute+=[Attribute|QualifiedName] operator=
Operator value=ValueCondition ’)->’)

267 physicalStructure=[AbstractPhysicalStructure|QualifiedName]’(’(
physicalFields+=[PhysicalField|QualifiedName] (’,’physicalFields+=[
PhysicalField|QualifiedName])*)?’)’)

268 ;
269

270 RoleToEmbbededObjectMappingRule:

185

APPENDIX B. CONCRETE GRAMMAR OF HYDRA LANGUAGE

271 roleConceptual=[Role|QualifiedName]
272 ’->’
273 physicalStructure=[EmbeddedObject|QualifiedName]’()’
274 ;
275

276 RoleToReferenceMappingRule:
277 roleConceptual=[Role|QualifiedName]
278 ’->’
279 reference=[Reference|QualifiedName]
280 ;
281

282 RoleToKeyBracketsFieldMappingRule:
283 roleConceptual=[Role|QualifiedName]
284 ’->’
285 physicalStructure=[KeyValuePair|QualifiedName]’(’keyField = [BracketsField

|QualifiedName]’)’
286 ;
287

288 // Database section
289 Databases :
290 {Databases} ’databases ’ ’{’
291 (databases+=Database)*
292 ’}’
293 ;
294

295 enum DatabaseType :
296 MYSQL = ’mysql’ | MARIADB = ’mariadb’ | SQLITE = ’sqlite’ | POSTGRESQL = ’

postgresql ’ | REDIS =’redis’ | CASSANDRA = ’cassandra ’ | HBASE = ’hbase
’ | MONGODB = ’mongodb’ | NEO4J = ’neo4j’

297 ;
298

299 Database :
300 dbType=DatabaseType name=ID ’{’
301 ((’host’’:’host=STRING) & (’port’’:’port= INT) & (’dbname’’:’

databaseName=STRING)? & (’login’’:’login=STRING)? & (’password ’’:’
password=STRING)?)

302 ’}’
303 ;
304

305 // Other
306 enum Operator:
307 EQUAL = ’=’ | LT = ’<’ | LTE = ’<=’ | GT = ’>’ | GTE = ’>=’
308 ;
309

310 ValueCondition:
311 INT | STRING
312 ;
313

314

315

316 enum KVDataType returns KVDataType:
317 LIST = ’list’ | SET = ’set’ | ORDERED_SET = ’ordered set’| HASH=’hash’
318 ;
319

320 DataType returns DataType:
321 IntType |
322 BigintType |
323 StringType |
324 TextType |
325 BoolType |
326 FloatType |
327 BlobType |
328 DateType |
329 DatetimeType
330 ;
331

332 IntType returns IntType:

186

B.1. Xtext Grammar

333 {IntType}
334 ’int’
335 ;
336

337 BigintType returns BigintType:
338 {BigintType}
339 ’bigint’
340 ;
341

342 StringType returns StringType:
343 {StringType}
344 ’string’ (’[’ maxSize=INT ’]’)?
345 ;
346

347 TextType returns TextType:
348 {TextType}
349 ’text’
350 ;
351

352 BoolType returns BoolType:
353 {BoolType}
354 ’bool’
355 ;
356

357 FloatType returns FloatType:
358 {FloatType}
359 ’float’
360 ;
361

362 BlobType returns BlobType:
363 {BlobType}
364 ’blob’
365 ;
366

367

368 DateType returns DateType:
369 {DateType}
370 ’date’
371 ;
372

373 DatetimeType returns DatetimeType:
374 {DatetimeType}
375 ’datetime ’
376 ;

187

A
P

P
E

N
D

I
X

C
HYDRA FILES

C.1 UNamur Courses Comparison Use Case

1 conceptual schema noe {
2

3 entity type Course {
4 id : int,
5 peridodicity : int
6 identifier {
7 id
8 }
9 }
10 entity type CourseDescription {
11 // presentation
12 id : int,
13 lang:string,
14 parent_id : int,
15 partim_title : string,
16 content : string,
17 title : string,
18 goals : string,
19 objectives : string,
20 course_code : string,
21 organizer : string,
22 organized : string,
23 periodicity : string,
24 sustainable : string,
25 table1 : string,
26 disciplines : string,
27 prerequisites: string,
28 exercises : string,
29 teaching : string,
30 assesment : string,
31 readings : string,
32 cycle : string,
33 level : string
34

35 identifier{

189

APPENDIX C. HYDRA FILES

36 id
37 }
38 }
39

40 entity type CourseOrga{
41 id: int,
42 name : string,
43 partim_name : string,
44 parent_id : int,
45 course_id : int,
46 course_code : string,
47 exercises_q1 : float,
48 exercises_q2 : float,
49 theory_q1 : float,
50 theory_q2 : float,
51 academic_year : int,
52 not_organized : bool,
53 lang : string
54 identifier{
55 id
56 }
57 }
58

59 entity type Program {
60 id: int,
61 name : string,
62 short_name : string,
63 group_refer : string
64 identifier {id}
65 }
66

67 entity type ProgramOrga{
68 id : int,
69 academic_year:int
70 identifier{id}
71 }
72

73 entity type Allocation {
74 id : int,
75 alloc_credits : int,
76 required : bool,
77 not_to_publish : bool,
78 level: int
79 identifier{id}
80 }
81

82 entity type SubjectGroup {
83 id : int,
84 name : string
85

86 identifier{id}
87 }
88

89 entity type Person {
90 id : int,
91 last_name : string,
92 first_name : string
93 identifier{id}
94 }
95

96 entity type Comment {
97 id : int,
98 description : string,
99 subjectgroupid : int,
100 level : int
101 identifier {
102 id

190

C.1. UNamur Courses Comparison Use Case

103 }
104 }
105

106 relationship type progOrgaComment{
107 progorga[0-N] : ProgramOrga ,
108 comment[1] : Comment
109 }
110

111 // relationship type commentSubjectGroup{
112 // subjectgroup[0-N] : SubjectGroup ,
113 // commentsubject[0-1] : Comment
114 // }
115

116 relationship type jury_president {
117 president[0-N] : Person,
118 program_pres[0-1] : ProgramOrga
119 }
120

121 relationship type jury_secretary {
122 secretary[0-N] : Person,
123 program_sec[0-1] : ProgramOrga
124 }
125

126 relationship type allocationProg{
127 allocation[1]: Allocation ,
128 program[0-N] : ProgramOrga
129 }
130

131 relationship type allocationCourse{
132 allocation[1] : Allocation ,
133 course[0-N] : CourseOrga
134 }
135

136 relationship type organization{
137 program[0-N] : Program,
138 organization[1] : ProgramOrga
139 }
140

141 relationship type courseRel{
142 courseinfo[0-N] : Course,
143 courseorga[1] : CourseOrga
144 }
145

146 relationship type courseOrgaRel {
147 coursedescr[1] : CourseDescription ,
148 orga[0-N] : CourseOrga
149 }
150

151 relationship type allocGroup{
152 alloc[1] : Allocation ,
153 group[0-N] : SubjectGroup
154 }
155 }
156 physical schemas {
157

158 relational schema noe_course : mydb {
159

160 table noe_edu_course{
161 columns{
162 id,
163 periodicity
164 }
165 }
166

167 table noe_edu_course_description {
168 columns {
169 id,

191

APPENDIX C. HYDRA FILES

170 title,
171 prerequisites ,
172 assessment ,
173 readings ,
174 content,
175 goals,
176 table1,
177 exercises ,
178 teaching ,
179 decree_goals ,
180 objectives ,
181 course_orga_id
182 }
183 references {
184 fk_course_orga_id : course_orga_id -> noe_edu_course_organization.id
185 }
186 }
187

188 table noe_edu_course_organization {
189 columns {
190 id,
191 course_id ,
192 academic_year ,
193 name,
194 partim_name ,
195 hours_exercises_q1 ,
196 hours_exercises_q2 ,
197 hours_theory_q1 ,
198 hours_theory_q2 ,
199 credits,
200 lang,
201 not_organized ,
202 full_code
203 }
204 references {
205 fk_course_id : course_id -> noe_edu_course.id
206 }
207 }
208

209 table noe_edu_program {
210 columns {
211 id,
212 name,
213 short_name ,
214 group_refer
215 }
216 }
217

218 table noe_edu_program_organization {
219 columns{
220 id,
221 program_id ,
222 academic_year ,
223 additional_program_id ,
224 jury_president ,
225 jury_secretary
226 }
227

228 references{
229 fk_program : program_id -> noe_edu_program.id
230 fk_add_program : additional_program_id -> noe_edu_program.id
231 fk_president : jury_president -> noe_utils_identity.id
232 fk_secretary : jury_secretary -> noe_utils_identity.id
233 }
234 }
235

236 table noe_edu_allocation {

192

C.1. UNamur Courses Comparison Use Case

237 columns {
238 id,
239 required ,
240 level,
241 not_to_publish ,
242 credits,
243 subjects_group_id ,
244 program_orga_id ,
245 course_orga_id
246 }
247 references {
248 fk_course_orga : course_orga_id -> noe_edu_course_organization.id
249 fk_program_orga : program_orga_id -> noe_edu_program_organization.id
250 fk_subjects_group : subjects_group_id -> noe_edu_subjects_group.id
251 }
252 }
253

254 table noe_edu_subjects_group {
255 columns {
256 id,
257 name
258 }
259 }
260

261 table noe_utils_identity {
262 columns {
263 id,
264 last_name ,
265 first_name
266 }
267 }
268

269 table noe_edu_comment {
270 columns {
271 id,
272 program_orga_id ,
273 description ,
274 level,
275 subjects_group_id
276 }
277 references {
278 fk_programorga : program_orga_id -> noe_edu_program_organization.id
279 // fk_subjectgroup : subjects_group_id -> noe_edu_subjects_group.id
280 }
281 }
282 }
283

284 }
285 mapping rules {
286 noe.Course(id, peridodicity) ->noe_course.noe_edu_course(id, periodicity

),
287 noe.CourseDescription(id, title, prerequisites , assesment ,readings ,content

,goals,exercises ,teaching,objectives) -> noe_course.
noe_edu_course_description(id,title, prerequisites , assessment ,readings
,content,goals,exercises ,teaching,objectives),

288 noe.CourseOrga(id,course_id , academic_year , name, partim_name , course_code
,exercises_q1 ,exercises_q2 , theory_q1 , theory_q2 , lang, not_organized)
-> noe_course.noe_edu_course_organization(id,course_id , academic_year ,
name, partim_name , full_code , hours_exercises_q1 , hours_exercises_q2 ,
hours_theory_q1 , hours_theory_q2 , lang, not_organized),

289 noe.courseOrgaRel.coursedescr -> noe_course.noe_edu_course_description.
fk_course_orga_id ,

290 noe.courseRel.courseorga -> noe_course.noe_edu_course_organization.
fk_course_id ,

291 noe.Program(id,name, short_name , group_refer) -> noe_course.
noe_edu_program(id,name,short_name , group_refer),

193

APPENDIX C. HYDRA FILES

292 noe.ProgramOrga(id,academic_year) -> noe_course.
noe_edu_program_organization(id,academic_year),

293 noe.organization.organization -> noe_course.noe_edu_program_organization.
fk_program ,

294 noe.organization.organization -> noe_course.noe_edu_program_organization.
fk_add_program ,

295 noe.Allocation(id,alloc_credits ,required , not_to_publish , level) ->
noe_course.noe_edu_allocation(id,credits,required , not_to_publish ,
level),

296 noe.allocationCourse.allocation -> noe_course.noe_edu_allocation.
fk_course_orga ,

297 noe.allocationProg.allocation -> noe_course.noe_edu_allocation.
fk_program_orga ,

298 noe.SubjectGroup(id,name) -> noe_course.noe_edu_subjects_group(id,name),
299 noe.allocGroup.alloc -> noe_course.noe_edu_allocation.fk_subjects_group ,
300 noe.Person(id,last_name , first_name) -> noe_course.noe_utils_identity(id,

last_name ,first_name),
301 noe.jury_president.program_pres -> noe_course.noe_edu_program_organization

.fk_president ,
302 noe.jury_secretary.program_sec -> noe_course.noe_edu_program_organization.

fk_secretary ,
303 noe.Comment(id,description , level, subjectgroupid) -> noe_course.

noe_edu_comment(id, description , level, subjects_group_id),
304 noe.progOrgaComment.comment -> noe_course.noe_edu_comment.fk_programorga
305 // noe.commentSubjectGroup.commentsubject -> noe_course.noe_edu_comment.

fk_subjectgroup
306 }

194

A
P

P
E

N
D

I
X

D
HYDRA STUDENT PROJECT FEEDBACK SURVEY

D.1 Feedback Survey Questions

sWhat is your level of expertise in relational database design and usage? (From
1 None to 5 Expert)sWhat is your knowledge in relational database design and usage?sWhat is your level of expertise in NoSQL design and usage?(From 1 None to 5
Expert)sWhat is your knowledge in NoSQL database design and usage?s I find the language in general was easy to use (From 1 Strongly disagree to 5
Strongly agree)s I think that most people would learn to use the language very quicklys I would use HyDRa to design polystoressMention positive aspects of the HyDRa modelling languagesMention negative aspects of the HyDRa modelling languagesWhich improvements regarding the HyDRa modelling language would you
suggest?s I find the conceptual schema section of the language easy to uses I think that most people would learn to use the conceptual schema language
very quicklysWhat are your positive or negative remarks about the conceptual part of the
language?s I find the physical schema section of the language easy to uses I think that most people would learn to use the physical schema language very
quicklysWhat are your positive or negative remarks about the physical schemas section
of the language?

195

APPENDIX D. HYDRA STUDENT PROJECT FEEDBACK SURVEY

s I find the mapping rules section of the language easy to uses I think that most people would learn to use the mapping rules section very
quicklysWhat are your positive or negative remarks about the mapping rules section?sDo you have any other remarks?sWhat is your knowledge in Java programming?s If you have other experience in programming but are not familiar in Java
please describe it heres I think that using HyDRa to access data is easier than using native Java codes I find the database access code generated by HyDRa was easy to uses I would you use this generated code to access databases data in my future
projectss It was easy to find the method that I needed to access the datasThe data that I retrieved using the code generated by HyDRa was what I
expecteds It is simpler to access data using native libraries than using HyDRa methodssMention positive aspects of the code generated by HyDRasMention negative aspects of the code generated by HyDRasDo you have any other remarks?

D.2 Answers

Student’s answers to the previous questions can be found on online appendix [4].

196

A
P

P
E

N
D

I
X

E
PERFORMANCE RESULTS

E.1 Execution Time Results

Cells marked with - are configuration not tested as they are very similar to an already
tested configuration. NA cells are schemas that can not fit with the given databases.

DB1 Queries
DB2

Rel Doc KV

Rel
getOrders 2,9 7,12 7,7
getOrdersByID 0,037 0,127 3,8
getOrderByOrderDate 3,39 7,64 8,9

Doc
getOrders

-
5,99

-getOrdersByID 0,17
getOrderByOrderDate 6,19

KV
getOrders

- -
12,25

getOrdersByID 3,9
getOrderByOrderDate 11,8

Table E.1: Conceptual schema (1) physical schema (b) results

197

APPENDIX E. PERFORMANCE RESULTS

DB1 Queries
DB2

Rel Doc KV

Rel
getOrderByClientInBuys 0,1 1 11,9
getCustomerByOrderInBuys 0,82 1,95 18,99
getBuys 3,77 4,5 18,25

Doc
getOrderByClientInBuys 7,36 6,7 13,77
getCustomerByOrderInBuys 0,7 0,8 19,7
getBuys 20,5 7,25 23,4

KV
getOrderByClientInBuys 419 518 446
getCustomerByOrderInBuys 9,2 11,4 23,9
getBuys 429 655 448

Table E.2: Conceptual schema (2) physical schema (b) results

DB1 Queries
DB2

Rel Doc KV

Rel
getOrderByClientInBuys

NAgetCustomerByOrderInBuys
getBuys

Doc
getOrderByClientInBuys 1

-
469

getCustomerByOrderInBuys 2,8 7,7
getBuys 536 432

KV
getOrderByClientInBuys 16.7 22.73

-getCustomerByOrderInBuys 39.9 31.43
getBuys 435 538

Table E.3: Conceptual schema (2) physical schema (c) results

DB1 Queries time (sec)

Doc

getOrderByClientInBuys 0.04
getCustomerByOrderInBuys 0.13
getBuys 0.9
getOrderById 0.04
getOrderByOrderDate 0.7
getOrder 1.05

Table E.4: Conceptual schema (2) physical schema (d) results

198

E.1. Execution Time Results

DB1 Queries DB2

Rel

getOrderByProductInComposeOf (one) 0,02
getOrderByProductInComposeOf (many) 2,66
getProductByOrderInComposedOf (one) 0,03
getProductByOrderInComposedOf (many) 0,1
getComposedOf 7,9

Doc

getOrderByProductInComposeOf (one) 19,2
getOrderByProductInComposeOf (many) 15,7
getProductByOrderInComposedOf (one) 7,6
getProductByOrderInComposedOf (many) 23,5
getComposedOf 18,7

KV

getOrderByProductInComposeOf (one) 11min14
getOrderByProductInComposeOf (many) 10min31
getProductByOrderInComposedOf (one) 46s
getProductByOrderInComposedOf (many) 27min27
getComposedOf Not performed

DB1 Queries
DB2

Rel Doc KV

Rel

getOrderByProductInComposeOf (one)

-

14,05 11min 18s
getOrderByProductInComposeOf (many) 12,7 11min 15
getProductByOrderInComposedOf (one) 12,65 23s
getProductByOrderInComposedOf (many) 12,6 25min
getComposedOf 31,2 12m 27s

Doc

getOrderByProductInComposeOf (one) 22.7

-

12min 43
getOrderByProductInComposeOf (many) 13,7 13min 4s
getProductByOrderInComposedOf (one) 15,52 24s
getProductByOrderInComposedOf (many) 13,16 21min
getComposedOf 15,9 9min 3s

KV

getOrderByProductInComposeOf (one) 2min25 2min41

-
getOrderByProductInComposeOf (many) 2min50 2min54
getProductByOrderInComposedOf (one) 35s 35s
getProductByOrderInComposedOf (many) 4m46s 4min25s
getComposedOf Not performed Not performed

Table E.5: Conceptual schema (3) physical schema (b) results

Queries DB2
getOrderByProductInComposeOf (one) 9min19s
getOrderByProductInComposeOf (many) 9min 33
getProductByOrderInComposedOf (one) 17,7
getProductByOrderInComposedOf (many) 17min21
getComposedOf 9min29

Table E.6: Conceptual schema (3) physical schema (c) results

199

BIBLIOGRAPHY

[1] 6 rules of thumb for mongodb schema design. https://www.mongodb.com/
blog/post/6-rules-of-thumb-for-mongodb-schema-design.

[2] Cassandra data modeling best practices. https://tech.ebayinc.com/
engineering/cassandra-data-modeling-best-practices-part-1/.

[3] Hbase schema case study. https://bit.ly/3nX52y5.

[4] Hydra survey responses. https://staff.info.unamur.be/gobertm/
HyDRa-feedback.xlsx.

[5] Mongodb design guidelines. https://www.mongodb.com/blog/post/
6-rules-of-thumb-for-mongodb-schema-design-part-1.

[6] Northwind database. https://docs.yugabyte.com/preview/sample-data/
northwind/.

[7] Spring data redis - retwis-j. https://docs.spring.io/spring-data/data-keyvalue/
examples/retwisj/current/.

[8] Typhon project.

[9] Xtext. https://www.eclipse.org/Xtext/.

[10] Fatma Abdelhedi, Amal Ait Brahim, Faten Atigui, and Gilles Zurfluh. Processus
de transformation mda d’un schéma conceptuel de données en un schéma
logique nosql. In 34e Congrès Informatique des Organisations et Systèmes
d’Information et de Décision (INFORSID 2016), 2016.

[11] Jacky Akoka and Isabelle Comyn-Wattiau. Roundtrip engineering of nosql
databases. Enterprise Modelling and Information Systems Architectures,
13:281–292, 2018.

[12] Jacky Akoka, Isabelle Comyn-Wattiau, and Nicolas Prat. A four v’s design ap-
proach of nosql graph databases. In International Conference on Conceptual
Modeling, pages 58–68. Springer, 2017.

[13] A. Alsharif and et al. What factors make SQL test cases understandable for
testers? a human study of automated test data generation techniques. In
ICSME, 2019.

201

https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design
https://tech.ebayinc.com/engineering/cassandra-data-modeling-best-practices-part-1/
https://tech.ebayinc.com/engineering/cassandra-data-modeling-best-practices-part-1/
https://bit.ly/3nX52y5
https://staff.info.unamur.be/gobertm/HyDRa-feedback.xlsx
https://staff.info.unamur.be/gobertm/HyDRa-feedback.xlsx
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-1
https://docs.yugabyte.com/preview/sample-data/northwind/
https://docs.yugabyte.com/preview/sample-data/northwind/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://www.eclipse.org/Xtext/

BIBLIOGRAPHY

[14] Scott W. Ambler and Pramodkumar J. Sadalage. Refactoring Databases: Evo-
lutionary Database Design. Addison-Wesley, 2006.

[15] Arangodb. https://www.arangodb.com.

[16] Andera Arcuri, Gordon Fraser, and Rene Just. Private api access and functional
mocking in automated unit test generation. In Proc. ICST, 2017.

[17] Paolo Atzeni. Data modelling in the nosql world: A contradiction? In Pro-
ceedings of the 17th International Conference on Computer Systems and
Technologies 2016, CompSysTech ’16, pages 1–4, New York, NY, USA, 2016.
ACM.

[18] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. Data
modeling in the nosql world. Computer Standards & Interfaces, pages –,
2016.

[19] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. Data
modeling in the NoSQL world. Computer Standards & Interfaces, 67:103149,
2020.

[20] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to non-
relational database systems: The sos platform. In CAiSE, pages 160–174.
Springer, 2012.

[21] Shreya Banerjee and Anirban Sarkar. Logical level design of nosql databases.
In 2016 IEEE Region 10 Conference (TENCON), pages 2360–2365. IEEE, 2016.

[22] Shreya Banerjee and Anirban Sarkar. Modeling nosql databases: from concep-
tual to logical level design. In 3rd International Conference Applications and
Innovations in Mobile Computing (AIMoC 2016), Kolkata, India, February,
pages 10–12, 2016.

[23] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Alfonso Pierantonio,
and Ludovico Iovino. Typhonml: a modeling environment to develop hybrid
polystores. In MoDELS, 2020.

[24] Carol Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual Database
Design : An Entity-Relationship Approach. Benjamin/Cummings, 1992.

[25] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman.
When, how, and why developers (do not) test in their ides. In Proc. ESEC/FSE,
2015.

[26] Pol Benats, Maxime Gobert, Loup Meurice, Csaba Nagy, and Anthony Cleve.
An empirical study of (multi-) database models in open-source projects. In
ER, 2021.

[27] Francesca Bugiotti and Luca Cabibbo. An object-datastore mapper supporting
nosql database design, 2013.

202

https://www.arangodb.com

Bibliography

[28] Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni, and Riccardo Torlone.
Database design for nosql systems. In Proc. of the 33rd International Confer-
ence on Conceptual Modeling (ER 2014), volume 8824 of Lecture Notes in
Computer Science, pages 223–231. Springer, 2014.

[29] Luca Cabibbo. ONDM: an object-NoSQL datastore mapper. Faculty of Engi-
neering, Roma Tre University, 2013.

[30] Batini Carlo, Stefano Ceri, and Navathe Sham. Conceptual Database Design:
An Entity-Relationship Approach. Benjamin/Cummings, 1992.

[31] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):1–26, 2008.

[32] S.-K. Chang, V. Deufemia, G. Polese, and M. Vacca. A logic framework to
support database refactoring. In Proc. of DEXA’07, pages 509–518. Springer,
2007.

[33] Cleve. Program analysis and transformation for data-intensive systems
evolution. PhD thesis, University of Namur, 2009.

[34] Anthony Cleve, Anne-France Brogneaux, and Jean-Luc Hainaut. A conceptual
approach to database applications evolution. In Proc. ER, 2010.

[35] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber.
Understanding database schema evolution: A case study. scp, 97:113 – 121,
2015.

[36] Couchbase. https://www.couchbase.com/.

[37] Couchdb. http://couchdb.apache.org/.

[38] C. A. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo. Automating the database
schema evolution process. The VLDB Journal, 22(1):73–98, February 2013.

[39] Carlo A Curino, Hyun J Moon, Letizia Tanca, and Carlo Zaniolo. Schema
Evolution In Wikipedia. In Proc. of ICEIS 2008, pages 323–332, 2008.

[40] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Umltographdb: mapping
conceptual schemas to graph databases. In International Conference on
Conceptual Modeling, pages 430–444. Springer, 2016.

[41] Alfonso de la Vega, Diego García-Saiz, Carlos Blanco, Marta Zorrilla, and Pablo
Sánchez. Mortadelo: Automatic generation of nosql stores from platform-
independent data models. Future Generation Computer Systems, 105:455–
474, 2020.

[42] Claudio de Lima and Ronaldo dos Santos Mello. A workload-driven logical
design approach for nosql document databases. In iiWAS, pages 1–10, 2015.

203

https://www.couchbase.com/
http://couchdb.apache.org/

BIBLIOGRAPHY

[43] Yuetang Deng, Phyllis Frankl, and Jiong Wang. Testing web database applica-
tions. SIGSOFT Softw. Eng. Notes, 29(5), 2004.

[44] Dorothy E Denning and Peter J Denning. Data security. ACM computing
surveys (CSUR), 11(3):227–249, 1979.

[45] Dorothy Elizabeth Robling Denning. Cryptography and data security, volume
112. Addison-Wesley Reading, 1982.

[46] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan
Zdonik. The BigDAWG polystore system. ACM Sigmod Record, 44(2):11–16,
2015.

[47] Eric Evans and Eric J Evans. Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley Professional, 2004.

[48] Jérôme Fink, Maxime Gobert, and Anthony Cleve. Adapting queries to
database schema changes in hybrid polystores. In IEEE SCAM, pages 127–131,
2020.

[49] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts,
methods, and analytics. International journal of information management,
35(2):137–144, 2015.

[50] Spyridon K Gardikiotis and Nicos Malevris. A two-folded impact analysis of
schema changes on database applications. International Journal of Automa-
tion and Computing, 6(2):109–123, 2009.

[51] Joseph A Gliem and Rosemary R Gliem. Calculating, interpreting, and re-
porting cronbach’s alpha reliability coefficient for likert-type scales. Midwest
Research-to-Practice Conference in Adult, Continuing, and Community . . . ,
2003.

[52] Maxime Gobert. Schema evolution in hybrid database systems. In VLDB PhD
Workshop, 2020.

[53] Maxime Gobert. HyDRa repository, 2021.

[54] Maxime Gobert, Loup Meurice, and Anthony Cleve. Conceptual modeling
of hybrid polystores. In International Conference on Conceptual Modeling,
pages 113–122. Springer, 2021.

[55] Maxime Gobert, Loup Meurice, and Anthony Cleve. Hydra: A framework for
modeling, manipulating and evolving hybrid polystores. In Proceedings of
the 29th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER 2022). IEEE Computer society, 2022.

204

Bibliography

[56] Maxime Gobert, Csaba Nagy, Henrique Rocha, Serge Demeyer, and Anthony
Cleve. Challenges and perils of testing database manipulation code. In Inter-
national Conference on Advanced Information Systems Engineering, pages
229–245. Springer, 2021.

[57] Maxime Gobert, Csaba Nagy, Henrique Rocha, Serge Demeyer, and
Anthony Cleve. Replication package. https://github.com/csnagy/
infosys2022-db-manipulation-testing, 2022. Accessed: March, 2022.

[58] Maxime Gobert, Csaba Nagy, Henrique Rocha, Serge Demeyer, and Anthony
Cleve. Best practices of testing database manipulation code. Information
Systems, 111:102105, 2023.

[59] M. Goeminne, A. Decan, and T. Mens. Co-evolving code-related and database-
related changes in a data-intensive software system. In Proc. CSMR/WCRE,
2014.

[60] M. Goeminne and T. Mens. Towards a survival analysis of database framework
usage in java projects. In Proc. ICSME, 2015.

[61] Mathieu Goeminne, Alexandre Decan, and Tom Mens. Co-evolving code-
related and database-related changes in a data-intensive software system. In
2014 Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), pages 353–357.
IEEE, 2014.

[62] Paola Gómez, Rubby Casallas, and Claudia Roncancio. Data schema does
matter, even in nosql systems! In 2016 IEEE Tenth International Conference
on Research Challenges in Information Science (RCIS), pages 1–6. IEEE,
2016.

[63] D. Gonzalez, J. C. S. Santos, A. Popovich, M. Mirakhorli, and M. Nagappan. A
large-scale study on the usage of testing patterns that address maintainability
attributes: Patterns for ease of modification, diagnoses, and comprehension.
In MSR, 2017.

[64] J. R. C. González, J. J. F. Romero, M. G. Guerrero, and F. Calderón. Multi-class
multi-tag classifier system for stackoverflow questions. In Proc. ROPEC, 2015.

[65] Graphdb. http://graphdb.ontotext.com/.

[66] Michaela Greiler, Arie van Deursen, and Margaret-Anne D. Storey. Test confes-
sions: A study of testing practices for plug-in systems. In Proceedings of the
34th International Conference on Software Engineering (ICSE 2012), pages
244–254. IEEE Computer Society, 2012.

[67] Katarina Grolinger and Miriam AM Capretz. A unit test approach for database
schema evolution. Information and Software Technology, 53(2):159–170,
2011.

205

https://github.com/csnagy/infosys2022-db-manipulation-testing
https://github.com/csnagy/infosys2022-db-manipulation-testing
http://graphdb.ontotext.com/

BIBLIOGRAPHY

[68] J. L. Hainaut, J. M. Hick, V. Englebert, J. Henrard, and D. Roland. Understanding
the implementation of is-a relations. In Bernhard Thalheim, editor, Concep-
tual Modeling — ER ’96, pages 42–57, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[69] Jean-Luc Hainaut. A generic entity-relationship model. In Proceedings of
the IFIP WG 8.1 Conference on Information System Concepts: an in-depth
analysis, pages 109–138. North-Holland, 1989.

[70] Florian Haubold, Johannes Schildgen, Stefanie Scherzinger, and Stefan
Deßloch. Controvol flex: Flexible schema evolution for nosql application
development. Datenbanksysteme für Business, Technologie und Web (BTW
2017), 2017.

[71] R. Hecht and S. Jablonski. Nosql evaluation: A use case oriented survey. In
2011 International Conference on Cloud and Service Computing, pages
336–341.

[72] Robin Hecht and Stefan Jablonski. Nosql evaluation: A use case oriented sur-
vey. In Cloud and Service Computing (CSC), 2011 International Conference
on, pages 336–341. IEEE, 2011.

[73] Jean-Marc Hick. Evolution d’applications de bases de données relationnelles
- Méthodes et outils. PhD thesis, University of Namur, 2001.

[74] Jean-Marc Hick and Jean-Luc Hainaut. Database application evolution: A
transformational approach. Data & Knowledge Engineering, 59:534–558,
December 2006.

[75] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. Code coverage
at Google. In Proc. ESEC/FSE, 2019.

[76] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model
transformation tool. Science of computer programming, 72(1-2):31–39, 2008.

[77] Gregory M. Kapfhammer and Mary Lou Soffa. Database-aware test coverage
monitoring. In 1st India Softw. Eng. Conference, 2008.

[78] Meike Klettke, Hannes Awolin, Uta Störl, Daniel Müller, and Stefanie
Scherzinger. Uncovering the evolution history of data lakes. In 2017 IEEE
International Conference on Big Data (Big Data), pages 2462–2471. IEEE,
2017.

[79] Meike Klettke, Uta Störl, Manuel Shenavai, and Stefanie Scherzinger. Nosql
schema evolution and big data migration at scale. In 2016 IEEE International
Conference on Big Data (Big Data), pages 2764–2774. IEEE, 2016.

[80] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal: A domain specific
language for source code analysis and manipulation. 2009 Ninth IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation,
pages 168–177, 2009.

206

Bibliography

[81] Pavneet Singh Kochhar, Tegawendé F. Bissyandé, David Lo, and Lingxiao Jiang.
An empirical study of adoption of software testing in open source projects.
In Proceedings of the 13th International Conference on Quality Software
(QSIC 2013), pages 103–112, 2013.

[82] D. Kolovos, F. Medhat, R. Paige, D. Di Ruscio, T. Van Der Storm, S. Scholze, and
A. Zolotas. Domain-specific languages for the design, deployment and manip-
ulation of heterogeneous databases. In 2019 IEEE/ACM 11th International
Workshop on Modelling in Software Engineering (MiSE), pages 89–92, 2019.

[83] Dimitrios Kolovos, Fady Medhat, Richard Paige, Davide Di Ruscio, Tijs Van
Der Storm, Sebastian Scholze, and Athanasios Zolotas. Domain-specific
languages for the design, deployment and manipulation of heterogeneous
databases. In 2019 IEEE/ACM 11th International Workshop on Modelling in
Software Engineering (MiSE), pages 89–92. IEEE, 2019.

[84] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. Data management in microservices: State of the practice,
challenges, and research directions. arXiv preprint arXiv:2103.00170, 2021.

[85] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[86] Ying-Ti Liao, Jiazheng Zhou, Chia-Hung Lu, Shih-Chang Chen, Ching-Hsien
Hsu, Wenguang Chen, Mon-Fong Jiang, and Yeh-Ching Chung. Data adapter
for querying and transformation between sql and nosql database. Future
Generation Computer Systems, 65:111 – 121, 2016. Special Issue on Big Data
in the Cloud.

[87] Dien-Yen Lin and Iulian Neamtiu. Collateral evolution of applications and
databases. In Proceedings of the joint international and annual ERCIM work-
shops on Principles of software evolution (IWPSE) and software evolution
(Evol) workshops, pages 31–40. ACM, 2009.

[88] Dien-Yen Lin and Iulian Neamtiu. Collateral evolution of applications and
databases. In Joint Int’l Workshop on Principles of software evolution and
ERCIM software evolution workshop, pages 31–40. ACM, 2009.

[89] Michaël Marcozzi, Wim Vanhoof, and Jean-Luc Hainaut. Relational symbolic
execution of SQL code for unit testing of database programs. Sci. Comp.
Program., 105, 2015.

[90] Andy Maule, Wolfgang Emmerich, and David S. Rosenblum. Impact analysis
of database schema changes. In ICSE ’08, pages 451–460. ACM, 2008.

[91] L. Meurice and A. Cleve. Supporting schema evolution in schema-less nosql
data stores. In 2017 IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pages 457–461, Feb 2017.

207

BIBLIOGRAPHY

[92] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and preventing
program inconsistencies under database schema evolution. In Software
Quality, Reliability and Security (QRS), 2016 IEEE International Conference
on, pages 262–273. IEEE, 2016.

[93] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and preventing
program inconsistencies under database schema evolution. In 2016 IEEE In-
ternational Conference on Software Quality, Reliability and Security (QRS).
IEEE, August 2016.

[94] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and preventing
program inconsistencies under database schema evolution. In Proc. QRS,
2016.

[95] Michael Joseph Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu. Nose:
Schema design for nosql applications. IEEE Transactions on Knowledge and
Data Engineering, 29(10):2275–2289, 2017.

[96] Csaba Nagy and Anthony Cleve. Sqlinspect: a static analyzer to inspect
database usage in java applications. In Proc. ICSE, 2018.

[97] Neo4j. Modeling designs. https://neo4j.com/developer/modeling-designs/.

[98] Benny Pasternak, Shmuel Tyszberowicz, and Amiram Yehudai. Genutest: a
unit test and mock aspect generation tool. International journal on software
tools for technology transfer, 11(4):273–290, 2009.

[99] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for con-
ducting systematic mapping studies in software engineering: An update. IST,
64, 2015.

[100] Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-
evolution of schema and code in database applications. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering, pages
125–135. ACM, 2013.

[101] Dong Qiu, Bixin Li, and Zhendong Su. An empirical analysis of the co-
evolution of schema and code in database applications. In Proc. ESEC/FSE,
2013.

[102] Lihua Ran and et al. Building test cases and oracles to automate the testing
of web database applications. Information and Software Technology, 51(2),
2009.

[103] Riak kv. http://basho.com/products/riak-kv/.

[104] Mehwish Riaz, Emilia Mendes, and Ewan Tempero. Towards maintainability
prediction for relational database-driven software applications: Evidence
from software practitioners. In Proc. Advances in Software Engineering,
2010.

208

https://neo4j.com/developer/modeling-designs/
http://basho.com/products/riak-kv/

Bibliography

[105] Leonardo Rocha, Fernando Vale, Elder Cirilo, Dárlinton Barbosa, and Fer-
nando Mourão. A framework for migrating relational datasets to nosql1. Pro-
cedia Computer Science, 51:2593–2602, 2015.

[106] Gerardo Rossel, Andrea Manna, et al. A modeling methodology for nosql
key-value databases. Database Syst. J, 8(2):12–18, 2017.

[107] Noa Roy-Hubara and Arnon Sturm. Design methods for the new database era:
a systematic literature review. SoSyM 2020.

[108] Karla Saur, Tudor Dumitraş, and Michael Hicks. Evolving nosql databases
without downtime. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 166–176. IEEE, 2016.

[109] S. Scherzinger, T. Cerqueus, and E. C. d. Almeida. Controvol: A framework for
controlled schema evolution in nosql application development. In 2015 IEEE
31st International Conference on Data Engineering, pages 1464–1467, April
2015.

[110] Stefanie Scherzinger, Meike Klettke, and Uta Störl. Managing schema evolu-
tion in nosql data stores. arXiv preprint arXiv:1308.0514, 2013.

[111] Stefanie Scherzinger, Meike Klettke, and Uta Störl. Cleager: Eager schema
evolution in nosql document stores. Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2015), 2015.

[112] Stefanie Scherzinger, Stephanie Sombach, Katharina Wiech, Meike Klettke,
and Uta Störl. Datalution: a tool for continuous schema evolution in nosql-
backed web applications. In proc. of the 2nd International Workshop on
Quality-Aware DevOps, pages 38–39. ACM, 2016.

[113] Stefanie Scherzinger, Uta Störl, and Meike Klettke. A datalog-based protocol
for lazy data migration in agile nosql application development. In proc. of the
15th Symposium on Database Programming Languages, pages 41–44. ACM,
2015.

[114] Johannes Schildgen and Stefan Deßloch. Notaql is not a query language!
it’s for data transformation on wide-column stores. In British International
Conference on Databases, pages 139–151. Springer, 2015.

[115] Johannes Schildgen, Thomas Lottermann, and Stefan Deßloch. Cross-system
nosql data transformations with notaql. In proc. of the 3rd ACM SIGMOD
Workshop on Algorithms and Systems for MapReduce and Beyond, page 5.
ACM, 2016.

[116] Rami Sellami, Sami Bhiri, and Bruno Defude. Odbapi: a unified rest api for
relational and nosql data stores. In Big Data (BigData Congress), 2014 IEEE
International Congress on, pages 653–660. IEEE, 2014.

209

BIBLIOGRAPHY

[117] Chintan Shah, Kriti Srivastava, and Narendra Shekokar. A novel polyglot data
mapper for an e-commerce business model. In 2016 IEEE Conference on
e-Learning, e-Management and e-Services (IC3e), pages 40–45. IEEE, 2016.

[118] Kwangchul Shin, Chulhyun Hwang, and Hoekyung Jung. Nosql database
design using uml conceptual data model based on peter chen’s framework.
International Journal of Applied Engineering Research, 12(5):632–636, 2017.

[119] Dag Sjøberg. Quantifying schema evolution. Info. & Softw. Techn., 35(1):35 –
44, 1993.

[120] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli.
Mock objects for testing java systems. Empir. Softw. Engineering, 24:1461–
1498, 2019.

[121] Greg Speegle. Compensating Transactions, pages 405–406. Springer US,
Boston, MA, 2009.

[122] Michael Stonebraker, Dong Deng, and Michael L. Brodie. Application-
database co-evolution: A new design and development paradigm. In New
England Database Day, 2017.

[123] Uta Störl, Thomas Hauf, Meike Klettke, and Stefanie Scherzinger. Schemaless
nosql data stores-object-nosql mappers to the rescue? BTW 2015.

[124] Uta Störl and Meike Klettke. Darwin: A data platform for nosql schema
evolution management and data migration. 2022.

[125] Uta Störl, Daniel Müller, Alexander Tekleab, Stephane Tolale, Julian Stenzel,
Meike Klettke, and Stefanie Scherzinger. Curating variational data in appli-
cation development. In 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 1605–1608. IEEE, 2018.

[126] Philippe Thiran, Jean-Luc Hainaut, Geert-Jan Houben, and Djamal Bensli-
mane. Wrapper-based evolution of legacy information systems. ACM Trans.
Softw. Eng. Methodol., 15(4):329–359, 2006.

[127] Fabian Trautsch and Jens Grabowski. Are there any unit tests? an empirical
study on unit testing in open source python projects. In Proc. ICST, 2017.

[128] Javier Tuya, María José Suárez-Cabal, and Claudio de la Riva. Full predicate
coverage for testing SQL database queries. Softw. Testing, Verification and
Reliability, 20, 2010.

[129] Muhammad Usman, Ricardo Britto, Jürgen Börstler, and Emilia Mendes. Tax-
onomies in software engineering: A systematic mapping study and a revised
taxonomy development method. Information and Softw. Technology, 85,
2017.

210

Bibliography

[130] B. Vasilescu, V. Filkov, and A. Serebrenik. Stackoverflow and github: Associa-
tions between software development and crowdsourced knowledge. In Proc.
ICSC, 2013.

[131] Panos Vassiliadis, Apostolos V Zarras, and Ioannis Skoulis. How is life for a
table in an evolving relational schema? birth, death and everything in be-
tween. In International Conference on Conceptual Modeling, pages 453–466.
Springer, 2015.

[132] Jie Xu, Mengji Shi, Chaoyuan Chen, Zhen Zhang, Jigao Fu, and Chi Harold
Liu. Zql: A unified middleware bridging both relational and nosql databases.
In Dependable, Autonomic and Secure Computing, 14th Intl Conf on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress (DASC/Pi-
Com/DataCom/CyberSciTech), 2016 IEEE 14th Intl C, pages 730–737. IEEE,
2016.

[133] Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data and
cloud computing: innovation opportunities and challenges. International
Journal of Digital Earth, 10(1):13–53, 2017.

[134] Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. Unibench: A bench-
mark for multi-model database management systems. In Technology Confer-
ence on Performance Evaluation and Benchmarking. Springer, 2018.

211

	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction

	Background
	Conceptual Background
	Database Design
	Database Manipulation Code
	Polystores
	Database Evolution
	Concluding Remarks

	State of the Art
	Introduction
	Database Design
	Database Manipulation
	Database Evolution
	Concluding Remarks

	Contributions
	Challenges and Best Practices of Testing Database Access Code
	Introduction
	Test Coverage of Database Access Code in Open-source Systems
	Challenges & Problems When Testing DB Access Code
	Best Practices When Testing DB Access Code
	Discussion and Implications
	Threats to Validity
	Related Work
	Conclusion

	HyDRa Polystore Modelling Language
	Introduction
	Language General Structure
	Conceptual Schema
	Physical Databases
	Physical Schemas
	Mapping Rules
	Benefits of HyDRa Modelling Language
	Conclusion

	HyDRa Polystore Data Manipulation API
	Introduction
	Conceptual Schema and Physical Schema Correspondences
	Specification of Generated Conceptual Classes and Methods
	Specification of Generated Algorithms
	Illustrative Example
	Algorithms
	Tool Implementation
	Benefits
	Conclusion

	Evolution Framework & Query Adaptation
	Introduction
	Background
	Evolution Framework
	Query Adaptation
	Conclusion

	Evaluation
	User Evaluation
	Introduction
	Practical Context & Participants Profile
	Exercise Design
	Lessons Learned
	Survey Feedback
	Conclusion

	Systematic Evaluation
	Introduction
	Experimental Schemas Data and Queries
	Correctness
	Performance Evaluation
	Conclusion

	Use Cases
	Data Comparison
	Data Migration

	Conclusion
	Conclusion & Future Directions
	Summary of the Contributions
	Future Challenges

	StackExchange References
	Concrete Grammar of HyDRa language
	Xtext Grammar

	HyDRa Files
	UNamur Courses Comparison Use Case

	HyDRa Student Project Feedback Survey
	Feedback Survey Questions
	Answers

	Performance Results
	Execution Time Results

	Bibliography

